arm/arm64: KVM: Rename irq_state to irq_pending
[firefly-linux-kernel-4.4.55.git] / virt / kvm / arm / vgic.c
1 /*
2  * Copyright (C) 2012 ARM Ltd.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  */
18
19 #include <linux/cpu.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/uaccess.h>
28
29 #include <linux/irqchip/arm-gic.h>
30
31 #include <asm/kvm_emulate.h>
32 #include <asm/kvm_arm.h>
33 #include <asm/kvm_mmu.h>
34
35 /*
36  * How the whole thing works (courtesy of Christoffer Dall):
37  *
38  * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
39  *   something is pending
40  * - VGIC pending interrupts are stored on the vgic.irq_pending vgic
41  *   bitmap (this bitmap is updated by both user land ioctls and guest
42  *   mmio ops, and other in-kernel peripherals such as the
43  *   arch. timers) and indicate the 'wire' state.
44  * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
45  *   recalculated
46  * - To calculate the oracle, we need info for each cpu from
47  *   compute_pending_for_cpu, which considers:
48  *   - PPI: dist->irq_pending & dist->irq_enable
49  *   - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
50  *   - irq_spi_target is a 'formatted' version of the GICD_ICFGR
51  *     registers, stored on each vcpu. We only keep one bit of
52  *     information per interrupt, making sure that only one vcpu can
53  *     accept the interrupt.
54  * - The same is true when injecting an interrupt, except that we only
55  *   consider a single interrupt at a time. The irq_spi_cpu array
56  *   contains the target CPU for each SPI.
57  *
58  * The handling of level interrupts adds some extra complexity. We
59  * need to track when the interrupt has been EOIed, so we can sample
60  * the 'line' again. This is achieved as such:
61  *
62  * - When a level interrupt is moved onto a vcpu, the corresponding
63  *   bit in irq_active is set. As long as this bit is set, the line
64  *   will be ignored for further interrupts. The interrupt is injected
65  *   into the vcpu with the GICH_LR_EOI bit set (generate a
66  *   maintenance interrupt on EOI).
67  * - When the interrupt is EOIed, the maintenance interrupt fires,
68  *   and clears the corresponding bit in irq_active. This allow the
69  *   interrupt line to be sampled again.
70  */
71
72 #define VGIC_ADDR_UNDEF         (-1)
73 #define IS_VGIC_ADDR_UNDEF(_x)  ((_x) == VGIC_ADDR_UNDEF)
74
75 #define PRODUCT_ID_KVM          0x4b    /* ASCII code K */
76 #define IMPLEMENTER_ARM         0x43b
77 #define GICC_ARCH_VERSION_V2    0x2
78
79 #define ACCESS_READ_VALUE       (1 << 0)
80 #define ACCESS_READ_RAZ         (0 << 0)
81 #define ACCESS_READ_MASK(x)     ((x) & (1 << 0))
82 #define ACCESS_WRITE_IGNORED    (0 << 1)
83 #define ACCESS_WRITE_SETBIT     (1 << 1)
84 #define ACCESS_WRITE_CLEARBIT   (2 << 1)
85 #define ACCESS_WRITE_VALUE      (3 << 1)
86 #define ACCESS_WRITE_MASK(x)    ((x) & (3 << 1))
87
88 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
89 static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu);
90 static void vgic_update_state(struct kvm *kvm);
91 static void vgic_kick_vcpus(struct kvm *kvm);
92 static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg);
93 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
94 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
95 static void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
96 static void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
97
98 static const struct vgic_ops *vgic_ops;
99 static const struct vgic_params *vgic;
100
101 /*
102  * struct vgic_bitmap contains unions that provide two views of
103  * the same data. In one case it is an array of registers of
104  * u32's, and in the other case it is a bitmap of unsigned
105  * longs.
106  *
107  * This does not work on 64-bit BE systems, because the bitmap access
108  * will store two consecutive 32-bit words with the higher-addressed
109  * register's bits at the lower index and the lower-addressed register's
110  * bits at the higher index.
111  *
112  * Therefore, swizzle the register index when accessing the 32-bit word
113  * registers to access the right register's value.
114  */
115 #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64
116 #define REG_OFFSET_SWIZZLE      1
117 #else
118 #define REG_OFFSET_SWIZZLE      0
119 #endif
120
121 static u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x,
122                                 int cpuid, u32 offset)
123 {
124         offset >>= 2;
125         if (!offset)
126                 return x->percpu[cpuid].reg + (offset ^ REG_OFFSET_SWIZZLE);
127         else
128                 return x->shared.reg + ((offset - 1) ^ REG_OFFSET_SWIZZLE);
129 }
130
131 static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
132                                    int cpuid, int irq)
133 {
134         if (irq < VGIC_NR_PRIVATE_IRQS)
135                 return test_bit(irq, x->percpu[cpuid].reg_ul);
136
137         return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared.reg_ul);
138 }
139
140 static void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
141                                     int irq, int val)
142 {
143         unsigned long *reg;
144
145         if (irq < VGIC_NR_PRIVATE_IRQS) {
146                 reg = x->percpu[cpuid].reg_ul;
147         } else {
148                 reg =  x->shared.reg_ul;
149                 irq -= VGIC_NR_PRIVATE_IRQS;
150         }
151
152         if (val)
153                 set_bit(irq, reg);
154         else
155                 clear_bit(irq, reg);
156 }
157
158 static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
159 {
160         if (unlikely(cpuid >= VGIC_MAX_CPUS))
161                 return NULL;
162         return x->percpu[cpuid].reg_ul;
163 }
164
165 static unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
166 {
167         return x->shared.reg_ul;
168 }
169
170 static u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
171 {
172         offset >>= 2;
173         BUG_ON(offset > (VGIC_NR_IRQS / 4));
174         if (offset < 8)
175                 return x->percpu[cpuid] + offset;
176         else
177                 return x->shared + offset - 8;
178 }
179
180 #define VGIC_CFG_LEVEL  0
181 #define VGIC_CFG_EDGE   1
182
183 static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
184 {
185         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
186         int irq_val;
187
188         irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
189         return irq_val == VGIC_CFG_EDGE;
190 }
191
192 static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
193 {
194         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
195
196         return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
197 }
198
199 static int vgic_irq_is_active(struct kvm_vcpu *vcpu, int irq)
200 {
201         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
202
203         return vgic_bitmap_get_irq_val(&dist->irq_active, vcpu->vcpu_id, irq);
204 }
205
206 static void vgic_irq_set_active(struct kvm_vcpu *vcpu, int irq)
207 {
208         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
209
210         vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 1);
211 }
212
213 static void vgic_irq_clear_active(struct kvm_vcpu *vcpu, int irq)
214 {
215         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
216
217         vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 0);
218 }
219
220 static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
221 {
222         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
223
224         return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq);
225 }
226
227 static void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
228 {
229         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
230
231         vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1);
232 }
233
234 static void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
235 {
236         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
237
238         vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0);
239 }
240
241 static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
242 {
243         if (irq < VGIC_NR_PRIVATE_IRQS)
244                 set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
245         else
246                 set_bit(irq - VGIC_NR_PRIVATE_IRQS,
247                         vcpu->arch.vgic_cpu.pending_shared);
248 }
249
250 static void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
251 {
252         if (irq < VGIC_NR_PRIVATE_IRQS)
253                 clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
254         else
255                 clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
256                           vcpu->arch.vgic_cpu.pending_shared);
257 }
258
259 static u32 mmio_data_read(struct kvm_exit_mmio *mmio, u32 mask)
260 {
261         return le32_to_cpu(*((u32 *)mmio->data)) & mask;
262 }
263
264 static void mmio_data_write(struct kvm_exit_mmio *mmio, u32 mask, u32 value)
265 {
266         *((u32 *)mmio->data) = cpu_to_le32(value) & mask;
267 }
268
269 /**
270  * vgic_reg_access - access vgic register
271  * @mmio:   pointer to the data describing the mmio access
272  * @reg:    pointer to the virtual backing of vgic distributor data
273  * @offset: least significant 2 bits used for word offset
274  * @mode:   ACCESS_ mode (see defines above)
275  *
276  * Helper to make vgic register access easier using one of the access
277  * modes defined for vgic register access
278  * (read,raz,write-ignored,setbit,clearbit,write)
279  */
280 static void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
281                             phys_addr_t offset, int mode)
282 {
283         int word_offset = (offset & 3) * 8;
284         u32 mask = (1UL << (mmio->len * 8)) - 1;
285         u32 regval;
286
287         /*
288          * Any alignment fault should have been delivered to the guest
289          * directly (ARM ARM B3.12.7 "Prioritization of aborts").
290          */
291
292         if (reg) {
293                 regval = *reg;
294         } else {
295                 BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
296                 regval = 0;
297         }
298
299         if (mmio->is_write) {
300                 u32 data = mmio_data_read(mmio, mask) << word_offset;
301                 switch (ACCESS_WRITE_MASK(mode)) {
302                 case ACCESS_WRITE_IGNORED:
303                         return;
304
305                 case ACCESS_WRITE_SETBIT:
306                         regval |= data;
307                         break;
308
309                 case ACCESS_WRITE_CLEARBIT:
310                         regval &= ~data;
311                         break;
312
313                 case ACCESS_WRITE_VALUE:
314                         regval = (regval & ~(mask << word_offset)) | data;
315                         break;
316                 }
317                 *reg = regval;
318         } else {
319                 switch (ACCESS_READ_MASK(mode)) {
320                 case ACCESS_READ_RAZ:
321                         regval = 0;
322                         /* fall through */
323
324                 case ACCESS_READ_VALUE:
325                         mmio_data_write(mmio, mask, regval >> word_offset);
326                 }
327         }
328 }
329
330 static bool handle_mmio_misc(struct kvm_vcpu *vcpu,
331                              struct kvm_exit_mmio *mmio, phys_addr_t offset)
332 {
333         u32 reg;
334         u32 word_offset = offset & 3;
335
336         switch (offset & ~3) {
337         case 0:                 /* GICD_CTLR */
338                 reg = vcpu->kvm->arch.vgic.enabled;
339                 vgic_reg_access(mmio, &reg, word_offset,
340                                 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
341                 if (mmio->is_write) {
342                         vcpu->kvm->arch.vgic.enabled = reg & 1;
343                         vgic_update_state(vcpu->kvm);
344                         return true;
345                 }
346                 break;
347
348         case 4:                 /* GICD_TYPER */
349                 reg  = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
350                 reg |= (VGIC_NR_IRQS >> 5) - 1;
351                 vgic_reg_access(mmio, &reg, word_offset,
352                                 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
353                 break;
354
355         case 8:                 /* GICD_IIDR */
356                 reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
357                 vgic_reg_access(mmio, &reg, word_offset,
358                                 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
359                 break;
360         }
361
362         return false;
363 }
364
365 static bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu,
366                                struct kvm_exit_mmio *mmio, phys_addr_t offset)
367 {
368         vgic_reg_access(mmio, NULL, offset,
369                         ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
370         return false;
371 }
372
373 static bool handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu,
374                                        struct kvm_exit_mmio *mmio,
375                                        phys_addr_t offset)
376 {
377         u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
378                                        vcpu->vcpu_id, offset);
379         vgic_reg_access(mmio, reg, offset,
380                         ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
381         if (mmio->is_write) {
382                 vgic_update_state(vcpu->kvm);
383                 return true;
384         }
385
386         return false;
387 }
388
389 static bool handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu,
390                                          struct kvm_exit_mmio *mmio,
391                                          phys_addr_t offset)
392 {
393         u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
394                                        vcpu->vcpu_id, offset);
395         vgic_reg_access(mmio, reg, offset,
396                         ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
397         if (mmio->is_write) {
398                 if (offset < 4) /* Force SGI enabled */
399                         *reg |= 0xffff;
400                 vgic_retire_disabled_irqs(vcpu);
401                 vgic_update_state(vcpu->kvm);
402                 return true;
403         }
404
405         return false;
406 }
407
408 static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu,
409                                         struct kvm_exit_mmio *mmio,
410                                         phys_addr_t offset)
411 {
412         u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_pending,
413                                        vcpu->vcpu_id, offset);
414         vgic_reg_access(mmio, reg, offset,
415                         ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
416         if (mmio->is_write) {
417                 vgic_update_state(vcpu->kvm);
418                 return true;
419         }
420
421         return false;
422 }
423
424 static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu,
425                                           struct kvm_exit_mmio *mmio,
426                                           phys_addr_t offset)
427 {
428         u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_pending,
429                                        vcpu->vcpu_id, offset);
430         vgic_reg_access(mmio, reg, offset,
431                         ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
432         if (mmio->is_write) {
433                 vgic_update_state(vcpu->kvm);
434                 return true;
435         }
436
437         return false;
438 }
439
440 static bool handle_mmio_priority_reg(struct kvm_vcpu *vcpu,
441                                      struct kvm_exit_mmio *mmio,
442                                      phys_addr_t offset)
443 {
444         u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
445                                         vcpu->vcpu_id, offset);
446         vgic_reg_access(mmio, reg, offset,
447                         ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
448         return false;
449 }
450
451 #define GICD_ITARGETSR_SIZE     32
452 #define GICD_CPUTARGETS_BITS    8
453 #define GICD_IRQS_PER_ITARGETSR (GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS)
454 static u32 vgic_get_target_reg(struct kvm *kvm, int irq)
455 {
456         struct vgic_dist *dist = &kvm->arch.vgic;
457         int i;
458         u32 val = 0;
459
460         irq -= VGIC_NR_PRIVATE_IRQS;
461
462         for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++)
463                 val |= 1 << (dist->irq_spi_cpu[irq + i] + i * 8);
464
465         return val;
466 }
467
468 static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq)
469 {
470         struct vgic_dist *dist = &kvm->arch.vgic;
471         struct kvm_vcpu *vcpu;
472         int i, c;
473         unsigned long *bmap;
474         u32 target;
475
476         irq -= VGIC_NR_PRIVATE_IRQS;
477
478         /*
479          * Pick the LSB in each byte. This ensures we target exactly
480          * one vcpu per IRQ. If the byte is null, assume we target
481          * CPU0.
482          */
483         for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) {
484                 int shift = i * GICD_CPUTARGETS_BITS;
485                 target = ffs((val >> shift) & 0xffU);
486                 target = target ? (target - 1) : 0;
487                 dist->irq_spi_cpu[irq + i] = target;
488                 kvm_for_each_vcpu(c, vcpu, kvm) {
489                         bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]);
490                         if (c == target)
491                                 set_bit(irq + i, bmap);
492                         else
493                                 clear_bit(irq + i, bmap);
494                 }
495         }
496 }
497
498 static bool handle_mmio_target_reg(struct kvm_vcpu *vcpu,
499                                    struct kvm_exit_mmio *mmio,
500                                    phys_addr_t offset)
501 {
502         u32 reg;
503
504         /* We treat the banked interrupts targets as read-only */
505         if (offset < 32) {
506                 u32 roreg = 1 << vcpu->vcpu_id;
507                 roreg |= roreg << 8;
508                 roreg |= roreg << 16;
509
510                 vgic_reg_access(mmio, &roreg, offset,
511                                 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
512                 return false;
513         }
514
515         reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U);
516         vgic_reg_access(mmio, &reg, offset,
517                         ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
518         if (mmio->is_write) {
519                 vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U);
520                 vgic_update_state(vcpu->kvm);
521                 return true;
522         }
523
524         return false;
525 }
526
527 static u32 vgic_cfg_expand(u16 val)
528 {
529         u32 res = 0;
530         int i;
531
532         /*
533          * Turn a 16bit value like abcd...mnop into a 32bit word
534          * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
535          */
536         for (i = 0; i < 16; i++)
537                 res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
538
539         return res;
540 }
541
542 static u16 vgic_cfg_compress(u32 val)
543 {
544         u16 res = 0;
545         int i;
546
547         /*
548          * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
549          * abcd...mnop which is what we really care about.
550          */
551         for (i = 0; i < 16; i++)
552                 res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
553
554         return res;
555 }
556
557 /*
558  * The distributor uses 2 bits per IRQ for the CFG register, but the
559  * LSB is always 0. As such, we only keep the upper bit, and use the
560  * two above functions to compress/expand the bits
561  */
562 static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu,
563                                 struct kvm_exit_mmio *mmio, phys_addr_t offset)
564 {
565         u32 val;
566         u32 *reg;
567
568         reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
569                                   vcpu->vcpu_id, offset >> 1);
570
571         if (offset & 4)
572                 val = *reg >> 16;
573         else
574                 val = *reg & 0xffff;
575
576         val = vgic_cfg_expand(val);
577         vgic_reg_access(mmio, &val, offset,
578                         ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
579         if (mmio->is_write) {
580                 if (offset < 8) {
581                         *reg = ~0U; /* Force PPIs/SGIs to 1 */
582                         return false;
583                 }
584
585                 val = vgic_cfg_compress(val);
586                 if (offset & 4) {
587                         *reg &= 0xffff;
588                         *reg |= val << 16;
589                 } else {
590                         *reg &= 0xffff << 16;
591                         *reg |= val;
592                 }
593         }
594
595         return false;
596 }
597
598 static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu,
599                                 struct kvm_exit_mmio *mmio, phys_addr_t offset)
600 {
601         u32 reg;
602         vgic_reg_access(mmio, &reg, offset,
603                         ACCESS_READ_RAZ | ACCESS_WRITE_VALUE);
604         if (mmio->is_write) {
605                 vgic_dispatch_sgi(vcpu, reg);
606                 vgic_update_state(vcpu->kvm);
607                 return true;
608         }
609
610         return false;
611 }
612
613 /**
614  * vgic_unqueue_irqs - move pending IRQs from LRs to the distributor
615  * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
616  *
617  * Move any pending IRQs that have already been assigned to LRs back to the
618  * emulated distributor state so that the complete emulated state can be read
619  * from the main emulation structures without investigating the LRs.
620  *
621  * Note that IRQs in the active state in the LRs get their pending state moved
622  * to the distributor but the active state stays in the LRs, because we don't
623  * track the active state on the distributor side.
624  */
625 static void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
626 {
627         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
628         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
629         int vcpu_id = vcpu->vcpu_id;
630         int i;
631
632         for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
633                 struct vgic_lr lr = vgic_get_lr(vcpu, i);
634
635                 /*
636                  * There are three options for the state bits:
637                  *
638                  * 01: pending
639                  * 10: active
640                  * 11: pending and active
641                  *
642                  * If the LR holds only an active interrupt (not pending) then
643                  * just leave it alone.
644                  */
645                 if ((lr.state & LR_STATE_MASK) == LR_STATE_ACTIVE)
646                         continue;
647
648                 /*
649                  * Reestablish the pending state on the distributor and the
650                  * CPU interface.  It may have already been pending, but that
651                  * is fine, then we are only setting a few bits that were
652                  * already set.
653                  */
654                 vgic_dist_irq_set_pending(vcpu, lr.irq);
655                 if (lr.irq < VGIC_NR_SGIS)
656                         dist->irq_sgi_sources[vcpu_id][lr.irq] |= 1 << lr.source;
657                 lr.state &= ~LR_STATE_PENDING;
658                 vgic_set_lr(vcpu, i, lr);
659
660                 /*
661                  * If there's no state left on the LR (it could still be
662                  * active), then the LR does not hold any useful info and can
663                  * be marked as free for other use.
664                  */
665                 if (!(lr.state & LR_STATE_MASK))
666                         vgic_retire_lr(i, lr.irq, vcpu);
667
668                 /* Finally update the VGIC state. */
669                 vgic_update_state(vcpu->kvm);
670         }
671 }
672
673 /* Handle reads of GICD_CPENDSGIRn and GICD_SPENDSGIRn */
674 static bool read_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
675                                         struct kvm_exit_mmio *mmio,
676                                         phys_addr_t offset)
677 {
678         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
679         int sgi;
680         int min_sgi = (offset & ~0x3) * 4;
681         int max_sgi = min_sgi + 3;
682         int vcpu_id = vcpu->vcpu_id;
683         u32 reg = 0;
684
685         /* Copy source SGIs from distributor side */
686         for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
687                 int shift = 8 * (sgi - min_sgi);
688                 reg |= (u32)dist->irq_sgi_sources[vcpu_id][sgi] << shift;
689         }
690
691         mmio_data_write(mmio, ~0, reg);
692         return false;
693 }
694
695 static bool write_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
696                                          struct kvm_exit_mmio *mmio,
697                                          phys_addr_t offset, bool set)
698 {
699         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
700         int sgi;
701         int min_sgi = (offset & ~0x3) * 4;
702         int max_sgi = min_sgi + 3;
703         int vcpu_id = vcpu->vcpu_id;
704         u32 reg;
705         bool updated = false;
706
707         reg = mmio_data_read(mmio, ~0);
708
709         /* Clear pending SGIs on the distributor */
710         for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
711                 u8 mask = reg >> (8 * (sgi - min_sgi));
712                 if (set) {
713                         if ((dist->irq_sgi_sources[vcpu_id][sgi] & mask) != mask)
714                                 updated = true;
715                         dist->irq_sgi_sources[vcpu_id][sgi] |= mask;
716                 } else {
717                         if (dist->irq_sgi_sources[vcpu_id][sgi] & mask)
718                                 updated = true;
719                         dist->irq_sgi_sources[vcpu_id][sgi] &= ~mask;
720                 }
721         }
722
723         if (updated)
724                 vgic_update_state(vcpu->kvm);
725
726         return updated;
727 }
728
729 static bool handle_mmio_sgi_set(struct kvm_vcpu *vcpu,
730                                 struct kvm_exit_mmio *mmio,
731                                 phys_addr_t offset)
732 {
733         if (!mmio->is_write)
734                 return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
735         else
736                 return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, true);
737 }
738
739 static bool handle_mmio_sgi_clear(struct kvm_vcpu *vcpu,
740                                   struct kvm_exit_mmio *mmio,
741                                   phys_addr_t offset)
742 {
743         if (!mmio->is_write)
744                 return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
745         else
746                 return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, false);
747 }
748
749 /*
750  * I would have liked to use the kvm_bus_io_*() API instead, but it
751  * cannot cope with banked registers (only the VM pointer is passed
752  * around, and we need the vcpu). One of these days, someone please
753  * fix it!
754  */
755 struct mmio_range {
756         phys_addr_t base;
757         unsigned long len;
758         bool (*handle_mmio)(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
759                             phys_addr_t offset);
760 };
761
762 static const struct mmio_range vgic_dist_ranges[] = {
763         {
764                 .base           = GIC_DIST_CTRL,
765                 .len            = 12,
766                 .handle_mmio    = handle_mmio_misc,
767         },
768         {
769                 .base           = GIC_DIST_IGROUP,
770                 .len            = VGIC_NR_IRQS / 8,
771                 .handle_mmio    = handle_mmio_raz_wi,
772         },
773         {
774                 .base           = GIC_DIST_ENABLE_SET,
775                 .len            = VGIC_NR_IRQS / 8,
776                 .handle_mmio    = handle_mmio_set_enable_reg,
777         },
778         {
779                 .base           = GIC_DIST_ENABLE_CLEAR,
780                 .len            = VGIC_NR_IRQS / 8,
781                 .handle_mmio    = handle_mmio_clear_enable_reg,
782         },
783         {
784                 .base           = GIC_DIST_PENDING_SET,
785                 .len            = VGIC_NR_IRQS / 8,
786                 .handle_mmio    = handle_mmio_set_pending_reg,
787         },
788         {
789                 .base           = GIC_DIST_PENDING_CLEAR,
790                 .len            = VGIC_NR_IRQS / 8,
791                 .handle_mmio    = handle_mmio_clear_pending_reg,
792         },
793         {
794                 .base           = GIC_DIST_ACTIVE_SET,
795                 .len            = VGIC_NR_IRQS / 8,
796                 .handle_mmio    = handle_mmio_raz_wi,
797         },
798         {
799                 .base           = GIC_DIST_ACTIVE_CLEAR,
800                 .len            = VGIC_NR_IRQS / 8,
801                 .handle_mmio    = handle_mmio_raz_wi,
802         },
803         {
804                 .base           = GIC_DIST_PRI,
805                 .len            = VGIC_NR_IRQS,
806                 .handle_mmio    = handle_mmio_priority_reg,
807         },
808         {
809                 .base           = GIC_DIST_TARGET,
810                 .len            = VGIC_NR_IRQS,
811                 .handle_mmio    = handle_mmio_target_reg,
812         },
813         {
814                 .base           = GIC_DIST_CONFIG,
815                 .len            = VGIC_NR_IRQS / 4,
816                 .handle_mmio    = handle_mmio_cfg_reg,
817         },
818         {
819                 .base           = GIC_DIST_SOFTINT,
820                 .len            = 4,
821                 .handle_mmio    = handle_mmio_sgi_reg,
822         },
823         {
824                 .base           = GIC_DIST_SGI_PENDING_CLEAR,
825                 .len            = VGIC_NR_SGIS,
826                 .handle_mmio    = handle_mmio_sgi_clear,
827         },
828         {
829                 .base           = GIC_DIST_SGI_PENDING_SET,
830                 .len            = VGIC_NR_SGIS,
831                 .handle_mmio    = handle_mmio_sgi_set,
832         },
833         {}
834 };
835
836 static const
837 struct mmio_range *find_matching_range(const struct mmio_range *ranges,
838                                        struct kvm_exit_mmio *mmio,
839                                        phys_addr_t offset)
840 {
841         const struct mmio_range *r = ranges;
842
843         while (r->len) {
844                 if (offset >= r->base &&
845                     (offset + mmio->len) <= (r->base + r->len))
846                         return r;
847                 r++;
848         }
849
850         return NULL;
851 }
852
853 /**
854  * vgic_handle_mmio - handle an in-kernel MMIO access
855  * @vcpu:       pointer to the vcpu performing the access
856  * @run:        pointer to the kvm_run structure
857  * @mmio:       pointer to the data describing the access
858  *
859  * returns true if the MMIO access has been performed in kernel space,
860  * and false if it needs to be emulated in user space.
861  */
862 bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
863                       struct kvm_exit_mmio *mmio)
864 {
865         const struct mmio_range *range;
866         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
867         unsigned long base = dist->vgic_dist_base;
868         bool updated_state;
869         unsigned long offset;
870
871         if (!irqchip_in_kernel(vcpu->kvm) ||
872             mmio->phys_addr < base ||
873             (mmio->phys_addr + mmio->len) > (base + KVM_VGIC_V2_DIST_SIZE))
874                 return false;
875
876         /* We don't support ldrd / strd or ldm / stm to the emulated vgic */
877         if (mmio->len > 4) {
878                 kvm_inject_dabt(vcpu, mmio->phys_addr);
879                 return true;
880         }
881
882         offset = mmio->phys_addr - base;
883         range = find_matching_range(vgic_dist_ranges, mmio, offset);
884         if (unlikely(!range || !range->handle_mmio)) {
885                 pr_warn("Unhandled access %d %08llx %d\n",
886                         mmio->is_write, mmio->phys_addr, mmio->len);
887                 return false;
888         }
889
890         spin_lock(&vcpu->kvm->arch.vgic.lock);
891         offset = mmio->phys_addr - range->base - base;
892         updated_state = range->handle_mmio(vcpu, mmio, offset);
893         spin_unlock(&vcpu->kvm->arch.vgic.lock);
894         kvm_prepare_mmio(run, mmio);
895         kvm_handle_mmio_return(vcpu, run);
896
897         if (updated_state)
898                 vgic_kick_vcpus(vcpu->kvm);
899
900         return true;
901 }
902
903 static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg)
904 {
905         struct kvm *kvm = vcpu->kvm;
906         struct vgic_dist *dist = &kvm->arch.vgic;
907         int nrcpus = atomic_read(&kvm->online_vcpus);
908         u8 target_cpus;
909         int sgi, mode, c, vcpu_id;
910
911         vcpu_id = vcpu->vcpu_id;
912
913         sgi = reg & 0xf;
914         target_cpus = (reg >> 16) & 0xff;
915         mode = (reg >> 24) & 3;
916
917         switch (mode) {
918         case 0:
919                 if (!target_cpus)
920                         return;
921                 break;
922
923         case 1:
924                 target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff;
925                 break;
926
927         case 2:
928                 target_cpus = 1 << vcpu_id;
929                 break;
930         }
931
932         kvm_for_each_vcpu(c, vcpu, kvm) {
933                 if (target_cpus & 1) {
934                         /* Flag the SGI as pending */
935                         vgic_dist_irq_set_pending(vcpu, sgi);
936                         dist->irq_sgi_sources[c][sgi] |= 1 << vcpu_id;
937                         kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c);
938                 }
939
940                 target_cpus >>= 1;
941         }
942 }
943
944 static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
945 {
946         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
947         unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
948         unsigned long pending_private, pending_shared;
949         int vcpu_id;
950
951         vcpu_id = vcpu->vcpu_id;
952         pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
953         pend_shared = vcpu->arch.vgic_cpu.pending_shared;
954
955         pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id);
956         enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
957         bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
958
959         pending = vgic_bitmap_get_shared_map(&dist->irq_pending);
960         enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
961         bitmap_and(pend_shared, pending, enabled, VGIC_NR_SHARED_IRQS);
962         bitmap_and(pend_shared, pend_shared,
963                    vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
964                    VGIC_NR_SHARED_IRQS);
965
966         pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
967         pending_shared = find_first_bit(pend_shared, VGIC_NR_SHARED_IRQS);
968         return (pending_private < VGIC_NR_PRIVATE_IRQS ||
969                 pending_shared < VGIC_NR_SHARED_IRQS);
970 }
971
972 /*
973  * Update the interrupt state and determine which CPUs have pending
974  * interrupts. Must be called with distributor lock held.
975  */
976 static void vgic_update_state(struct kvm *kvm)
977 {
978         struct vgic_dist *dist = &kvm->arch.vgic;
979         struct kvm_vcpu *vcpu;
980         int c;
981
982         if (!dist->enabled) {
983                 set_bit(0, &dist->irq_pending_on_cpu);
984                 return;
985         }
986
987         kvm_for_each_vcpu(c, vcpu, kvm) {
988                 if (compute_pending_for_cpu(vcpu)) {
989                         pr_debug("CPU%d has pending interrupts\n", c);
990                         set_bit(c, &dist->irq_pending_on_cpu);
991                 }
992         }
993 }
994
995 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
996 {
997         return vgic_ops->get_lr(vcpu, lr);
998 }
999
1000 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
1001                                struct vgic_lr vlr)
1002 {
1003         vgic_ops->set_lr(vcpu, lr, vlr);
1004 }
1005
1006 static void vgic_sync_lr_elrsr(struct kvm_vcpu *vcpu, int lr,
1007                                struct vgic_lr vlr)
1008 {
1009         vgic_ops->sync_lr_elrsr(vcpu, lr, vlr);
1010 }
1011
1012 static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
1013 {
1014         return vgic_ops->get_elrsr(vcpu);
1015 }
1016
1017 static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
1018 {
1019         return vgic_ops->get_eisr(vcpu);
1020 }
1021
1022 static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
1023 {
1024         return vgic_ops->get_interrupt_status(vcpu);
1025 }
1026
1027 static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
1028 {
1029         vgic_ops->enable_underflow(vcpu);
1030 }
1031
1032 static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
1033 {
1034         vgic_ops->disable_underflow(vcpu);
1035 }
1036
1037 static inline void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1038 {
1039         vgic_ops->get_vmcr(vcpu, vmcr);
1040 }
1041
1042 static void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1043 {
1044         vgic_ops->set_vmcr(vcpu, vmcr);
1045 }
1046
1047 static inline void vgic_enable(struct kvm_vcpu *vcpu)
1048 {
1049         vgic_ops->enable(vcpu);
1050 }
1051
1052 static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu)
1053 {
1054         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1055         struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);
1056
1057         vlr.state = 0;
1058         vgic_set_lr(vcpu, lr_nr, vlr);
1059         clear_bit(lr_nr, vgic_cpu->lr_used);
1060         vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
1061 }
1062
1063 /*
1064  * An interrupt may have been disabled after being made pending on the
1065  * CPU interface (the classic case is a timer running while we're
1066  * rebooting the guest - the interrupt would kick as soon as the CPU
1067  * interface gets enabled, with deadly consequences).
1068  *
1069  * The solution is to examine already active LRs, and check the
1070  * interrupt is still enabled. If not, just retire it.
1071  */
1072 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
1073 {
1074         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1075         int lr;
1076
1077         for_each_set_bit(lr, vgic_cpu->lr_used, vgic->nr_lr) {
1078                 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1079
1080                 if (!vgic_irq_is_enabled(vcpu, vlr.irq)) {
1081                         vgic_retire_lr(lr, vlr.irq, vcpu);
1082                         if (vgic_irq_is_active(vcpu, vlr.irq))
1083                                 vgic_irq_clear_active(vcpu, vlr.irq);
1084                 }
1085         }
1086 }
1087
1088 /*
1089  * Queue an interrupt to a CPU virtual interface. Return true on success,
1090  * or false if it wasn't possible to queue it.
1091  */
1092 static bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
1093 {
1094         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1095         struct vgic_lr vlr;
1096         int lr;
1097
1098         /* Sanitize the input... */
1099         BUG_ON(sgi_source_id & ~7);
1100         BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
1101         BUG_ON(irq >= VGIC_NR_IRQS);
1102
1103         kvm_debug("Queue IRQ%d\n", irq);
1104
1105         lr = vgic_cpu->vgic_irq_lr_map[irq];
1106
1107         /* Do we have an active interrupt for the same CPUID? */
1108         if (lr != LR_EMPTY) {
1109                 vlr = vgic_get_lr(vcpu, lr);
1110                 if (vlr.source == sgi_source_id) {
1111                         kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
1112                         BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
1113                         vlr.state |= LR_STATE_PENDING;
1114                         vgic_set_lr(vcpu, lr, vlr);
1115                         return true;
1116                 }
1117         }
1118
1119         /* Try to use another LR for this interrupt */
1120         lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
1121                                vgic->nr_lr);
1122         if (lr >= vgic->nr_lr)
1123                 return false;
1124
1125         kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
1126         vgic_cpu->vgic_irq_lr_map[irq] = lr;
1127         set_bit(lr, vgic_cpu->lr_used);
1128
1129         vlr.irq = irq;
1130         vlr.source = sgi_source_id;
1131         vlr.state = LR_STATE_PENDING;
1132         if (!vgic_irq_is_edge(vcpu, irq))
1133                 vlr.state |= LR_EOI_INT;
1134
1135         vgic_set_lr(vcpu, lr, vlr);
1136
1137         return true;
1138 }
1139
1140 static bool vgic_queue_sgi(struct kvm_vcpu *vcpu, int irq)
1141 {
1142         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1143         unsigned long sources;
1144         int vcpu_id = vcpu->vcpu_id;
1145         int c;
1146
1147         sources = dist->irq_sgi_sources[vcpu_id][irq];
1148
1149         for_each_set_bit(c, &sources, VGIC_MAX_CPUS) {
1150                 if (vgic_queue_irq(vcpu, c, irq))
1151                         clear_bit(c, &sources);
1152         }
1153
1154         dist->irq_sgi_sources[vcpu_id][irq] = sources;
1155
1156         /*
1157          * If the sources bitmap has been cleared it means that we
1158          * could queue all the SGIs onto link registers (see the
1159          * clear_bit above), and therefore we are done with them in
1160          * our emulated gic and can get rid of them.
1161          */
1162         if (!sources) {
1163                 vgic_dist_irq_clear_pending(vcpu, irq);
1164                 vgic_cpu_irq_clear(vcpu, irq);
1165                 return true;
1166         }
1167
1168         return false;
1169 }
1170
1171 static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
1172 {
1173         if (vgic_irq_is_active(vcpu, irq))
1174                 return true; /* level interrupt, already queued */
1175
1176         if (vgic_queue_irq(vcpu, 0, irq)) {
1177                 if (vgic_irq_is_edge(vcpu, irq)) {
1178                         vgic_dist_irq_clear_pending(vcpu, irq);
1179                         vgic_cpu_irq_clear(vcpu, irq);
1180                 } else {
1181                         vgic_irq_set_active(vcpu, irq);
1182                 }
1183
1184                 return true;
1185         }
1186
1187         return false;
1188 }
1189
1190 /*
1191  * Fill the list registers with pending interrupts before running the
1192  * guest.
1193  */
1194 static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1195 {
1196         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1197         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1198         int i, vcpu_id;
1199         int overflow = 0;
1200
1201         vcpu_id = vcpu->vcpu_id;
1202
1203         /*
1204          * We may not have any pending interrupt, or the interrupts
1205          * may have been serviced from another vcpu. In all cases,
1206          * move along.
1207          */
1208         if (!kvm_vgic_vcpu_pending_irq(vcpu)) {
1209                 pr_debug("CPU%d has no pending interrupt\n", vcpu_id);
1210                 goto epilog;
1211         }
1212
1213         /* SGIs */
1214         for_each_set_bit(i, vgic_cpu->pending_percpu, VGIC_NR_SGIS) {
1215                 if (!vgic_queue_sgi(vcpu, i))
1216                         overflow = 1;
1217         }
1218
1219         /* PPIs */
1220         for_each_set_bit_from(i, vgic_cpu->pending_percpu, VGIC_NR_PRIVATE_IRQS) {
1221                 if (!vgic_queue_hwirq(vcpu, i))
1222                         overflow = 1;
1223         }
1224
1225         /* SPIs */
1226         for_each_set_bit(i, vgic_cpu->pending_shared, VGIC_NR_SHARED_IRQS) {
1227                 if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
1228                         overflow = 1;
1229         }
1230
1231 epilog:
1232         if (overflow) {
1233                 vgic_enable_underflow(vcpu);
1234         } else {
1235                 vgic_disable_underflow(vcpu);
1236                 /*
1237                  * We're about to run this VCPU, and we've consumed
1238                  * everything the distributor had in store for
1239                  * us. Claim we don't have anything pending. We'll
1240                  * adjust that if needed while exiting.
1241                  */
1242                 clear_bit(vcpu_id, &dist->irq_pending_on_cpu);
1243         }
1244 }
1245
1246 static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
1247 {
1248         u32 status = vgic_get_interrupt_status(vcpu);
1249         bool level_pending = false;
1250
1251         kvm_debug("STATUS = %08x\n", status);
1252
1253         if (status & INT_STATUS_EOI) {
1254                 /*
1255                  * Some level interrupts have been EOIed. Clear their
1256                  * active bit.
1257                  */
1258                 u64 eisr = vgic_get_eisr(vcpu);
1259                 unsigned long *eisr_ptr = (unsigned long *)&eisr;
1260                 int lr;
1261
1262                 for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
1263                         struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1264
1265                         vgic_irq_clear_active(vcpu, vlr.irq);
1266                         WARN_ON(vlr.state & LR_STATE_MASK);
1267                         vlr.state = 0;
1268                         vgic_set_lr(vcpu, lr, vlr);
1269
1270                         /* Any additional pending interrupt? */
1271                         if (vgic_dist_irq_is_pending(vcpu, vlr.irq)) {
1272                                 vgic_cpu_irq_set(vcpu, vlr.irq);
1273                                 level_pending = true;
1274                         } else {
1275                                 vgic_cpu_irq_clear(vcpu, vlr.irq);
1276                         }
1277
1278                         /*
1279                          * Despite being EOIed, the LR may not have
1280                          * been marked as empty.
1281                          */
1282                         vgic_sync_lr_elrsr(vcpu, lr, vlr);
1283                 }
1284         }
1285
1286         if (status & INT_STATUS_UNDERFLOW)
1287                 vgic_disable_underflow(vcpu);
1288
1289         return level_pending;
1290 }
1291
1292 /*
1293  * Sync back the VGIC state after a guest run. The distributor lock is
1294  * needed so we don't get preempted in the middle of the state processing.
1295  */
1296 static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1297 {
1298         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1299         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1300         u64 elrsr;
1301         unsigned long *elrsr_ptr;
1302         int lr, pending;
1303         bool level_pending;
1304
1305         level_pending = vgic_process_maintenance(vcpu);
1306         elrsr = vgic_get_elrsr(vcpu);
1307         elrsr_ptr = (unsigned long *)&elrsr;
1308
1309         /* Clear mappings for empty LRs */
1310         for_each_set_bit(lr, elrsr_ptr, vgic->nr_lr) {
1311                 struct vgic_lr vlr;
1312
1313                 if (!test_and_clear_bit(lr, vgic_cpu->lr_used))
1314                         continue;
1315
1316                 vlr = vgic_get_lr(vcpu, lr);
1317
1318                 BUG_ON(vlr.irq >= VGIC_NR_IRQS);
1319                 vgic_cpu->vgic_irq_lr_map[vlr.irq] = LR_EMPTY;
1320         }
1321
1322         /* Check if we still have something up our sleeve... */
1323         pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
1324         if (level_pending || pending < vgic->nr_lr)
1325                 set_bit(vcpu->vcpu_id, &dist->irq_pending_on_cpu);
1326 }
1327
1328 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1329 {
1330         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1331
1332         if (!irqchip_in_kernel(vcpu->kvm))
1333                 return;
1334
1335         spin_lock(&dist->lock);
1336         __kvm_vgic_flush_hwstate(vcpu);
1337         spin_unlock(&dist->lock);
1338 }
1339
1340 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1341 {
1342         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1343
1344         if (!irqchip_in_kernel(vcpu->kvm))
1345                 return;
1346
1347         spin_lock(&dist->lock);
1348         __kvm_vgic_sync_hwstate(vcpu);
1349         spin_unlock(&dist->lock);
1350 }
1351
1352 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1353 {
1354         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1355
1356         if (!irqchip_in_kernel(vcpu->kvm))
1357                 return 0;
1358
1359         return test_bit(vcpu->vcpu_id, &dist->irq_pending_on_cpu);
1360 }
1361
1362 static void vgic_kick_vcpus(struct kvm *kvm)
1363 {
1364         struct kvm_vcpu *vcpu;
1365         int c;
1366
1367         /*
1368          * We've injected an interrupt, time to find out who deserves
1369          * a good kick...
1370          */
1371         kvm_for_each_vcpu(c, vcpu, kvm) {
1372                 if (kvm_vgic_vcpu_pending_irq(vcpu))
1373                         kvm_vcpu_kick(vcpu);
1374         }
1375 }
1376
1377 static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
1378 {
1379         int edge_triggered = vgic_irq_is_edge(vcpu, irq);
1380         int state = vgic_dist_irq_is_pending(vcpu, irq);
1381
1382         /*
1383          * Only inject an interrupt if:
1384          * - edge triggered and we have a rising edge
1385          * - level triggered and we change level
1386          */
1387         if (edge_triggered)
1388                 return level > state;
1389         else
1390                 return level != state;
1391 }
1392
1393 static bool vgic_update_irq_pending(struct kvm *kvm, int cpuid,
1394                                   unsigned int irq_num, bool level)
1395 {
1396         struct vgic_dist *dist = &kvm->arch.vgic;
1397         struct kvm_vcpu *vcpu;
1398         int edge_triggered, level_triggered;
1399         int enabled;
1400         bool ret = true;
1401
1402         spin_lock(&dist->lock);
1403
1404         vcpu = kvm_get_vcpu(kvm, cpuid);
1405         edge_triggered = vgic_irq_is_edge(vcpu, irq_num);
1406         level_triggered = !edge_triggered;
1407
1408         if (!vgic_validate_injection(vcpu, irq_num, level)) {
1409                 ret = false;
1410                 goto out;
1411         }
1412
1413         if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
1414                 cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
1415                 vcpu = kvm_get_vcpu(kvm, cpuid);
1416         }
1417
1418         kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
1419
1420         if (level)
1421                 vgic_dist_irq_set_pending(vcpu, irq_num);
1422         else
1423                 vgic_dist_irq_clear_pending(vcpu, irq_num);
1424
1425         enabled = vgic_irq_is_enabled(vcpu, irq_num);
1426
1427         if (!enabled) {
1428                 ret = false;
1429                 goto out;
1430         }
1431
1432         if (level_triggered && vgic_irq_is_active(vcpu, irq_num)) {
1433                 /*
1434                  * Level interrupt in progress, will be picked up
1435                  * when EOId.
1436                  */
1437                 ret = false;
1438                 goto out;
1439         }
1440
1441         if (level) {
1442                 vgic_cpu_irq_set(vcpu, irq_num);
1443                 set_bit(cpuid, &dist->irq_pending_on_cpu);
1444         }
1445
1446 out:
1447         spin_unlock(&dist->lock);
1448
1449         return ret;
1450 }
1451
1452 /**
1453  * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1454  * @kvm:     The VM structure pointer
1455  * @cpuid:   The CPU for PPIs
1456  * @irq_num: The IRQ number that is assigned to the device
1457  * @level:   Edge-triggered:  true:  to trigger the interrupt
1458  *                            false: to ignore the call
1459  *           Level-sensitive  true:  activates an interrupt
1460  *                            false: deactivates an interrupt
1461  *
1462  * The GIC is not concerned with devices being active-LOW or active-HIGH for
1463  * level-sensitive interrupts.  You can think of the level parameter as 1
1464  * being HIGH and 0 being LOW and all devices being active-HIGH.
1465  */
1466 int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
1467                         bool level)
1468 {
1469         if (vgic_update_irq_pending(kvm, cpuid, irq_num, level))
1470                 vgic_kick_vcpus(kvm);
1471
1472         return 0;
1473 }
1474
1475 static irqreturn_t vgic_maintenance_handler(int irq, void *data)
1476 {
1477         /*
1478          * We cannot rely on the vgic maintenance interrupt to be
1479          * delivered synchronously. This means we can only use it to
1480          * exit the VM, and we perform the handling of EOIed
1481          * interrupts on the exit path (see vgic_process_maintenance).
1482          */
1483         return IRQ_HANDLED;
1484 }
1485
1486 /**
1487  * kvm_vgic_vcpu_init - Initialize per-vcpu VGIC state
1488  * @vcpu: pointer to the vcpu struct
1489  *
1490  * Initialize the vgic_cpu struct and vgic_dist struct fields pertaining to
1491  * this vcpu and enable the VGIC for this VCPU
1492  */
1493 int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
1494 {
1495         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1496         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1497         int i;
1498
1499         if (vcpu->vcpu_id >= VGIC_MAX_CPUS)
1500                 return -EBUSY;
1501
1502         for (i = 0; i < VGIC_NR_IRQS; i++) {
1503                 if (i < VGIC_NR_PPIS)
1504                         vgic_bitmap_set_irq_val(&dist->irq_enabled,
1505                                                 vcpu->vcpu_id, i, 1);
1506                 if (i < VGIC_NR_PRIVATE_IRQS)
1507                         vgic_bitmap_set_irq_val(&dist->irq_cfg,
1508                                                 vcpu->vcpu_id, i, VGIC_CFG_EDGE);
1509
1510                 vgic_cpu->vgic_irq_lr_map[i] = LR_EMPTY;
1511         }
1512
1513         /*
1514          * Store the number of LRs per vcpu, so we don't have to go
1515          * all the way to the distributor structure to find out. Only
1516          * assembly code should use this one.
1517          */
1518         vgic_cpu->nr_lr = vgic->nr_lr;
1519
1520         vgic_enable(vcpu);
1521
1522         return 0;
1523 }
1524
1525 /**
1526  * kvm_vgic_init - Initialize global VGIC state before running any VCPUs
1527  * @kvm: pointer to the kvm struct
1528  *
1529  * Map the virtual CPU interface into the VM before running any VCPUs.  We
1530  * can't do this at creation time, because user space must first set the
1531  * virtual CPU interface address in the guest physical address space.  Also
1532  * initialize the ITARGETSRn regs to 0 on the emulated distributor.
1533  */
1534 int kvm_vgic_init(struct kvm *kvm)
1535 {
1536         int ret = 0, i;
1537
1538         if (!irqchip_in_kernel(kvm))
1539                 return 0;
1540
1541         mutex_lock(&kvm->lock);
1542
1543         if (vgic_initialized(kvm))
1544                 goto out;
1545
1546         if (IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_dist_base) ||
1547             IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_cpu_base)) {
1548                 kvm_err("Need to set vgic cpu and dist addresses first\n");
1549                 ret = -ENXIO;
1550                 goto out;
1551         }
1552
1553         ret = kvm_phys_addr_ioremap(kvm, kvm->arch.vgic.vgic_cpu_base,
1554                                     vgic->vcpu_base, KVM_VGIC_V2_CPU_SIZE);
1555         if (ret) {
1556                 kvm_err("Unable to remap VGIC CPU to VCPU\n");
1557                 goto out;
1558         }
1559
1560         for (i = VGIC_NR_PRIVATE_IRQS; i < VGIC_NR_IRQS; i += 4)
1561                 vgic_set_target_reg(kvm, 0, i);
1562
1563         kvm->arch.vgic.ready = true;
1564 out:
1565         mutex_unlock(&kvm->lock);
1566         return ret;
1567 }
1568
1569 int kvm_vgic_create(struct kvm *kvm)
1570 {
1571         int i, vcpu_lock_idx = -1, ret = 0;
1572         struct kvm_vcpu *vcpu;
1573
1574         mutex_lock(&kvm->lock);
1575
1576         if (kvm->arch.vgic.vctrl_base) {
1577                 ret = -EEXIST;
1578                 goto out;
1579         }
1580
1581         /*
1582          * Any time a vcpu is run, vcpu_load is called which tries to grab the
1583          * vcpu->mutex.  By grabbing the vcpu->mutex of all VCPUs we ensure
1584          * that no other VCPUs are run while we create the vgic.
1585          */
1586         kvm_for_each_vcpu(i, vcpu, kvm) {
1587                 if (!mutex_trylock(&vcpu->mutex))
1588                         goto out_unlock;
1589                 vcpu_lock_idx = i;
1590         }
1591
1592         kvm_for_each_vcpu(i, vcpu, kvm) {
1593                 if (vcpu->arch.has_run_once) {
1594                         ret = -EBUSY;
1595                         goto out_unlock;
1596                 }
1597         }
1598
1599         spin_lock_init(&kvm->arch.vgic.lock);
1600         kvm->arch.vgic.in_kernel = true;
1601         kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
1602         kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
1603         kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
1604
1605 out_unlock:
1606         for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1607                 vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1608                 mutex_unlock(&vcpu->mutex);
1609         }
1610
1611 out:
1612         mutex_unlock(&kvm->lock);
1613         return ret;
1614 }
1615
1616 static int vgic_ioaddr_overlap(struct kvm *kvm)
1617 {
1618         phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
1619         phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
1620
1621         if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
1622                 return 0;
1623         if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
1624             (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
1625                 return -EBUSY;
1626         return 0;
1627 }
1628
1629 static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
1630                               phys_addr_t addr, phys_addr_t size)
1631 {
1632         int ret;
1633
1634         if (addr & ~KVM_PHYS_MASK)
1635                 return -E2BIG;
1636
1637         if (addr & (SZ_4K - 1))
1638                 return -EINVAL;
1639
1640         if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
1641                 return -EEXIST;
1642         if (addr + size < addr)
1643                 return -EINVAL;
1644
1645         *ioaddr = addr;
1646         ret = vgic_ioaddr_overlap(kvm);
1647         if (ret)
1648                 *ioaddr = VGIC_ADDR_UNDEF;
1649
1650         return ret;
1651 }
1652
1653 /**
1654  * kvm_vgic_addr - set or get vgic VM base addresses
1655  * @kvm:   pointer to the vm struct
1656  * @type:  the VGIC addr type, one of KVM_VGIC_V2_ADDR_TYPE_XXX
1657  * @addr:  pointer to address value
1658  * @write: if true set the address in the VM address space, if false read the
1659  *          address
1660  *
1661  * Set or get the vgic base addresses for the distributor and the virtual CPU
1662  * interface in the VM physical address space.  These addresses are properties
1663  * of the emulated core/SoC and therefore user space initially knows this
1664  * information.
1665  */
1666 int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
1667 {
1668         int r = 0;
1669         struct vgic_dist *vgic = &kvm->arch.vgic;
1670
1671         mutex_lock(&kvm->lock);
1672         switch (type) {
1673         case KVM_VGIC_V2_ADDR_TYPE_DIST:
1674                 if (write) {
1675                         r = vgic_ioaddr_assign(kvm, &vgic->vgic_dist_base,
1676                                                *addr, KVM_VGIC_V2_DIST_SIZE);
1677                 } else {
1678                         *addr = vgic->vgic_dist_base;
1679                 }
1680                 break;
1681         case KVM_VGIC_V2_ADDR_TYPE_CPU:
1682                 if (write) {
1683                         r = vgic_ioaddr_assign(kvm, &vgic->vgic_cpu_base,
1684                                                *addr, KVM_VGIC_V2_CPU_SIZE);
1685                 } else {
1686                         *addr = vgic->vgic_cpu_base;
1687                 }
1688                 break;
1689         default:
1690                 r = -ENODEV;
1691         }
1692
1693         mutex_unlock(&kvm->lock);
1694         return r;
1695 }
1696
1697 static bool handle_cpu_mmio_misc(struct kvm_vcpu *vcpu,
1698                                  struct kvm_exit_mmio *mmio, phys_addr_t offset)
1699 {
1700         bool updated = false;
1701         struct vgic_vmcr vmcr;
1702         u32 *vmcr_field;
1703         u32 reg;
1704
1705         vgic_get_vmcr(vcpu, &vmcr);
1706
1707         switch (offset & ~0x3) {
1708         case GIC_CPU_CTRL:
1709                 vmcr_field = &vmcr.ctlr;
1710                 break;
1711         case GIC_CPU_PRIMASK:
1712                 vmcr_field = &vmcr.pmr;
1713                 break;
1714         case GIC_CPU_BINPOINT:
1715                 vmcr_field = &vmcr.bpr;
1716                 break;
1717         case GIC_CPU_ALIAS_BINPOINT:
1718                 vmcr_field = &vmcr.abpr;
1719                 break;
1720         default:
1721                 BUG();
1722         }
1723
1724         if (!mmio->is_write) {
1725                 reg = *vmcr_field;
1726                 mmio_data_write(mmio, ~0, reg);
1727         } else {
1728                 reg = mmio_data_read(mmio, ~0);
1729                 if (reg != *vmcr_field) {
1730                         *vmcr_field = reg;
1731                         vgic_set_vmcr(vcpu, &vmcr);
1732                         updated = true;
1733                 }
1734         }
1735         return updated;
1736 }
1737
1738 static bool handle_mmio_abpr(struct kvm_vcpu *vcpu,
1739                              struct kvm_exit_mmio *mmio, phys_addr_t offset)
1740 {
1741         return handle_cpu_mmio_misc(vcpu, mmio, GIC_CPU_ALIAS_BINPOINT);
1742 }
1743
1744 static bool handle_cpu_mmio_ident(struct kvm_vcpu *vcpu,
1745                                   struct kvm_exit_mmio *mmio,
1746                                   phys_addr_t offset)
1747 {
1748         u32 reg;
1749
1750         if (mmio->is_write)
1751                 return false;
1752
1753         /* GICC_IIDR */
1754         reg = (PRODUCT_ID_KVM << 20) |
1755               (GICC_ARCH_VERSION_V2 << 16) |
1756               (IMPLEMENTER_ARM << 0);
1757         mmio_data_write(mmio, ~0, reg);
1758         return false;
1759 }
1760
1761 /*
1762  * CPU Interface Register accesses - these are not accessed by the VM, but by
1763  * user space for saving and restoring VGIC state.
1764  */
1765 static const struct mmio_range vgic_cpu_ranges[] = {
1766         {
1767                 .base           = GIC_CPU_CTRL,
1768                 .len            = 12,
1769                 .handle_mmio    = handle_cpu_mmio_misc,
1770         },
1771         {
1772                 .base           = GIC_CPU_ALIAS_BINPOINT,
1773                 .len            = 4,
1774                 .handle_mmio    = handle_mmio_abpr,
1775         },
1776         {
1777                 .base           = GIC_CPU_ACTIVEPRIO,
1778                 .len            = 16,
1779                 .handle_mmio    = handle_mmio_raz_wi,
1780         },
1781         {
1782                 .base           = GIC_CPU_IDENT,
1783                 .len            = 4,
1784                 .handle_mmio    = handle_cpu_mmio_ident,
1785         },
1786 };
1787
1788 static int vgic_attr_regs_access(struct kvm_device *dev,
1789                                  struct kvm_device_attr *attr,
1790                                  u32 *reg, bool is_write)
1791 {
1792         const struct mmio_range *r = NULL, *ranges;
1793         phys_addr_t offset;
1794         int ret, cpuid, c;
1795         struct kvm_vcpu *vcpu, *tmp_vcpu;
1796         struct vgic_dist *vgic;
1797         struct kvm_exit_mmio mmio;
1798
1799         offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
1800         cpuid = (attr->attr & KVM_DEV_ARM_VGIC_CPUID_MASK) >>
1801                 KVM_DEV_ARM_VGIC_CPUID_SHIFT;
1802
1803         mutex_lock(&dev->kvm->lock);
1804
1805         if (cpuid >= atomic_read(&dev->kvm->online_vcpus)) {
1806                 ret = -EINVAL;
1807                 goto out;
1808         }
1809
1810         vcpu = kvm_get_vcpu(dev->kvm, cpuid);
1811         vgic = &dev->kvm->arch.vgic;
1812
1813         mmio.len = 4;
1814         mmio.is_write = is_write;
1815         if (is_write)
1816                 mmio_data_write(&mmio, ~0, *reg);
1817         switch (attr->group) {
1818         case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
1819                 mmio.phys_addr = vgic->vgic_dist_base + offset;
1820                 ranges = vgic_dist_ranges;
1821                 break;
1822         case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
1823                 mmio.phys_addr = vgic->vgic_cpu_base + offset;
1824                 ranges = vgic_cpu_ranges;
1825                 break;
1826         default:
1827                 BUG();
1828         }
1829         r = find_matching_range(ranges, &mmio, offset);
1830
1831         if (unlikely(!r || !r->handle_mmio)) {
1832                 ret = -ENXIO;
1833                 goto out;
1834         }
1835
1836
1837         spin_lock(&vgic->lock);
1838
1839         /*
1840          * Ensure that no other VCPU is running by checking the vcpu->cpu
1841          * field.  If no other VPCUs are running we can safely access the VGIC
1842          * state, because even if another VPU is run after this point, that
1843          * VCPU will not touch the vgic state, because it will block on
1844          * getting the vgic->lock in kvm_vgic_sync_hwstate().
1845          */
1846         kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm) {
1847                 if (unlikely(tmp_vcpu->cpu != -1)) {
1848                         ret = -EBUSY;
1849                         goto out_vgic_unlock;
1850                 }
1851         }
1852
1853         /*
1854          * Move all pending IRQs from the LRs on all VCPUs so the pending
1855          * state can be properly represented in the register state accessible
1856          * through this API.
1857          */
1858         kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm)
1859                 vgic_unqueue_irqs(tmp_vcpu);
1860
1861         offset -= r->base;
1862         r->handle_mmio(vcpu, &mmio, offset);
1863
1864         if (!is_write)
1865                 *reg = mmio_data_read(&mmio, ~0);
1866
1867         ret = 0;
1868 out_vgic_unlock:
1869         spin_unlock(&vgic->lock);
1870 out:
1871         mutex_unlock(&dev->kvm->lock);
1872         return ret;
1873 }
1874
1875 static int vgic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1876 {
1877         int r;
1878
1879         switch (attr->group) {
1880         case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1881                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1882                 u64 addr;
1883                 unsigned long type = (unsigned long)attr->attr;
1884
1885                 if (copy_from_user(&addr, uaddr, sizeof(addr)))
1886                         return -EFAULT;
1887
1888                 r = kvm_vgic_addr(dev->kvm, type, &addr, true);
1889                 return (r == -ENODEV) ? -ENXIO : r;
1890         }
1891
1892         case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
1893         case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
1894                 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
1895                 u32 reg;
1896
1897                 if (get_user(reg, uaddr))
1898                         return -EFAULT;
1899
1900                 return vgic_attr_regs_access(dev, attr, &reg, true);
1901         }
1902
1903         }
1904
1905         return -ENXIO;
1906 }
1907
1908 static int vgic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1909 {
1910         int r = -ENXIO;
1911
1912         switch (attr->group) {
1913         case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1914                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1915                 u64 addr;
1916                 unsigned long type = (unsigned long)attr->attr;
1917
1918                 r = kvm_vgic_addr(dev->kvm, type, &addr, false);
1919                 if (r)
1920                         return (r == -ENODEV) ? -ENXIO : r;
1921
1922                 if (copy_to_user(uaddr, &addr, sizeof(addr)))
1923                         return -EFAULT;
1924                 break;
1925         }
1926
1927         case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
1928         case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
1929                 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
1930                 u32 reg = 0;
1931
1932                 r = vgic_attr_regs_access(dev, attr, &reg, false);
1933                 if (r)
1934                         return r;
1935                 r = put_user(reg, uaddr);
1936                 break;
1937         }
1938
1939         }
1940
1941         return r;
1942 }
1943
1944 static int vgic_has_attr_regs(const struct mmio_range *ranges,
1945                               phys_addr_t offset)
1946 {
1947         struct kvm_exit_mmio dev_attr_mmio;
1948
1949         dev_attr_mmio.len = 4;
1950         if (find_matching_range(ranges, &dev_attr_mmio, offset))
1951                 return 0;
1952         else
1953                 return -ENXIO;
1954 }
1955
1956 static int vgic_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1957 {
1958         phys_addr_t offset;
1959
1960         switch (attr->group) {
1961         case KVM_DEV_ARM_VGIC_GRP_ADDR:
1962                 switch (attr->attr) {
1963                 case KVM_VGIC_V2_ADDR_TYPE_DIST:
1964                 case KVM_VGIC_V2_ADDR_TYPE_CPU:
1965                         return 0;
1966                 }
1967                 break;
1968         case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
1969                 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
1970                 return vgic_has_attr_regs(vgic_dist_ranges, offset);
1971         case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
1972                 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
1973                 return vgic_has_attr_regs(vgic_cpu_ranges, offset);
1974         }
1975         return -ENXIO;
1976 }
1977
1978 static void vgic_destroy(struct kvm_device *dev)
1979 {
1980         kfree(dev);
1981 }
1982
1983 static int vgic_create(struct kvm_device *dev, u32 type)
1984 {
1985         return kvm_vgic_create(dev->kvm);
1986 }
1987
1988 static struct kvm_device_ops kvm_arm_vgic_v2_ops = {
1989         .name = "kvm-arm-vgic",
1990         .create = vgic_create,
1991         .destroy = vgic_destroy,
1992         .set_attr = vgic_set_attr,
1993         .get_attr = vgic_get_attr,
1994         .has_attr = vgic_has_attr,
1995 };
1996
1997 static void vgic_init_maintenance_interrupt(void *info)
1998 {
1999         enable_percpu_irq(vgic->maint_irq, 0);
2000 }
2001
2002 static int vgic_cpu_notify(struct notifier_block *self,
2003                            unsigned long action, void *cpu)
2004 {
2005         switch (action) {
2006         case CPU_STARTING:
2007         case CPU_STARTING_FROZEN:
2008                 vgic_init_maintenance_interrupt(NULL);
2009                 break;
2010         case CPU_DYING:
2011         case CPU_DYING_FROZEN:
2012                 disable_percpu_irq(vgic->maint_irq);
2013                 break;
2014         }
2015
2016         return NOTIFY_OK;
2017 }
2018
2019 static struct notifier_block vgic_cpu_nb = {
2020         .notifier_call = vgic_cpu_notify,
2021 };
2022
2023 static const struct of_device_id vgic_ids[] = {
2024         { .compatible = "arm,cortex-a15-gic", .data = vgic_v2_probe, },
2025         { .compatible = "arm,gic-v3", .data = vgic_v3_probe, },
2026         {},
2027 };
2028
2029 int kvm_vgic_hyp_init(void)
2030 {
2031         const struct of_device_id *matched_id;
2032         int (*vgic_probe)(struct device_node *,const struct vgic_ops **,
2033                           const struct vgic_params **);
2034         struct device_node *vgic_node;
2035         int ret;
2036
2037         vgic_node = of_find_matching_node_and_match(NULL,
2038                                                     vgic_ids, &matched_id);
2039         if (!vgic_node) {
2040                 kvm_err("error: no compatible GIC node found\n");
2041                 return -ENODEV;
2042         }
2043
2044         vgic_probe = matched_id->data;
2045         ret = vgic_probe(vgic_node, &vgic_ops, &vgic);
2046         if (ret)
2047                 return ret;
2048
2049         ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler,
2050                                  "vgic", kvm_get_running_vcpus());
2051         if (ret) {
2052                 kvm_err("Cannot register interrupt %d\n", vgic->maint_irq);
2053                 return ret;
2054         }
2055
2056         ret = __register_cpu_notifier(&vgic_cpu_nb);
2057         if (ret) {
2058                 kvm_err("Cannot register vgic CPU notifier\n");
2059                 goto out_free_irq;
2060         }
2061
2062         /* Callback into for arch code for setup */
2063         vgic_arch_setup(vgic);
2064
2065         on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
2066
2067         return kvm_register_device_ops(&kvm_arm_vgic_v2_ops,
2068                                        KVM_DEV_TYPE_ARM_VGIC_V2);
2069
2070 out_free_irq:
2071         free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
2072         return ret;
2073 }