Merge remote-tracking branches 'regulator/fix/88pm800', 'regulator/fix/max8973',...
[firefly-linux-kernel-4.4.55.git] / virt / kvm / arm / vgic.c
1 /*
2  * Copyright (C) 2012 ARM Ltd.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  */
18
19 #include <linux/cpu.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/uaccess.h>
28
29 #include <asm/kvm_emulate.h>
30 #include <asm/kvm_arm.h>
31 #include <asm/kvm_mmu.h>
32 #include <trace/events/kvm.h>
33 #include <asm/kvm.h>
34 #include <kvm/iodev.h>
35
36 /*
37  * How the whole thing works (courtesy of Christoffer Dall):
38  *
39  * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
40  *   something is pending on the CPU interface.
41  * - Interrupts that are pending on the distributor are stored on the
42  *   vgic.irq_pending vgic bitmap (this bitmap is updated by both user land
43  *   ioctls and guest mmio ops, and other in-kernel peripherals such as the
44  *   arch. timers).
45  * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
46  *   recalculated
47  * - To calculate the oracle, we need info for each cpu from
48  *   compute_pending_for_cpu, which considers:
49  *   - PPI: dist->irq_pending & dist->irq_enable
50  *   - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
51  *   - irq_spi_target is a 'formatted' version of the GICD_ITARGETSRn
52  *     registers, stored on each vcpu. We only keep one bit of
53  *     information per interrupt, making sure that only one vcpu can
54  *     accept the interrupt.
55  * - If any of the above state changes, we must recalculate the oracle.
56  * - The same is true when injecting an interrupt, except that we only
57  *   consider a single interrupt at a time. The irq_spi_cpu array
58  *   contains the target CPU for each SPI.
59  *
60  * The handling of level interrupts adds some extra complexity. We
61  * need to track when the interrupt has been EOIed, so we can sample
62  * the 'line' again. This is achieved as such:
63  *
64  * - When a level interrupt is moved onto a vcpu, the corresponding
65  *   bit in irq_queued is set. As long as this bit is set, the line
66  *   will be ignored for further interrupts. The interrupt is injected
67  *   into the vcpu with the GICH_LR_EOI bit set (generate a
68  *   maintenance interrupt on EOI).
69  * - When the interrupt is EOIed, the maintenance interrupt fires,
70  *   and clears the corresponding bit in irq_queued. This allows the
71  *   interrupt line to be sampled again.
72  * - Note that level-triggered interrupts can also be set to pending from
73  *   writes to GICD_ISPENDRn and lowering the external input line does not
74  *   cause the interrupt to become inactive in such a situation.
75  *   Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become
76  *   inactive as long as the external input line is held high.
77  */
78
79 #include "vgic.h"
80
81 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
82 static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu);
83 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
84 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
85
86 static const struct vgic_ops *vgic_ops;
87 static const struct vgic_params *vgic;
88
89 static void add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
90 {
91         vcpu->kvm->arch.vgic.vm_ops.add_sgi_source(vcpu, irq, source);
92 }
93
94 static bool queue_sgi(struct kvm_vcpu *vcpu, int irq)
95 {
96         return vcpu->kvm->arch.vgic.vm_ops.queue_sgi(vcpu, irq);
97 }
98
99 int kvm_vgic_map_resources(struct kvm *kvm)
100 {
101         return kvm->arch.vgic.vm_ops.map_resources(kvm, vgic);
102 }
103
104 /*
105  * struct vgic_bitmap contains a bitmap made of unsigned longs, but
106  * extracts u32s out of them.
107  *
108  * This does not work on 64-bit BE systems, because the bitmap access
109  * will store two consecutive 32-bit words with the higher-addressed
110  * register's bits at the lower index and the lower-addressed register's
111  * bits at the higher index.
112  *
113  * Therefore, swizzle the register index when accessing the 32-bit word
114  * registers to access the right register's value.
115  */
116 #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64
117 #define REG_OFFSET_SWIZZLE      1
118 #else
119 #define REG_OFFSET_SWIZZLE      0
120 #endif
121
122 static int vgic_init_bitmap(struct vgic_bitmap *b, int nr_cpus, int nr_irqs)
123 {
124         int nr_longs;
125
126         nr_longs = nr_cpus + BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS);
127
128         b->private = kzalloc(sizeof(unsigned long) * nr_longs, GFP_KERNEL);
129         if (!b->private)
130                 return -ENOMEM;
131
132         b->shared = b->private + nr_cpus;
133
134         return 0;
135 }
136
137 static void vgic_free_bitmap(struct vgic_bitmap *b)
138 {
139         kfree(b->private);
140         b->private = NULL;
141         b->shared = NULL;
142 }
143
144 /*
145  * Call this function to convert a u64 value to an unsigned long * bitmask
146  * in a way that works on both 32-bit and 64-bit LE and BE platforms.
147  *
148  * Warning: Calling this function may modify *val.
149  */
150 static unsigned long *u64_to_bitmask(u64 *val)
151 {
152 #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 32
153         *val = (*val >> 32) | (*val << 32);
154 #endif
155         return (unsigned long *)val;
156 }
157
158 u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, int cpuid, u32 offset)
159 {
160         offset >>= 2;
161         if (!offset)
162                 return (u32 *)(x->private + cpuid) + REG_OFFSET_SWIZZLE;
163         else
164                 return (u32 *)(x->shared) + ((offset - 1) ^ REG_OFFSET_SWIZZLE);
165 }
166
167 static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
168                                    int cpuid, int irq)
169 {
170         if (irq < VGIC_NR_PRIVATE_IRQS)
171                 return test_bit(irq, x->private + cpuid);
172
173         return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared);
174 }
175
176 void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
177                              int irq, int val)
178 {
179         unsigned long *reg;
180
181         if (irq < VGIC_NR_PRIVATE_IRQS) {
182                 reg = x->private + cpuid;
183         } else {
184                 reg = x->shared;
185                 irq -= VGIC_NR_PRIVATE_IRQS;
186         }
187
188         if (val)
189                 set_bit(irq, reg);
190         else
191                 clear_bit(irq, reg);
192 }
193
194 static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
195 {
196         return x->private + cpuid;
197 }
198
199 unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
200 {
201         return x->shared;
202 }
203
204 static int vgic_init_bytemap(struct vgic_bytemap *x, int nr_cpus, int nr_irqs)
205 {
206         int size;
207
208         size  = nr_cpus * VGIC_NR_PRIVATE_IRQS;
209         size += nr_irqs - VGIC_NR_PRIVATE_IRQS;
210
211         x->private = kzalloc(size, GFP_KERNEL);
212         if (!x->private)
213                 return -ENOMEM;
214
215         x->shared = x->private + nr_cpus * VGIC_NR_PRIVATE_IRQS / sizeof(u32);
216         return 0;
217 }
218
219 static void vgic_free_bytemap(struct vgic_bytemap *b)
220 {
221         kfree(b->private);
222         b->private = NULL;
223         b->shared = NULL;
224 }
225
226 u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
227 {
228         u32 *reg;
229
230         if (offset < VGIC_NR_PRIVATE_IRQS) {
231                 reg = x->private;
232                 offset += cpuid * VGIC_NR_PRIVATE_IRQS;
233         } else {
234                 reg = x->shared;
235                 offset -= VGIC_NR_PRIVATE_IRQS;
236         }
237
238         return reg + (offset / sizeof(u32));
239 }
240
241 #define VGIC_CFG_LEVEL  0
242 #define VGIC_CFG_EDGE   1
243
244 static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
245 {
246         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
247         int irq_val;
248
249         irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
250         return irq_val == VGIC_CFG_EDGE;
251 }
252
253 static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
254 {
255         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
256
257         return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
258 }
259
260 static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq)
261 {
262         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
263
264         return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq);
265 }
266
267 static int vgic_irq_is_active(struct kvm_vcpu *vcpu, int irq)
268 {
269         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
270
271         return vgic_bitmap_get_irq_val(&dist->irq_active, vcpu->vcpu_id, irq);
272 }
273
274 static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq)
275 {
276         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
277
278         vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1);
279 }
280
281 static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq)
282 {
283         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
284
285         vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0);
286 }
287
288 static void vgic_irq_set_active(struct kvm_vcpu *vcpu, int irq)
289 {
290         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
291
292         vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 1);
293 }
294
295 static void vgic_irq_clear_active(struct kvm_vcpu *vcpu, int irq)
296 {
297         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
298
299         vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 0);
300 }
301
302 static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq)
303 {
304         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
305
306         return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq);
307 }
308
309 static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq)
310 {
311         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
312
313         vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1);
314 }
315
316 static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq)
317 {
318         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
319
320         vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0);
321 }
322
323 static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq)
324 {
325         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
326
327         return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq);
328 }
329
330 static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq)
331 {
332         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
333
334         vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0);
335 }
336
337 static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
338 {
339         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
340
341         return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq);
342 }
343
344 void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
345 {
346         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
347
348         vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1);
349 }
350
351 void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
352 {
353         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
354
355         vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0);
356 }
357
358 static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
359 {
360         if (irq < VGIC_NR_PRIVATE_IRQS)
361                 set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
362         else
363                 set_bit(irq - VGIC_NR_PRIVATE_IRQS,
364                         vcpu->arch.vgic_cpu.pending_shared);
365 }
366
367 void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
368 {
369         if (irq < VGIC_NR_PRIVATE_IRQS)
370                 clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
371         else
372                 clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
373                           vcpu->arch.vgic_cpu.pending_shared);
374 }
375
376 static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq)
377 {
378         return vgic_irq_is_edge(vcpu, irq) || !vgic_irq_is_queued(vcpu, irq);
379 }
380
381 /**
382  * vgic_reg_access - access vgic register
383  * @mmio:   pointer to the data describing the mmio access
384  * @reg:    pointer to the virtual backing of vgic distributor data
385  * @offset: least significant 2 bits used for word offset
386  * @mode:   ACCESS_ mode (see defines above)
387  *
388  * Helper to make vgic register access easier using one of the access
389  * modes defined for vgic register access
390  * (read,raz,write-ignored,setbit,clearbit,write)
391  */
392 void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
393                      phys_addr_t offset, int mode)
394 {
395         int word_offset = (offset & 3) * 8;
396         u32 mask = (1UL << (mmio->len * 8)) - 1;
397         u32 regval;
398
399         /*
400          * Any alignment fault should have been delivered to the guest
401          * directly (ARM ARM B3.12.7 "Prioritization of aborts").
402          */
403
404         if (reg) {
405                 regval = *reg;
406         } else {
407                 BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
408                 regval = 0;
409         }
410
411         if (mmio->is_write) {
412                 u32 data = mmio_data_read(mmio, mask) << word_offset;
413                 switch (ACCESS_WRITE_MASK(mode)) {
414                 case ACCESS_WRITE_IGNORED:
415                         return;
416
417                 case ACCESS_WRITE_SETBIT:
418                         regval |= data;
419                         break;
420
421                 case ACCESS_WRITE_CLEARBIT:
422                         regval &= ~data;
423                         break;
424
425                 case ACCESS_WRITE_VALUE:
426                         regval = (regval & ~(mask << word_offset)) | data;
427                         break;
428                 }
429                 *reg = regval;
430         } else {
431                 switch (ACCESS_READ_MASK(mode)) {
432                 case ACCESS_READ_RAZ:
433                         regval = 0;
434                         /* fall through */
435
436                 case ACCESS_READ_VALUE:
437                         mmio_data_write(mmio, mask, regval >> word_offset);
438                 }
439         }
440 }
441
442 bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
443                         phys_addr_t offset)
444 {
445         vgic_reg_access(mmio, NULL, offset,
446                         ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
447         return false;
448 }
449
450 bool vgic_handle_enable_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio,
451                             phys_addr_t offset, int vcpu_id, int access)
452 {
453         u32 *reg;
454         int mode = ACCESS_READ_VALUE | access;
455         struct kvm_vcpu *target_vcpu = kvm_get_vcpu(kvm, vcpu_id);
456
457         reg = vgic_bitmap_get_reg(&kvm->arch.vgic.irq_enabled, vcpu_id, offset);
458         vgic_reg_access(mmio, reg, offset, mode);
459         if (mmio->is_write) {
460                 if (access & ACCESS_WRITE_CLEARBIT) {
461                         if (offset < 4) /* Force SGI enabled */
462                                 *reg |= 0xffff;
463                         vgic_retire_disabled_irqs(target_vcpu);
464                 }
465                 vgic_update_state(kvm);
466                 return true;
467         }
468
469         return false;
470 }
471
472 bool vgic_handle_set_pending_reg(struct kvm *kvm,
473                                  struct kvm_exit_mmio *mmio,
474                                  phys_addr_t offset, int vcpu_id)
475 {
476         u32 *reg, orig;
477         u32 level_mask;
478         int mode = ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT;
479         struct vgic_dist *dist = &kvm->arch.vgic;
480
481         reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu_id, offset);
482         level_mask = (~(*reg));
483
484         /* Mark both level and edge triggered irqs as pending */
485         reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
486         orig = *reg;
487         vgic_reg_access(mmio, reg, offset, mode);
488
489         if (mmio->is_write) {
490                 /* Set the soft-pending flag only for level-triggered irqs */
491                 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
492                                           vcpu_id, offset);
493                 vgic_reg_access(mmio, reg, offset, mode);
494                 *reg &= level_mask;
495
496                 /* Ignore writes to SGIs */
497                 if (offset < 2) {
498                         *reg &= ~0xffff;
499                         *reg |= orig & 0xffff;
500                 }
501
502                 vgic_update_state(kvm);
503                 return true;
504         }
505
506         return false;
507 }
508
509 bool vgic_handle_clear_pending_reg(struct kvm *kvm,
510                                    struct kvm_exit_mmio *mmio,
511                                    phys_addr_t offset, int vcpu_id)
512 {
513         u32 *level_active;
514         u32 *reg, orig;
515         int mode = ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT;
516         struct vgic_dist *dist = &kvm->arch.vgic;
517
518         reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
519         orig = *reg;
520         vgic_reg_access(mmio, reg, offset, mode);
521         if (mmio->is_write) {
522                 /* Re-set level triggered level-active interrupts */
523                 level_active = vgic_bitmap_get_reg(&dist->irq_level,
524                                           vcpu_id, offset);
525                 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
526                 *reg |= *level_active;
527
528                 /* Ignore writes to SGIs */
529                 if (offset < 2) {
530                         *reg &= ~0xffff;
531                         *reg |= orig & 0xffff;
532                 }
533
534                 /* Clear soft-pending flags */
535                 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
536                                           vcpu_id, offset);
537                 vgic_reg_access(mmio, reg, offset, mode);
538
539                 vgic_update_state(kvm);
540                 return true;
541         }
542         return false;
543 }
544
545 bool vgic_handle_set_active_reg(struct kvm *kvm,
546                                 struct kvm_exit_mmio *mmio,
547                                 phys_addr_t offset, int vcpu_id)
548 {
549         u32 *reg;
550         struct vgic_dist *dist = &kvm->arch.vgic;
551
552         reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
553         vgic_reg_access(mmio, reg, offset,
554                         ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
555
556         if (mmio->is_write) {
557                 vgic_update_state(kvm);
558                 return true;
559         }
560
561         return false;
562 }
563
564 bool vgic_handle_clear_active_reg(struct kvm *kvm,
565                                   struct kvm_exit_mmio *mmio,
566                                   phys_addr_t offset, int vcpu_id)
567 {
568         u32 *reg;
569         struct vgic_dist *dist = &kvm->arch.vgic;
570
571         reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
572         vgic_reg_access(mmio, reg, offset,
573                         ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
574
575         if (mmio->is_write) {
576                 vgic_update_state(kvm);
577                 return true;
578         }
579
580         return false;
581 }
582
583 static u32 vgic_cfg_expand(u16 val)
584 {
585         u32 res = 0;
586         int i;
587
588         /*
589          * Turn a 16bit value like abcd...mnop into a 32bit word
590          * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
591          */
592         for (i = 0; i < 16; i++)
593                 res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
594
595         return res;
596 }
597
598 static u16 vgic_cfg_compress(u32 val)
599 {
600         u16 res = 0;
601         int i;
602
603         /*
604          * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
605          * abcd...mnop which is what we really care about.
606          */
607         for (i = 0; i < 16; i++)
608                 res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
609
610         return res;
611 }
612
613 /*
614  * The distributor uses 2 bits per IRQ for the CFG register, but the
615  * LSB is always 0. As such, we only keep the upper bit, and use the
616  * two above functions to compress/expand the bits
617  */
618 bool vgic_handle_cfg_reg(u32 *reg, struct kvm_exit_mmio *mmio,
619                          phys_addr_t offset)
620 {
621         u32 val;
622
623         if (offset & 4)
624                 val = *reg >> 16;
625         else
626                 val = *reg & 0xffff;
627
628         val = vgic_cfg_expand(val);
629         vgic_reg_access(mmio, &val, offset,
630                         ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
631         if (mmio->is_write) {
632                 if (offset < 8) {
633                         *reg = ~0U; /* Force PPIs/SGIs to 1 */
634                         return false;
635                 }
636
637                 val = vgic_cfg_compress(val);
638                 if (offset & 4) {
639                         *reg &= 0xffff;
640                         *reg |= val << 16;
641                 } else {
642                         *reg &= 0xffff << 16;
643                         *reg |= val;
644                 }
645         }
646
647         return false;
648 }
649
650 /**
651  * vgic_unqueue_irqs - move pending/active IRQs from LRs to the distributor
652  * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
653  *
654  * Move any IRQs that have already been assigned to LRs back to the
655  * emulated distributor state so that the complete emulated state can be read
656  * from the main emulation structures without investigating the LRs.
657  */
658 void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
659 {
660         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
661         int i;
662
663         for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
664                 struct vgic_lr lr = vgic_get_lr(vcpu, i);
665
666                 /*
667                  * There are three options for the state bits:
668                  *
669                  * 01: pending
670                  * 10: active
671                  * 11: pending and active
672                  */
673                 BUG_ON(!(lr.state & LR_STATE_MASK));
674
675                 /* Reestablish SGI source for pending and active IRQs */
676                 if (lr.irq < VGIC_NR_SGIS)
677                         add_sgi_source(vcpu, lr.irq, lr.source);
678
679                 /*
680                  * If the LR holds an active (10) or a pending and active (11)
681                  * interrupt then move the active state to the
682                  * distributor tracking bit.
683                  */
684                 if (lr.state & LR_STATE_ACTIVE) {
685                         vgic_irq_set_active(vcpu, lr.irq);
686                         lr.state &= ~LR_STATE_ACTIVE;
687                 }
688
689                 /*
690                  * Reestablish the pending state on the distributor and the
691                  * CPU interface.  It may have already been pending, but that
692                  * is fine, then we are only setting a few bits that were
693                  * already set.
694                  */
695                 if (lr.state & LR_STATE_PENDING) {
696                         vgic_dist_irq_set_pending(vcpu, lr.irq);
697                         lr.state &= ~LR_STATE_PENDING;
698                 }
699
700                 vgic_set_lr(vcpu, i, lr);
701
702                 /*
703                  * Mark the LR as free for other use.
704                  */
705                 BUG_ON(lr.state & LR_STATE_MASK);
706                 vgic_retire_lr(i, lr.irq, vcpu);
707                 vgic_irq_clear_queued(vcpu, lr.irq);
708
709                 /* Finally update the VGIC state. */
710                 vgic_update_state(vcpu->kvm);
711         }
712 }
713
714 const
715 struct vgic_io_range *vgic_find_range(const struct vgic_io_range *ranges,
716                                       int len, gpa_t offset)
717 {
718         while (ranges->len) {
719                 if (offset >= ranges->base &&
720                     (offset + len) <= (ranges->base + ranges->len))
721                         return ranges;
722                 ranges++;
723         }
724
725         return NULL;
726 }
727
728 static bool vgic_validate_access(const struct vgic_dist *dist,
729                                  const struct vgic_io_range *range,
730                                  unsigned long offset)
731 {
732         int irq;
733
734         if (!range->bits_per_irq)
735                 return true;    /* Not an irq-based access */
736
737         irq = offset * 8 / range->bits_per_irq;
738         if (irq >= dist->nr_irqs)
739                 return false;
740
741         return true;
742 }
743
744 /*
745  * Call the respective handler function for the given range.
746  * We split up any 64 bit accesses into two consecutive 32 bit
747  * handler calls and merge the result afterwards.
748  * We do this in a little endian fashion regardless of the host's
749  * or guest's endianness, because the GIC is always LE and the rest of
750  * the code (vgic_reg_access) also puts it in a LE fashion already.
751  * At this point we have already identified the handle function, so
752  * range points to that one entry and offset is relative to this.
753  */
754 static bool call_range_handler(struct kvm_vcpu *vcpu,
755                                struct kvm_exit_mmio *mmio,
756                                unsigned long offset,
757                                const struct vgic_io_range *range)
758 {
759         struct kvm_exit_mmio mmio32;
760         bool ret;
761
762         if (likely(mmio->len <= 4))
763                 return range->handle_mmio(vcpu, mmio, offset);
764
765         /*
766          * Any access bigger than 4 bytes (that we currently handle in KVM)
767          * is actually 8 bytes long, caused by a 64-bit access
768          */
769
770         mmio32.len = 4;
771         mmio32.is_write = mmio->is_write;
772         mmio32.private = mmio->private;
773
774         mmio32.phys_addr = mmio->phys_addr + 4;
775         mmio32.data = &((u32 *)mmio->data)[1];
776         ret = range->handle_mmio(vcpu, &mmio32, offset + 4);
777
778         mmio32.phys_addr = mmio->phys_addr;
779         mmio32.data = &((u32 *)mmio->data)[0];
780         ret |= range->handle_mmio(vcpu, &mmio32, offset);
781
782         return ret;
783 }
784
785 /**
786  * vgic_handle_mmio_access - handle an in-kernel MMIO access
787  * This is called by the read/write KVM IO device wrappers below.
788  * @vcpu:       pointer to the vcpu performing the access
789  * @this:       pointer to the KVM IO device in charge
790  * @addr:       guest physical address of the access
791  * @len:        size of the access
792  * @val:        pointer to the data region
793  * @is_write:   read or write access
794  *
795  * returns true if the MMIO access could be performed
796  */
797 static int vgic_handle_mmio_access(struct kvm_vcpu *vcpu,
798                                    struct kvm_io_device *this, gpa_t addr,
799                                    int len, void *val, bool is_write)
800 {
801         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
802         struct vgic_io_device *iodev = container_of(this,
803                                                     struct vgic_io_device, dev);
804         struct kvm_run *run = vcpu->run;
805         const struct vgic_io_range *range;
806         struct kvm_exit_mmio mmio;
807         bool updated_state;
808         gpa_t offset;
809
810         offset = addr - iodev->addr;
811         range = vgic_find_range(iodev->reg_ranges, len, offset);
812         if (unlikely(!range || !range->handle_mmio)) {
813                 pr_warn("Unhandled access %d %08llx %d\n", is_write, addr, len);
814                 return -ENXIO;
815         }
816
817         mmio.phys_addr = addr;
818         mmio.len = len;
819         mmio.is_write = is_write;
820         mmio.data = val;
821         mmio.private = iodev->redist_vcpu;
822
823         spin_lock(&dist->lock);
824         offset -= range->base;
825         if (vgic_validate_access(dist, range, offset)) {
826                 updated_state = call_range_handler(vcpu, &mmio, offset, range);
827         } else {
828                 if (!is_write)
829                         memset(val, 0, len);
830                 updated_state = false;
831         }
832         spin_unlock(&dist->lock);
833         run->mmio.is_write      = is_write;
834         run->mmio.len           = len;
835         run->mmio.phys_addr     = addr;
836         memcpy(run->mmio.data, val, len);
837
838         kvm_handle_mmio_return(vcpu, run);
839
840         if (updated_state)
841                 vgic_kick_vcpus(vcpu->kvm);
842
843         return 0;
844 }
845
846 static int vgic_handle_mmio_read(struct kvm_vcpu *vcpu,
847                                  struct kvm_io_device *this,
848                                  gpa_t addr, int len, void *val)
849 {
850         return vgic_handle_mmio_access(vcpu, this, addr, len, val, false);
851 }
852
853 static int vgic_handle_mmio_write(struct kvm_vcpu *vcpu,
854                                   struct kvm_io_device *this,
855                                   gpa_t addr, int len, const void *val)
856 {
857         return vgic_handle_mmio_access(vcpu, this, addr, len, (void *)val,
858                                        true);
859 }
860
861 struct kvm_io_device_ops vgic_io_ops = {
862         .read   = vgic_handle_mmio_read,
863         .write  = vgic_handle_mmio_write,
864 };
865
866 /**
867  * vgic_register_kvm_io_dev - register VGIC register frame on the KVM I/O bus
868  * @kvm:            The VM structure pointer
869  * @base:           The (guest) base address for the register frame
870  * @len:            Length of the register frame window
871  * @ranges:         Describing the handler functions for each register
872  * @redist_vcpu_id: The VCPU ID to pass on to the handlers on call
873  * @iodev:          Points to memory to be passed on to the handler
874  *
875  * @iodev stores the parameters of this function to be usable by the handler
876  * respectively the dispatcher function (since the KVM I/O bus framework lacks
877  * an opaque parameter). Initialization is done in this function, but the
878  * reference should be valid and unique for the whole VGIC lifetime.
879  * If the register frame is not mapped for a specific VCPU, pass -1 to
880  * @redist_vcpu_id.
881  */
882 int vgic_register_kvm_io_dev(struct kvm *kvm, gpa_t base, int len,
883                              const struct vgic_io_range *ranges,
884                              int redist_vcpu_id,
885                              struct vgic_io_device *iodev)
886 {
887         struct kvm_vcpu *vcpu = NULL;
888         int ret;
889
890         if (redist_vcpu_id >= 0)
891                 vcpu = kvm_get_vcpu(kvm, redist_vcpu_id);
892
893         iodev->addr             = base;
894         iodev->len              = len;
895         iodev->reg_ranges       = ranges;
896         iodev->redist_vcpu      = vcpu;
897
898         kvm_iodevice_init(&iodev->dev, &vgic_io_ops);
899
900         mutex_lock(&kvm->slots_lock);
901
902         ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, base, len,
903                                       &iodev->dev);
904         mutex_unlock(&kvm->slots_lock);
905
906         /* Mark the iodev as invalid if registration fails. */
907         if (ret)
908                 iodev->dev.ops = NULL;
909
910         return ret;
911 }
912
913 static int vgic_nr_shared_irqs(struct vgic_dist *dist)
914 {
915         return dist->nr_irqs - VGIC_NR_PRIVATE_IRQS;
916 }
917
918 static int compute_active_for_cpu(struct kvm_vcpu *vcpu)
919 {
920         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
921         unsigned long *active, *enabled, *act_percpu, *act_shared;
922         unsigned long active_private, active_shared;
923         int nr_shared = vgic_nr_shared_irqs(dist);
924         int vcpu_id;
925
926         vcpu_id = vcpu->vcpu_id;
927         act_percpu = vcpu->arch.vgic_cpu.active_percpu;
928         act_shared = vcpu->arch.vgic_cpu.active_shared;
929
930         active = vgic_bitmap_get_cpu_map(&dist->irq_active, vcpu_id);
931         enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
932         bitmap_and(act_percpu, active, enabled, VGIC_NR_PRIVATE_IRQS);
933
934         active = vgic_bitmap_get_shared_map(&dist->irq_active);
935         enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
936         bitmap_and(act_shared, active, enabled, nr_shared);
937         bitmap_and(act_shared, act_shared,
938                    vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
939                    nr_shared);
940
941         active_private = find_first_bit(act_percpu, VGIC_NR_PRIVATE_IRQS);
942         active_shared = find_first_bit(act_shared, nr_shared);
943
944         return (active_private < VGIC_NR_PRIVATE_IRQS ||
945                 active_shared < nr_shared);
946 }
947
948 static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
949 {
950         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
951         unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
952         unsigned long pending_private, pending_shared;
953         int nr_shared = vgic_nr_shared_irqs(dist);
954         int vcpu_id;
955
956         vcpu_id = vcpu->vcpu_id;
957         pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
958         pend_shared = vcpu->arch.vgic_cpu.pending_shared;
959
960         pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id);
961         enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
962         bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
963
964         pending = vgic_bitmap_get_shared_map(&dist->irq_pending);
965         enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
966         bitmap_and(pend_shared, pending, enabled, nr_shared);
967         bitmap_and(pend_shared, pend_shared,
968                    vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
969                    nr_shared);
970
971         pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
972         pending_shared = find_first_bit(pend_shared, nr_shared);
973         return (pending_private < VGIC_NR_PRIVATE_IRQS ||
974                 pending_shared < vgic_nr_shared_irqs(dist));
975 }
976
977 /*
978  * Update the interrupt state and determine which CPUs have pending
979  * or active interrupts. Must be called with distributor lock held.
980  */
981 void vgic_update_state(struct kvm *kvm)
982 {
983         struct vgic_dist *dist = &kvm->arch.vgic;
984         struct kvm_vcpu *vcpu;
985         int c;
986
987         if (!dist->enabled) {
988                 set_bit(0, dist->irq_pending_on_cpu);
989                 return;
990         }
991
992         kvm_for_each_vcpu(c, vcpu, kvm) {
993                 if (compute_pending_for_cpu(vcpu))
994                         set_bit(c, dist->irq_pending_on_cpu);
995
996                 if (compute_active_for_cpu(vcpu))
997                         set_bit(c, dist->irq_active_on_cpu);
998                 else
999                         clear_bit(c, dist->irq_active_on_cpu);
1000         }
1001 }
1002
1003 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
1004 {
1005         return vgic_ops->get_lr(vcpu, lr);
1006 }
1007
1008 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
1009                                struct vgic_lr vlr)
1010 {
1011         vgic_ops->set_lr(vcpu, lr, vlr);
1012 }
1013
1014 static void vgic_sync_lr_elrsr(struct kvm_vcpu *vcpu, int lr,
1015                                struct vgic_lr vlr)
1016 {
1017         vgic_ops->sync_lr_elrsr(vcpu, lr, vlr);
1018 }
1019
1020 static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
1021 {
1022         return vgic_ops->get_elrsr(vcpu);
1023 }
1024
1025 static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
1026 {
1027         return vgic_ops->get_eisr(vcpu);
1028 }
1029
1030 static inline void vgic_clear_eisr(struct kvm_vcpu *vcpu)
1031 {
1032         vgic_ops->clear_eisr(vcpu);
1033 }
1034
1035 static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
1036 {
1037         return vgic_ops->get_interrupt_status(vcpu);
1038 }
1039
1040 static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
1041 {
1042         vgic_ops->enable_underflow(vcpu);
1043 }
1044
1045 static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
1046 {
1047         vgic_ops->disable_underflow(vcpu);
1048 }
1049
1050 void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1051 {
1052         vgic_ops->get_vmcr(vcpu, vmcr);
1053 }
1054
1055 void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1056 {
1057         vgic_ops->set_vmcr(vcpu, vmcr);
1058 }
1059
1060 static inline void vgic_enable(struct kvm_vcpu *vcpu)
1061 {
1062         vgic_ops->enable(vcpu);
1063 }
1064
1065 static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu)
1066 {
1067         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1068         struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);
1069
1070         vlr.state = 0;
1071         vgic_set_lr(vcpu, lr_nr, vlr);
1072         clear_bit(lr_nr, vgic_cpu->lr_used);
1073         vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
1074         vgic_sync_lr_elrsr(vcpu, lr_nr, vlr);
1075 }
1076
1077 /*
1078  * An interrupt may have been disabled after being made pending on the
1079  * CPU interface (the classic case is a timer running while we're
1080  * rebooting the guest - the interrupt would kick as soon as the CPU
1081  * interface gets enabled, with deadly consequences).
1082  *
1083  * The solution is to examine already active LRs, and check the
1084  * interrupt is still enabled. If not, just retire it.
1085  */
1086 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
1087 {
1088         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1089         int lr;
1090
1091         for_each_set_bit(lr, vgic_cpu->lr_used, vgic->nr_lr) {
1092                 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1093
1094                 if (!vgic_irq_is_enabled(vcpu, vlr.irq)) {
1095                         vgic_retire_lr(lr, vlr.irq, vcpu);
1096                         if (vgic_irq_is_queued(vcpu, vlr.irq))
1097                                 vgic_irq_clear_queued(vcpu, vlr.irq);
1098                 }
1099         }
1100 }
1101
1102 static void vgic_queue_irq_to_lr(struct kvm_vcpu *vcpu, int irq,
1103                                  int lr_nr, struct vgic_lr vlr)
1104 {
1105         if (vgic_irq_is_active(vcpu, irq)) {
1106                 vlr.state |= LR_STATE_ACTIVE;
1107                 kvm_debug("Set active, clear distributor: 0x%x\n", vlr.state);
1108                 vgic_irq_clear_active(vcpu, irq);
1109                 vgic_update_state(vcpu->kvm);
1110         } else if (vgic_dist_irq_is_pending(vcpu, irq)) {
1111                 vlr.state |= LR_STATE_PENDING;
1112                 kvm_debug("Set pending: 0x%x\n", vlr.state);
1113         }
1114
1115         if (!vgic_irq_is_edge(vcpu, irq))
1116                 vlr.state |= LR_EOI_INT;
1117
1118         vgic_set_lr(vcpu, lr_nr, vlr);
1119         vgic_sync_lr_elrsr(vcpu, lr_nr, vlr);
1120 }
1121
1122 /*
1123  * Queue an interrupt to a CPU virtual interface. Return true on success,
1124  * or false if it wasn't possible to queue it.
1125  * sgi_source must be zero for any non-SGI interrupts.
1126  */
1127 bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
1128 {
1129         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1130         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1131         struct vgic_lr vlr;
1132         int lr;
1133
1134         /* Sanitize the input... */
1135         BUG_ON(sgi_source_id & ~7);
1136         BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
1137         BUG_ON(irq >= dist->nr_irqs);
1138
1139         kvm_debug("Queue IRQ%d\n", irq);
1140
1141         lr = vgic_cpu->vgic_irq_lr_map[irq];
1142
1143         /* Do we have an active interrupt for the same CPUID? */
1144         if (lr != LR_EMPTY) {
1145                 vlr = vgic_get_lr(vcpu, lr);
1146                 if (vlr.source == sgi_source_id) {
1147                         kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
1148                         BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
1149                         vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
1150                         return true;
1151                 }
1152         }
1153
1154         /* Try to use another LR for this interrupt */
1155         lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
1156                                vgic->nr_lr);
1157         if (lr >= vgic->nr_lr)
1158                 return false;
1159
1160         kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
1161         vgic_cpu->vgic_irq_lr_map[irq] = lr;
1162         set_bit(lr, vgic_cpu->lr_used);
1163
1164         vlr.irq = irq;
1165         vlr.source = sgi_source_id;
1166         vlr.state = 0;
1167         vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
1168
1169         return true;
1170 }
1171
1172 static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
1173 {
1174         if (!vgic_can_sample_irq(vcpu, irq))
1175                 return true; /* level interrupt, already queued */
1176
1177         if (vgic_queue_irq(vcpu, 0, irq)) {
1178                 if (vgic_irq_is_edge(vcpu, irq)) {
1179                         vgic_dist_irq_clear_pending(vcpu, irq);
1180                         vgic_cpu_irq_clear(vcpu, irq);
1181                 } else {
1182                         vgic_irq_set_queued(vcpu, irq);
1183                 }
1184
1185                 return true;
1186         }
1187
1188         return false;
1189 }
1190
1191 /*
1192  * Fill the list registers with pending interrupts before running the
1193  * guest.
1194  */
1195 static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1196 {
1197         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1198         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1199         unsigned long *pa_percpu, *pa_shared;
1200         int i, vcpu_id;
1201         int overflow = 0;
1202         int nr_shared = vgic_nr_shared_irqs(dist);
1203
1204         vcpu_id = vcpu->vcpu_id;
1205
1206         pa_percpu = vcpu->arch.vgic_cpu.pend_act_percpu;
1207         pa_shared = vcpu->arch.vgic_cpu.pend_act_shared;
1208
1209         bitmap_or(pa_percpu, vgic_cpu->pending_percpu, vgic_cpu->active_percpu,
1210                   VGIC_NR_PRIVATE_IRQS);
1211         bitmap_or(pa_shared, vgic_cpu->pending_shared, vgic_cpu->active_shared,
1212                   nr_shared);
1213         /*
1214          * We may not have any pending interrupt, or the interrupts
1215          * may have been serviced from another vcpu. In all cases,
1216          * move along.
1217          */
1218         if (!kvm_vgic_vcpu_pending_irq(vcpu) && !kvm_vgic_vcpu_active_irq(vcpu))
1219                 goto epilog;
1220
1221         /* SGIs */
1222         for_each_set_bit(i, pa_percpu, VGIC_NR_SGIS) {
1223                 if (!queue_sgi(vcpu, i))
1224                         overflow = 1;
1225         }
1226
1227         /* PPIs */
1228         for_each_set_bit_from(i, pa_percpu, VGIC_NR_PRIVATE_IRQS) {
1229                 if (!vgic_queue_hwirq(vcpu, i))
1230                         overflow = 1;
1231         }
1232
1233         /* SPIs */
1234         for_each_set_bit(i, pa_shared, nr_shared) {
1235                 if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
1236                         overflow = 1;
1237         }
1238
1239
1240
1241
1242 epilog:
1243         if (overflow) {
1244                 vgic_enable_underflow(vcpu);
1245         } else {
1246                 vgic_disable_underflow(vcpu);
1247                 /*
1248                  * We're about to run this VCPU, and we've consumed
1249                  * everything the distributor had in store for
1250                  * us. Claim we don't have anything pending. We'll
1251                  * adjust that if needed while exiting.
1252                  */
1253                 clear_bit(vcpu_id, dist->irq_pending_on_cpu);
1254         }
1255 }
1256
1257 static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
1258 {
1259         u32 status = vgic_get_interrupt_status(vcpu);
1260         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1261         bool level_pending = false;
1262         struct kvm *kvm = vcpu->kvm;
1263
1264         kvm_debug("STATUS = %08x\n", status);
1265
1266         if (status & INT_STATUS_EOI) {
1267                 /*
1268                  * Some level interrupts have been EOIed. Clear their
1269                  * active bit.
1270                  */
1271                 u64 eisr = vgic_get_eisr(vcpu);
1272                 unsigned long *eisr_ptr = u64_to_bitmask(&eisr);
1273                 int lr;
1274
1275                 for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
1276                         struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1277                         WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq));
1278
1279                         spin_lock(&dist->lock);
1280                         vgic_irq_clear_queued(vcpu, vlr.irq);
1281                         WARN_ON(vlr.state & LR_STATE_MASK);
1282                         vlr.state = 0;
1283                         vgic_set_lr(vcpu, lr, vlr);
1284
1285                         /*
1286                          * If the IRQ was EOIed it was also ACKed and we we
1287                          * therefore assume we can clear the soft pending
1288                          * state (should it had been set) for this interrupt.
1289                          *
1290                          * Note: if the IRQ soft pending state was set after
1291                          * the IRQ was acked, it actually shouldn't be
1292                          * cleared, but we have no way of knowing that unless
1293                          * we start trapping ACKs when the soft-pending state
1294                          * is set.
1295                          */
1296                         vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq);
1297
1298                         /*
1299                          * kvm_notify_acked_irq calls kvm_set_irq()
1300                          * to reset the IRQ level. Need to release the
1301                          * lock for kvm_set_irq to grab it.
1302                          */
1303                         spin_unlock(&dist->lock);
1304
1305                         kvm_notify_acked_irq(kvm, 0,
1306                                              vlr.irq - VGIC_NR_PRIVATE_IRQS);
1307                         spin_lock(&dist->lock);
1308
1309                         /* Any additional pending interrupt? */
1310                         if (vgic_dist_irq_get_level(vcpu, vlr.irq)) {
1311                                 vgic_cpu_irq_set(vcpu, vlr.irq);
1312                                 level_pending = true;
1313                         } else {
1314                                 vgic_dist_irq_clear_pending(vcpu, vlr.irq);
1315                                 vgic_cpu_irq_clear(vcpu, vlr.irq);
1316                         }
1317
1318                         spin_unlock(&dist->lock);
1319
1320                         /*
1321                          * Despite being EOIed, the LR may not have
1322                          * been marked as empty.
1323                          */
1324                         vgic_sync_lr_elrsr(vcpu, lr, vlr);
1325                 }
1326         }
1327
1328         if (status & INT_STATUS_UNDERFLOW)
1329                 vgic_disable_underflow(vcpu);
1330
1331         /*
1332          * In the next iterations of the vcpu loop, if we sync the vgic state
1333          * after flushing it, but before entering the guest (this happens for
1334          * pending signals and vmid rollovers), then make sure we don't pick
1335          * up any old maintenance interrupts here.
1336          */
1337         vgic_clear_eisr(vcpu);
1338
1339         return level_pending;
1340 }
1341
1342 /* Sync back the VGIC state after a guest run */
1343 static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1344 {
1345         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1346         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1347         u64 elrsr;
1348         unsigned long *elrsr_ptr;
1349         int lr, pending;
1350         bool level_pending;
1351
1352         level_pending = vgic_process_maintenance(vcpu);
1353         elrsr = vgic_get_elrsr(vcpu);
1354         elrsr_ptr = u64_to_bitmask(&elrsr);
1355
1356         /* Clear mappings for empty LRs */
1357         for_each_set_bit(lr, elrsr_ptr, vgic->nr_lr) {
1358                 struct vgic_lr vlr;
1359
1360                 if (!test_and_clear_bit(lr, vgic_cpu->lr_used))
1361                         continue;
1362
1363                 vlr = vgic_get_lr(vcpu, lr);
1364
1365                 BUG_ON(vlr.irq >= dist->nr_irqs);
1366                 vgic_cpu->vgic_irq_lr_map[vlr.irq] = LR_EMPTY;
1367         }
1368
1369         /* Check if we still have something up our sleeve... */
1370         pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
1371         if (level_pending || pending < vgic->nr_lr)
1372                 set_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1373 }
1374
1375 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1376 {
1377         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1378
1379         if (!irqchip_in_kernel(vcpu->kvm))
1380                 return;
1381
1382         spin_lock(&dist->lock);
1383         __kvm_vgic_flush_hwstate(vcpu);
1384         spin_unlock(&dist->lock);
1385 }
1386
1387 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1388 {
1389         if (!irqchip_in_kernel(vcpu->kvm))
1390                 return;
1391
1392         __kvm_vgic_sync_hwstate(vcpu);
1393 }
1394
1395 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1396 {
1397         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1398
1399         if (!irqchip_in_kernel(vcpu->kvm))
1400                 return 0;
1401
1402         return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1403 }
1404
1405 int kvm_vgic_vcpu_active_irq(struct kvm_vcpu *vcpu)
1406 {
1407         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1408
1409         if (!irqchip_in_kernel(vcpu->kvm))
1410                 return 0;
1411
1412         return test_bit(vcpu->vcpu_id, dist->irq_active_on_cpu);
1413 }
1414
1415
1416 void vgic_kick_vcpus(struct kvm *kvm)
1417 {
1418         struct kvm_vcpu *vcpu;
1419         int c;
1420
1421         /*
1422          * We've injected an interrupt, time to find out who deserves
1423          * a good kick...
1424          */
1425         kvm_for_each_vcpu(c, vcpu, kvm) {
1426                 if (kvm_vgic_vcpu_pending_irq(vcpu))
1427                         kvm_vcpu_kick(vcpu);
1428         }
1429 }
1430
1431 static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
1432 {
1433         int edge_triggered = vgic_irq_is_edge(vcpu, irq);
1434
1435         /*
1436          * Only inject an interrupt if:
1437          * - edge triggered and we have a rising edge
1438          * - level triggered and we change level
1439          */
1440         if (edge_triggered) {
1441                 int state = vgic_dist_irq_is_pending(vcpu, irq);
1442                 return level > state;
1443         } else {
1444                 int state = vgic_dist_irq_get_level(vcpu, irq);
1445                 return level != state;
1446         }
1447 }
1448
1449 static int vgic_update_irq_pending(struct kvm *kvm, int cpuid,
1450                                   unsigned int irq_num, bool level)
1451 {
1452         struct vgic_dist *dist = &kvm->arch.vgic;
1453         struct kvm_vcpu *vcpu;
1454         int edge_triggered, level_triggered;
1455         int enabled;
1456         bool ret = true, can_inject = true;
1457
1458         spin_lock(&dist->lock);
1459
1460         vcpu = kvm_get_vcpu(kvm, cpuid);
1461         edge_triggered = vgic_irq_is_edge(vcpu, irq_num);
1462         level_triggered = !edge_triggered;
1463
1464         if (!vgic_validate_injection(vcpu, irq_num, level)) {
1465                 ret = false;
1466                 goto out;
1467         }
1468
1469         if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
1470                 cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
1471                 if (cpuid == VCPU_NOT_ALLOCATED) {
1472                         /* Pretend we use CPU0, and prevent injection */
1473                         cpuid = 0;
1474                         can_inject = false;
1475                 }
1476                 vcpu = kvm_get_vcpu(kvm, cpuid);
1477         }
1478
1479         kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
1480
1481         if (level) {
1482                 if (level_triggered)
1483                         vgic_dist_irq_set_level(vcpu, irq_num);
1484                 vgic_dist_irq_set_pending(vcpu, irq_num);
1485         } else {
1486                 if (level_triggered) {
1487                         vgic_dist_irq_clear_level(vcpu, irq_num);
1488                         if (!vgic_dist_irq_soft_pend(vcpu, irq_num))
1489                                 vgic_dist_irq_clear_pending(vcpu, irq_num);
1490                 }
1491
1492                 ret = false;
1493                 goto out;
1494         }
1495
1496         enabled = vgic_irq_is_enabled(vcpu, irq_num);
1497
1498         if (!enabled || !can_inject) {
1499                 ret = false;
1500                 goto out;
1501         }
1502
1503         if (!vgic_can_sample_irq(vcpu, irq_num)) {
1504                 /*
1505                  * Level interrupt in progress, will be picked up
1506                  * when EOId.
1507                  */
1508                 ret = false;
1509                 goto out;
1510         }
1511
1512         if (level) {
1513                 vgic_cpu_irq_set(vcpu, irq_num);
1514                 set_bit(cpuid, dist->irq_pending_on_cpu);
1515         }
1516
1517 out:
1518         spin_unlock(&dist->lock);
1519
1520         return ret ? cpuid : -EINVAL;
1521 }
1522
1523 /**
1524  * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1525  * @kvm:     The VM structure pointer
1526  * @cpuid:   The CPU for PPIs
1527  * @irq_num: The IRQ number that is assigned to the device
1528  * @level:   Edge-triggered:  true:  to trigger the interrupt
1529  *                            false: to ignore the call
1530  *           Level-sensitive  true:  activates an interrupt
1531  *                            false: deactivates an interrupt
1532  *
1533  * The GIC is not concerned with devices being active-LOW or active-HIGH for
1534  * level-sensitive interrupts.  You can think of the level parameter as 1
1535  * being HIGH and 0 being LOW and all devices being active-HIGH.
1536  */
1537 int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
1538                         bool level)
1539 {
1540         int ret = 0;
1541         int vcpu_id;
1542
1543         if (unlikely(!vgic_initialized(kvm))) {
1544                 /*
1545                  * We only provide the automatic initialization of the VGIC
1546                  * for the legacy case of a GICv2. Any other type must
1547                  * be explicitly initialized once setup with the respective
1548                  * KVM device call.
1549                  */
1550                 if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2) {
1551                         ret = -EBUSY;
1552                         goto out;
1553                 }
1554                 mutex_lock(&kvm->lock);
1555                 ret = vgic_init(kvm);
1556                 mutex_unlock(&kvm->lock);
1557
1558                 if (ret)
1559                         goto out;
1560         }
1561
1562         if (irq_num >= min(kvm->arch.vgic.nr_irqs, 1020))
1563                 return -EINVAL;
1564
1565         vcpu_id = vgic_update_irq_pending(kvm, cpuid, irq_num, level);
1566         if (vcpu_id >= 0) {
1567                 /* kick the specified vcpu */
1568                 kvm_vcpu_kick(kvm_get_vcpu(kvm, vcpu_id));
1569         }
1570
1571 out:
1572         return ret;
1573 }
1574
1575 static irqreturn_t vgic_maintenance_handler(int irq, void *data)
1576 {
1577         /*
1578          * We cannot rely on the vgic maintenance interrupt to be
1579          * delivered synchronously. This means we can only use it to
1580          * exit the VM, and we perform the handling of EOIed
1581          * interrupts on the exit path (see vgic_process_maintenance).
1582          */
1583         return IRQ_HANDLED;
1584 }
1585
1586 void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
1587 {
1588         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1589
1590         kfree(vgic_cpu->pending_shared);
1591         kfree(vgic_cpu->active_shared);
1592         kfree(vgic_cpu->pend_act_shared);
1593         kfree(vgic_cpu->vgic_irq_lr_map);
1594         vgic_cpu->pending_shared = NULL;
1595         vgic_cpu->active_shared = NULL;
1596         vgic_cpu->pend_act_shared = NULL;
1597         vgic_cpu->vgic_irq_lr_map = NULL;
1598 }
1599
1600 static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs)
1601 {
1602         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1603
1604         int sz = (nr_irqs - VGIC_NR_PRIVATE_IRQS) / 8;
1605         vgic_cpu->pending_shared = kzalloc(sz, GFP_KERNEL);
1606         vgic_cpu->active_shared = kzalloc(sz, GFP_KERNEL);
1607         vgic_cpu->pend_act_shared = kzalloc(sz, GFP_KERNEL);
1608         vgic_cpu->vgic_irq_lr_map = kmalloc(nr_irqs, GFP_KERNEL);
1609
1610         if (!vgic_cpu->pending_shared
1611                 || !vgic_cpu->active_shared
1612                 || !vgic_cpu->pend_act_shared
1613                 || !vgic_cpu->vgic_irq_lr_map) {
1614                 kvm_vgic_vcpu_destroy(vcpu);
1615                 return -ENOMEM;
1616         }
1617
1618         memset(vgic_cpu->vgic_irq_lr_map, LR_EMPTY, nr_irqs);
1619
1620         /*
1621          * Store the number of LRs per vcpu, so we don't have to go
1622          * all the way to the distributor structure to find out. Only
1623          * assembly code should use this one.
1624          */
1625         vgic_cpu->nr_lr = vgic->nr_lr;
1626
1627         return 0;
1628 }
1629
1630 /**
1631  * kvm_vgic_get_max_vcpus - Get the maximum number of VCPUs allowed by HW
1632  *
1633  * The host's GIC naturally limits the maximum amount of VCPUs a guest
1634  * can use.
1635  */
1636 int kvm_vgic_get_max_vcpus(void)
1637 {
1638         return vgic->max_gic_vcpus;
1639 }
1640
1641 void kvm_vgic_destroy(struct kvm *kvm)
1642 {
1643         struct vgic_dist *dist = &kvm->arch.vgic;
1644         struct kvm_vcpu *vcpu;
1645         int i;
1646
1647         kvm_for_each_vcpu(i, vcpu, kvm)
1648                 kvm_vgic_vcpu_destroy(vcpu);
1649
1650         vgic_free_bitmap(&dist->irq_enabled);
1651         vgic_free_bitmap(&dist->irq_level);
1652         vgic_free_bitmap(&dist->irq_pending);
1653         vgic_free_bitmap(&dist->irq_soft_pend);
1654         vgic_free_bitmap(&dist->irq_queued);
1655         vgic_free_bitmap(&dist->irq_cfg);
1656         vgic_free_bytemap(&dist->irq_priority);
1657         if (dist->irq_spi_target) {
1658                 for (i = 0; i < dist->nr_cpus; i++)
1659                         vgic_free_bitmap(&dist->irq_spi_target[i]);
1660         }
1661         kfree(dist->irq_sgi_sources);
1662         kfree(dist->irq_spi_cpu);
1663         kfree(dist->irq_spi_mpidr);
1664         kfree(dist->irq_spi_target);
1665         kfree(dist->irq_pending_on_cpu);
1666         kfree(dist->irq_active_on_cpu);
1667         dist->irq_sgi_sources = NULL;
1668         dist->irq_spi_cpu = NULL;
1669         dist->irq_spi_target = NULL;
1670         dist->irq_pending_on_cpu = NULL;
1671         dist->irq_active_on_cpu = NULL;
1672         dist->nr_cpus = 0;
1673 }
1674
1675 /*
1676  * Allocate and initialize the various data structures. Must be called
1677  * with kvm->lock held!
1678  */
1679 int vgic_init(struct kvm *kvm)
1680 {
1681         struct vgic_dist *dist = &kvm->arch.vgic;
1682         struct kvm_vcpu *vcpu;
1683         int nr_cpus, nr_irqs;
1684         int ret, i, vcpu_id;
1685
1686         if (vgic_initialized(kvm))
1687                 return 0;
1688
1689         nr_cpus = dist->nr_cpus = atomic_read(&kvm->online_vcpus);
1690         if (!nr_cpus)           /* No vcpus? Can't be good... */
1691                 return -ENODEV;
1692
1693         /*
1694          * If nobody configured the number of interrupts, use the
1695          * legacy one.
1696          */
1697         if (!dist->nr_irqs)
1698                 dist->nr_irqs = VGIC_NR_IRQS_LEGACY;
1699
1700         nr_irqs = dist->nr_irqs;
1701
1702         ret  = vgic_init_bitmap(&dist->irq_enabled, nr_cpus, nr_irqs);
1703         ret |= vgic_init_bitmap(&dist->irq_level, nr_cpus, nr_irqs);
1704         ret |= vgic_init_bitmap(&dist->irq_pending, nr_cpus, nr_irqs);
1705         ret |= vgic_init_bitmap(&dist->irq_soft_pend, nr_cpus, nr_irqs);
1706         ret |= vgic_init_bitmap(&dist->irq_queued, nr_cpus, nr_irqs);
1707         ret |= vgic_init_bitmap(&dist->irq_active, nr_cpus, nr_irqs);
1708         ret |= vgic_init_bitmap(&dist->irq_cfg, nr_cpus, nr_irqs);
1709         ret |= vgic_init_bytemap(&dist->irq_priority, nr_cpus, nr_irqs);
1710
1711         if (ret)
1712                 goto out;
1713
1714         dist->irq_sgi_sources = kzalloc(nr_cpus * VGIC_NR_SGIS, GFP_KERNEL);
1715         dist->irq_spi_cpu = kzalloc(nr_irqs - VGIC_NR_PRIVATE_IRQS, GFP_KERNEL);
1716         dist->irq_spi_target = kzalloc(sizeof(*dist->irq_spi_target) * nr_cpus,
1717                                        GFP_KERNEL);
1718         dist->irq_pending_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
1719                                            GFP_KERNEL);
1720         dist->irq_active_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
1721                                            GFP_KERNEL);
1722         if (!dist->irq_sgi_sources ||
1723             !dist->irq_spi_cpu ||
1724             !dist->irq_spi_target ||
1725             !dist->irq_pending_on_cpu ||
1726             !dist->irq_active_on_cpu) {
1727                 ret = -ENOMEM;
1728                 goto out;
1729         }
1730
1731         for (i = 0; i < nr_cpus; i++)
1732                 ret |= vgic_init_bitmap(&dist->irq_spi_target[i],
1733                                         nr_cpus, nr_irqs);
1734
1735         if (ret)
1736                 goto out;
1737
1738         ret = kvm->arch.vgic.vm_ops.init_model(kvm);
1739         if (ret)
1740                 goto out;
1741
1742         kvm_for_each_vcpu(vcpu_id, vcpu, kvm) {
1743                 ret = vgic_vcpu_init_maps(vcpu, nr_irqs);
1744                 if (ret) {
1745                         kvm_err("VGIC: Failed to allocate vcpu memory\n");
1746                         break;
1747                 }
1748
1749                 for (i = 0; i < dist->nr_irqs; i++) {
1750                         if (i < VGIC_NR_PPIS)
1751                                 vgic_bitmap_set_irq_val(&dist->irq_enabled,
1752                                                         vcpu->vcpu_id, i, 1);
1753                         if (i < VGIC_NR_PRIVATE_IRQS)
1754                                 vgic_bitmap_set_irq_val(&dist->irq_cfg,
1755                                                         vcpu->vcpu_id, i,
1756                                                         VGIC_CFG_EDGE);
1757                 }
1758
1759                 vgic_enable(vcpu);
1760         }
1761
1762 out:
1763         if (ret)
1764                 kvm_vgic_destroy(kvm);
1765
1766         return ret;
1767 }
1768
1769 static int init_vgic_model(struct kvm *kvm, int type)
1770 {
1771         switch (type) {
1772         case KVM_DEV_TYPE_ARM_VGIC_V2:
1773                 vgic_v2_init_emulation(kvm);
1774                 break;
1775 #ifdef CONFIG_ARM_GIC_V3
1776         case KVM_DEV_TYPE_ARM_VGIC_V3:
1777                 vgic_v3_init_emulation(kvm);
1778                 break;
1779 #endif
1780         default:
1781                 return -ENODEV;
1782         }
1783
1784         if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus)
1785                 return -E2BIG;
1786
1787         return 0;
1788 }
1789
1790 int kvm_vgic_create(struct kvm *kvm, u32 type)
1791 {
1792         int i, vcpu_lock_idx = -1, ret;
1793         struct kvm_vcpu *vcpu;
1794
1795         mutex_lock(&kvm->lock);
1796
1797         if (irqchip_in_kernel(kvm)) {
1798                 ret = -EEXIST;
1799                 goto out;
1800         }
1801
1802         /*
1803          * This function is also called by the KVM_CREATE_IRQCHIP handler,
1804          * which had no chance yet to check the availability of the GICv2
1805          * emulation. So check this here again. KVM_CREATE_DEVICE does
1806          * the proper checks already.
1807          */
1808         if (type == KVM_DEV_TYPE_ARM_VGIC_V2 && !vgic->can_emulate_gicv2) {
1809                 ret = -ENODEV;
1810                 goto out;
1811         }
1812
1813         /*
1814          * Any time a vcpu is run, vcpu_load is called which tries to grab the
1815          * vcpu->mutex.  By grabbing the vcpu->mutex of all VCPUs we ensure
1816          * that no other VCPUs are run while we create the vgic.
1817          */
1818         ret = -EBUSY;
1819         kvm_for_each_vcpu(i, vcpu, kvm) {
1820                 if (!mutex_trylock(&vcpu->mutex))
1821                         goto out_unlock;
1822                 vcpu_lock_idx = i;
1823         }
1824
1825         kvm_for_each_vcpu(i, vcpu, kvm) {
1826                 if (vcpu->arch.has_run_once)
1827                         goto out_unlock;
1828         }
1829         ret = 0;
1830
1831         ret = init_vgic_model(kvm, type);
1832         if (ret)
1833                 goto out_unlock;
1834
1835         spin_lock_init(&kvm->arch.vgic.lock);
1836         kvm->arch.vgic.in_kernel = true;
1837         kvm->arch.vgic.vgic_model = type;
1838         kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
1839         kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
1840         kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
1841         kvm->arch.vgic.vgic_redist_base = VGIC_ADDR_UNDEF;
1842
1843 out_unlock:
1844         for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1845                 vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1846                 mutex_unlock(&vcpu->mutex);
1847         }
1848
1849 out:
1850         mutex_unlock(&kvm->lock);
1851         return ret;
1852 }
1853
1854 static int vgic_ioaddr_overlap(struct kvm *kvm)
1855 {
1856         phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
1857         phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
1858
1859         if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
1860                 return 0;
1861         if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
1862             (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
1863                 return -EBUSY;
1864         return 0;
1865 }
1866
1867 static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
1868                               phys_addr_t addr, phys_addr_t size)
1869 {
1870         int ret;
1871
1872         if (addr & ~KVM_PHYS_MASK)
1873                 return -E2BIG;
1874
1875         if (addr & (SZ_4K - 1))
1876                 return -EINVAL;
1877
1878         if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
1879                 return -EEXIST;
1880         if (addr + size < addr)
1881                 return -EINVAL;
1882
1883         *ioaddr = addr;
1884         ret = vgic_ioaddr_overlap(kvm);
1885         if (ret)
1886                 *ioaddr = VGIC_ADDR_UNDEF;
1887
1888         return ret;
1889 }
1890
1891 /**
1892  * kvm_vgic_addr - set or get vgic VM base addresses
1893  * @kvm:   pointer to the vm struct
1894  * @type:  the VGIC addr type, one of KVM_VGIC_V[23]_ADDR_TYPE_XXX
1895  * @addr:  pointer to address value
1896  * @write: if true set the address in the VM address space, if false read the
1897  *          address
1898  *
1899  * Set or get the vgic base addresses for the distributor and the virtual CPU
1900  * interface in the VM physical address space.  These addresses are properties
1901  * of the emulated core/SoC and therefore user space initially knows this
1902  * information.
1903  */
1904 int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
1905 {
1906         int r = 0;
1907         struct vgic_dist *vgic = &kvm->arch.vgic;
1908         int type_needed;
1909         phys_addr_t *addr_ptr, block_size;
1910         phys_addr_t alignment;
1911
1912         mutex_lock(&kvm->lock);
1913         switch (type) {
1914         case KVM_VGIC_V2_ADDR_TYPE_DIST:
1915                 type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
1916                 addr_ptr = &vgic->vgic_dist_base;
1917                 block_size = KVM_VGIC_V2_DIST_SIZE;
1918                 alignment = SZ_4K;
1919                 break;
1920         case KVM_VGIC_V2_ADDR_TYPE_CPU:
1921                 type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
1922                 addr_ptr = &vgic->vgic_cpu_base;
1923                 block_size = KVM_VGIC_V2_CPU_SIZE;
1924                 alignment = SZ_4K;
1925                 break;
1926 #ifdef CONFIG_ARM_GIC_V3
1927         case KVM_VGIC_V3_ADDR_TYPE_DIST:
1928                 type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
1929                 addr_ptr = &vgic->vgic_dist_base;
1930                 block_size = KVM_VGIC_V3_DIST_SIZE;
1931                 alignment = SZ_64K;
1932                 break;
1933         case KVM_VGIC_V3_ADDR_TYPE_REDIST:
1934                 type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
1935                 addr_ptr = &vgic->vgic_redist_base;
1936                 block_size = KVM_VGIC_V3_REDIST_SIZE;
1937                 alignment = SZ_64K;
1938                 break;
1939 #endif
1940         default:
1941                 r = -ENODEV;
1942                 goto out;
1943         }
1944
1945         if (vgic->vgic_model != type_needed) {
1946                 r = -ENODEV;
1947                 goto out;
1948         }
1949
1950         if (write) {
1951                 if (!IS_ALIGNED(*addr, alignment))
1952                         r = -EINVAL;
1953                 else
1954                         r = vgic_ioaddr_assign(kvm, addr_ptr, *addr,
1955                                                block_size);
1956         } else {
1957                 *addr = *addr_ptr;
1958         }
1959
1960 out:
1961         mutex_unlock(&kvm->lock);
1962         return r;
1963 }
1964
1965 int vgic_set_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1966 {
1967         int r;
1968
1969         switch (attr->group) {
1970         case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1971                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1972                 u64 addr;
1973                 unsigned long type = (unsigned long)attr->attr;
1974
1975                 if (copy_from_user(&addr, uaddr, sizeof(addr)))
1976                         return -EFAULT;
1977
1978                 r = kvm_vgic_addr(dev->kvm, type, &addr, true);
1979                 return (r == -ENODEV) ? -ENXIO : r;
1980         }
1981         case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
1982                 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
1983                 u32 val;
1984                 int ret = 0;
1985
1986                 if (get_user(val, uaddr))
1987                         return -EFAULT;
1988
1989                 /*
1990                  * We require:
1991                  * - at least 32 SPIs on top of the 16 SGIs and 16 PPIs
1992                  * - at most 1024 interrupts
1993                  * - a multiple of 32 interrupts
1994                  */
1995                 if (val < (VGIC_NR_PRIVATE_IRQS + 32) ||
1996                     val > VGIC_MAX_IRQS ||
1997                     (val & 31))
1998                         return -EINVAL;
1999
2000                 mutex_lock(&dev->kvm->lock);
2001
2002                 if (vgic_ready(dev->kvm) || dev->kvm->arch.vgic.nr_irqs)
2003                         ret = -EBUSY;
2004                 else
2005                         dev->kvm->arch.vgic.nr_irqs = val;
2006
2007                 mutex_unlock(&dev->kvm->lock);
2008
2009                 return ret;
2010         }
2011         case KVM_DEV_ARM_VGIC_GRP_CTRL: {
2012                 switch (attr->attr) {
2013                 case KVM_DEV_ARM_VGIC_CTRL_INIT:
2014                         r = vgic_init(dev->kvm);
2015                         return r;
2016                 }
2017                 break;
2018         }
2019         }
2020
2021         return -ENXIO;
2022 }
2023
2024 int vgic_get_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2025 {
2026         int r = -ENXIO;
2027
2028         switch (attr->group) {
2029         case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2030                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2031                 u64 addr;
2032                 unsigned long type = (unsigned long)attr->attr;
2033
2034                 r = kvm_vgic_addr(dev->kvm, type, &addr, false);
2035                 if (r)
2036                         return (r == -ENODEV) ? -ENXIO : r;
2037
2038                 if (copy_to_user(uaddr, &addr, sizeof(addr)))
2039                         return -EFAULT;
2040                 break;
2041         }
2042         case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
2043                 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2044
2045                 r = put_user(dev->kvm->arch.vgic.nr_irqs, uaddr);
2046                 break;
2047         }
2048
2049         }
2050
2051         return r;
2052 }
2053
2054 int vgic_has_attr_regs(const struct vgic_io_range *ranges, phys_addr_t offset)
2055 {
2056         if (vgic_find_range(ranges, 4, offset))
2057                 return 0;
2058         else
2059                 return -ENXIO;
2060 }
2061
2062 static void vgic_init_maintenance_interrupt(void *info)
2063 {
2064         enable_percpu_irq(vgic->maint_irq, 0);
2065 }
2066
2067 static int vgic_cpu_notify(struct notifier_block *self,
2068                            unsigned long action, void *cpu)
2069 {
2070         switch (action) {
2071         case CPU_STARTING:
2072         case CPU_STARTING_FROZEN:
2073                 vgic_init_maintenance_interrupt(NULL);
2074                 break;
2075         case CPU_DYING:
2076         case CPU_DYING_FROZEN:
2077                 disable_percpu_irq(vgic->maint_irq);
2078                 break;
2079         }
2080
2081         return NOTIFY_OK;
2082 }
2083
2084 static struct notifier_block vgic_cpu_nb = {
2085         .notifier_call = vgic_cpu_notify,
2086 };
2087
2088 static const struct of_device_id vgic_ids[] = {
2089         { .compatible = "arm,cortex-a15-gic",   .data = vgic_v2_probe, },
2090         { .compatible = "arm,cortex-a7-gic",    .data = vgic_v2_probe, },
2091         { .compatible = "arm,gic-400",          .data = vgic_v2_probe, },
2092         { .compatible = "arm,gic-v3",           .data = vgic_v3_probe, },
2093         {},
2094 };
2095
2096 int kvm_vgic_hyp_init(void)
2097 {
2098         const struct of_device_id *matched_id;
2099         const int (*vgic_probe)(struct device_node *,const struct vgic_ops **,
2100                                 const struct vgic_params **);
2101         struct device_node *vgic_node;
2102         int ret;
2103
2104         vgic_node = of_find_matching_node_and_match(NULL,
2105                                                     vgic_ids, &matched_id);
2106         if (!vgic_node) {
2107                 kvm_err("error: no compatible GIC node found\n");
2108                 return -ENODEV;
2109         }
2110
2111         vgic_probe = matched_id->data;
2112         ret = vgic_probe(vgic_node, &vgic_ops, &vgic);
2113         if (ret)
2114                 return ret;
2115
2116         ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler,
2117                                  "vgic", kvm_get_running_vcpus());
2118         if (ret) {
2119                 kvm_err("Cannot register interrupt %d\n", vgic->maint_irq);
2120                 return ret;
2121         }
2122
2123         ret = __register_cpu_notifier(&vgic_cpu_nb);
2124         if (ret) {
2125                 kvm_err("Cannot register vgic CPU notifier\n");
2126                 goto out_free_irq;
2127         }
2128
2129         on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
2130
2131         return 0;
2132
2133 out_free_irq:
2134         free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
2135         return ret;
2136 }
2137
2138 int kvm_irq_map_gsi(struct kvm *kvm,
2139                     struct kvm_kernel_irq_routing_entry *entries,
2140                     int gsi)
2141 {
2142         return 0;
2143 }
2144
2145 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin)
2146 {
2147         return pin;
2148 }
2149
2150 int kvm_set_irq(struct kvm *kvm, int irq_source_id,
2151                 u32 irq, int level, bool line_status)
2152 {
2153         unsigned int spi = irq + VGIC_NR_PRIVATE_IRQS;
2154
2155         trace_kvm_set_irq(irq, level, irq_source_id);
2156
2157         BUG_ON(!vgic_initialized(kvm));
2158
2159         return kvm_vgic_inject_irq(kvm, 0, spi, level);
2160 }
2161
2162 /* MSI not implemented yet */
2163 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e,
2164                 struct kvm *kvm, int irq_source_id,
2165                 int level, bool line_status)
2166 {
2167         return 0;
2168 }