arm/arm64: KVM: vgic: handle out-of-range MMIO accesses
[firefly-linux-kernel-4.4.55.git] / virt / kvm / arm / vgic.c
1 /*
2  * Copyright (C) 2012 ARM Ltd.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  */
18
19 #include <linux/cpu.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/uaccess.h>
28
29 #include <linux/irqchip/arm-gic.h>
30
31 #include <asm/kvm_emulate.h>
32 #include <asm/kvm_arm.h>
33 #include <asm/kvm_mmu.h>
34
35 /*
36  * How the whole thing works (courtesy of Christoffer Dall):
37  *
38  * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
39  *   something is pending on the CPU interface.
40  * - Interrupts that are pending on the distributor are stored on the
41  *   vgic.irq_pending vgic bitmap (this bitmap is updated by both user land
42  *   ioctls and guest mmio ops, and other in-kernel peripherals such as the
43  *   arch. timers).
44  * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
45  *   recalculated
46  * - To calculate the oracle, we need info for each cpu from
47  *   compute_pending_for_cpu, which considers:
48  *   - PPI: dist->irq_pending & dist->irq_enable
49  *   - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
50  *   - irq_spi_target is a 'formatted' version of the GICD_ITARGETSRn
51  *     registers, stored on each vcpu. We only keep one bit of
52  *     information per interrupt, making sure that only one vcpu can
53  *     accept the interrupt.
54  * - If any of the above state changes, we must recalculate the oracle.
55  * - The same is true when injecting an interrupt, except that we only
56  *   consider a single interrupt at a time. The irq_spi_cpu array
57  *   contains the target CPU for each SPI.
58  *
59  * The handling of level interrupts adds some extra complexity. We
60  * need to track when the interrupt has been EOIed, so we can sample
61  * the 'line' again. This is achieved as such:
62  *
63  * - When a level interrupt is moved onto a vcpu, the corresponding
64  *   bit in irq_queued is set. As long as this bit is set, the line
65  *   will be ignored for further interrupts. The interrupt is injected
66  *   into the vcpu with the GICH_LR_EOI bit set (generate a
67  *   maintenance interrupt on EOI).
68  * - When the interrupt is EOIed, the maintenance interrupt fires,
69  *   and clears the corresponding bit in irq_queued. This allows the
70  *   interrupt line to be sampled again.
71  * - Note that level-triggered interrupts can also be set to pending from
72  *   writes to GICD_ISPENDRn and lowering the external input line does not
73  *   cause the interrupt to become inactive in such a situation.
74  *   Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become
75  *   inactive as long as the external input line is held high.
76  */
77
78 #define VGIC_ADDR_UNDEF         (-1)
79 #define IS_VGIC_ADDR_UNDEF(_x)  ((_x) == VGIC_ADDR_UNDEF)
80
81 #define PRODUCT_ID_KVM          0x4b    /* ASCII code K */
82 #define IMPLEMENTER_ARM         0x43b
83 #define GICC_ARCH_VERSION_V2    0x2
84
85 #define ACCESS_READ_VALUE       (1 << 0)
86 #define ACCESS_READ_RAZ         (0 << 0)
87 #define ACCESS_READ_MASK(x)     ((x) & (1 << 0))
88 #define ACCESS_WRITE_IGNORED    (0 << 1)
89 #define ACCESS_WRITE_SETBIT     (1 << 1)
90 #define ACCESS_WRITE_CLEARBIT   (2 << 1)
91 #define ACCESS_WRITE_VALUE      (3 << 1)
92 #define ACCESS_WRITE_MASK(x)    ((x) & (3 << 1))
93
94 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
95 static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu);
96 static void vgic_update_state(struct kvm *kvm);
97 static void vgic_kick_vcpus(struct kvm *kvm);
98 static u8 *vgic_get_sgi_sources(struct vgic_dist *dist, int vcpu_id, int sgi);
99 static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg);
100 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
101 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
102 static void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
103 static void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
104
105 static const struct vgic_ops *vgic_ops;
106 static const struct vgic_params *vgic;
107
108 /*
109  * struct vgic_bitmap contains a bitmap made of unsigned longs, but
110  * extracts u32s out of them.
111  *
112  * This does not work on 64-bit BE systems, because the bitmap access
113  * will store two consecutive 32-bit words with the higher-addressed
114  * register's bits at the lower index and the lower-addressed register's
115  * bits at the higher index.
116  *
117  * Therefore, swizzle the register index when accessing the 32-bit word
118  * registers to access the right register's value.
119  */
120 #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64
121 #define REG_OFFSET_SWIZZLE      1
122 #else
123 #define REG_OFFSET_SWIZZLE      0
124 #endif
125
126 static int vgic_init_bitmap(struct vgic_bitmap *b, int nr_cpus, int nr_irqs)
127 {
128         int nr_longs;
129
130         nr_longs = nr_cpus + BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS);
131
132         b->private = kzalloc(sizeof(unsigned long) * nr_longs, GFP_KERNEL);
133         if (!b->private)
134                 return -ENOMEM;
135
136         b->shared = b->private + nr_cpus;
137
138         return 0;
139 }
140
141 static void vgic_free_bitmap(struct vgic_bitmap *b)
142 {
143         kfree(b->private);
144         b->private = NULL;
145         b->shared = NULL;
146 }
147
148 static u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x,
149                                 int cpuid, u32 offset)
150 {
151         offset >>= 2;
152         if (!offset)
153                 return (u32 *)(x->private + cpuid) + REG_OFFSET_SWIZZLE;
154         else
155                 return (u32 *)(x->shared) + ((offset - 1) ^ REG_OFFSET_SWIZZLE);
156 }
157
158 static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
159                                    int cpuid, int irq)
160 {
161         if (irq < VGIC_NR_PRIVATE_IRQS)
162                 return test_bit(irq, x->private + cpuid);
163
164         return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared);
165 }
166
167 static void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
168                                     int irq, int val)
169 {
170         unsigned long *reg;
171
172         if (irq < VGIC_NR_PRIVATE_IRQS) {
173                 reg = x->private + cpuid;
174         } else {
175                 reg = x->shared;
176                 irq -= VGIC_NR_PRIVATE_IRQS;
177         }
178
179         if (val)
180                 set_bit(irq, reg);
181         else
182                 clear_bit(irq, reg);
183 }
184
185 static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
186 {
187         return x->private + cpuid;
188 }
189
190 static unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
191 {
192         return x->shared;
193 }
194
195 static int vgic_init_bytemap(struct vgic_bytemap *x, int nr_cpus, int nr_irqs)
196 {
197         int size;
198
199         size  = nr_cpus * VGIC_NR_PRIVATE_IRQS;
200         size += nr_irqs - VGIC_NR_PRIVATE_IRQS;
201
202         x->private = kzalloc(size, GFP_KERNEL);
203         if (!x->private)
204                 return -ENOMEM;
205
206         x->shared = x->private + nr_cpus * VGIC_NR_PRIVATE_IRQS / sizeof(u32);
207         return 0;
208 }
209
210 static void vgic_free_bytemap(struct vgic_bytemap *b)
211 {
212         kfree(b->private);
213         b->private = NULL;
214         b->shared = NULL;
215 }
216
217 static u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
218 {
219         u32 *reg;
220
221         if (offset < VGIC_NR_PRIVATE_IRQS) {
222                 reg = x->private;
223                 offset += cpuid * VGIC_NR_PRIVATE_IRQS;
224         } else {
225                 reg = x->shared;
226                 offset -= VGIC_NR_PRIVATE_IRQS;
227         }
228
229         return reg + (offset / sizeof(u32));
230 }
231
232 #define VGIC_CFG_LEVEL  0
233 #define VGIC_CFG_EDGE   1
234
235 static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
236 {
237         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
238         int irq_val;
239
240         irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
241         return irq_val == VGIC_CFG_EDGE;
242 }
243
244 static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
245 {
246         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
247
248         return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
249 }
250
251 static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq)
252 {
253         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
254
255         return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq);
256 }
257
258 static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq)
259 {
260         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
261
262         vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1);
263 }
264
265 static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq)
266 {
267         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
268
269         vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0);
270 }
271
272 static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq)
273 {
274         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
275
276         return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq);
277 }
278
279 static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq)
280 {
281         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
282
283         vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1);
284 }
285
286 static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq)
287 {
288         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
289
290         vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0);
291 }
292
293 static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq)
294 {
295         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
296
297         return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq);
298 }
299
300 static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq)
301 {
302         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
303
304         vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0);
305 }
306
307 static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
308 {
309         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
310
311         return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq);
312 }
313
314 static void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
315 {
316         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
317
318         vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1);
319 }
320
321 static void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
322 {
323         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
324
325         vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0);
326 }
327
328 static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
329 {
330         if (irq < VGIC_NR_PRIVATE_IRQS)
331                 set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
332         else
333                 set_bit(irq - VGIC_NR_PRIVATE_IRQS,
334                         vcpu->arch.vgic_cpu.pending_shared);
335 }
336
337 static void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
338 {
339         if (irq < VGIC_NR_PRIVATE_IRQS)
340                 clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
341         else
342                 clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
343                           vcpu->arch.vgic_cpu.pending_shared);
344 }
345
346 static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq)
347 {
348         return vgic_irq_is_edge(vcpu, irq) || !vgic_irq_is_queued(vcpu, irq);
349 }
350
351 static u32 mmio_data_read(struct kvm_exit_mmio *mmio, u32 mask)
352 {
353         return le32_to_cpu(*((u32 *)mmio->data)) & mask;
354 }
355
356 static void mmio_data_write(struct kvm_exit_mmio *mmio, u32 mask, u32 value)
357 {
358         *((u32 *)mmio->data) = cpu_to_le32(value) & mask;
359 }
360
361 /**
362  * vgic_reg_access - access vgic register
363  * @mmio:   pointer to the data describing the mmio access
364  * @reg:    pointer to the virtual backing of vgic distributor data
365  * @offset: least significant 2 bits used for word offset
366  * @mode:   ACCESS_ mode (see defines above)
367  *
368  * Helper to make vgic register access easier using one of the access
369  * modes defined for vgic register access
370  * (read,raz,write-ignored,setbit,clearbit,write)
371  */
372 static void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
373                             phys_addr_t offset, int mode)
374 {
375         int word_offset = (offset & 3) * 8;
376         u32 mask = (1UL << (mmio->len * 8)) - 1;
377         u32 regval;
378
379         /*
380          * Any alignment fault should have been delivered to the guest
381          * directly (ARM ARM B3.12.7 "Prioritization of aborts").
382          */
383
384         if (reg) {
385                 regval = *reg;
386         } else {
387                 BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
388                 regval = 0;
389         }
390
391         if (mmio->is_write) {
392                 u32 data = mmio_data_read(mmio, mask) << word_offset;
393                 switch (ACCESS_WRITE_MASK(mode)) {
394                 case ACCESS_WRITE_IGNORED:
395                         return;
396
397                 case ACCESS_WRITE_SETBIT:
398                         regval |= data;
399                         break;
400
401                 case ACCESS_WRITE_CLEARBIT:
402                         regval &= ~data;
403                         break;
404
405                 case ACCESS_WRITE_VALUE:
406                         regval = (regval & ~(mask << word_offset)) | data;
407                         break;
408                 }
409                 *reg = regval;
410         } else {
411                 switch (ACCESS_READ_MASK(mode)) {
412                 case ACCESS_READ_RAZ:
413                         regval = 0;
414                         /* fall through */
415
416                 case ACCESS_READ_VALUE:
417                         mmio_data_write(mmio, mask, regval >> word_offset);
418                 }
419         }
420 }
421
422 static bool handle_mmio_misc(struct kvm_vcpu *vcpu,
423                              struct kvm_exit_mmio *mmio, phys_addr_t offset)
424 {
425         u32 reg;
426         u32 word_offset = offset & 3;
427
428         switch (offset & ~3) {
429         case 0:                 /* GICD_CTLR */
430                 reg = vcpu->kvm->arch.vgic.enabled;
431                 vgic_reg_access(mmio, &reg, word_offset,
432                                 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
433                 if (mmio->is_write) {
434                         vcpu->kvm->arch.vgic.enabled = reg & 1;
435                         vgic_update_state(vcpu->kvm);
436                         return true;
437                 }
438                 break;
439
440         case 4:                 /* GICD_TYPER */
441                 reg  = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
442                 reg |= (VGIC_NR_IRQS >> 5) - 1;
443                 vgic_reg_access(mmio, &reg, word_offset,
444                                 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
445                 break;
446
447         case 8:                 /* GICD_IIDR */
448                 reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
449                 vgic_reg_access(mmio, &reg, word_offset,
450                                 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
451                 break;
452         }
453
454         return false;
455 }
456
457 static bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu,
458                                struct kvm_exit_mmio *mmio, phys_addr_t offset)
459 {
460         vgic_reg_access(mmio, NULL, offset,
461                         ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
462         return false;
463 }
464
465 static bool handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu,
466                                        struct kvm_exit_mmio *mmio,
467                                        phys_addr_t offset)
468 {
469         u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
470                                        vcpu->vcpu_id, offset);
471         vgic_reg_access(mmio, reg, offset,
472                         ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
473         if (mmio->is_write) {
474                 vgic_update_state(vcpu->kvm);
475                 return true;
476         }
477
478         return false;
479 }
480
481 static bool handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu,
482                                          struct kvm_exit_mmio *mmio,
483                                          phys_addr_t offset)
484 {
485         u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
486                                        vcpu->vcpu_id, offset);
487         vgic_reg_access(mmio, reg, offset,
488                         ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
489         if (mmio->is_write) {
490                 if (offset < 4) /* Force SGI enabled */
491                         *reg |= 0xffff;
492                 vgic_retire_disabled_irqs(vcpu);
493                 vgic_update_state(vcpu->kvm);
494                 return true;
495         }
496
497         return false;
498 }
499
500 static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu,
501                                         struct kvm_exit_mmio *mmio,
502                                         phys_addr_t offset)
503 {
504         u32 *reg, orig;
505         u32 level_mask;
506         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
507
508         reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu->vcpu_id, offset);
509         level_mask = (~(*reg));
510
511         /* Mark both level and edge triggered irqs as pending */
512         reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu->vcpu_id, offset);
513         orig = *reg;
514         vgic_reg_access(mmio, reg, offset,
515                         ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
516
517         if (mmio->is_write) {
518                 /* Set the soft-pending flag only for level-triggered irqs */
519                 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
520                                           vcpu->vcpu_id, offset);
521                 vgic_reg_access(mmio, reg, offset,
522                                 ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
523                 *reg &= level_mask;
524
525                 /* Ignore writes to SGIs */
526                 if (offset < 2) {
527                         *reg &= ~0xffff;
528                         *reg |= orig & 0xffff;
529                 }
530
531                 vgic_update_state(vcpu->kvm);
532                 return true;
533         }
534
535         return false;
536 }
537
538 static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu,
539                                           struct kvm_exit_mmio *mmio,
540                                           phys_addr_t offset)
541 {
542         u32 *level_active;
543         u32 *reg, orig;
544         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
545
546         reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu->vcpu_id, offset);
547         orig = *reg;
548         vgic_reg_access(mmio, reg, offset,
549                         ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
550         if (mmio->is_write) {
551                 /* Re-set level triggered level-active interrupts */
552                 level_active = vgic_bitmap_get_reg(&dist->irq_level,
553                                           vcpu->vcpu_id, offset);
554                 reg = vgic_bitmap_get_reg(&dist->irq_pending,
555                                           vcpu->vcpu_id, offset);
556                 *reg |= *level_active;
557
558                 /* Ignore writes to SGIs */
559                 if (offset < 2) {
560                         *reg &= ~0xffff;
561                         *reg |= orig & 0xffff;
562                 }
563
564                 /* Clear soft-pending flags */
565                 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
566                                           vcpu->vcpu_id, offset);
567                 vgic_reg_access(mmio, reg, offset,
568                                 ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
569
570                 vgic_update_state(vcpu->kvm);
571                 return true;
572         }
573
574         return false;
575 }
576
577 static bool handle_mmio_priority_reg(struct kvm_vcpu *vcpu,
578                                      struct kvm_exit_mmio *mmio,
579                                      phys_addr_t offset)
580 {
581         u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
582                                         vcpu->vcpu_id, offset);
583         vgic_reg_access(mmio, reg, offset,
584                         ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
585         return false;
586 }
587
588 #define GICD_ITARGETSR_SIZE     32
589 #define GICD_CPUTARGETS_BITS    8
590 #define GICD_IRQS_PER_ITARGETSR (GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS)
591 static u32 vgic_get_target_reg(struct kvm *kvm, int irq)
592 {
593         struct vgic_dist *dist = &kvm->arch.vgic;
594         int i;
595         u32 val = 0;
596
597         irq -= VGIC_NR_PRIVATE_IRQS;
598
599         for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++)
600                 val |= 1 << (dist->irq_spi_cpu[irq + i] + i * 8);
601
602         return val;
603 }
604
605 static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq)
606 {
607         struct vgic_dist *dist = &kvm->arch.vgic;
608         struct kvm_vcpu *vcpu;
609         int i, c;
610         unsigned long *bmap;
611         u32 target;
612
613         irq -= VGIC_NR_PRIVATE_IRQS;
614
615         /*
616          * Pick the LSB in each byte. This ensures we target exactly
617          * one vcpu per IRQ. If the byte is null, assume we target
618          * CPU0.
619          */
620         for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) {
621                 int shift = i * GICD_CPUTARGETS_BITS;
622                 target = ffs((val >> shift) & 0xffU);
623                 target = target ? (target - 1) : 0;
624                 dist->irq_spi_cpu[irq + i] = target;
625                 kvm_for_each_vcpu(c, vcpu, kvm) {
626                         bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]);
627                         if (c == target)
628                                 set_bit(irq + i, bmap);
629                         else
630                                 clear_bit(irq + i, bmap);
631                 }
632         }
633 }
634
635 static bool handle_mmio_target_reg(struct kvm_vcpu *vcpu,
636                                    struct kvm_exit_mmio *mmio,
637                                    phys_addr_t offset)
638 {
639         u32 reg;
640
641         /* We treat the banked interrupts targets as read-only */
642         if (offset < 32) {
643                 u32 roreg = 1 << vcpu->vcpu_id;
644                 roreg |= roreg << 8;
645                 roreg |= roreg << 16;
646
647                 vgic_reg_access(mmio, &roreg, offset,
648                                 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
649                 return false;
650         }
651
652         reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U);
653         vgic_reg_access(mmio, &reg, offset,
654                         ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
655         if (mmio->is_write) {
656                 vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U);
657                 vgic_update_state(vcpu->kvm);
658                 return true;
659         }
660
661         return false;
662 }
663
664 static u32 vgic_cfg_expand(u16 val)
665 {
666         u32 res = 0;
667         int i;
668
669         /*
670          * Turn a 16bit value like abcd...mnop into a 32bit word
671          * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
672          */
673         for (i = 0; i < 16; i++)
674                 res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
675
676         return res;
677 }
678
679 static u16 vgic_cfg_compress(u32 val)
680 {
681         u16 res = 0;
682         int i;
683
684         /*
685          * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
686          * abcd...mnop which is what we really care about.
687          */
688         for (i = 0; i < 16; i++)
689                 res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
690
691         return res;
692 }
693
694 /*
695  * The distributor uses 2 bits per IRQ for the CFG register, but the
696  * LSB is always 0. As such, we only keep the upper bit, and use the
697  * two above functions to compress/expand the bits
698  */
699 static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu,
700                                 struct kvm_exit_mmio *mmio, phys_addr_t offset)
701 {
702         u32 val;
703         u32 *reg;
704
705         reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
706                                   vcpu->vcpu_id, offset >> 1);
707
708         if (offset & 4)
709                 val = *reg >> 16;
710         else
711                 val = *reg & 0xffff;
712
713         val = vgic_cfg_expand(val);
714         vgic_reg_access(mmio, &val, offset,
715                         ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
716         if (mmio->is_write) {
717                 if (offset < 8) {
718                         *reg = ~0U; /* Force PPIs/SGIs to 1 */
719                         return false;
720                 }
721
722                 val = vgic_cfg_compress(val);
723                 if (offset & 4) {
724                         *reg &= 0xffff;
725                         *reg |= val << 16;
726                 } else {
727                         *reg &= 0xffff << 16;
728                         *reg |= val;
729                 }
730         }
731
732         return false;
733 }
734
735 static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu,
736                                 struct kvm_exit_mmio *mmio, phys_addr_t offset)
737 {
738         u32 reg;
739         vgic_reg_access(mmio, &reg, offset,
740                         ACCESS_READ_RAZ | ACCESS_WRITE_VALUE);
741         if (mmio->is_write) {
742                 vgic_dispatch_sgi(vcpu, reg);
743                 vgic_update_state(vcpu->kvm);
744                 return true;
745         }
746
747         return false;
748 }
749
750 /**
751  * vgic_unqueue_irqs - move pending IRQs from LRs to the distributor
752  * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
753  *
754  * Move any pending IRQs that have already been assigned to LRs back to the
755  * emulated distributor state so that the complete emulated state can be read
756  * from the main emulation structures without investigating the LRs.
757  *
758  * Note that IRQs in the active state in the LRs get their pending state moved
759  * to the distributor but the active state stays in the LRs, because we don't
760  * track the active state on the distributor side.
761  */
762 static void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
763 {
764         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
765         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
766         int vcpu_id = vcpu->vcpu_id;
767         int i;
768
769         for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
770                 struct vgic_lr lr = vgic_get_lr(vcpu, i);
771
772                 /*
773                  * There are three options for the state bits:
774                  *
775                  * 01: pending
776                  * 10: active
777                  * 11: pending and active
778                  *
779                  * If the LR holds only an active interrupt (not pending) then
780                  * just leave it alone.
781                  */
782                 if ((lr.state & LR_STATE_MASK) == LR_STATE_ACTIVE)
783                         continue;
784
785                 /*
786                  * Reestablish the pending state on the distributor and the
787                  * CPU interface.  It may have already been pending, but that
788                  * is fine, then we are only setting a few bits that were
789                  * already set.
790                  */
791                 vgic_dist_irq_set_pending(vcpu, lr.irq);
792                 if (lr.irq < VGIC_NR_SGIS)
793                         *vgic_get_sgi_sources(dist, vcpu_id, lr.irq) |= 1 << lr.source;
794                 lr.state &= ~LR_STATE_PENDING;
795                 vgic_set_lr(vcpu, i, lr);
796
797                 /*
798                  * If there's no state left on the LR (it could still be
799                  * active), then the LR does not hold any useful info and can
800                  * be marked as free for other use.
801                  */
802                 if (!(lr.state & LR_STATE_MASK)) {
803                         vgic_retire_lr(i, lr.irq, vcpu);
804                         vgic_irq_clear_queued(vcpu, lr.irq);
805                 }
806
807                 /* Finally update the VGIC state. */
808                 vgic_update_state(vcpu->kvm);
809         }
810 }
811
812 /* Handle reads of GICD_CPENDSGIRn and GICD_SPENDSGIRn */
813 static bool read_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
814                                         struct kvm_exit_mmio *mmio,
815                                         phys_addr_t offset)
816 {
817         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
818         int sgi;
819         int min_sgi = (offset & ~0x3) * 4;
820         int max_sgi = min_sgi + 3;
821         int vcpu_id = vcpu->vcpu_id;
822         u32 reg = 0;
823
824         /* Copy source SGIs from distributor side */
825         for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
826                 int shift = 8 * (sgi - min_sgi);
827                 reg |= ((u32)*vgic_get_sgi_sources(dist, vcpu_id, sgi)) << shift;
828         }
829
830         mmio_data_write(mmio, ~0, reg);
831         return false;
832 }
833
834 static bool write_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
835                                          struct kvm_exit_mmio *mmio,
836                                          phys_addr_t offset, bool set)
837 {
838         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
839         int sgi;
840         int min_sgi = (offset & ~0x3) * 4;
841         int max_sgi = min_sgi + 3;
842         int vcpu_id = vcpu->vcpu_id;
843         u32 reg;
844         bool updated = false;
845
846         reg = mmio_data_read(mmio, ~0);
847
848         /* Clear pending SGIs on the distributor */
849         for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
850                 u8 mask = reg >> (8 * (sgi - min_sgi));
851                 u8 *src = vgic_get_sgi_sources(dist, vcpu_id, sgi);
852                 if (set) {
853                         if ((*src & mask) != mask)
854                                 updated = true;
855                         *src |= mask;
856                 } else {
857                         if (*src & mask)
858                                 updated = true;
859                         *src &= ~mask;
860                 }
861         }
862
863         if (updated)
864                 vgic_update_state(vcpu->kvm);
865
866         return updated;
867 }
868
869 static bool handle_mmio_sgi_set(struct kvm_vcpu *vcpu,
870                                 struct kvm_exit_mmio *mmio,
871                                 phys_addr_t offset)
872 {
873         if (!mmio->is_write)
874                 return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
875         else
876                 return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, true);
877 }
878
879 static bool handle_mmio_sgi_clear(struct kvm_vcpu *vcpu,
880                                   struct kvm_exit_mmio *mmio,
881                                   phys_addr_t offset)
882 {
883         if (!mmio->is_write)
884                 return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
885         else
886                 return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, false);
887 }
888
889 /*
890  * I would have liked to use the kvm_bus_io_*() API instead, but it
891  * cannot cope with banked registers (only the VM pointer is passed
892  * around, and we need the vcpu). One of these days, someone please
893  * fix it!
894  */
895 struct mmio_range {
896         phys_addr_t base;
897         unsigned long len;
898         int bits_per_irq;
899         bool (*handle_mmio)(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
900                             phys_addr_t offset);
901 };
902
903 static const struct mmio_range vgic_dist_ranges[] = {
904         {
905                 .base           = GIC_DIST_CTRL,
906                 .len            = 12,
907                 .bits_per_irq   = 0,
908                 .handle_mmio    = handle_mmio_misc,
909         },
910         {
911                 .base           = GIC_DIST_IGROUP,
912                 .len            = VGIC_MAX_IRQS / 8,
913                 .bits_per_irq   = 1,
914                 .handle_mmio    = handle_mmio_raz_wi,
915         },
916         {
917                 .base           = GIC_DIST_ENABLE_SET,
918                 .len            = VGIC_MAX_IRQS / 8,
919                 .bits_per_irq   = 1,
920                 .handle_mmio    = handle_mmio_set_enable_reg,
921         },
922         {
923                 .base           = GIC_DIST_ENABLE_CLEAR,
924                 .len            = VGIC_MAX_IRQS / 8,
925                 .bits_per_irq   = 1,
926                 .handle_mmio    = handle_mmio_clear_enable_reg,
927         },
928         {
929                 .base           = GIC_DIST_PENDING_SET,
930                 .len            = VGIC_MAX_IRQS / 8,
931                 .bits_per_irq   = 1,
932                 .handle_mmio    = handle_mmio_set_pending_reg,
933         },
934         {
935                 .base           = GIC_DIST_PENDING_CLEAR,
936                 .len            = VGIC_MAX_IRQS / 8,
937                 .bits_per_irq   = 1,
938                 .handle_mmio    = handle_mmio_clear_pending_reg,
939         },
940         {
941                 .base           = GIC_DIST_ACTIVE_SET,
942                 .len            = VGIC_MAX_IRQS / 8,
943                 .bits_per_irq   = 1,
944                 .handle_mmio    = handle_mmio_raz_wi,
945         },
946         {
947                 .base           = GIC_DIST_ACTIVE_CLEAR,
948                 .len            = VGIC_MAX_IRQS / 8,
949                 .bits_per_irq   = 1,
950                 .handle_mmio    = handle_mmio_raz_wi,
951         },
952         {
953                 .base           = GIC_DIST_PRI,
954                 .len            = VGIC_MAX_IRQS,
955                 .bits_per_irq   = 8,
956                 .handle_mmio    = handle_mmio_priority_reg,
957         },
958         {
959                 .base           = GIC_DIST_TARGET,
960                 .len            = VGIC_MAX_IRQS,
961                 .bits_per_irq   = 8,
962                 .handle_mmio    = handle_mmio_target_reg,
963         },
964         {
965                 .base           = GIC_DIST_CONFIG,
966                 .len            = VGIC_MAX_IRQS / 4,
967                 .bits_per_irq   = 2,
968                 .handle_mmio    = handle_mmio_cfg_reg,
969         },
970         {
971                 .base           = GIC_DIST_SOFTINT,
972                 .len            = 4,
973                 .handle_mmio    = handle_mmio_sgi_reg,
974         },
975         {
976                 .base           = GIC_DIST_SGI_PENDING_CLEAR,
977                 .len            = VGIC_NR_SGIS,
978                 .handle_mmio    = handle_mmio_sgi_clear,
979         },
980         {
981                 .base           = GIC_DIST_SGI_PENDING_SET,
982                 .len            = VGIC_NR_SGIS,
983                 .handle_mmio    = handle_mmio_sgi_set,
984         },
985         {}
986 };
987
988 static const
989 struct mmio_range *find_matching_range(const struct mmio_range *ranges,
990                                        struct kvm_exit_mmio *mmio,
991                                        phys_addr_t offset)
992 {
993         const struct mmio_range *r = ranges;
994
995         while (r->len) {
996                 if (offset >= r->base &&
997                     (offset + mmio->len) <= (r->base + r->len))
998                         return r;
999                 r++;
1000         }
1001
1002         return NULL;
1003 }
1004
1005 static bool vgic_validate_access(const struct vgic_dist *dist,
1006                                  const struct mmio_range *range,
1007                                  unsigned long offset)
1008 {
1009         int irq;
1010
1011         if (!range->bits_per_irq)
1012                 return true;    /* Not an irq-based access */
1013
1014         irq = offset * 8 / range->bits_per_irq;
1015         if (irq >= dist->nr_irqs)
1016                 return false;
1017
1018         return true;
1019 }
1020
1021 /**
1022  * vgic_handle_mmio - handle an in-kernel MMIO access
1023  * @vcpu:       pointer to the vcpu performing the access
1024  * @run:        pointer to the kvm_run structure
1025  * @mmio:       pointer to the data describing the access
1026  *
1027  * returns true if the MMIO access has been performed in kernel space,
1028  * and false if it needs to be emulated in user space.
1029  */
1030 bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
1031                       struct kvm_exit_mmio *mmio)
1032 {
1033         const struct mmio_range *range;
1034         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1035         unsigned long base = dist->vgic_dist_base;
1036         bool updated_state;
1037         unsigned long offset;
1038
1039         if (!irqchip_in_kernel(vcpu->kvm) ||
1040             mmio->phys_addr < base ||
1041             (mmio->phys_addr + mmio->len) > (base + KVM_VGIC_V2_DIST_SIZE))
1042                 return false;
1043
1044         /* We don't support ldrd / strd or ldm / stm to the emulated vgic */
1045         if (mmio->len > 4) {
1046                 kvm_inject_dabt(vcpu, mmio->phys_addr);
1047                 return true;
1048         }
1049
1050         offset = mmio->phys_addr - base;
1051         range = find_matching_range(vgic_dist_ranges, mmio, offset);
1052         if (unlikely(!range || !range->handle_mmio)) {
1053                 pr_warn("Unhandled access %d %08llx %d\n",
1054                         mmio->is_write, mmio->phys_addr, mmio->len);
1055                 return false;
1056         }
1057
1058         spin_lock(&vcpu->kvm->arch.vgic.lock);
1059         offset = mmio->phys_addr - range->base - base;
1060         if (vgic_validate_access(dist, range, offset)) {
1061                 updated_state = range->handle_mmio(vcpu, mmio, offset);
1062         } else {
1063                 vgic_reg_access(mmio, NULL, offset,
1064                                 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
1065                 updated_state = false;
1066         }
1067         spin_unlock(&vcpu->kvm->arch.vgic.lock);
1068         kvm_prepare_mmio(run, mmio);
1069         kvm_handle_mmio_return(vcpu, run);
1070
1071         if (updated_state)
1072                 vgic_kick_vcpus(vcpu->kvm);
1073
1074         return true;
1075 }
1076
1077 static u8 *vgic_get_sgi_sources(struct vgic_dist *dist, int vcpu_id, int sgi)
1078 {
1079         return dist->irq_sgi_sources + vcpu_id * VGIC_NR_SGIS + sgi;
1080 }
1081
1082 static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg)
1083 {
1084         struct kvm *kvm = vcpu->kvm;
1085         struct vgic_dist *dist = &kvm->arch.vgic;
1086         int nrcpus = atomic_read(&kvm->online_vcpus);
1087         u8 target_cpus;
1088         int sgi, mode, c, vcpu_id;
1089
1090         vcpu_id = vcpu->vcpu_id;
1091
1092         sgi = reg & 0xf;
1093         target_cpus = (reg >> 16) & 0xff;
1094         mode = (reg >> 24) & 3;
1095
1096         switch (mode) {
1097         case 0:
1098                 if (!target_cpus)
1099                         return;
1100                 break;
1101
1102         case 1:
1103                 target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff;
1104                 break;
1105
1106         case 2:
1107                 target_cpus = 1 << vcpu_id;
1108                 break;
1109         }
1110
1111         kvm_for_each_vcpu(c, vcpu, kvm) {
1112                 if (target_cpus & 1) {
1113                         /* Flag the SGI as pending */
1114                         vgic_dist_irq_set_pending(vcpu, sgi);
1115                         *vgic_get_sgi_sources(dist, c, sgi) |= 1 << vcpu_id;
1116                         kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c);
1117                 }
1118
1119                 target_cpus >>= 1;
1120         }
1121 }
1122
1123 static int vgic_nr_shared_irqs(struct vgic_dist *dist)
1124 {
1125         return dist->nr_irqs - VGIC_NR_PRIVATE_IRQS;
1126 }
1127
1128 static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
1129 {
1130         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1131         unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
1132         unsigned long pending_private, pending_shared;
1133         int nr_shared = vgic_nr_shared_irqs(dist);
1134         int vcpu_id;
1135
1136         vcpu_id = vcpu->vcpu_id;
1137         pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
1138         pend_shared = vcpu->arch.vgic_cpu.pending_shared;
1139
1140         pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id);
1141         enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
1142         bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
1143
1144         pending = vgic_bitmap_get_shared_map(&dist->irq_pending);
1145         enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
1146         bitmap_and(pend_shared, pending, enabled, nr_shared);
1147         bitmap_and(pend_shared, pend_shared,
1148                    vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
1149                    nr_shared);
1150
1151         pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
1152         pending_shared = find_first_bit(pend_shared, nr_shared);
1153         return (pending_private < VGIC_NR_PRIVATE_IRQS ||
1154                 pending_shared < vgic_nr_shared_irqs(dist));
1155 }
1156
1157 /*
1158  * Update the interrupt state and determine which CPUs have pending
1159  * interrupts. Must be called with distributor lock held.
1160  */
1161 static void vgic_update_state(struct kvm *kvm)
1162 {
1163         struct vgic_dist *dist = &kvm->arch.vgic;
1164         struct kvm_vcpu *vcpu;
1165         int c;
1166
1167         if (!dist->enabled) {
1168                 set_bit(0, dist->irq_pending_on_cpu);
1169                 return;
1170         }
1171
1172         kvm_for_each_vcpu(c, vcpu, kvm) {
1173                 if (compute_pending_for_cpu(vcpu)) {
1174                         pr_debug("CPU%d has pending interrupts\n", c);
1175                         set_bit(c, dist->irq_pending_on_cpu);
1176                 }
1177         }
1178 }
1179
1180 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
1181 {
1182         return vgic_ops->get_lr(vcpu, lr);
1183 }
1184
1185 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
1186                                struct vgic_lr vlr)
1187 {
1188         vgic_ops->set_lr(vcpu, lr, vlr);
1189 }
1190
1191 static void vgic_sync_lr_elrsr(struct kvm_vcpu *vcpu, int lr,
1192                                struct vgic_lr vlr)
1193 {
1194         vgic_ops->sync_lr_elrsr(vcpu, lr, vlr);
1195 }
1196
1197 static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
1198 {
1199         return vgic_ops->get_elrsr(vcpu);
1200 }
1201
1202 static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
1203 {
1204         return vgic_ops->get_eisr(vcpu);
1205 }
1206
1207 static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
1208 {
1209         return vgic_ops->get_interrupt_status(vcpu);
1210 }
1211
1212 static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
1213 {
1214         vgic_ops->enable_underflow(vcpu);
1215 }
1216
1217 static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
1218 {
1219         vgic_ops->disable_underflow(vcpu);
1220 }
1221
1222 static inline void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1223 {
1224         vgic_ops->get_vmcr(vcpu, vmcr);
1225 }
1226
1227 static void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1228 {
1229         vgic_ops->set_vmcr(vcpu, vmcr);
1230 }
1231
1232 static inline void vgic_enable(struct kvm_vcpu *vcpu)
1233 {
1234         vgic_ops->enable(vcpu);
1235 }
1236
1237 static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu)
1238 {
1239         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1240         struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);
1241
1242         vlr.state = 0;
1243         vgic_set_lr(vcpu, lr_nr, vlr);
1244         clear_bit(lr_nr, vgic_cpu->lr_used);
1245         vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
1246 }
1247
1248 /*
1249  * An interrupt may have been disabled after being made pending on the
1250  * CPU interface (the classic case is a timer running while we're
1251  * rebooting the guest - the interrupt would kick as soon as the CPU
1252  * interface gets enabled, with deadly consequences).
1253  *
1254  * The solution is to examine already active LRs, and check the
1255  * interrupt is still enabled. If not, just retire it.
1256  */
1257 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
1258 {
1259         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1260         int lr;
1261
1262         for_each_set_bit(lr, vgic_cpu->lr_used, vgic->nr_lr) {
1263                 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1264
1265                 if (!vgic_irq_is_enabled(vcpu, vlr.irq)) {
1266                         vgic_retire_lr(lr, vlr.irq, vcpu);
1267                         if (vgic_irq_is_queued(vcpu, vlr.irq))
1268                                 vgic_irq_clear_queued(vcpu, vlr.irq);
1269                 }
1270         }
1271 }
1272
1273 /*
1274  * Queue an interrupt to a CPU virtual interface. Return true on success,
1275  * or false if it wasn't possible to queue it.
1276  */
1277 static bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
1278 {
1279         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1280         struct vgic_lr vlr;
1281         int lr;
1282
1283         /* Sanitize the input... */
1284         BUG_ON(sgi_source_id & ~7);
1285         BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
1286         BUG_ON(irq >= VGIC_NR_IRQS);
1287
1288         kvm_debug("Queue IRQ%d\n", irq);
1289
1290         lr = vgic_cpu->vgic_irq_lr_map[irq];
1291
1292         /* Do we have an active interrupt for the same CPUID? */
1293         if (lr != LR_EMPTY) {
1294                 vlr = vgic_get_lr(vcpu, lr);
1295                 if (vlr.source == sgi_source_id) {
1296                         kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
1297                         BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
1298                         vlr.state |= LR_STATE_PENDING;
1299                         vgic_set_lr(vcpu, lr, vlr);
1300                         return true;
1301                 }
1302         }
1303
1304         /* Try to use another LR for this interrupt */
1305         lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
1306                                vgic->nr_lr);
1307         if (lr >= vgic->nr_lr)
1308                 return false;
1309
1310         kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
1311         vgic_cpu->vgic_irq_lr_map[irq] = lr;
1312         set_bit(lr, vgic_cpu->lr_used);
1313
1314         vlr.irq = irq;
1315         vlr.source = sgi_source_id;
1316         vlr.state = LR_STATE_PENDING;
1317         if (!vgic_irq_is_edge(vcpu, irq))
1318                 vlr.state |= LR_EOI_INT;
1319
1320         vgic_set_lr(vcpu, lr, vlr);
1321
1322         return true;
1323 }
1324
1325 static bool vgic_queue_sgi(struct kvm_vcpu *vcpu, int irq)
1326 {
1327         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1328         unsigned long sources;
1329         int vcpu_id = vcpu->vcpu_id;
1330         int c;
1331
1332         sources = *vgic_get_sgi_sources(dist, vcpu_id, irq);
1333
1334         for_each_set_bit(c, &sources, dist->nr_cpus) {
1335                 if (vgic_queue_irq(vcpu, c, irq))
1336                         clear_bit(c, &sources);
1337         }
1338
1339         *vgic_get_sgi_sources(dist, vcpu_id, irq) = sources;
1340
1341         /*
1342          * If the sources bitmap has been cleared it means that we
1343          * could queue all the SGIs onto link registers (see the
1344          * clear_bit above), and therefore we are done with them in
1345          * our emulated gic and can get rid of them.
1346          */
1347         if (!sources) {
1348                 vgic_dist_irq_clear_pending(vcpu, irq);
1349                 vgic_cpu_irq_clear(vcpu, irq);
1350                 return true;
1351         }
1352
1353         return false;
1354 }
1355
1356 static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
1357 {
1358         if (!vgic_can_sample_irq(vcpu, irq))
1359                 return true; /* level interrupt, already queued */
1360
1361         if (vgic_queue_irq(vcpu, 0, irq)) {
1362                 if (vgic_irq_is_edge(vcpu, irq)) {
1363                         vgic_dist_irq_clear_pending(vcpu, irq);
1364                         vgic_cpu_irq_clear(vcpu, irq);
1365                 } else {
1366                         vgic_irq_set_queued(vcpu, irq);
1367                 }
1368
1369                 return true;
1370         }
1371
1372         return false;
1373 }
1374
1375 /*
1376  * Fill the list registers with pending interrupts before running the
1377  * guest.
1378  */
1379 static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1380 {
1381         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1382         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1383         int i, vcpu_id;
1384         int overflow = 0;
1385
1386         vcpu_id = vcpu->vcpu_id;
1387
1388         /*
1389          * We may not have any pending interrupt, or the interrupts
1390          * may have been serviced from another vcpu. In all cases,
1391          * move along.
1392          */
1393         if (!kvm_vgic_vcpu_pending_irq(vcpu)) {
1394                 pr_debug("CPU%d has no pending interrupt\n", vcpu_id);
1395                 goto epilog;
1396         }
1397
1398         /* SGIs */
1399         for_each_set_bit(i, vgic_cpu->pending_percpu, VGIC_NR_SGIS) {
1400                 if (!vgic_queue_sgi(vcpu, i))
1401                         overflow = 1;
1402         }
1403
1404         /* PPIs */
1405         for_each_set_bit_from(i, vgic_cpu->pending_percpu, VGIC_NR_PRIVATE_IRQS) {
1406                 if (!vgic_queue_hwirq(vcpu, i))
1407                         overflow = 1;
1408         }
1409
1410         /* SPIs */
1411         for_each_set_bit(i, vgic_cpu->pending_shared, vgic_nr_shared_irqs(dist)) {
1412                 if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
1413                         overflow = 1;
1414         }
1415
1416 epilog:
1417         if (overflow) {
1418                 vgic_enable_underflow(vcpu);
1419         } else {
1420                 vgic_disable_underflow(vcpu);
1421                 /*
1422                  * We're about to run this VCPU, and we've consumed
1423                  * everything the distributor had in store for
1424                  * us. Claim we don't have anything pending. We'll
1425                  * adjust that if needed while exiting.
1426                  */
1427                 clear_bit(vcpu_id, dist->irq_pending_on_cpu);
1428         }
1429 }
1430
1431 static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
1432 {
1433         u32 status = vgic_get_interrupt_status(vcpu);
1434         bool level_pending = false;
1435
1436         kvm_debug("STATUS = %08x\n", status);
1437
1438         if (status & INT_STATUS_EOI) {
1439                 /*
1440                  * Some level interrupts have been EOIed. Clear their
1441                  * active bit.
1442                  */
1443                 u64 eisr = vgic_get_eisr(vcpu);
1444                 unsigned long *eisr_ptr = (unsigned long *)&eisr;
1445                 int lr;
1446
1447                 for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
1448                         struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1449                         WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq));
1450
1451                         vgic_irq_clear_queued(vcpu, vlr.irq);
1452                         WARN_ON(vlr.state & LR_STATE_MASK);
1453                         vlr.state = 0;
1454                         vgic_set_lr(vcpu, lr, vlr);
1455
1456                         /*
1457                          * If the IRQ was EOIed it was also ACKed and we we
1458                          * therefore assume we can clear the soft pending
1459                          * state (should it had been set) for this interrupt.
1460                          *
1461                          * Note: if the IRQ soft pending state was set after
1462                          * the IRQ was acked, it actually shouldn't be
1463                          * cleared, but we have no way of knowing that unless
1464                          * we start trapping ACKs when the soft-pending state
1465                          * is set.
1466                          */
1467                         vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq);
1468
1469                         /* Any additional pending interrupt? */
1470                         if (vgic_dist_irq_get_level(vcpu, vlr.irq)) {
1471                                 vgic_cpu_irq_set(vcpu, vlr.irq);
1472                                 level_pending = true;
1473                         } else {
1474                                 vgic_dist_irq_clear_pending(vcpu, vlr.irq);
1475                                 vgic_cpu_irq_clear(vcpu, vlr.irq);
1476                         }
1477
1478                         /*
1479                          * Despite being EOIed, the LR may not have
1480                          * been marked as empty.
1481                          */
1482                         vgic_sync_lr_elrsr(vcpu, lr, vlr);
1483                 }
1484         }
1485
1486         if (status & INT_STATUS_UNDERFLOW)
1487                 vgic_disable_underflow(vcpu);
1488
1489         return level_pending;
1490 }
1491
1492 /*
1493  * Sync back the VGIC state after a guest run. The distributor lock is
1494  * needed so we don't get preempted in the middle of the state processing.
1495  */
1496 static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1497 {
1498         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1499         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1500         u64 elrsr;
1501         unsigned long *elrsr_ptr;
1502         int lr, pending;
1503         bool level_pending;
1504
1505         level_pending = vgic_process_maintenance(vcpu);
1506         elrsr = vgic_get_elrsr(vcpu);
1507         elrsr_ptr = (unsigned long *)&elrsr;
1508
1509         /* Clear mappings for empty LRs */
1510         for_each_set_bit(lr, elrsr_ptr, vgic->nr_lr) {
1511                 struct vgic_lr vlr;
1512
1513                 if (!test_and_clear_bit(lr, vgic_cpu->lr_used))
1514                         continue;
1515
1516                 vlr = vgic_get_lr(vcpu, lr);
1517
1518                 BUG_ON(vlr.irq >= VGIC_NR_IRQS);
1519                 vgic_cpu->vgic_irq_lr_map[vlr.irq] = LR_EMPTY;
1520         }
1521
1522         /* Check if we still have something up our sleeve... */
1523         pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
1524         if (level_pending || pending < vgic->nr_lr)
1525                 set_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1526 }
1527
1528 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1529 {
1530         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1531
1532         if (!irqchip_in_kernel(vcpu->kvm))
1533                 return;
1534
1535         spin_lock(&dist->lock);
1536         __kvm_vgic_flush_hwstate(vcpu);
1537         spin_unlock(&dist->lock);
1538 }
1539
1540 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1541 {
1542         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1543
1544         if (!irqchip_in_kernel(vcpu->kvm))
1545                 return;
1546
1547         spin_lock(&dist->lock);
1548         __kvm_vgic_sync_hwstate(vcpu);
1549         spin_unlock(&dist->lock);
1550 }
1551
1552 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1553 {
1554         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1555
1556         if (!irqchip_in_kernel(vcpu->kvm))
1557                 return 0;
1558
1559         return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1560 }
1561
1562 static void vgic_kick_vcpus(struct kvm *kvm)
1563 {
1564         struct kvm_vcpu *vcpu;
1565         int c;
1566
1567         /*
1568          * We've injected an interrupt, time to find out who deserves
1569          * a good kick...
1570          */
1571         kvm_for_each_vcpu(c, vcpu, kvm) {
1572                 if (kvm_vgic_vcpu_pending_irq(vcpu))
1573                         kvm_vcpu_kick(vcpu);
1574         }
1575 }
1576
1577 static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
1578 {
1579         int edge_triggered = vgic_irq_is_edge(vcpu, irq);
1580
1581         /*
1582          * Only inject an interrupt if:
1583          * - edge triggered and we have a rising edge
1584          * - level triggered and we change level
1585          */
1586         if (edge_triggered) {
1587                 int state = vgic_dist_irq_is_pending(vcpu, irq);
1588                 return level > state;
1589         } else {
1590                 int state = vgic_dist_irq_get_level(vcpu, irq);
1591                 return level != state;
1592         }
1593 }
1594
1595 static bool vgic_update_irq_pending(struct kvm *kvm, int cpuid,
1596                                   unsigned int irq_num, bool level)
1597 {
1598         struct vgic_dist *dist = &kvm->arch.vgic;
1599         struct kvm_vcpu *vcpu;
1600         int edge_triggered, level_triggered;
1601         int enabled;
1602         bool ret = true;
1603
1604         spin_lock(&dist->lock);
1605
1606         vcpu = kvm_get_vcpu(kvm, cpuid);
1607         edge_triggered = vgic_irq_is_edge(vcpu, irq_num);
1608         level_triggered = !edge_triggered;
1609
1610         if (!vgic_validate_injection(vcpu, irq_num, level)) {
1611                 ret = false;
1612                 goto out;
1613         }
1614
1615         if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
1616                 cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
1617                 vcpu = kvm_get_vcpu(kvm, cpuid);
1618         }
1619
1620         kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
1621
1622         if (level) {
1623                 if (level_triggered)
1624                         vgic_dist_irq_set_level(vcpu, irq_num);
1625                 vgic_dist_irq_set_pending(vcpu, irq_num);
1626         } else {
1627                 if (level_triggered) {
1628                         vgic_dist_irq_clear_level(vcpu, irq_num);
1629                         if (!vgic_dist_irq_soft_pend(vcpu, irq_num))
1630                                 vgic_dist_irq_clear_pending(vcpu, irq_num);
1631                 } else {
1632                         vgic_dist_irq_clear_pending(vcpu, irq_num);
1633                 }
1634         }
1635
1636         enabled = vgic_irq_is_enabled(vcpu, irq_num);
1637
1638         if (!enabled) {
1639                 ret = false;
1640                 goto out;
1641         }
1642
1643         if (!vgic_can_sample_irq(vcpu, irq_num)) {
1644                 /*
1645                  * Level interrupt in progress, will be picked up
1646                  * when EOId.
1647                  */
1648                 ret = false;
1649                 goto out;
1650         }
1651
1652         if (level) {
1653                 vgic_cpu_irq_set(vcpu, irq_num);
1654                 set_bit(cpuid, dist->irq_pending_on_cpu);
1655         }
1656
1657 out:
1658         spin_unlock(&dist->lock);
1659
1660         return ret;
1661 }
1662
1663 /**
1664  * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1665  * @kvm:     The VM structure pointer
1666  * @cpuid:   The CPU for PPIs
1667  * @irq_num: The IRQ number that is assigned to the device
1668  * @level:   Edge-triggered:  true:  to trigger the interrupt
1669  *                            false: to ignore the call
1670  *           Level-sensitive  true:  activates an interrupt
1671  *                            false: deactivates an interrupt
1672  *
1673  * The GIC is not concerned with devices being active-LOW or active-HIGH for
1674  * level-sensitive interrupts.  You can think of the level parameter as 1
1675  * being HIGH and 0 being LOW and all devices being active-HIGH.
1676  */
1677 int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
1678                         bool level)
1679 {
1680         if (likely(vgic_initialized(kvm)) &&
1681             vgic_update_irq_pending(kvm, cpuid, irq_num, level))
1682                 vgic_kick_vcpus(kvm);
1683
1684         return 0;
1685 }
1686
1687 static irqreturn_t vgic_maintenance_handler(int irq, void *data)
1688 {
1689         /*
1690          * We cannot rely on the vgic maintenance interrupt to be
1691          * delivered synchronously. This means we can only use it to
1692          * exit the VM, and we perform the handling of EOIed
1693          * interrupts on the exit path (see vgic_process_maintenance).
1694          */
1695         return IRQ_HANDLED;
1696 }
1697
1698 void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
1699 {
1700         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1701
1702         kfree(vgic_cpu->pending_shared);
1703         kfree(vgic_cpu->vgic_irq_lr_map);
1704         vgic_cpu->pending_shared = NULL;
1705         vgic_cpu->vgic_irq_lr_map = NULL;
1706 }
1707
1708 static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs)
1709 {
1710         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1711
1712         int sz = (nr_irqs - VGIC_NR_PRIVATE_IRQS) / 8;
1713         vgic_cpu->pending_shared = kzalloc(sz, GFP_KERNEL);
1714         vgic_cpu->vgic_irq_lr_map = kzalloc(nr_irqs, GFP_KERNEL);
1715
1716         if (!vgic_cpu->pending_shared || !vgic_cpu->vgic_irq_lr_map) {
1717                 kvm_vgic_vcpu_destroy(vcpu);
1718                 return -ENOMEM;
1719         }
1720
1721         return 0;
1722 }
1723
1724 /**
1725  * kvm_vgic_vcpu_init - Initialize per-vcpu VGIC state
1726  * @vcpu: pointer to the vcpu struct
1727  *
1728  * Initialize the vgic_cpu struct and vgic_dist struct fields pertaining to
1729  * this vcpu and enable the VGIC for this VCPU
1730  */
1731 int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
1732 {
1733         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1734         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1735         int i;
1736
1737         if (vcpu->vcpu_id >= dist->nr_cpus)
1738                 return -EBUSY;
1739
1740         for (i = 0; i < VGIC_NR_IRQS; i++) {
1741                 if (i < VGIC_NR_PPIS)
1742                         vgic_bitmap_set_irq_val(&dist->irq_enabled,
1743                                                 vcpu->vcpu_id, i, 1);
1744                 if (i < VGIC_NR_PRIVATE_IRQS)
1745                         vgic_bitmap_set_irq_val(&dist->irq_cfg,
1746                                                 vcpu->vcpu_id, i, VGIC_CFG_EDGE);
1747
1748                 vgic_cpu->vgic_irq_lr_map[i] = LR_EMPTY;
1749         }
1750
1751         /*
1752          * Store the number of LRs per vcpu, so we don't have to go
1753          * all the way to the distributor structure to find out. Only
1754          * assembly code should use this one.
1755          */
1756         vgic_cpu->nr_lr = vgic->nr_lr;
1757
1758         vgic_enable(vcpu);
1759
1760         return 0;
1761 }
1762
1763 void kvm_vgic_destroy(struct kvm *kvm)
1764 {
1765         struct vgic_dist *dist = &kvm->arch.vgic;
1766         struct kvm_vcpu *vcpu;
1767         int i;
1768
1769         kvm_for_each_vcpu(i, vcpu, kvm)
1770                 kvm_vgic_vcpu_destroy(vcpu);
1771
1772         vgic_free_bitmap(&dist->irq_enabled);
1773         vgic_free_bitmap(&dist->irq_level);
1774         vgic_free_bitmap(&dist->irq_pending);
1775         vgic_free_bitmap(&dist->irq_soft_pend);
1776         vgic_free_bitmap(&dist->irq_queued);
1777         vgic_free_bitmap(&dist->irq_cfg);
1778         vgic_free_bytemap(&dist->irq_priority);
1779         if (dist->irq_spi_target) {
1780                 for (i = 0; i < dist->nr_cpus; i++)
1781                         vgic_free_bitmap(&dist->irq_spi_target[i]);
1782         }
1783         kfree(dist->irq_sgi_sources);
1784         kfree(dist->irq_spi_cpu);
1785         kfree(dist->irq_spi_target);
1786         kfree(dist->irq_pending_on_cpu);
1787         dist->irq_sgi_sources = NULL;
1788         dist->irq_spi_cpu = NULL;
1789         dist->irq_spi_target = NULL;
1790         dist->irq_pending_on_cpu = NULL;
1791 }
1792
1793 /*
1794  * Allocate and initialize the various data structures. Must be called
1795  * with kvm->lock held!
1796  */
1797 static int vgic_init_maps(struct kvm *kvm)
1798 {
1799         struct vgic_dist *dist = &kvm->arch.vgic;
1800         struct kvm_vcpu *vcpu;
1801         int nr_cpus, nr_irqs;
1802         int ret, i;
1803
1804         nr_cpus = dist->nr_cpus = KVM_MAX_VCPUS;
1805         nr_irqs = dist->nr_irqs = VGIC_NR_IRQS;
1806
1807         ret  = vgic_init_bitmap(&dist->irq_enabled, nr_cpus, nr_irqs);
1808         ret |= vgic_init_bitmap(&dist->irq_level, nr_cpus, nr_irqs);
1809         ret |= vgic_init_bitmap(&dist->irq_pending, nr_cpus, nr_irqs);
1810         ret |= vgic_init_bitmap(&dist->irq_soft_pend, nr_cpus, nr_irqs);
1811         ret |= vgic_init_bitmap(&dist->irq_queued, nr_cpus, nr_irqs);
1812         ret |= vgic_init_bitmap(&dist->irq_cfg, nr_cpus, nr_irqs);
1813         ret |= vgic_init_bytemap(&dist->irq_priority, nr_cpus, nr_irqs);
1814
1815         if (ret)
1816                 goto out;
1817
1818         dist->irq_sgi_sources = kzalloc(nr_cpus * VGIC_NR_SGIS, GFP_KERNEL);
1819         dist->irq_spi_cpu = kzalloc(nr_irqs - VGIC_NR_PRIVATE_IRQS, GFP_KERNEL);
1820         dist->irq_spi_target = kzalloc(sizeof(*dist->irq_spi_target) * nr_cpus,
1821                                        GFP_KERNEL);
1822         dist->irq_pending_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
1823                                            GFP_KERNEL);
1824         if (!dist->irq_sgi_sources ||
1825             !dist->irq_spi_cpu ||
1826             !dist->irq_spi_target ||
1827             !dist->irq_pending_on_cpu) {
1828                 ret = -ENOMEM;
1829                 goto out;
1830         }
1831
1832         for (i = 0; i < nr_cpus; i++)
1833                 ret |= vgic_init_bitmap(&dist->irq_spi_target[i],
1834                                         nr_cpus, nr_irqs);
1835
1836         if (ret)
1837                 goto out;
1838
1839         kvm_for_each_vcpu(i, vcpu, kvm) {
1840                 ret = vgic_vcpu_init_maps(vcpu, nr_irqs);
1841                 if (ret) {
1842                         kvm_err("VGIC: Failed to allocate vcpu memory\n");
1843                         break;
1844                 }
1845         }
1846
1847 out:
1848         if (ret)
1849                 kvm_vgic_destroy(kvm);
1850
1851         return ret;
1852 }
1853
1854 /**
1855  * kvm_vgic_init - Initialize global VGIC state before running any VCPUs
1856  * @kvm: pointer to the kvm struct
1857  *
1858  * Map the virtual CPU interface into the VM before running any VCPUs.  We
1859  * can't do this at creation time, because user space must first set the
1860  * virtual CPU interface address in the guest physical address space.  Also
1861  * initialize the ITARGETSRn regs to 0 on the emulated distributor.
1862  */
1863 int kvm_vgic_init(struct kvm *kvm)
1864 {
1865         int ret = 0, i;
1866
1867         if (!irqchip_in_kernel(kvm))
1868                 return 0;
1869
1870         mutex_lock(&kvm->lock);
1871
1872         if (vgic_initialized(kvm))
1873                 goto out;
1874
1875         if (IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_dist_base) ||
1876             IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_cpu_base)) {
1877                 kvm_err("Need to set vgic cpu and dist addresses first\n");
1878                 ret = -ENXIO;
1879                 goto out;
1880         }
1881
1882         ret = kvm_phys_addr_ioremap(kvm, kvm->arch.vgic.vgic_cpu_base,
1883                                     vgic->vcpu_base, KVM_VGIC_V2_CPU_SIZE);
1884         if (ret) {
1885                 kvm_err("Unable to remap VGIC CPU to VCPU\n");
1886                 goto out;
1887         }
1888
1889         for (i = VGIC_NR_PRIVATE_IRQS; i < VGIC_NR_IRQS; i += 4)
1890                 vgic_set_target_reg(kvm, 0, i);
1891
1892         kvm->arch.vgic.ready = true;
1893 out:
1894         mutex_unlock(&kvm->lock);
1895         return ret;
1896 }
1897
1898 int kvm_vgic_create(struct kvm *kvm)
1899 {
1900         int i, vcpu_lock_idx = -1, ret = 0;
1901         struct kvm_vcpu *vcpu;
1902
1903         mutex_lock(&kvm->lock);
1904
1905         if (kvm->arch.vgic.vctrl_base) {
1906                 ret = -EEXIST;
1907                 goto out;
1908         }
1909
1910         /*
1911          * Any time a vcpu is run, vcpu_load is called which tries to grab the
1912          * vcpu->mutex.  By grabbing the vcpu->mutex of all VCPUs we ensure
1913          * that no other VCPUs are run while we create the vgic.
1914          */
1915         kvm_for_each_vcpu(i, vcpu, kvm) {
1916                 if (!mutex_trylock(&vcpu->mutex))
1917                         goto out_unlock;
1918                 vcpu_lock_idx = i;
1919         }
1920
1921         kvm_for_each_vcpu(i, vcpu, kvm) {
1922                 if (vcpu->arch.has_run_once) {
1923                         ret = -EBUSY;
1924                         goto out_unlock;
1925                 }
1926         }
1927
1928         spin_lock_init(&kvm->arch.vgic.lock);
1929         kvm->arch.vgic.in_kernel = true;
1930         kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
1931         kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
1932         kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
1933
1934         ret = vgic_init_maps(kvm);
1935         if (ret)
1936                 kvm_err("Unable to allocate maps\n");
1937
1938 out_unlock:
1939         for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1940                 vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1941                 mutex_unlock(&vcpu->mutex);
1942         }
1943
1944 out:
1945         mutex_unlock(&kvm->lock);
1946         return ret;
1947 }
1948
1949 static int vgic_ioaddr_overlap(struct kvm *kvm)
1950 {
1951         phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
1952         phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
1953
1954         if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
1955                 return 0;
1956         if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
1957             (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
1958                 return -EBUSY;
1959         return 0;
1960 }
1961
1962 static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
1963                               phys_addr_t addr, phys_addr_t size)
1964 {
1965         int ret;
1966
1967         if (addr & ~KVM_PHYS_MASK)
1968                 return -E2BIG;
1969
1970         if (addr & (SZ_4K - 1))
1971                 return -EINVAL;
1972
1973         if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
1974                 return -EEXIST;
1975         if (addr + size < addr)
1976                 return -EINVAL;
1977
1978         *ioaddr = addr;
1979         ret = vgic_ioaddr_overlap(kvm);
1980         if (ret)
1981                 *ioaddr = VGIC_ADDR_UNDEF;
1982
1983         return ret;
1984 }
1985
1986 /**
1987  * kvm_vgic_addr - set or get vgic VM base addresses
1988  * @kvm:   pointer to the vm struct
1989  * @type:  the VGIC addr type, one of KVM_VGIC_V2_ADDR_TYPE_XXX
1990  * @addr:  pointer to address value
1991  * @write: if true set the address in the VM address space, if false read the
1992  *          address
1993  *
1994  * Set or get the vgic base addresses for the distributor and the virtual CPU
1995  * interface in the VM physical address space.  These addresses are properties
1996  * of the emulated core/SoC and therefore user space initially knows this
1997  * information.
1998  */
1999 int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
2000 {
2001         int r = 0;
2002         struct vgic_dist *vgic = &kvm->arch.vgic;
2003
2004         mutex_lock(&kvm->lock);
2005         switch (type) {
2006         case KVM_VGIC_V2_ADDR_TYPE_DIST:
2007                 if (write) {
2008                         r = vgic_ioaddr_assign(kvm, &vgic->vgic_dist_base,
2009                                                *addr, KVM_VGIC_V2_DIST_SIZE);
2010                 } else {
2011                         *addr = vgic->vgic_dist_base;
2012                 }
2013                 break;
2014         case KVM_VGIC_V2_ADDR_TYPE_CPU:
2015                 if (write) {
2016                         r = vgic_ioaddr_assign(kvm, &vgic->vgic_cpu_base,
2017                                                *addr, KVM_VGIC_V2_CPU_SIZE);
2018                 } else {
2019                         *addr = vgic->vgic_cpu_base;
2020                 }
2021                 break;
2022         default:
2023                 r = -ENODEV;
2024         }
2025
2026         mutex_unlock(&kvm->lock);
2027         return r;
2028 }
2029
2030 static bool handle_cpu_mmio_misc(struct kvm_vcpu *vcpu,
2031                                  struct kvm_exit_mmio *mmio, phys_addr_t offset)
2032 {
2033         bool updated = false;
2034         struct vgic_vmcr vmcr;
2035         u32 *vmcr_field;
2036         u32 reg;
2037
2038         vgic_get_vmcr(vcpu, &vmcr);
2039
2040         switch (offset & ~0x3) {
2041         case GIC_CPU_CTRL:
2042                 vmcr_field = &vmcr.ctlr;
2043                 break;
2044         case GIC_CPU_PRIMASK:
2045                 vmcr_field = &vmcr.pmr;
2046                 break;
2047         case GIC_CPU_BINPOINT:
2048                 vmcr_field = &vmcr.bpr;
2049                 break;
2050         case GIC_CPU_ALIAS_BINPOINT:
2051                 vmcr_field = &vmcr.abpr;
2052                 break;
2053         default:
2054                 BUG();
2055         }
2056
2057         if (!mmio->is_write) {
2058                 reg = *vmcr_field;
2059                 mmio_data_write(mmio, ~0, reg);
2060         } else {
2061                 reg = mmio_data_read(mmio, ~0);
2062                 if (reg != *vmcr_field) {
2063                         *vmcr_field = reg;
2064                         vgic_set_vmcr(vcpu, &vmcr);
2065                         updated = true;
2066                 }
2067         }
2068         return updated;
2069 }
2070
2071 static bool handle_mmio_abpr(struct kvm_vcpu *vcpu,
2072                              struct kvm_exit_mmio *mmio, phys_addr_t offset)
2073 {
2074         return handle_cpu_mmio_misc(vcpu, mmio, GIC_CPU_ALIAS_BINPOINT);
2075 }
2076
2077 static bool handle_cpu_mmio_ident(struct kvm_vcpu *vcpu,
2078                                   struct kvm_exit_mmio *mmio,
2079                                   phys_addr_t offset)
2080 {
2081         u32 reg;
2082
2083         if (mmio->is_write)
2084                 return false;
2085
2086         /* GICC_IIDR */
2087         reg = (PRODUCT_ID_KVM << 20) |
2088               (GICC_ARCH_VERSION_V2 << 16) |
2089               (IMPLEMENTER_ARM << 0);
2090         mmio_data_write(mmio, ~0, reg);
2091         return false;
2092 }
2093
2094 /*
2095  * CPU Interface Register accesses - these are not accessed by the VM, but by
2096  * user space for saving and restoring VGIC state.
2097  */
2098 static const struct mmio_range vgic_cpu_ranges[] = {
2099         {
2100                 .base           = GIC_CPU_CTRL,
2101                 .len            = 12,
2102                 .handle_mmio    = handle_cpu_mmio_misc,
2103         },
2104         {
2105                 .base           = GIC_CPU_ALIAS_BINPOINT,
2106                 .len            = 4,
2107                 .handle_mmio    = handle_mmio_abpr,
2108         },
2109         {
2110                 .base           = GIC_CPU_ACTIVEPRIO,
2111                 .len            = 16,
2112                 .handle_mmio    = handle_mmio_raz_wi,
2113         },
2114         {
2115                 .base           = GIC_CPU_IDENT,
2116                 .len            = 4,
2117                 .handle_mmio    = handle_cpu_mmio_ident,
2118         },
2119 };
2120
2121 static int vgic_attr_regs_access(struct kvm_device *dev,
2122                                  struct kvm_device_attr *attr,
2123                                  u32 *reg, bool is_write)
2124 {
2125         const struct mmio_range *r = NULL, *ranges;
2126         phys_addr_t offset;
2127         int ret, cpuid, c;
2128         struct kvm_vcpu *vcpu, *tmp_vcpu;
2129         struct vgic_dist *vgic;
2130         struct kvm_exit_mmio mmio;
2131
2132         offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
2133         cpuid = (attr->attr & KVM_DEV_ARM_VGIC_CPUID_MASK) >>
2134                 KVM_DEV_ARM_VGIC_CPUID_SHIFT;
2135
2136         mutex_lock(&dev->kvm->lock);
2137
2138         if (cpuid >= atomic_read(&dev->kvm->online_vcpus)) {
2139                 ret = -EINVAL;
2140                 goto out;
2141         }
2142
2143         vcpu = kvm_get_vcpu(dev->kvm, cpuid);
2144         vgic = &dev->kvm->arch.vgic;
2145
2146         mmio.len = 4;
2147         mmio.is_write = is_write;
2148         if (is_write)
2149                 mmio_data_write(&mmio, ~0, *reg);
2150         switch (attr->group) {
2151         case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
2152                 mmio.phys_addr = vgic->vgic_dist_base + offset;
2153                 ranges = vgic_dist_ranges;
2154                 break;
2155         case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
2156                 mmio.phys_addr = vgic->vgic_cpu_base + offset;
2157                 ranges = vgic_cpu_ranges;
2158                 break;
2159         default:
2160                 BUG();
2161         }
2162         r = find_matching_range(ranges, &mmio, offset);
2163
2164         if (unlikely(!r || !r->handle_mmio)) {
2165                 ret = -ENXIO;
2166                 goto out;
2167         }
2168
2169
2170         spin_lock(&vgic->lock);
2171
2172         /*
2173          * Ensure that no other VCPU is running by checking the vcpu->cpu
2174          * field.  If no other VPCUs are running we can safely access the VGIC
2175          * state, because even if another VPU is run after this point, that
2176          * VCPU will not touch the vgic state, because it will block on
2177          * getting the vgic->lock in kvm_vgic_sync_hwstate().
2178          */
2179         kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm) {
2180                 if (unlikely(tmp_vcpu->cpu != -1)) {
2181                         ret = -EBUSY;
2182                         goto out_vgic_unlock;
2183                 }
2184         }
2185
2186         /*
2187          * Move all pending IRQs from the LRs on all VCPUs so the pending
2188          * state can be properly represented in the register state accessible
2189          * through this API.
2190          */
2191         kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm)
2192                 vgic_unqueue_irqs(tmp_vcpu);
2193
2194         offset -= r->base;
2195         r->handle_mmio(vcpu, &mmio, offset);
2196
2197         if (!is_write)
2198                 *reg = mmio_data_read(&mmio, ~0);
2199
2200         ret = 0;
2201 out_vgic_unlock:
2202         spin_unlock(&vgic->lock);
2203 out:
2204         mutex_unlock(&dev->kvm->lock);
2205         return ret;
2206 }
2207
2208 static int vgic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2209 {
2210         int r;
2211
2212         switch (attr->group) {
2213         case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2214                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2215                 u64 addr;
2216                 unsigned long type = (unsigned long)attr->attr;
2217
2218                 if (copy_from_user(&addr, uaddr, sizeof(addr)))
2219                         return -EFAULT;
2220
2221                 r = kvm_vgic_addr(dev->kvm, type, &addr, true);
2222                 return (r == -ENODEV) ? -ENXIO : r;
2223         }
2224
2225         case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
2226         case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
2227                 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2228                 u32 reg;
2229
2230                 if (get_user(reg, uaddr))
2231                         return -EFAULT;
2232
2233                 return vgic_attr_regs_access(dev, attr, &reg, true);
2234         }
2235
2236         }
2237
2238         return -ENXIO;
2239 }
2240
2241 static int vgic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2242 {
2243         int r = -ENXIO;
2244
2245         switch (attr->group) {
2246         case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2247                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2248                 u64 addr;
2249                 unsigned long type = (unsigned long)attr->attr;
2250
2251                 r = kvm_vgic_addr(dev->kvm, type, &addr, false);
2252                 if (r)
2253                         return (r == -ENODEV) ? -ENXIO : r;
2254
2255                 if (copy_to_user(uaddr, &addr, sizeof(addr)))
2256                         return -EFAULT;
2257                 break;
2258         }
2259
2260         case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
2261         case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
2262                 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2263                 u32 reg = 0;
2264
2265                 r = vgic_attr_regs_access(dev, attr, &reg, false);
2266                 if (r)
2267                         return r;
2268                 r = put_user(reg, uaddr);
2269                 break;
2270         }
2271
2272         }
2273
2274         return r;
2275 }
2276
2277 static int vgic_has_attr_regs(const struct mmio_range *ranges,
2278                               phys_addr_t offset)
2279 {
2280         struct kvm_exit_mmio dev_attr_mmio;
2281
2282         dev_attr_mmio.len = 4;
2283         if (find_matching_range(ranges, &dev_attr_mmio, offset))
2284                 return 0;
2285         else
2286                 return -ENXIO;
2287 }
2288
2289 static int vgic_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2290 {
2291         phys_addr_t offset;
2292
2293         switch (attr->group) {
2294         case KVM_DEV_ARM_VGIC_GRP_ADDR:
2295                 switch (attr->attr) {
2296                 case KVM_VGIC_V2_ADDR_TYPE_DIST:
2297                 case KVM_VGIC_V2_ADDR_TYPE_CPU:
2298                         return 0;
2299                 }
2300                 break;
2301         case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
2302                 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
2303                 return vgic_has_attr_regs(vgic_dist_ranges, offset);
2304         case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
2305                 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
2306                 return vgic_has_attr_regs(vgic_cpu_ranges, offset);
2307         }
2308         return -ENXIO;
2309 }
2310
2311 static void vgic_destroy(struct kvm_device *dev)
2312 {
2313         kfree(dev);
2314 }
2315
2316 static int vgic_create(struct kvm_device *dev, u32 type)
2317 {
2318         return kvm_vgic_create(dev->kvm);
2319 }
2320
2321 static struct kvm_device_ops kvm_arm_vgic_v2_ops = {
2322         .name = "kvm-arm-vgic",
2323         .create = vgic_create,
2324         .destroy = vgic_destroy,
2325         .set_attr = vgic_set_attr,
2326         .get_attr = vgic_get_attr,
2327         .has_attr = vgic_has_attr,
2328 };
2329
2330 static void vgic_init_maintenance_interrupt(void *info)
2331 {
2332         enable_percpu_irq(vgic->maint_irq, 0);
2333 }
2334
2335 static int vgic_cpu_notify(struct notifier_block *self,
2336                            unsigned long action, void *cpu)
2337 {
2338         switch (action) {
2339         case CPU_STARTING:
2340         case CPU_STARTING_FROZEN:
2341                 vgic_init_maintenance_interrupt(NULL);
2342                 break;
2343         case CPU_DYING:
2344         case CPU_DYING_FROZEN:
2345                 disable_percpu_irq(vgic->maint_irq);
2346                 break;
2347         }
2348
2349         return NOTIFY_OK;
2350 }
2351
2352 static struct notifier_block vgic_cpu_nb = {
2353         .notifier_call = vgic_cpu_notify,
2354 };
2355
2356 static const struct of_device_id vgic_ids[] = {
2357         { .compatible = "arm,cortex-a15-gic", .data = vgic_v2_probe, },
2358         { .compatible = "arm,gic-v3", .data = vgic_v3_probe, },
2359         {},
2360 };
2361
2362 int kvm_vgic_hyp_init(void)
2363 {
2364         const struct of_device_id *matched_id;
2365         const int (*vgic_probe)(struct device_node *,const struct vgic_ops **,
2366                                 const struct vgic_params **);
2367         struct device_node *vgic_node;
2368         int ret;
2369
2370         vgic_node = of_find_matching_node_and_match(NULL,
2371                                                     vgic_ids, &matched_id);
2372         if (!vgic_node) {
2373                 kvm_err("error: no compatible GIC node found\n");
2374                 return -ENODEV;
2375         }
2376
2377         vgic_probe = matched_id->data;
2378         ret = vgic_probe(vgic_node, &vgic_ops, &vgic);
2379         if (ret)
2380                 return ret;
2381
2382         ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler,
2383                                  "vgic", kvm_get_running_vcpus());
2384         if (ret) {
2385                 kvm_err("Cannot register interrupt %d\n", vgic->maint_irq);
2386                 return ret;
2387         }
2388
2389         ret = __register_cpu_notifier(&vgic_cpu_nb);
2390         if (ret) {
2391                 kvm_err("Cannot register vgic CPU notifier\n");
2392                 goto out_free_irq;
2393         }
2394
2395         /* Callback into for arch code for setup */
2396         vgic_arch_setup(vgic);
2397
2398         on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
2399
2400         return kvm_register_device_ops(&kvm_arm_vgic_v2_ops,
2401                                        KVM_DEV_TYPE_ARM_VGIC_V2);
2402
2403 out_free_irq:
2404         free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
2405         return ret;
2406 }