ARM: shmobile: r8a7778: add usb phy power control function
[firefly-linux-kernel-4.4.55.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 /*
68  * Ordering of locks:
69  *
70  *              kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71  */
72
73 DEFINE_RAW_SPINLOCK(kvm_lock);
74 LIST_HEAD(vm_list);
75
76 static cpumask_var_t cpus_hardware_enabled;
77 static int kvm_usage_count = 0;
78 static atomic_t hardware_enable_failed;
79
80 struct kmem_cache *kvm_vcpu_cache;
81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
82
83 static __read_mostly struct preempt_ops kvm_preempt_ops;
84
85 struct dentry *kvm_debugfs_dir;
86
87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
88                            unsigned long arg);
89 #ifdef CONFIG_COMPAT
90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
91                                   unsigned long arg);
92 #endif
93 static int hardware_enable_all(void);
94 static void hardware_disable_all(void);
95
96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
97
98 bool kvm_rebooting;
99 EXPORT_SYMBOL_GPL(kvm_rebooting);
100
101 static bool largepages_enabled = true;
102
103 bool kvm_is_mmio_pfn(pfn_t pfn)
104 {
105         if (pfn_valid(pfn))
106                 return PageReserved(pfn_to_page(pfn));
107
108         return true;
109 }
110
111 /*
112  * Switches to specified vcpu, until a matching vcpu_put()
113  */
114 int vcpu_load(struct kvm_vcpu *vcpu)
115 {
116         int cpu;
117
118         if (mutex_lock_killable(&vcpu->mutex))
119                 return -EINTR;
120         if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
121                 /* The thread running this VCPU changed. */
122                 struct pid *oldpid = vcpu->pid;
123                 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
124                 rcu_assign_pointer(vcpu->pid, newpid);
125                 synchronize_rcu();
126                 put_pid(oldpid);
127         }
128         cpu = get_cpu();
129         preempt_notifier_register(&vcpu->preempt_notifier);
130         kvm_arch_vcpu_load(vcpu, cpu);
131         put_cpu();
132         return 0;
133 }
134
135 void vcpu_put(struct kvm_vcpu *vcpu)
136 {
137         preempt_disable();
138         kvm_arch_vcpu_put(vcpu);
139         preempt_notifier_unregister(&vcpu->preempt_notifier);
140         preempt_enable();
141         mutex_unlock(&vcpu->mutex);
142 }
143
144 static void ack_flush(void *_completed)
145 {
146 }
147
148 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
149 {
150         int i, cpu, me;
151         cpumask_var_t cpus;
152         bool called = true;
153         struct kvm_vcpu *vcpu;
154
155         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
156
157         me = get_cpu();
158         kvm_for_each_vcpu(i, vcpu, kvm) {
159                 kvm_make_request(req, vcpu);
160                 cpu = vcpu->cpu;
161
162                 /* Set ->requests bit before we read ->mode */
163                 smp_mb();
164
165                 if (cpus != NULL && cpu != -1 && cpu != me &&
166                       kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
167                         cpumask_set_cpu(cpu, cpus);
168         }
169         if (unlikely(cpus == NULL))
170                 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
171         else if (!cpumask_empty(cpus))
172                 smp_call_function_many(cpus, ack_flush, NULL, 1);
173         else
174                 called = false;
175         put_cpu();
176         free_cpumask_var(cpus);
177         return called;
178 }
179
180 void kvm_flush_remote_tlbs(struct kvm *kvm)
181 {
182         long dirty_count = kvm->tlbs_dirty;
183
184         smp_mb();
185         if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
186                 ++kvm->stat.remote_tlb_flush;
187         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
188 }
189
190 void kvm_reload_remote_mmus(struct kvm *kvm)
191 {
192         make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
193 }
194
195 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
196 {
197         make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
198 }
199
200 void kvm_make_scan_ioapic_request(struct kvm *kvm)
201 {
202         make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
203 }
204
205 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
206 {
207         struct page *page;
208         int r;
209
210         mutex_init(&vcpu->mutex);
211         vcpu->cpu = -1;
212         vcpu->kvm = kvm;
213         vcpu->vcpu_id = id;
214         vcpu->pid = NULL;
215         init_waitqueue_head(&vcpu->wq);
216         kvm_async_pf_vcpu_init(vcpu);
217
218         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
219         if (!page) {
220                 r = -ENOMEM;
221                 goto fail;
222         }
223         vcpu->run = page_address(page);
224
225         kvm_vcpu_set_in_spin_loop(vcpu, false);
226         kvm_vcpu_set_dy_eligible(vcpu, false);
227         vcpu->preempted = false;
228
229         r = kvm_arch_vcpu_init(vcpu);
230         if (r < 0)
231                 goto fail_free_run;
232         return 0;
233
234 fail_free_run:
235         free_page((unsigned long)vcpu->run);
236 fail:
237         return r;
238 }
239 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
240
241 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
242 {
243         put_pid(vcpu->pid);
244         kvm_arch_vcpu_uninit(vcpu);
245         free_page((unsigned long)vcpu->run);
246 }
247 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
248
249 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
250 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
251 {
252         return container_of(mn, struct kvm, mmu_notifier);
253 }
254
255 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
256                                              struct mm_struct *mm,
257                                              unsigned long address)
258 {
259         struct kvm *kvm = mmu_notifier_to_kvm(mn);
260         int need_tlb_flush, idx;
261
262         /*
263          * When ->invalidate_page runs, the linux pte has been zapped
264          * already but the page is still allocated until
265          * ->invalidate_page returns. So if we increase the sequence
266          * here the kvm page fault will notice if the spte can't be
267          * established because the page is going to be freed. If
268          * instead the kvm page fault establishes the spte before
269          * ->invalidate_page runs, kvm_unmap_hva will release it
270          * before returning.
271          *
272          * The sequence increase only need to be seen at spin_unlock
273          * time, and not at spin_lock time.
274          *
275          * Increasing the sequence after the spin_unlock would be
276          * unsafe because the kvm page fault could then establish the
277          * pte after kvm_unmap_hva returned, without noticing the page
278          * is going to be freed.
279          */
280         idx = srcu_read_lock(&kvm->srcu);
281         spin_lock(&kvm->mmu_lock);
282
283         kvm->mmu_notifier_seq++;
284         need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
285         /* we've to flush the tlb before the pages can be freed */
286         if (need_tlb_flush)
287                 kvm_flush_remote_tlbs(kvm);
288
289         spin_unlock(&kvm->mmu_lock);
290         srcu_read_unlock(&kvm->srcu, idx);
291 }
292
293 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
294                                         struct mm_struct *mm,
295                                         unsigned long address,
296                                         pte_t pte)
297 {
298         struct kvm *kvm = mmu_notifier_to_kvm(mn);
299         int idx;
300
301         idx = srcu_read_lock(&kvm->srcu);
302         spin_lock(&kvm->mmu_lock);
303         kvm->mmu_notifier_seq++;
304         kvm_set_spte_hva(kvm, address, pte);
305         spin_unlock(&kvm->mmu_lock);
306         srcu_read_unlock(&kvm->srcu, idx);
307 }
308
309 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
310                                                     struct mm_struct *mm,
311                                                     unsigned long start,
312                                                     unsigned long end)
313 {
314         struct kvm *kvm = mmu_notifier_to_kvm(mn);
315         int need_tlb_flush = 0, idx;
316
317         idx = srcu_read_lock(&kvm->srcu);
318         spin_lock(&kvm->mmu_lock);
319         /*
320          * The count increase must become visible at unlock time as no
321          * spte can be established without taking the mmu_lock and
322          * count is also read inside the mmu_lock critical section.
323          */
324         kvm->mmu_notifier_count++;
325         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
326         need_tlb_flush |= kvm->tlbs_dirty;
327         /* we've to flush the tlb before the pages can be freed */
328         if (need_tlb_flush)
329                 kvm_flush_remote_tlbs(kvm);
330
331         spin_unlock(&kvm->mmu_lock);
332         srcu_read_unlock(&kvm->srcu, idx);
333 }
334
335 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
336                                                   struct mm_struct *mm,
337                                                   unsigned long start,
338                                                   unsigned long end)
339 {
340         struct kvm *kvm = mmu_notifier_to_kvm(mn);
341
342         spin_lock(&kvm->mmu_lock);
343         /*
344          * This sequence increase will notify the kvm page fault that
345          * the page that is going to be mapped in the spte could have
346          * been freed.
347          */
348         kvm->mmu_notifier_seq++;
349         smp_wmb();
350         /*
351          * The above sequence increase must be visible before the
352          * below count decrease, which is ensured by the smp_wmb above
353          * in conjunction with the smp_rmb in mmu_notifier_retry().
354          */
355         kvm->mmu_notifier_count--;
356         spin_unlock(&kvm->mmu_lock);
357
358         BUG_ON(kvm->mmu_notifier_count < 0);
359 }
360
361 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
362                                               struct mm_struct *mm,
363                                               unsigned long address)
364 {
365         struct kvm *kvm = mmu_notifier_to_kvm(mn);
366         int young, idx;
367
368         idx = srcu_read_lock(&kvm->srcu);
369         spin_lock(&kvm->mmu_lock);
370
371         young = kvm_age_hva(kvm, address);
372         if (young)
373                 kvm_flush_remote_tlbs(kvm);
374
375         spin_unlock(&kvm->mmu_lock);
376         srcu_read_unlock(&kvm->srcu, idx);
377
378         return young;
379 }
380
381 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
382                                        struct mm_struct *mm,
383                                        unsigned long address)
384 {
385         struct kvm *kvm = mmu_notifier_to_kvm(mn);
386         int young, idx;
387
388         idx = srcu_read_lock(&kvm->srcu);
389         spin_lock(&kvm->mmu_lock);
390         young = kvm_test_age_hva(kvm, address);
391         spin_unlock(&kvm->mmu_lock);
392         srcu_read_unlock(&kvm->srcu, idx);
393
394         return young;
395 }
396
397 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
398                                      struct mm_struct *mm)
399 {
400         struct kvm *kvm = mmu_notifier_to_kvm(mn);
401         int idx;
402
403         idx = srcu_read_lock(&kvm->srcu);
404         kvm_arch_flush_shadow_all(kvm);
405         srcu_read_unlock(&kvm->srcu, idx);
406 }
407
408 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
409         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
410         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
411         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
412         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
413         .test_young             = kvm_mmu_notifier_test_young,
414         .change_pte             = kvm_mmu_notifier_change_pte,
415         .release                = kvm_mmu_notifier_release,
416 };
417
418 static int kvm_init_mmu_notifier(struct kvm *kvm)
419 {
420         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
421         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
422 }
423
424 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
425
426 static int kvm_init_mmu_notifier(struct kvm *kvm)
427 {
428         return 0;
429 }
430
431 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
432
433 static void kvm_init_memslots_id(struct kvm *kvm)
434 {
435         int i;
436         struct kvm_memslots *slots = kvm->memslots;
437
438         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
439                 slots->id_to_index[i] = slots->memslots[i].id = i;
440 }
441
442 static struct kvm *kvm_create_vm(unsigned long type)
443 {
444         int r, i;
445         struct kvm *kvm = kvm_arch_alloc_vm();
446
447         if (!kvm)
448                 return ERR_PTR(-ENOMEM);
449
450         r = kvm_arch_init_vm(kvm, type);
451         if (r)
452                 goto out_err_nodisable;
453
454         r = hardware_enable_all();
455         if (r)
456                 goto out_err_nodisable;
457
458 #ifdef CONFIG_HAVE_KVM_IRQCHIP
459         INIT_HLIST_HEAD(&kvm->mask_notifier_list);
460         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
461 #endif
462
463         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
464
465         r = -ENOMEM;
466         kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
467         if (!kvm->memslots)
468                 goto out_err_nosrcu;
469         kvm_init_memslots_id(kvm);
470         if (init_srcu_struct(&kvm->srcu))
471                 goto out_err_nosrcu;
472         for (i = 0; i < KVM_NR_BUSES; i++) {
473                 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
474                                         GFP_KERNEL);
475                 if (!kvm->buses[i])
476                         goto out_err;
477         }
478
479         spin_lock_init(&kvm->mmu_lock);
480         kvm->mm = current->mm;
481         atomic_inc(&kvm->mm->mm_count);
482         kvm_eventfd_init(kvm);
483         mutex_init(&kvm->lock);
484         mutex_init(&kvm->irq_lock);
485         mutex_init(&kvm->slots_lock);
486         atomic_set(&kvm->users_count, 1);
487         INIT_LIST_HEAD(&kvm->devices);
488
489         r = kvm_init_mmu_notifier(kvm);
490         if (r)
491                 goto out_err;
492
493         raw_spin_lock(&kvm_lock);
494         list_add(&kvm->vm_list, &vm_list);
495         raw_spin_unlock(&kvm_lock);
496
497         return kvm;
498
499 out_err:
500         cleanup_srcu_struct(&kvm->srcu);
501 out_err_nosrcu:
502         hardware_disable_all();
503 out_err_nodisable:
504         for (i = 0; i < KVM_NR_BUSES; i++)
505                 kfree(kvm->buses[i]);
506         kfree(kvm->memslots);
507         kvm_arch_free_vm(kvm);
508         return ERR_PTR(r);
509 }
510
511 /*
512  * Avoid using vmalloc for a small buffer.
513  * Should not be used when the size is statically known.
514  */
515 void *kvm_kvzalloc(unsigned long size)
516 {
517         if (size > PAGE_SIZE)
518                 return vzalloc(size);
519         else
520                 return kzalloc(size, GFP_KERNEL);
521 }
522
523 void kvm_kvfree(const void *addr)
524 {
525         if (is_vmalloc_addr(addr))
526                 vfree(addr);
527         else
528                 kfree(addr);
529 }
530
531 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
532 {
533         if (!memslot->dirty_bitmap)
534                 return;
535
536         kvm_kvfree(memslot->dirty_bitmap);
537         memslot->dirty_bitmap = NULL;
538 }
539
540 /*
541  * Free any memory in @free but not in @dont.
542  */
543 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
544                                   struct kvm_memory_slot *dont)
545 {
546         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
547                 kvm_destroy_dirty_bitmap(free);
548
549         kvm_arch_free_memslot(free, dont);
550
551         free->npages = 0;
552 }
553
554 void kvm_free_physmem(struct kvm *kvm)
555 {
556         struct kvm_memslots *slots = kvm->memslots;
557         struct kvm_memory_slot *memslot;
558
559         kvm_for_each_memslot(memslot, slots)
560                 kvm_free_physmem_slot(memslot, NULL);
561
562         kfree(kvm->memslots);
563 }
564
565 static void kvm_destroy_devices(struct kvm *kvm)
566 {
567         struct list_head *node, *tmp;
568
569         list_for_each_safe(node, tmp, &kvm->devices) {
570                 struct kvm_device *dev =
571                         list_entry(node, struct kvm_device, vm_node);
572
573                 list_del(node);
574                 dev->ops->destroy(dev);
575         }
576 }
577
578 static void kvm_destroy_vm(struct kvm *kvm)
579 {
580         int i;
581         struct mm_struct *mm = kvm->mm;
582
583         kvm_arch_sync_events(kvm);
584         raw_spin_lock(&kvm_lock);
585         list_del(&kvm->vm_list);
586         raw_spin_unlock(&kvm_lock);
587         kvm_free_irq_routing(kvm);
588         for (i = 0; i < KVM_NR_BUSES; i++)
589                 kvm_io_bus_destroy(kvm->buses[i]);
590         kvm_coalesced_mmio_free(kvm);
591 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
592         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
593 #else
594         kvm_arch_flush_shadow_all(kvm);
595 #endif
596         kvm_arch_destroy_vm(kvm);
597         kvm_destroy_devices(kvm);
598         kvm_free_physmem(kvm);
599         cleanup_srcu_struct(&kvm->srcu);
600         kvm_arch_free_vm(kvm);
601         hardware_disable_all();
602         mmdrop(mm);
603 }
604
605 void kvm_get_kvm(struct kvm *kvm)
606 {
607         atomic_inc(&kvm->users_count);
608 }
609 EXPORT_SYMBOL_GPL(kvm_get_kvm);
610
611 void kvm_put_kvm(struct kvm *kvm)
612 {
613         if (atomic_dec_and_test(&kvm->users_count))
614                 kvm_destroy_vm(kvm);
615 }
616 EXPORT_SYMBOL_GPL(kvm_put_kvm);
617
618
619 static int kvm_vm_release(struct inode *inode, struct file *filp)
620 {
621         struct kvm *kvm = filp->private_data;
622
623         kvm_irqfd_release(kvm);
624
625         kvm_put_kvm(kvm);
626         return 0;
627 }
628
629 /*
630  * Allocation size is twice as large as the actual dirty bitmap size.
631  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
632  */
633 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
634 {
635 #ifndef CONFIG_S390
636         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
637
638         memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
639         if (!memslot->dirty_bitmap)
640                 return -ENOMEM;
641
642 #endif /* !CONFIG_S390 */
643         return 0;
644 }
645
646 static int cmp_memslot(const void *slot1, const void *slot2)
647 {
648         struct kvm_memory_slot *s1, *s2;
649
650         s1 = (struct kvm_memory_slot *)slot1;
651         s2 = (struct kvm_memory_slot *)slot2;
652
653         if (s1->npages < s2->npages)
654                 return 1;
655         if (s1->npages > s2->npages)
656                 return -1;
657
658         return 0;
659 }
660
661 /*
662  * Sort the memslots base on its size, so the larger slots
663  * will get better fit.
664  */
665 static void sort_memslots(struct kvm_memslots *slots)
666 {
667         int i;
668
669         sort(slots->memslots, KVM_MEM_SLOTS_NUM,
670               sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
671
672         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
673                 slots->id_to_index[slots->memslots[i].id] = i;
674 }
675
676 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new,
677                      u64 last_generation)
678 {
679         if (new) {
680                 int id = new->id;
681                 struct kvm_memory_slot *old = id_to_memslot(slots, id);
682                 unsigned long npages = old->npages;
683
684                 *old = *new;
685                 if (new->npages != npages)
686                         sort_memslots(slots);
687         }
688
689         slots->generation = last_generation + 1;
690 }
691
692 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
693 {
694         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
695
696 #ifdef KVM_CAP_READONLY_MEM
697         valid_flags |= KVM_MEM_READONLY;
698 #endif
699
700         if (mem->flags & ~valid_flags)
701                 return -EINVAL;
702
703         return 0;
704 }
705
706 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
707                 struct kvm_memslots *slots, struct kvm_memory_slot *new)
708 {
709         struct kvm_memslots *old_memslots = kvm->memslots;
710
711         update_memslots(slots, new, kvm->memslots->generation);
712         rcu_assign_pointer(kvm->memslots, slots);
713         synchronize_srcu_expedited(&kvm->srcu);
714
715         kvm_arch_memslots_updated(kvm);
716
717         return old_memslots;
718 }
719
720 /*
721  * Allocate some memory and give it an address in the guest physical address
722  * space.
723  *
724  * Discontiguous memory is allowed, mostly for framebuffers.
725  *
726  * Must be called holding mmap_sem for write.
727  */
728 int __kvm_set_memory_region(struct kvm *kvm,
729                             struct kvm_userspace_memory_region *mem)
730 {
731         int r;
732         gfn_t base_gfn;
733         unsigned long npages;
734         struct kvm_memory_slot *slot;
735         struct kvm_memory_slot old, new;
736         struct kvm_memslots *slots = NULL, *old_memslots;
737         enum kvm_mr_change change;
738
739         r = check_memory_region_flags(mem);
740         if (r)
741                 goto out;
742
743         r = -EINVAL;
744         /* General sanity checks */
745         if (mem->memory_size & (PAGE_SIZE - 1))
746                 goto out;
747         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
748                 goto out;
749         /* We can read the guest memory with __xxx_user() later on. */
750         if ((mem->slot < KVM_USER_MEM_SLOTS) &&
751             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
752              !access_ok(VERIFY_WRITE,
753                         (void __user *)(unsigned long)mem->userspace_addr,
754                         mem->memory_size)))
755                 goto out;
756         if (mem->slot >= KVM_MEM_SLOTS_NUM)
757                 goto out;
758         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
759                 goto out;
760
761         slot = id_to_memslot(kvm->memslots, mem->slot);
762         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
763         npages = mem->memory_size >> PAGE_SHIFT;
764
765         r = -EINVAL;
766         if (npages > KVM_MEM_MAX_NR_PAGES)
767                 goto out;
768
769         if (!npages)
770                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
771
772         new = old = *slot;
773
774         new.id = mem->slot;
775         new.base_gfn = base_gfn;
776         new.npages = npages;
777         new.flags = mem->flags;
778
779         r = -EINVAL;
780         if (npages) {
781                 if (!old.npages)
782                         change = KVM_MR_CREATE;
783                 else { /* Modify an existing slot. */
784                         if ((mem->userspace_addr != old.userspace_addr) ||
785                             (npages != old.npages) ||
786                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
787                                 goto out;
788
789                         if (base_gfn != old.base_gfn)
790                                 change = KVM_MR_MOVE;
791                         else if (new.flags != old.flags)
792                                 change = KVM_MR_FLAGS_ONLY;
793                         else { /* Nothing to change. */
794                                 r = 0;
795                                 goto out;
796                         }
797                 }
798         } else if (old.npages) {
799                 change = KVM_MR_DELETE;
800         } else /* Modify a non-existent slot: disallowed. */
801                 goto out;
802
803         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
804                 /* Check for overlaps */
805                 r = -EEXIST;
806                 kvm_for_each_memslot(slot, kvm->memslots) {
807                         if ((slot->id >= KVM_USER_MEM_SLOTS) ||
808                             (slot->id == mem->slot))
809                                 continue;
810                         if (!((base_gfn + npages <= slot->base_gfn) ||
811                               (base_gfn >= slot->base_gfn + slot->npages)))
812                                 goto out;
813                 }
814         }
815
816         /* Free page dirty bitmap if unneeded */
817         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
818                 new.dirty_bitmap = NULL;
819
820         r = -ENOMEM;
821         if (change == KVM_MR_CREATE) {
822                 new.userspace_addr = mem->userspace_addr;
823
824                 if (kvm_arch_create_memslot(&new, npages))
825                         goto out_free;
826         }
827
828         /* Allocate page dirty bitmap if needed */
829         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
830                 if (kvm_create_dirty_bitmap(&new) < 0)
831                         goto out_free;
832         }
833
834         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
835                 r = -ENOMEM;
836                 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
837                                 GFP_KERNEL);
838                 if (!slots)
839                         goto out_free;
840                 slot = id_to_memslot(slots, mem->slot);
841                 slot->flags |= KVM_MEMSLOT_INVALID;
842
843                 old_memslots = install_new_memslots(kvm, slots, NULL);
844
845                 /* slot was deleted or moved, clear iommu mapping */
846                 kvm_iommu_unmap_pages(kvm, &old);
847                 /* From this point no new shadow pages pointing to a deleted,
848                  * or moved, memslot will be created.
849                  *
850                  * validation of sp->gfn happens in:
851                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
852                  *      - kvm_is_visible_gfn (mmu_check_roots)
853                  */
854                 kvm_arch_flush_shadow_memslot(kvm, slot);
855                 slots = old_memslots;
856         }
857
858         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
859         if (r)
860                 goto out_slots;
861
862         r = -ENOMEM;
863         /*
864          * We can re-use the old_memslots from above, the only difference
865          * from the currently installed memslots is the invalid flag.  This
866          * will get overwritten by update_memslots anyway.
867          */
868         if (!slots) {
869                 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
870                                 GFP_KERNEL);
871                 if (!slots)
872                         goto out_free;
873         }
874
875         /*
876          * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
877          * un-mapped and re-mapped if their base changes.  Since base change
878          * unmapping is handled above with slot deletion, mapping alone is
879          * needed here.  Anything else the iommu might care about for existing
880          * slots (size changes, userspace addr changes and read-only flag
881          * changes) is disallowed above, so any other attribute changes getting
882          * here can be skipped.
883          */
884         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
885                 r = kvm_iommu_map_pages(kvm, &new);
886                 if (r)
887                         goto out_slots;
888         }
889
890         /* actual memory is freed via old in kvm_free_physmem_slot below */
891         if (change == KVM_MR_DELETE) {
892                 new.dirty_bitmap = NULL;
893                 memset(&new.arch, 0, sizeof(new.arch));
894         }
895
896         old_memslots = install_new_memslots(kvm, slots, &new);
897
898         kvm_arch_commit_memory_region(kvm, mem, &old, change);
899
900         kvm_free_physmem_slot(&old, &new);
901         kfree(old_memslots);
902
903         return 0;
904
905 out_slots:
906         kfree(slots);
907 out_free:
908         kvm_free_physmem_slot(&new, &old);
909 out:
910         return r;
911 }
912 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
913
914 int kvm_set_memory_region(struct kvm *kvm,
915                           struct kvm_userspace_memory_region *mem)
916 {
917         int r;
918
919         mutex_lock(&kvm->slots_lock);
920         r = __kvm_set_memory_region(kvm, mem);
921         mutex_unlock(&kvm->slots_lock);
922         return r;
923 }
924 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
925
926 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
927                                    struct kvm_userspace_memory_region *mem)
928 {
929         if (mem->slot >= KVM_USER_MEM_SLOTS)
930                 return -EINVAL;
931         return kvm_set_memory_region(kvm, mem);
932 }
933
934 int kvm_get_dirty_log(struct kvm *kvm,
935                         struct kvm_dirty_log *log, int *is_dirty)
936 {
937         struct kvm_memory_slot *memslot;
938         int r, i;
939         unsigned long n;
940         unsigned long any = 0;
941
942         r = -EINVAL;
943         if (log->slot >= KVM_USER_MEM_SLOTS)
944                 goto out;
945
946         memslot = id_to_memslot(kvm->memslots, log->slot);
947         r = -ENOENT;
948         if (!memslot->dirty_bitmap)
949                 goto out;
950
951         n = kvm_dirty_bitmap_bytes(memslot);
952
953         for (i = 0; !any && i < n/sizeof(long); ++i)
954                 any = memslot->dirty_bitmap[i];
955
956         r = -EFAULT;
957         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
958                 goto out;
959
960         if (any)
961                 *is_dirty = 1;
962
963         r = 0;
964 out:
965         return r;
966 }
967
968 bool kvm_largepages_enabled(void)
969 {
970         return largepages_enabled;
971 }
972
973 void kvm_disable_largepages(void)
974 {
975         largepages_enabled = false;
976 }
977 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
978
979 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
980 {
981         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
982 }
983 EXPORT_SYMBOL_GPL(gfn_to_memslot);
984
985 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
986 {
987         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
988
989         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
990               memslot->flags & KVM_MEMSLOT_INVALID)
991                 return 0;
992
993         return 1;
994 }
995 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
996
997 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
998 {
999         struct vm_area_struct *vma;
1000         unsigned long addr, size;
1001
1002         size = PAGE_SIZE;
1003
1004         addr = gfn_to_hva(kvm, gfn);
1005         if (kvm_is_error_hva(addr))
1006                 return PAGE_SIZE;
1007
1008         down_read(&current->mm->mmap_sem);
1009         vma = find_vma(current->mm, addr);
1010         if (!vma)
1011                 goto out;
1012
1013         size = vma_kernel_pagesize(vma);
1014
1015 out:
1016         up_read(&current->mm->mmap_sem);
1017
1018         return size;
1019 }
1020
1021 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1022 {
1023         return slot->flags & KVM_MEM_READONLY;
1024 }
1025
1026 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1027                                        gfn_t *nr_pages, bool write)
1028 {
1029         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1030                 return KVM_HVA_ERR_BAD;
1031
1032         if (memslot_is_readonly(slot) && write)
1033                 return KVM_HVA_ERR_RO_BAD;
1034
1035         if (nr_pages)
1036                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1037
1038         return __gfn_to_hva_memslot(slot, gfn);
1039 }
1040
1041 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1042                                      gfn_t *nr_pages)
1043 {
1044         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1045 }
1046
1047 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1048                                  gfn_t gfn)
1049 {
1050         return gfn_to_hva_many(slot, gfn, NULL);
1051 }
1052 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1053
1054 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1055 {
1056         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1057 }
1058 EXPORT_SYMBOL_GPL(gfn_to_hva);
1059
1060 /*
1061  * The hva returned by this function is only allowed to be read.
1062  * It should pair with kvm_read_hva() or kvm_read_hva_atomic().
1063  */
1064 static unsigned long gfn_to_hva_read(struct kvm *kvm, gfn_t gfn)
1065 {
1066         return __gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL, false);
1067 }
1068
1069 static int kvm_read_hva(void *data, void __user *hva, int len)
1070 {
1071         return __copy_from_user(data, hva, len);
1072 }
1073
1074 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1075 {
1076         return __copy_from_user_inatomic(data, hva, len);
1077 }
1078
1079 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1080         unsigned long start, int write, struct page **page)
1081 {
1082         int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1083
1084         if (write)
1085                 flags |= FOLL_WRITE;
1086
1087         return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1088 }
1089
1090 static inline int check_user_page_hwpoison(unsigned long addr)
1091 {
1092         int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1093
1094         rc = __get_user_pages(current, current->mm, addr, 1,
1095                               flags, NULL, NULL, NULL);
1096         return rc == -EHWPOISON;
1097 }
1098
1099 /*
1100  * The atomic path to get the writable pfn which will be stored in @pfn,
1101  * true indicates success, otherwise false is returned.
1102  */
1103 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1104                             bool write_fault, bool *writable, pfn_t *pfn)
1105 {
1106         struct page *page[1];
1107         int npages;
1108
1109         if (!(async || atomic))
1110                 return false;
1111
1112         /*
1113          * Fast pin a writable pfn only if it is a write fault request
1114          * or the caller allows to map a writable pfn for a read fault
1115          * request.
1116          */
1117         if (!(write_fault || writable))
1118                 return false;
1119
1120         npages = __get_user_pages_fast(addr, 1, 1, page);
1121         if (npages == 1) {
1122                 *pfn = page_to_pfn(page[0]);
1123
1124                 if (writable)
1125                         *writable = true;
1126                 return true;
1127         }
1128
1129         return false;
1130 }
1131
1132 /*
1133  * The slow path to get the pfn of the specified host virtual address,
1134  * 1 indicates success, -errno is returned if error is detected.
1135  */
1136 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1137                            bool *writable, pfn_t *pfn)
1138 {
1139         struct page *page[1];
1140         int npages = 0;
1141
1142         might_sleep();
1143
1144         if (writable)
1145                 *writable = write_fault;
1146
1147         if (async) {
1148                 down_read(&current->mm->mmap_sem);
1149                 npages = get_user_page_nowait(current, current->mm,
1150                                               addr, write_fault, page);
1151                 up_read(&current->mm->mmap_sem);
1152         } else
1153                 npages = get_user_pages_fast(addr, 1, write_fault,
1154                                              page);
1155         if (npages != 1)
1156                 return npages;
1157
1158         /* map read fault as writable if possible */
1159         if (unlikely(!write_fault) && writable) {
1160                 struct page *wpage[1];
1161
1162                 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1163                 if (npages == 1) {
1164                         *writable = true;
1165                         put_page(page[0]);
1166                         page[0] = wpage[0];
1167                 }
1168
1169                 npages = 1;
1170         }
1171         *pfn = page_to_pfn(page[0]);
1172         return npages;
1173 }
1174
1175 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1176 {
1177         if (unlikely(!(vma->vm_flags & VM_READ)))
1178                 return false;
1179
1180         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1181                 return false;
1182
1183         return true;
1184 }
1185
1186 /*
1187  * Pin guest page in memory and return its pfn.
1188  * @addr: host virtual address which maps memory to the guest
1189  * @atomic: whether this function can sleep
1190  * @async: whether this function need to wait IO complete if the
1191  *         host page is not in the memory
1192  * @write_fault: whether we should get a writable host page
1193  * @writable: whether it allows to map a writable host page for !@write_fault
1194  *
1195  * The function will map a writable host page for these two cases:
1196  * 1): @write_fault = true
1197  * 2): @write_fault = false && @writable, @writable will tell the caller
1198  *     whether the mapping is writable.
1199  */
1200 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1201                         bool write_fault, bool *writable)
1202 {
1203         struct vm_area_struct *vma;
1204         pfn_t pfn = 0;
1205         int npages;
1206
1207         /* we can do it either atomically or asynchronously, not both */
1208         BUG_ON(atomic && async);
1209
1210         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1211                 return pfn;
1212
1213         if (atomic)
1214                 return KVM_PFN_ERR_FAULT;
1215
1216         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1217         if (npages == 1)
1218                 return pfn;
1219
1220         down_read(&current->mm->mmap_sem);
1221         if (npages == -EHWPOISON ||
1222               (!async && check_user_page_hwpoison(addr))) {
1223                 pfn = KVM_PFN_ERR_HWPOISON;
1224                 goto exit;
1225         }
1226
1227         vma = find_vma_intersection(current->mm, addr, addr + 1);
1228
1229         if (vma == NULL)
1230                 pfn = KVM_PFN_ERR_FAULT;
1231         else if ((vma->vm_flags & VM_PFNMAP)) {
1232                 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1233                         vma->vm_pgoff;
1234                 BUG_ON(!kvm_is_mmio_pfn(pfn));
1235         } else {
1236                 if (async && vma_is_valid(vma, write_fault))
1237                         *async = true;
1238                 pfn = KVM_PFN_ERR_FAULT;
1239         }
1240 exit:
1241         up_read(&current->mm->mmap_sem);
1242         return pfn;
1243 }
1244
1245 static pfn_t
1246 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1247                      bool *async, bool write_fault, bool *writable)
1248 {
1249         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1250
1251         if (addr == KVM_HVA_ERR_RO_BAD)
1252                 return KVM_PFN_ERR_RO_FAULT;
1253
1254         if (kvm_is_error_hva(addr))
1255                 return KVM_PFN_NOSLOT;
1256
1257         /* Do not map writable pfn in the readonly memslot. */
1258         if (writable && memslot_is_readonly(slot)) {
1259                 *writable = false;
1260                 writable = NULL;
1261         }
1262
1263         return hva_to_pfn(addr, atomic, async, write_fault,
1264                           writable);
1265 }
1266
1267 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1268                           bool write_fault, bool *writable)
1269 {
1270         struct kvm_memory_slot *slot;
1271
1272         if (async)
1273                 *async = false;
1274
1275         slot = gfn_to_memslot(kvm, gfn);
1276
1277         return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1278                                     writable);
1279 }
1280
1281 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1282 {
1283         return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1284 }
1285 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1286
1287 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1288                        bool write_fault, bool *writable)
1289 {
1290         return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1291 }
1292 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1293
1294 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1295 {
1296         return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1297 }
1298 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1299
1300 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1301                       bool *writable)
1302 {
1303         return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1304 }
1305 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1306
1307 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1308 {
1309         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1310 }
1311
1312 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1313 {
1314         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1315 }
1316 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1317
1318 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1319                                                                   int nr_pages)
1320 {
1321         unsigned long addr;
1322         gfn_t entry;
1323
1324         addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1325         if (kvm_is_error_hva(addr))
1326                 return -1;
1327
1328         if (entry < nr_pages)
1329                 return 0;
1330
1331         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1332 }
1333 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1334
1335 static struct page *kvm_pfn_to_page(pfn_t pfn)
1336 {
1337         if (is_error_noslot_pfn(pfn))
1338                 return KVM_ERR_PTR_BAD_PAGE;
1339
1340         if (kvm_is_mmio_pfn(pfn)) {
1341                 WARN_ON(1);
1342                 return KVM_ERR_PTR_BAD_PAGE;
1343         }
1344
1345         return pfn_to_page(pfn);
1346 }
1347
1348 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1349 {
1350         pfn_t pfn;
1351
1352         pfn = gfn_to_pfn(kvm, gfn);
1353
1354         return kvm_pfn_to_page(pfn);
1355 }
1356
1357 EXPORT_SYMBOL_GPL(gfn_to_page);
1358
1359 void kvm_release_page_clean(struct page *page)
1360 {
1361         WARN_ON(is_error_page(page));
1362
1363         kvm_release_pfn_clean(page_to_pfn(page));
1364 }
1365 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1366
1367 void kvm_release_pfn_clean(pfn_t pfn)
1368 {
1369         if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1370                 put_page(pfn_to_page(pfn));
1371 }
1372 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1373
1374 void kvm_release_page_dirty(struct page *page)
1375 {
1376         WARN_ON(is_error_page(page));
1377
1378         kvm_release_pfn_dirty(page_to_pfn(page));
1379 }
1380 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1381
1382 void kvm_release_pfn_dirty(pfn_t pfn)
1383 {
1384         kvm_set_pfn_dirty(pfn);
1385         kvm_release_pfn_clean(pfn);
1386 }
1387 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1388
1389 void kvm_set_page_dirty(struct page *page)
1390 {
1391         kvm_set_pfn_dirty(page_to_pfn(page));
1392 }
1393 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1394
1395 void kvm_set_pfn_dirty(pfn_t pfn)
1396 {
1397         if (!kvm_is_mmio_pfn(pfn)) {
1398                 struct page *page = pfn_to_page(pfn);
1399                 if (!PageReserved(page))
1400                         SetPageDirty(page);
1401         }
1402 }
1403 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1404
1405 void kvm_set_pfn_accessed(pfn_t pfn)
1406 {
1407         if (!kvm_is_mmio_pfn(pfn))
1408                 mark_page_accessed(pfn_to_page(pfn));
1409 }
1410 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1411
1412 void kvm_get_pfn(pfn_t pfn)
1413 {
1414         if (!kvm_is_mmio_pfn(pfn))
1415                 get_page(pfn_to_page(pfn));
1416 }
1417 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1418
1419 static int next_segment(unsigned long len, int offset)
1420 {
1421         if (len > PAGE_SIZE - offset)
1422                 return PAGE_SIZE - offset;
1423         else
1424                 return len;
1425 }
1426
1427 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1428                         int len)
1429 {
1430         int r;
1431         unsigned long addr;
1432
1433         addr = gfn_to_hva_read(kvm, gfn);
1434         if (kvm_is_error_hva(addr))
1435                 return -EFAULT;
1436         r = kvm_read_hva(data, (void __user *)addr + offset, len);
1437         if (r)
1438                 return -EFAULT;
1439         return 0;
1440 }
1441 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1442
1443 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1444 {
1445         gfn_t gfn = gpa >> PAGE_SHIFT;
1446         int seg;
1447         int offset = offset_in_page(gpa);
1448         int ret;
1449
1450         while ((seg = next_segment(len, offset)) != 0) {
1451                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1452                 if (ret < 0)
1453                         return ret;
1454                 offset = 0;
1455                 len -= seg;
1456                 data += seg;
1457                 ++gfn;
1458         }
1459         return 0;
1460 }
1461 EXPORT_SYMBOL_GPL(kvm_read_guest);
1462
1463 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1464                           unsigned long len)
1465 {
1466         int r;
1467         unsigned long addr;
1468         gfn_t gfn = gpa >> PAGE_SHIFT;
1469         int offset = offset_in_page(gpa);
1470
1471         addr = gfn_to_hva_read(kvm, gfn);
1472         if (kvm_is_error_hva(addr))
1473                 return -EFAULT;
1474         pagefault_disable();
1475         r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1476         pagefault_enable();
1477         if (r)
1478                 return -EFAULT;
1479         return 0;
1480 }
1481 EXPORT_SYMBOL(kvm_read_guest_atomic);
1482
1483 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1484                          int offset, int len)
1485 {
1486         int r;
1487         unsigned long addr;
1488
1489         addr = gfn_to_hva(kvm, gfn);
1490         if (kvm_is_error_hva(addr))
1491                 return -EFAULT;
1492         r = __copy_to_user((void __user *)addr + offset, data, len);
1493         if (r)
1494                 return -EFAULT;
1495         mark_page_dirty(kvm, gfn);
1496         return 0;
1497 }
1498 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1499
1500 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1501                     unsigned long len)
1502 {
1503         gfn_t gfn = gpa >> PAGE_SHIFT;
1504         int seg;
1505         int offset = offset_in_page(gpa);
1506         int ret;
1507
1508         while ((seg = next_segment(len, offset)) != 0) {
1509                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1510                 if (ret < 0)
1511                         return ret;
1512                 offset = 0;
1513                 len -= seg;
1514                 data += seg;
1515                 ++gfn;
1516         }
1517         return 0;
1518 }
1519
1520 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1521                               gpa_t gpa, unsigned long len)
1522 {
1523         struct kvm_memslots *slots = kvm_memslots(kvm);
1524         int offset = offset_in_page(gpa);
1525         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1526         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1527         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1528         gfn_t nr_pages_avail;
1529
1530         ghc->gpa = gpa;
1531         ghc->generation = slots->generation;
1532         ghc->len = len;
1533         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1534         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
1535         if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
1536                 ghc->hva += offset;
1537         } else {
1538                 /*
1539                  * If the requested region crosses two memslots, we still
1540                  * verify that the entire region is valid here.
1541                  */
1542                 while (start_gfn <= end_gfn) {
1543                         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1544                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1545                                                    &nr_pages_avail);
1546                         if (kvm_is_error_hva(ghc->hva))
1547                                 return -EFAULT;
1548                         start_gfn += nr_pages_avail;
1549                 }
1550                 /* Use the slow path for cross page reads and writes. */
1551                 ghc->memslot = NULL;
1552         }
1553         return 0;
1554 }
1555 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1556
1557 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1558                            void *data, unsigned long len)
1559 {
1560         struct kvm_memslots *slots = kvm_memslots(kvm);
1561         int r;
1562
1563         BUG_ON(len > ghc->len);
1564
1565         if (slots->generation != ghc->generation)
1566                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1567
1568         if (unlikely(!ghc->memslot))
1569                 return kvm_write_guest(kvm, ghc->gpa, data, len);
1570
1571         if (kvm_is_error_hva(ghc->hva))
1572                 return -EFAULT;
1573
1574         r = __copy_to_user((void __user *)ghc->hva, data, len);
1575         if (r)
1576                 return -EFAULT;
1577         mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1578
1579         return 0;
1580 }
1581 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1582
1583 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1584                            void *data, unsigned long len)
1585 {
1586         struct kvm_memslots *slots = kvm_memslots(kvm);
1587         int r;
1588
1589         BUG_ON(len > ghc->len);
1590
1591         if (slots->generation != ghc->generation)
1592                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1593
1594         if (unlikely(!ghc->memslot))
1595                 return kvm_read_guest(kvm, ghc->gpa, data, len);
1596
1597         if (kvm_is_error_hva(ghc->hva))
1598                 return -EFAULT;
1599
1600         r = __copy_from_user(data, (void __user *)ghc->hva, len);
1601         if (r)
1602                 return -EFAULT;
1603
1604         return 0;
1605 }
1606 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1607
1608 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1609 {
1610         return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1611                                     offset, len);
1612 }
1613 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1614
1615 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1616 {
1617         gfn_t gfn = gpa >> PAGE_SHIFT;
1618         int seg;
1619         int offset = offset_in_page(gpa);
1620         int ret;
1621
1622         while ((seg = next_segment(len, offset)) != 0) {
1623                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1624                 if (ret < 0)
1625                         return ret;
1626                 offset = 0;
1627                 len -= seg;
1628                 ++gfn;
1629         }
1630         return 0;
1631 }
1632 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1633
1634 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1635                              gfn_t gfn)
1636 {
1637         if (memslot && memslot->dirty_bitmap) {
1638                 unsigned long rel_gfn = gfn - memslot->base_gfn;
1639
1640                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1641         }
1642 }
1643
1644 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1645 {
1646         struct kvm_memory_slot *memslot;
1647
1648         memslot = gfn_to_memslot(kvm, gfn);
1649         mark_page_dirty_in_slot(kvm, memslot, gfn);
1650 }
1651
1652 /*
1653  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1654  */
1655 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1656 {
1657         DEFINE_WAIT(wait);
1658
1659         for (;;) {
1660                 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1661
1662                 if (kvm_arch_vcpu_runnable(vcpu)) {
1663                         kvm_make_request(KVM_REQ_UNHALT, vcpu);
1664                         break;
1665                 }
1666                 if (kvm_cpu_has_pending_timer(vcpu))
1667                         break;
1668                 if (signal_pending(current))
1669                         break;
1670
1671                 schedule();
1672         }
1673
1674         finish_wait(&vcpu->wq, &wait);
1675 }
1676
1677 #ifndef CONFIG_S390
1678 /*
1679  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1680  */
1681 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1682 {
1683         int me;
1684         int cpu = vcpu->cpu;
1685         wait_queue_head_t *wqp;
1686
1687         wqp = kvm_arch_vcpu_wq(vcpu);
1688         if (waitqueue_active(wqp)) {
1689                 wake_up_interruptible(wqp);
1690                 ++vcpu->stat.halt_wakeup;
1691         }
1692
1693         me = get_cpu();
1694         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1695                 if (kvm_arch_vcpu_should_kick(vcpu))
1696                         smp_send_reschedule(cpu);
1697         put_cpu();
1698 }
1699 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1700 #endif /* !CONFIG_S390 */
1701
1702 void kvm_resched(struct kvm_vcpu *vcpu)
1703 {
1704         if (!need_resched())
1705                 return;
1706         cond_resched();
1707 }
1708 EXPORT_SYMBOL_GPL(kvm_resched);
1709
1710 bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1711 {
1712         struct pid *pid;
1713         struct task_struct *task = NULL;
1714         bool ret = false;
1715
1716         rcu_read_lock();
1717         pid = rcu_dereference(target->pid);
1718         if (pid)
1719                 task = get_pid_task(target->pid, PIDTYPE_PID);
1720         rcu_read_unlock();
1721         if (!task)
1722                 return ret;
1723         if (task->flags & PF_VCPU) {
1724                 put_task_struct(task);
1725                 return ret;
1726         }
1727         ret = yield_to(task, 1);
1728         put_task_struct(task);
1729
1730         return ret;
1731 }
1732 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1733
1734 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1735 /*
1736  * Helper that checks whether a VCPU is eligible for directed yield.
1737  * Most eligible candidate to yield is decided by following heuristics:
1738  *
1739  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1740  *  (preempted lock holder), indicated by @in_spin_loop.
1741  *  Set at the beiginning and cleared at the end of interception/PLE handler.
1742  *
1743  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1744  *  chance last time (mostly it has become eligible now since we have probably
1745  *  yielded to lockholder in last iteration. This is done by toggling
1746  *  @dy_eligible each time a VCPU checked for eligibility.)
1747  *
1748  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1749  *  to preempted lock-holder could result in wrong VCPU selection and CPU
1750  *  burning. Giving priority for a potential lock-holder increases lock
1751  *  progress.
1752  *
1753  *  Since algorithm is based on heuristics, accessing another VCPU data without
1754  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
1755  *  and continue with next VCPU and so on.
1756  */
1757 bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1758 {
1759         bool eligible;
1760
1761         eligible = !vcpu->spin_loop.in_spin_loop ||
1762                         (vcpu->spin_loop.in_spin_loop &&
1763                          vcpu->spin_loop.dy_eligible);
1764
1765         if (vcpu->spin_loop.in_spin_loop)
1766                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1767
1768         return eligible;
1769 }
1770 #endif
1771
1772 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1773 {
1774         struct kvm *kvm = me->kvm;
1775         struct kvm_vcpu *vcpu;
1776         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1777         int yielded = 0;
1778         int try = 3;
1779         int pass;
1780         int i;
1781
1782         kvm_vcpu_set_in_spin_loop(me, true);
1783         /*
1784          * We boost the priority of a VCPU that is runnable but not
1785          * currently running, because it got preempted by something
1786          * else and called schedule in __vcpu_run.  Hopefully that
1787          * VCPU is holding the lock that we need and will release it.
1788          * We approximate round-robin by starting at the last boosted VCPU.
1789          */
1790         for (pass = 0; pass < 2 && !yielded && try; pass++) {
1791                 kvm_for_each_vcpu(i, vcpu, kvm) {
1792                         if (!pass && i <= last_boosted_vcpu) {
1793                                 i = last_boosted_vcpu;
1794                                 continue;
1795                         } else if (pass && i > last_boosted_vcpu)
1796                                 break;
1797                         if (!ACCESS_ONCE(vcpu->preempted))
1798                                 continue;
1799                         if (vcpu == me)
1800                                 continue;
1801                         if (waitqueue_active(&vcpu->wq))
1802                                 continue;
1803                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1804                                 continue;
1805
1806                         yielded = kvm_vcpu_yield_to(vcpu);
1807                         if (yielded > 0) {
1808                                 kvm->last_boosted_vcpu = i;
1809                                 break;
1810                         } else if (yielded < 0) {
1811                                 try--;
1812                                 if (!try)
1813                                         break;
1814                         }
1815                 }
1816         }
1817         kvm_vcpu_set_in_spin_loop(me, false);
1818
1819         /* Ensure vcpu is not eligible during next spinloop */
1820         kvm_vcpu_set_dy_eligible(me, false);
1821 }
1822 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1823
1824 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1825 {
1826         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1827         struct page *page;
1828
1829         if (vmf->pgoff == 0)
1830                 page = virt_to_page(vcpu->run);
1831 #ifdef CONFIG_X86
1832         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1833                 page = virt_to_page(vcpu->arch.pio_data);
1834 #endif
1835 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1836         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1837                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1838 #endif
1839         else
1840                 return kvm_arch_vcpu_fault(vcpu, vmf);
1841         get_page(page);
1842         vmf->page = page;
1843         return 0;
1844 }
1845
1846 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1847         .fault = kvm_vcpu_fault,
1848 };
1849
1850 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1851 {
1852         vma->vm_ops = &kvm_vcpu_vm_ops;
1853         return 0;
1854 }
1855
1856 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1857 {
1858         struct kvm_vcpu *vcpu = filp->private_data;
1859
1860         kvm_put_kvm(vcpu->kvm);
1861         return 0;
1862 }
1863
1864 static struct file_operations kvm_vcpu_fops = {
1865         .release        = kvm_vcpu_release,
1866         .unlocked_ioctl = kvm_vcpu_ioctl,
1867 #ifdef CONFIG_COMPAT
1868         .compat_ioctl   = kvm_vcpu_compat_ioctl,
1869 #endif
1870         .mmap           = kvm_vcpu_mmap,
1871         .llseek         = noop_llseek,
1872 };
1873
1874 /*
1875  * Allocates an inode for the vcpu.
1876  */
1877 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1878 {
1879         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
1880 }
1881
1882 /*
1883  * Creates some virtual cpus.  Good luck creating more than one.
1884  */
1885 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1886 {
1887         int r;
1888         struct kvm_vcpu *vcpu, *v;
1889
1890         vcpu = kvm_arch_vcpu_create(kvm, id);
1891         if (IS_ERR(vcpu))
1892                 return PTR_ERR(vcpu);
1893
1894         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1895
1896         r = kvm_arch_vcpu_setup(vcpu);
1897         if (r)
1898                 goto vcpu_destroy;
1899
1900         mutex_lock(&kvm->lock);
1901         if (!kvm_vcpu_compatible(vcpu)) {
1902                 r = -EINVAL;
1903                 goto unlock_vcpu_destroy;
1904         }
1905         if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1906                 r = -EINVAL;
1907                 goto unlock_vcpu_destroy;
1908         }
1909
1910         kvm_for_each_vcpu(r, v, kvm)
1911                 if (v->vcpu_id == id) {
1912                         r = -EEXIST;
1913                         goto unlock_vcpu_destroy;
1914                 }
1915
1916         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1917
1918         /* Now it's all set up, let userspace reach it */
1919         kvm_get_kvm(kvm);
1920         r = create_vcpu_fd(vcpu);
1921         if (r < 0) {
1922                 kvm_put_kvm(kvm);
1923                 goto unlock_vcpu_destroy;
1924         }
1925
1926         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1927         smp_wmb();
1928         atomic_inc(&kvm->online_vcpus);
1929
1930         mutex_unlock(&kvm->lock);
1931         kvm_arch_vcpu_postcreate(vcpu);
1932         return r;
1933
1934 unlock_vcpu_destroy:
1935         mutex_unlock(&kvm->lock);
1936 vcpu_destroy:
1937         kvm_arch_vcpu_destroy(vcpu);
1938         return r;
1939 }
1940
1941 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1942 {
1943         if (sigset) {
1944                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1945                 vcpu->sigset_active = 1;
1946                 vcpu->sigset = *sigset;
1947         } else
1948                 vcpu->sigset_active = 0;
1949         return 0;
1950 }
1951
1952 static long kvm_vcpu_ioctl(struct file *filp,
1953                            unsigned int ioctl, unsigned long arg)
1954 {
1955         struct kvm_vcpu *vcpu = filp->private_data;
1956         void __user *argp = (void __user *)arg;
1957         int r;
1958         struct kvm_fpu *fpu = NULL;
1959         struct kvm_sregs *kvm_sregs = NULL;
1960
1961         if (vcpu->kvm->mm != current->mm)
1962                 return -EIO;
1963
1964 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
1965         /*
1966          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1967          * so vcpu_load() would break it.
1968          */
1969         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1970                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1971 #endif
1972
1973
1974         r = vcpu_load(vcpu);
1975         if (r)
1976                 return r;
1977         switch (ioctl) {
1978         case KVM_RUN:
1979                 r = -EINVAL;
1980                 if (arg)
1981                         goto out;
1982                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1983                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1984                 break;
1985         case KVM_GET_REGS: {
1986                 struct kvm_regs *kvm_regs;
1987
1988                 r = -ENOMEM;
1989                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1990                 if (!kvm_regs)
1991                         goto out;
1992                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1993                 if (r)
1994                         goto out_free1;
1995                 r = -EFAULT;
1996                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1997                         goto out_free1;
1998                 r = 0;
1999 out_free1:
2000                 kfree(kvm_regs);
2001                 break;
2002         }
2003         case KVM_SET_REGS: {
2004                 struct kvm_regs *kvm_regs;
2005
2006                 r = -ENOMEM;
2007                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2008                 if (IS_ERR(kvm_regs)) {
2009                         r = PTR_ERR(kvm_regs);
2010                         goto out;
2011                 }
2012                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2013                 kfree(kvm_regs);
2014                 break;
2015         }
2016         case KVM_GET_SREGS: {
2017                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2018                 r = -ENOMEM;
2019                 if (!kvm_sregs)
2020                         goto out;
2021                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2022                 if (r)
2023                         goto out;
2024                 r = -EFAULT;
2025                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2026                         goto out;
2027                 r = 0;
2028                 break;
2029         }
2030         case KVM_SET_SREGS: {
2031                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2032                 if (IS_ERR(kvm_sregs)) {
2033                         r = PTR_ERR(kvm_sregs);
2034                         kvm_sregs = NULL;
2035                         goto out;
2036                 }
2037                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2038                 break;
2039         }
2040         case KVM_GET_MP_STATE: {
2041                 struct kvm_mp_state mp_state;
2042
2043                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2044                 if (r)
2045                         goto out;
2046                 r = -EFAULT;
2047                 if (copy_to_user(argp, &mp_state, sizeof mp_state))
2048                         goto out;
2049                 r = 0;
2050                 break;
2051         }
2052         case KVM_SET_MP_STATE: {
2053                 struct kvm_mp_state mp_state;
2054
2055                 r = -EFAULT;
2056                 if (copy_from_user(&mp_state, argp, sizeof mp_state))
2057                         goto out;
2058                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2059                 break;
2060         }
2061         case KVM_TRANSLATE: {
2062                 struct kvm_translation tr;
2063
2064                 r = -EFAULT;
2065                 if (copy_from_user(&tr, argp, sizeof tr))
2066                         goto out;
2067                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2068                 if (r)
2069                         goto out;
2070                 r = -EFAULT;
2071                 if (copy_to_user(argp, &tr, sizeof tr))
2072                         goto out;
2073                 r = 0;
2074                 break;
2075         }
2076         case KVM_SET_GUEST_DEBUG: {
2077                 struct kvm_guest_debug dbg;
2078
2079                 r = -EFAULT;
2080                 if (copy_from_user(&dbg, argp, sizeof dbg))
2081                         goto out;
2082                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2083                 break;
2084         }
2085         case KVM_SET_SIGNAL_MASK: {
2086                 struct kvm_signal_mask __user *sigmask_arg = argp;
2087                 struct kvm_signal_mask kvm_sigmask;
2088                 sigset_t sigset, *p;
2089
2090                 p = NULL;
2091                 if (argp) {
2092                         r = -EFAULT;
2093                         if (copy_from_user(&kvm_sigmask, argp,
2094                                            sizeof kvm_sigmask))
2095                                 goto out;
2096                         r = -EINVAL;
2097                         if (kvm_sigmask.len != sizeof sigset)
2098                                 goto out;
2099                         r = -EFAULT;
2100                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2101                                            sizeof sigset))
2102                                 goto out;
2103                         p = &sigset;
2104                 }
2105                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2106                 break;
2107         }
2108         case KVM_GET_FPU: {
2109                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2110                 r = -ENOMEM;
2111                 if (!fpu)
2112                         goto out;
2113                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2114                 if (r)
2115                         goto out;
2116                 r = -EFAULT;
2117                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2118                         goto out;
2119                 r = 0;
2120                 break;
2121         }
2122         case KVM_SET_FPU: {
2123                 fpu = memdup_user(argp, sizeof(*fpu));
2124                 if (IS_ERR(fpu)) {
2125                         r = PTR_ERR(fpu);
2126                         fpu = NULL;
2127                         goto out;
2128                 }
2129                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2130                 break;
2131         }
2132         default:
2133                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2134         }
2135 out:
2136         vcpu_put(vcpu);
2137         kfree(fpu);
2138         kfree(kvm_sregs);
2139         return r;
2140 }
2141
2142 #ifdef CONFIG_COMPAT
2143 static long kvm_vcpu_compat_ioctl(struct file *filp,
2144                                   unsigned int ioctl, unsigned long arg)
2145 {
2146         struct kvm_vcpu *vcpu = filp->private_data;
2147         void __user *argp = compat_ptr(arg);
2148         int r;
2149
2150         if (vcpu->kvm->mm != current->mm)
2151                 return -EIO;
2152
2153         switch (ioctl) {
2154         case KVM_SET_SIGNAL_MASK: {
2155                 struct kvm_signal_mask __user *sigmask_arg = argp;
2156                 struct kvm_signal_mask kvm_sigmask;
2157                 compat_sigset_t csigset;
2158                 sigset_t sigset;
2159
2160                 if (argp) {
2161                         r = -EFAULT;
2162                         if (copy_from_user(&kvm_sigmask, argp,
2163                                            sizeof kvm_sigmask))
2164                                 goto out;
2165                         r = -EINVAL;
2166                         if (kvm_sigmask.len != sizeof csigset)
2167                                 goto out;
2168                         r = -EFAULT;
2169                         if (copy_from_user(&csigset, sigmask_arg->sigset,
2170                                            sizeof csigset))
2171                                 goto out;
2172                         sigset_from_compat(&sigset, &csigset);
2173                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2174                 } else
2175                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2176                 break;
2177         }
2178         default:
2179                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2180         }
2181
2182 out:
2183         return r;
2184 }
2185 #endif
2186
2187 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2188                                  int (*accessor)(struct kvm_device *dev,
2189                                                  struct kvm_device_attr *attr),
2190                                  unsigned long arg)
2191 {
2192         struct kvm_device_attr attr;
2193
2194         if (!accessor)
2195                 return -EPERM;
2196
2197         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2198                 return -EFAULT;
2199
2200         return accessor(dev, &attr);
2201 }
2202
2203 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2204                              unsigned long arg)
2205 {
2206         struct kvm_device *dev = filp->private_data;
2207
2208         switch (ioctl) {
2209         case KVM_SET_DEVICE_ATTR:
2210                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2211         case KVM_GET_DEVICE_ATTR:
2212                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2213         case KVM_HAS_DEVICE_ATTR:
2214                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2215         default:
2216                 if (dev->ops->ioctl)
2217                         return dev->ops->ioctl(dev, ioctl, arg);
2218
2219                 return -ENOTTY;
2220         }
2221 }
2222
2223 static int kvm_device_release(struct inode *inode, struct file *filp)
2224 {
2225         struct kvm_device *dev = filp->private_data;
2226         struct kvm *kvm = dev->kvm;
2227
2228         kvm_put_kvm(kvm);
2229         return 0;
2230 }
2231
2232 static const struct file_operations kvm_device_fops = {
2233         .unlocked_ioctl = kvm_device_ioctl,
2234 #ifdef CONFIG_COMPAT
2235         .compat_ioctl = kvm_device_ioctl,
2236 #endif
2237         .release = kvm_device_release,
2238 };
2239
2240 struct kvm_device *kvm_device_from_filp(struct file *filp)
2241 {
2242         if (filp->f_op != &kvm_device_fops)
2243                 return NULL;
2244
2245         return filp->private_data;
2246 }
2247
2248 static int kvm_ioctl_create_device(struct kvm *kvm,
2249                                    struct kvm_create_device *cd)
2250 {
2251         struct kvm_device_ops *ops = NULL;
2252         struct kvm_device *dev;
2253         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2254         int ret;
2255
2256         switch (cd->type) {
2257 #ifdef CONFIG_KVM_MPIC
2258         case KVM_DEV_TYPE_FSL_MPIC_20:
2259         case KVM_DEV_TYPE_FSL_MPIC_42:
2260                 ops = &kvm_mpic_ops;
2261                 break;
2262 #endif
2263 #ifdef CONFIG_KVM_XICS
2264         case KVM_DEV_TYPE_XICS:
2265                 ops = &kvm_xics_ops;
2266                 break;
2267 #endif
2268         default:
2269                 return -ENODEV;
2270         }
2271
2272         if (test)
2273                 return 0;
2274
2275         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2276         if (!dev)
2277                 return -ENOMEM;
2278
2279         dev->ops = ops;
2280         dev->kvm = kvm;
2281
2282         ret = ops->create(dev, cd->type);
2283         if (ret < 0) {
2284                 kfree(dev);
2285                 return ret;
2286         }
2287
2288         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2289         if (ret < 0) {
2290                 ops->destroy(dev);
2291                 return ret;
2292         }
2293
2294         list_add(&dev->vm_node, &kvm->devices);
2295         kvm_get_kvm(kvm);
2296         cd->fd = ret;
2297         return 0;
2298 }
2299
2300 static long kvm_vm_ioctl(struct file *filp,
2301                            unsigned int ioctl, unsigned long arg)
2302 {
2303         struct kvm *kvm = filp->private_data;
2304         void __user *argp = (void __user *)arg;
2305         int r;
2306
2307         if (kvm->mm != current->mm)
2308                 return -EIO;
2309         switch (ioctl) {
2310         case KVM_CREATE_VCPU:
2311                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2312                 break;
2313         case KVM_SET_USER_MEMORY_REGION: {
2314                 struct kvm_userspace_memory_region kvm_userspace_mem;
2315
2316                 r = -EFAULT;
2317                 if (copy_from_user(&kvm_userspace_mem, argp,
2318                                                 sizeof kvm_userspace_mem))
2319                         goto out;
2320
2321                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2322                 break;
2323         }
2324         case KVM_GET_DIRTY_LOG: {
2325                 struct kvm_dirty_log log;
2326
2327                 r = -EFAULT;
2328                 if (copy_from_user(&log, argp, sizeof log))
2329                         goto out;
2330                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2331                 break;
2332         }
2333 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2334         case KVM_REGISTER_COALESCED_MMIO: {
2335                 struct kvm_coalesced_mmio_zone zone;
2336                 r = -EFAULT;
2337                 if (copy_from_user(&zone, argp, sizeof zone))
2338                         goto out;
2339                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2340                 break;
2341         }
2342         case KVM_UNREGISTER_COALESCED_MMIO: {
2343                 struct kvm_coalesced_mmio_zone zone;
2344                 r = -EFAULT;
2345                 if (copy_from_user(&zone, argp, sizeof zone))
2346                         goto out;
2347                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2348                 break;
2349         }
2350 #endif
2351         case KVM_IRQFD: {
2352                 struct kvm_irqfd data;
2353
2354                 r = -EFAULT;
2355                 if (copy_from_user(&data, argp, sizeof data))
2356                         goto out;
2357                 r = kvm_irqfd(kvm, &data);
2358                 break;
2359         }
2360         case KVM_IOEVENTFD: {
2361                 struct kvm_ioeventfd data;
2362
2363                 r = -EFAULT;
2364                 if (copy_from_user(&data, argp, sizeof data))
2365                         goto out;
2366                 r = kvm_ioeventfd(kvm, &data);
2367                 break;
2368         }
2369 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2370         case KVM_SET_BOOT_CPU_ID:
2371                 r = 0;
2372                 mutex_lock(&kvm->lock);
2373                 if (atomic_read(&kvm->online_vcpus) != 0)
2374                         r = -EBUSY;
2375                 else
2376                         kvm->bsp_vcpu_id = arg;
2377                 mutex_unlock(&kvm->lock);
2378                 break;
2379 #endif
2380 #ifdef CONFIG_HAVE_KVM_MSI
2381         case KVM_SIGNAL_MSI: {
2382                 struct kvm_msi msi;
2383
2384                 r = -EFAULT;
2385                 if (copy_from_user(&msi, argp, sizeof msi))
2386                         goto out;
2387                 r = kvm_send_userspace_msi(kvm, &msi);
2388                 break;
2389         }
2390 #endif
2391 #ifdef __KVM_HAVE_IRQ_LINE
2392         case KVM_IRQ_LINE_STATUS:
2393         case KVM_IRQ_LINE: {
2394                 struct kvm_irq_level irq_event;
2395
2396                 r = -EFAULT;
2397                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2398                         goto out;
2399
2400                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2401                                         ioctl == KVM_IRQ_LINE_STATUS);
2402                 if (r)
2403                         goto out;
2404
2405                 r = -EFAULT;
2406                 if (ioctl == KVM_IRQ_LINE_STATUS) {
2407                         if (copy_to_user(argp, &irq_event, sizeof irq_event))
2408                                 goto out;
2409                 }
2410
2411                 r = 0;
2412                 break;
2413         }
2414 #endif
2415 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2416         case KVM_SET_GSI_ROUTING: {
2417                 struct kvm_irq_routing routing;
2418                 struct kvm_irq_routing __user *urouting;
2419                 struct kvm_irq_routing_entry *entries;
2420
2421                 r = -EFAULT;
2422                 if (copy_from_user(&routing, argp, sizeof(routing)))
2423                         goto out;
2424                 r = -EINVAL;
2425                 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2426                         goto out;
2427                 if (routing.flags)
2428                         goto out;
2429                 r = -ENOMEM;
2430                 entries = vmalloc(routing.nr * sizeof(*entries));
2431                 if (!entries)
2432                         goto out;
2433                 r = -EFAULT;
2434                 urouting = argp;
2435                 if (copy_from_user(entries, urouting->entries,
2436                                    routing.nr * sizeof(*entries)))
2437                         goto out_free_irq_routing;
2438                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2439                                         routing.flags);
2440         out_free_irq_routing:
2441                 vfree(entries);
2442                 break;
2443         }
2444 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2445         case KVM_CREATE_DEVICE: {
2446                 struct kvm_create_device cd;
2447
2448                 r = -EFAULT;
2449                 if (copy_from_user(&cd, argp, sizeof(cd)))
2450                         goto out;
2451
2452                 r = kvm_ioctl_create_device(kvm, &cd);
2453                 if (r)
2454                         goto out;
2455
2456                 r = -EFAULT;
2457                 if (copy_to_user(argp, &cd, sizeof(cd)))
2458                         goto out;
2459
2460                 r = 0;
2461                 break;
2462         }
2463         default:
2464                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2465                 if (r == -ENOTTY)
2466                         r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2467         }
2468 out:
2469         return r;
2470 }
2471
2472 #ifdef CONFIG_COMPAT
2473 struct compat_kvm_dirty_log {
2474         __u32 slot;
2475         __u32 padding1;
2476         union {
2477                 compat_uptr_t dirty_bitmap; /* one bit per page */
2478                 __u64 padding2;
2479         };
2480 };
2481
2482 static long kvm_vm_compat_ioctl(struct file *filp,
2483                            unsigned int ioctl, unsigned long arg)
2484 {
2485         struct kvm *kvm = filp->private_data;
2486         int r;
2487
2488         if (kvm->mm != current->mm)
2489                 return -EIO;
2490         switch (ioctl) {
2491         case KVM_GET_DIRTY_LOG: {
2492                 struct compat_kvm_dirty_log compat_log;
2493                 struct kvm_dirty_log log;
2494
2495                 r = -EFAULT;
2496                 if (copy_from_user(&compat_log, (void __user *)arg,
2497                                    sizeof(compat_log)))
2498                         goto out;
2499                 log.slot         = compat_log.slot;
2500                 log.padding1     = compat_log.padding1;
2501                 log.padding2     = compat_log.padding2;
2502                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2503
2504                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2505                 break;
2506         }
2507         default:
2508                 r = kvm_vm_ioctl(filp, ioctl, arg);
2509         }
2510
2511 out:
2512         return r;
2513 }
2514 #endif
2515
2516 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2517 {
2518         struct page *page[1];
2519         unsigned long addr;
2520         int npages;
2521         gfn_t gfn = vmf->pgoff;
2522         struct kvm *kvm = vma->vm_file->private_data;
2523
2524         addr = gfn_to_hva(kvm, gfn);
2525         if (kvm_is_error_hva(addr))
2526                 return VM_FAULT_SIGBUS;
2527
2528         npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2529                                 NULL);
2530         if (unlikely(npages != 1))
2531                 return VM_FAULT_SIGBUS;
2532
2533         vmf->page = page[0];
2534         return 0;
2535 }
2536
2537 static const struct vm_operations_struct kvm_vm_vm_ops = {
2538         .fault = kvm_vm_fault,
2539 };
2540
2541 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2542 {
2543         vma->vm_ops = &kvm_vm_vm_ops;
2544         return 0;
2545 }
2546
2547 static struct file_operations kvm_vm_fops = {
2548         .release        = kvm_vm_release,
2549         .unlocked_ioctl = kvm_vm_ioctl,
2550 #ifdef CONFIG_COMPAT
2551         .compat_ioctl   = kvm_vm_compat_ioctl,
2552 #endif
2553         .mmap           = kvm_vm_mmap,
2554         .llseek         = noop_llseek,
2555 };
2556
2557 static int kvm_dev_ioctl_create_vm(unsigned long type)
2558 {
2559         int r;
2560         struct kvm *kvm;
2561
2562         kvm = kvm_create_vm(type);
2563         if (IS_ERR(kvm))
2564                 return PTR_ERR(kvm);
2565 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2566         r = kvm_coalesced_mmio_init(kvm);
2567         if (r < 0) {
2568                 kvm_put_kvm(kvm);
2569                 return r;
2570         }
2571 #endif
2572         r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2573         if (r < 0)
2574                 kvm_put_kvm(kvm);
2575
2576         return r;
2577 }
2578
2579 static long kvm_dev_ioctl_check_extension_generic(long arg)
2580 {
2581         switch (arg) {
2582         case KVM_CAP_USER_MEMORY:
2583         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2584         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2585 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2586         case KVM_CAP_SET_BOOT_CPU_ID:
2587 #endif
2588         case KVM_CAP_INTERNAL_ERROR_DATA:
2589 #ifdef CONFIG_HAVE_KVM_MSI
2590         case KVM_CAP_SIGNAL_MSI:
2591 #endif
2592 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2593         case KVM_CAP_IRQFD_RESAMPLE:
2594 #endif
2595                 return 1;
2596 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2597         case KVM_CAP_IRQ_ROUTING:
2598                 return KVM_MAX_IRQ_ROUTES;
2599 #endif
2600         default:
2601                 break;
2602         }
2603         return kvm_dev_ioctl_check_extension(arg);
2604 }
2605
2606 static long kvm_dev_ioctl(struct file *filp,
2607                           unsigned int ioctl, unsigned long arg)
2608 {
2609         long r = -EINVAL;
2610
2611         switch (ioctl) {
2612         case KVM_GET_API_VERSION:
2613                 r = -EINVAL;
2614                 if (arg)
2615                         goto out;
2616                 r = KVM_API_VERSION;
2617                 break;
2618         case KVM_CREATE_VM:
2619                 r = kvm_dev_ioctl_create_vm(arg);
2620                 break;
2621         case KVM_CHECK_EXTENSION:
2622                 r = kvm_dev_ioctl_check_extension_generic(arg);
2623                 break;
2624         case KVM_GET_VCPU_MMAP_SIZE:
2625                 r = -EINVAL;
2626                 if (arg)
2627                         goto out;
2628                 r = PAGE_SIZE;     /* struct kvm_run */
2629 #ifdef CONFIG_X86
2630                 r += PAGE_SIZE;    /* pio data page */
2631 #endif
2632 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2633                 r += PAGE_SIZE;    /* coalesced mmio ring page */
2634 #endif
2635                 break;
2636         case KVM_TRACE_ENABLE:
2637         case KVM_TRACE_PAUSE:
2638         case KVM_TRACE_DISABLE:
2639                 r = -EOPNOTSUPP;
2640                 break;
2641         default:
2642                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2643         }
2644 out:
2645         return r;
2646 }
2647
2648 static struct file_operations kvm_chardev_ops = {
2649         .unlocked_ioctl = kvm_dev_ioctl,
2650         .compat_ioctl   = kvm_dev_ioctl,
2651         .llseek         = noop_llseek,
2652 };
2653
2654 static struct miscdevice kvm_dev = {
2655         KVM_MINOR,
2656         "kvm",
2657         &kvm_chardev_ops,
2658 };
2659
2660 static void hardware_enable_nolock(void *junk)
2661 {
2662         int cpu = raw_smp_processor_id();
2663         int r;
2664
2665         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2666                 return;
2667
2668         cpumask_set_cpu(cpu, cpus_hardware_enabled);
2669
2670         r = kvm_arch_hardware_enable(NULL);
2671
2672         if (r) {
2673                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2674                 atomic_inc(&hardware_enable_failed);
2675                 printk(KERN_INFO "kvm: enabling virtualization on "
2676                                  "CPU%d failed\n", cpu);
2677         }
2678 }
2679
2680 static void hardware_enable(void *junk)
2681 {
2682         raw_spin_lock(&kvm_lock);
2683         hardware_enable_nolock(junk);
2684         raw_spin_unlock(&kvm_lock);
2685 }
2686
2687 static void hardware_disable_nolock(void *junk)
2688 {
2689         int cpu = raw_smp_processor_id();
2690
2691         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2692                 return;
2693         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2694         kvm_arch_hardware_disable(NULL);
2695 }
2696
2697 static void hardware_disable(void *junk)
2698 {
2699         raw_spin_lock(&kvm_lock);
2700         hardware_disable_nolock(junk);
2701         raw_spin_unlock(&kvm_lock);
2702 }
2703
2704 static void hardware_disable_all_nolock(void)
2705 {
2706         BUG_ON(!kvm_usage_count);
2707
2708         kvm_usage_count--;
2709         if (!kvm_usage_count)
2710                 on_each_cpu(hardware_disable_nolock, NULL, 1);
2711 }
2712
2713 static void hardware_disable_all(void)
2714 {
2715         raw_spin_lock(&kvm_lock);
2716         hardware_disable_all_nolock();
2717         raw_spin_unlock(&kvm_lock);
2718 }
2719
2720 static int hardware_enable_all(void)
2721 {
2722         int r = 0;
2723
2724         raw_spin_lock(&kvm_lock);
2725
2726         kvm_usage_count++;
2727         if (kvm_usage_count == 1) {
2728                 atomic_set(&hardware_enable_failed, 0);
2729                 on_each_cpu(hardware_enable_nolock, NULL, 1);
2730
2731                 if (atomic_read(&hardware_enable_failed)) {
2732                         hardware_disable_all_nolock();
2733                         r = -EBUSY;
2734                 }
2735         }
2736
2737         raw_spin_unlock(&kvm_lock);
2738
2739         return r;
2740 }
2741
2742 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2743                            void *v)
2744 {
2745         int cpu = (long)v;
2746
2747         if (!kvm_usage_count)
2748                 return NOTIFY_OK;
2749
2750         val &= ~CPU_TASKS_FROZEN;
2751         switch (val) {
2752         case CPU_DYING:
2753                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2754                        cpu);
2755                 hardware_disable(NULL);
2756                 break;
2757         case CPU_STARTING:
2758                 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2759                        cpu);
2760                 hardware_enable(NULL);
2761                 break;
2762         }
2763         return NOTIFY_OK;
2764 }
2765
2766 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2767                       void *v)
2768 {
2769         /*
2770          * Some (well, at least mine) BIOSes hang on reboot if
2771          * in vmx root mode.
2772          *
2773          * And Intel TXT required VMX off for all cpu when system shutdown.
2774          */
2775         printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2776         kvm_rebooting = true;
2777         on_each_cpu(hardware_disable_nolock, NULL, 1);
2778         return NOTIFY_OK;
2779 }
2780
2781 static struct notifier_block kvm_reboot_notifier = {
2782         .notifier_call = kvm_reboot,
2783         .priority = 0,
2784 };
2785
2786 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2787 {
2788         int i;
2789
2790         for (i = 0; i < bus->dev_count; i++) {
2791                 struct kvm_io_device *pos = bus->range[i].dev;
2792
2793                 kvm_iodevice_destructor(pos);
2794         }
2795         kfree(bus);
2796 }
2797
2798 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2799                                  const struct kvm_io_range *r2)
2800 {
2801         if (r1->addr < r2->addr)
2802                 return -1;
2803         if (r1->addr + r1->len > r2->addr + r2->len)
2804                 return 1;
2805         return 0;
2806 }
2807
2808 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2809 {
2810         return kvm_io_bus_cmp(p1, p2);
2811 }
2812
2813 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2814                           gpa_t addr, int len)
2815 {
2816         bus->range[bus->dev_count++] = (struct kvm_io_range) {
2817                 .addr = addr,
2818                 .len = len,
2819                 .dev = dev,
2820         };
2821
2822         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2823                 kvm_io_bus_sort_cmp, NULL);
2824
2825         return 0;
2826 }
2827
2828 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2829                              gpa_t addr, int len)
2830 {
2831         struct kvm_io_range *range, key;
2832         int off;
2833
2834         key = (struct kvm_io_range) {
2835                 .addr = addr,
2836                 .len = len,
2837         };
2838
2839         range = bsearch(&key, bus->range, bus->dev_count,
2840                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2841         if (range == NULL)
2842                 return -ENOENT;
2843
2844         off = range - bus->range;
2845
2846         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
2847                 off--;
2848
2849         return off;
2850 }
2851
2852 static int __kvm_io_bus_write(struct kvm_io_bus *bus,
2853                               struct kvm_io_range *range, const void *val)
2854 {
2855         int idx;
2856
2857         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2858         if (idx < 0)
2859                 return -EOPNOTSUPP;
2860
2861         while (idx < bus->dev_count &&
2862                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2863                 if (!kvm_iodevice_write(bus->range[idx].dev, range->addr,
2864                                         range->len, val))
2865                         return idx;
2866                 idx++;
2867         }
2868
2869         return -EOPNOTSUPP;
2870 }
2871
2872 /* kvm_io_bus_write - called under kvm->slots_lock */
2873 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2874                      int len, const void *val)
2875 {
2876         struct kvm_io_bus *bus;
2877         struct kvm_io_range range;
2878         int r;
2879
2880         range = (struct kvm_io_range) {
2881                 .addr = addr,
2882                 .len = len,
2883         };
2884
2885         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2886         r = __kvm_io_bus_write(bus, &range, val);
2887         return r < 0 ? r : 0;
2888 }
2889
2890 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
2891 int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2892                             int len, const void *val, long cookie)
2893 {
2894         struct kvm_io_bus *bus;
2895         struct kvm_io_range range;
2896
2897         range = (struct kvm_io_range) {
2898                 .addr = addr,
2899                 .len = len,
2900         };
2901
2902         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2903
2904         /* First try the device referenced by cookie. */
2905         if ((cookie >= 0) && (cookie < bus->dev_count) &&
2906             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2907                 if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len,
2908                                         val))
2909                         return cookie;
2910
2911         /*
2912          * cookie contained garbage; fall back to search and return the
2913          * correct cookie value.
2914          */
2915         return __kvm_io_bus_write(bus, &range, val);
2916 }
2917
2918 static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range,
2919                              void *val)
2920 {
2921         int idx;
2922
2923         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2924         if (idx < 0)
2925                 return -EOPNOTSUPP;
2926
2927         while (idx < bus->dev_count &&
2928                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2929                 if (!kvm_iodevice_read(bus->range[idx].dev, range->addr,
2930                                        range->len, val))
2931                         return idx;
2932                 idx++;
2933         }
2934
2935         return -EOPNOTSUPP;
2936 }
2937
2938 /* kvm_io_bus_read - called under kvm->slots_lock */
2939 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2940                     int len, void *val)
2941 {
2942         struct kvm_io_bus *bus;
2943         struct kvm_io_range range;
2944         int r;
2945
2946         range = (struct kvm_io_range) {
2947                 .addr = addr,
2948                 .len = len,
2949         };
2950
2951         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2952         r = __kvm_io_bus_read(bus, &range, val);
2953         return r < 0 ? r : 0;
2954 }
2955
2956 /* kvm_io_bus_read_cookie - called under kvm->slots_lock */
2957 int kvm_io_bus_read_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2958                            int len, void *val, long cookie)
2959 {
2960         struct kvm_io_bus *bus;
2961         struct kvm_io_range range;
2962
2963         range = (struct kvm_io_range) {
2964                 .addr = addr,
2965                 .len = len,
2966         };
2967
2968         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2969
2970         /* First try the device referenced by cookie. */
2971         if ((cookie >= 0) && (cookie < bus->dev_count) &&
2972             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2973                 if (!kvm_iodevice_read(bus->range[cookie].dev, addr, len,
2974                                        val))
2975                         return cookie;
2976
2977         /*
2978          * cookie contained garbage; fall back to search and return the
2979          * correct cookie value.
2980          */
2981         return __kvm_io_bus_read(bus, &range, val);
2982 }
2983
2984 /* Caller must hold slots_lock. */
2985 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2986                             int len, struct kvm_io_device *dev)
2987 {
2988         struct kvm_io_bus *new_bus, *bus;
2989
2990         bus = kvm->buses[bus_idx];
2991         /* exclude ioeventfd which is limited by maximum fd */
2992         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
2993                 return -ENOSPC;
2994
2995         new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2996                           sizeof(struct kvm_io_range)), GFP_KERNEL);
2997         if (!new_bus)
2998                 return -ENOMEM;
2999         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3000                sizeof(struct kvm_io_range)));
3001         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3002         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3003         synchronize_srcu_expedited(&kvm->srcu);
3004         kfree(bus);
3005
3006         return 0;
3007 }
3008
3009 /* Caller must hold slots_lock. */
3010 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3011                               struct kvm_io_device *dev)
3012 {
3013         int i, r;
3014         struct kvm_io_bus *new_bus, *bus;
3015
3016         bus = kvm->buses[bus_idx];
3017         r = -ENOENT;
3018         for (i = 0; i < bus->dev_count; i++)
3019                 if (bus->range[i].dev == dev) {
3020                         r = 0;
3021                         break;
3022                 }
3023
3024         if (r)
3025                 return r;
3026
3027         new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3028                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3029         if (!new_bus)
3030                 return -ENOMEM;
3031
3032         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3033         new_bus->dev_count--;
3034         memcpy(new_bus->range + i, bus->range + i + 1,
3035                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3036
3037         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3038         synchronize_srcu_expedited(&kvm->srcu);
3039         kfree(bus);
3040         return r;
3041 }
3042
3043 static struct notifier_block kvm_cpu_notifier = {
3044         .notifier_call = kvm_cpu_hotplug,
3045 };
3046
3047 static int vm_stat_get(void *_offset, u64 *val)
3048 {
3049         unsigned offset = (long)_offset;
3050         struct kvm *kvm;
3051
3052         *val = 0;
3053         raw_spin_lock(&kvm_lock);
3054         list_for_each_entry(kvm, &vm_list, vm_list)
3055                 *val += *(u32 *)((void *)kvm + offset);
3056         raw_spin_unlock(&kvm_lock);
3057         return 0;
3058 }
3059
3060 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3061
3062 static int vcpu_stat_get(void *_offset, u64 *val)
3063 {
3064         unsigned offset = (long)_offset;
3065         struct kvm *kvm;
3066         struct kvm_vcpu *vcpu;
3067         int i;
3068
3069         *val = 0;
3070         raw_spin_lock(&kvm_lock);
3071         list_for_each_entry(kvm, &vm_list, vm_list)
3072                 kvm_for_each_vcpu(i, vcpu, kvm)
3073                         *val += *(u32 *)((void *)vcpu + offset);
3074
3075         raw_spin_unlock(&kvm_lock);
3076         return 0;
3077 }
3078
3079 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3080
3081 static const struct file_operations *stat_fops[] = {
3082         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3083         [KVM_STAT_VM]   = &vm_stat_fops,
3084 };
3085
3086 static int kvm_init_debug(void)
3087 {
3088         int r = -EFAULT;
3089         struct kvm_stats_debugfs_item *p;
3090
3091         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3092         if (kvm_debugfs_dir == NULL)
3093                 goto out;
3094
3095         for (p = debugfs_entries; p->name; ++p) {
3096                 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3097                                                 (void *)(long)p->offset,
3098                                                 stat_fops[p->kind]);
3099                 if (p->dentry == NULL)
3100                         goto out_dir;
3101         }
3102
3103         return 0;
3104
3105 out_dir:
3106         debugfs_remove_recursive(kvm_debugfs_dir);
3107 out:
3108         return r;
3109 }
3110
3111 static void kvm_exit_debug(void)
3112 {
3113         struct kvm_stats_debugfs_item *p;
3114
3115         for (p = debugfs_entries; p->name; ++p)
3116                 debugfs_remove(p->dentry);
3117         debugfs_remove(kvm_debugfs_dir);
3118 }
3119
3120 static int kvm_suspend(void)
3121 {
3122         if (kvm_usage_count)
3123                 hardware_disable_nolock(NULL);
3124         return 0;
3125 }
3126
3127 static void kvm_resume(void)
3128 {
3129         if (kvm_usage_count) {
3130                 WARN_ON(raw_spin_is_locked(&kvm_lock));
3131                 hardware_enable_nolock(NULL);
3132         }
3133 }
3134
3135 static struct syscore_ops kvm_syscore_ops = {
3136         .suspend = kvm_suspend,
3137         .resume = kvm_resume,
3138 };
3139
3140 static inline
3141 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3142 {
3143         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3144 }
3145
3146 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3147 {
3148         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3149         if (vcpu->preempted)
3150                 vcpu->preempted = false;
3151
3152         kvm_arch_vcpu_load(vcpu, cpu);
3153 }
3154
3155 static void kvm_sched_out(struct preempt_notifier *pn,
3156                           struct task_struct *next)
3157 {
3158         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3159
3160         if (current->state == TASK_RUNNING)
3161                 vcpu->preempted = true;
3162         kvm_arch_vcpu_put(vcpu);
3163 }
3164
3165 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3166                   struct module *module)
3167 {
3168         int r;
3169         int cpu;
3170
3171         r = kvm_arch_init(opaque);
3172         if (r)
3173                 goto out_fail;
3174
3175         /*
3176          * kvm_arch_init makes sure there's at most one caller
3177          * for architectures that support multiple implementations,
3178          * like intel and amd on x86.
3179          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3180          * conflicts in case kvm is already setup for another implementation.
3181          */
3182         r = kvm_irqfd_init();
3183         if (r)
3184                 goto out_irqfd;
3185
3186         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3187                 r = -ENOMEM;
3188                 goto out_free_0;
3189         }
3190
3191         r = kvm_arch_hardware_setup();
3192         if (r < 0)
3193                 goto out_free_0a;
3194
3195         for_each_online_cpu(cpu) {
3196                 smp_call_function_single(cpu,
3197                                 kvm_arch_check_processor_compat,
3198                                 &r, 1);
3199                 if (r < 0)
3200                         goto out_free_1;
3201         }
3202
3203         r = register_cpu_notifier(&kvm_cpu_notifier);
3204         if (r)
3205                 goto out_free_2;
3206         register_reboot_notifier(&kvm_reboot_notifier);
3207
3208         /* A kmem cache lets us meet the alignment requirements of fx_save. */
3209         if (!vcpu_align)
3210                 vcpu_align = __alignof__(struct kvm_vcpu);
3211         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3212                                            0, NULL);
3213         if (!kvm_vcpu_cache) {
3214                 r = -ENOMEM;
3215                 goto out_free_3;
3216         }
3217
3218         r = kvm_async_pf_init();
3219         if (r)
3220                 goto out_free;
3221
3222         kvm_chardev_ops.owner = module;
3223         kvm_vm_fops.owner = module;
3224         kvm_vcpu_fops.owner = module;
3225
3226         r = misc_register(&kvm_dev);
3227         if (r) {
3228                 printk(KERN_ERR "kvm: misc device register failed\n");
3229                 goto out_unreg;
3230         }
3231
3232         register_syscore_ops(&kvm_syscore_ops);
3233
3234         kvm_preempt_ops.sched_in = kvm_sched_in;
3235         kvm_preempt_ops.sched_out = kvm_sched_out;
3236
3237         r = kvm_init_debug();
3238         if (r) {
3239                 printk(KERN_ERR "kvm: create debugfs files failed\n");
3240                 goto out_undebugfs;
3241         }
3242
3243         return 0;
3244
3245 out_undebugfs:
3246         unregister_syscore_ops(&kvm_syscore_ops);
3247         misc_deregister(&kvm_dev);
3248 out_unreg:
3249         kvm_async_pf_deinit();
3250 out_free:
3251         kmem_cache_destroy(kvm_vcpu_cache);
3252 out_free_3:
3253         unregister_reboot_notifier(&kvm_reboot_notifier);
3254         unregister_cpu_notifier(&kvm_cpu_notifier);
3255 out_free_2:
3256 out_free_1:
3257         kvm_arch_hardware_unsetup();
3258 out_free_0a:
3259         free_cpumask_var(cpus_hardware_enabled);
3260 out_free_0:
3261         kvm_irqfd_exit();
3262 out_irqfd:
3263         kvm_arch_exit();
3264 out_fail:
3265         return r;
3266 }
3267 EXPORT_SYMBOL_GPL(kvm_init);
3268
3269 void kvm_exit(void)
3270 {
3271         kvm_exit_debug();
3272         misc_deregister(&kvm_dev);
3273         kmem_cache_destroy(kvm_vcpu_cache);
3274         kvm_async_pf_deinit();
3275         unregister_syscore_ops(&kvm_syscore_ops);
3276         unregister_reboot_notifier(&kvm_reboot_notifier);
3277         unregister_cpu_notifier(&kvm_cpu_notifier);
3278         on_each_cpu(hardware_disable_nolock, NULL, 1);
3279         kvm_arch_hardware_unsetup();
3280         kvm_arch_exit();
3281         kvm_irqfd_exit();
3282         free_cpumask_var(cpus_hardware_enabled);
3283 }
3284 EXPORT_SYMBOL_GPL(kvm_exit);