Merge branch 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[firefly-linux-kernel-4.4.55.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68
69 static unsigned int halt_poll_ns;
70 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
71
72 /*
73  * Ordering of locks:
74  *
75  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
76  */
77
78 DEFINE_SPINLOCK(kvm_lock);
79 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
80 LIST_HEAD(vm_list);
81
82 static cpumask_var_t cpus_hardware_enabled;
83 static int kvm_usage_count;
84 static atomic_t hardware_enable_failed;
85
86 struct kmem_cache *kvm_vcpu_cache;
87 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
88
89 static __read_mostly struct preempt_ops kvm_preempt_ops;
90
91 struct dentry *kvm_debugfs_dir;
92
93 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
94                            unsigned long arg);
95 #ifdef CONFIG_KVM_COMPAT
96 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
97                                   unsigned long arg);
98 #endif
99 static int hardware_enable_all(void);
100 static void hardware_disable_all(void);
101
102 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
103
104 static void kvm_release_pfn_dirty(pfn_t pfn);
105 static void mark_page_dirty_in_slot(struct kvm *kvm,
106                                     struct kvm_memory_slot *memslot, gfn_t gfn);
107
108 __visible bool kvm_rebooting;
109 EXPORT_SYMBOL_GPL(kvm_rebooting);
110
111 static bool largepages_enabled = true;
112
113 bool kvm_is_reserved_pfn(pfn_t pfn)
114 {
115         if (pfn_valid(pfn))
116                 return PageReserved(pfn_to_page(pfn));
117
118         return true;
119 }
120
121 /*
122  * Switches to specified vcpu, until a matching vcpu_put()
123  */
124 int vcpu_load(struct kvm_vcpu *vcpu)
125 {
126         int cpu;
127
128         if (mutex_lock_killable(&vcpu->mutex))
129                 return -EINTR;
130         cpu = get_cpu();
131         preempt_notifier_register(&vcpu->preempt_notifier);
132         kvm_arch_vcpu_load(vcpu, cpu);
133         put_cpu();
134         return 0;
135 }
136
137 void vcpu_put(struct kvm_vcpu *vcpu)
138 {
139         preempt_disable();
140         kvm_arch_vcpu_put(vcpu);
141         preempt_notifier_unregister(&vcpu->preempt_notifier);
142         preempt_enable();
143         mutex_unlock(&vcpu->mutex);
144 }
145
146 static void ack_flush(void *_completed)
147 {
148 }
149
150 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
151 {
152         int i, cpu, me;
153         cpumask_var_t cpus;
154         bool called = true;
155         struct kvm_vcpu *vcpu;
156
157         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
158
159         me = get_cpu();
160         kvm_for_each_vcpu(i, vcpu, kvm) {
161                 kvm_make_request(req, vcpu);
162                 cpu = vcpu->cpu;
163
164                 /* Set ->requests bit before we read ->mode */
165                 smp_mb();
166
167                 if (cpus != NULL && cpu != -1 && cpu != me &&
168                       kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
169                         cpumask_set_cpu(cpu, cpus);
170         }
171         if (unlikely(cpus == NULL))
172                 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
173         else if (!cpumask_empty(cpus))
174                 smp_call_function_many(cpus, ack_flush, NULL, 1);
175         else
176                 called = false;
177         put_cpu();
178         free_cpumask_var(cpus);
179         return called;
180 }
181
182 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
183 void kvm_flush_remote_tlbs(struct kvm *kvm)
184 {
185         long dirty_count = kvm->tlbs_dirty;
186
187         smp_mb();
188         if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
189                 ++kvm->stat.remote_tlb_flush;
190         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
191 }
192 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
193 #endif
194
195 void kvm_reload_remote_mmus(struct kvm *kvm)
196 {
197         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
198 }
199
200 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
201 {
202         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
203 }
204
205 void kvm_make_scan_ioapic_request(struct kvm *kvm)
206 {
207         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
208 }
209
210 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
211 {
212         struct page *page;
213         int r;
214
215         mutex_init(&vcpu->mutex);
216         vcpu->cpu = -1;
217         vcpu->kvm = kvm;
218         vcpu->vcpu_id = id;
219         vcpu->pid = NULL;
220         init_waitqueue_head(&vcpu->wq);
221         kvm_async_pf_vcpu_init(vcpu);
222
223         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
224         if (!page) {
225                 r = -ENOMEM;
226                 goto fail;
227         }
228         vcpu->run = page_address(page);
229
230         kvm_vcpu_set_in_spin_loop(vcpu, false);
231         kvm_vcpu_set_dy_eligible(vcpu, false);
232         vcpu->preempted = false;
233
234         r = kvm_arch_vcpu_init(vcpu);
235         if (r < 0)
236                 goto fail_free_run;
237         return 0;
238
239 fail_free_run:
240         free_page((unsigned long)vcpu->run);
241 fail:
242         return r;
243 }
244 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
245
246 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
247 {
248         put_pid(vcpu->pid);
249         kvm_arch_vcpu_uninit(vcpu);
250         free_page((unsigned long)vcpu->run);
251 }
252 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
253
254 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
255 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
256 {
257         return container_of(mn, struct kvm, mmu_notifier);
258 }
259
260 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
261                                              struct mm_struct *mm,
262                                              unsigned long address)
263 {
264         struct kvm *kvm = mmu_notifier_to_kvm(mn);
265         int need_tlb_flush, idx;
266
267         /*
268          * When ->invalidate_page runs, the linux pte has been zapped
269          * already but the page is still allocated until
270          * ->invalidate_page returns. So if we increase the sequence
271          * here the kvm page fault will notice if the spte can't be
272          * established because the page is going to be freed. If
273          * instead the kvm page fault establishes the spte before
274          * ->invalidate_page runs, kvm_unmap_hva will release it
275          * before returning.
276          *
277          * The sequence increase only need to be seen at spin_unlock
278          * time, and not at spin_lock time.
279          *
280          * Increasing the sequence after the spin_unlock would be
281          * unsafe because the kvm page fault could then establish the
282          * pte after kvm_unmap_hva returned, without noticing the page
283          * is going to be freed.
284          */
285         idx = srcu_read_lock(&kvm->srcu);
286         spin_lock(&kvm->mmu_lock);
287
288         kvm->mmu_notifier_seq++;
289         need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
290         /* we've to flush the tlb before the pages can be freed */
291         if (need_tlb_flush)
292                 kvm_flush_remote_tlbs(kvm);
293
294         spin_unlock(&kvm->mmu_lock);
295
296         kvm_arch_mmu_notifier_invalidate_page(kvm, address);
297
298         srcu_read_unlock(&kvm->srcu, idx);
299 }
300
301 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
302                                         struct mm_struct *mm,
303                                         unsigned long address,
304                                         pte_t pte)
305 {
306         struct kvm *kvm = mmu_notifier_to_kvm(mn);
307         int idx;
308
309         idx = srcu_read_lock(&kvm->srcu);
310         spin_lock(&kvm->mmu_lock);
311         kvm->mmu_notifier_seq++;
312         kvm_set_spte_hva(kvm, address, pte);
313         spin_unlock(&kvm->mmu_lock);
314         srcu_read_unlock(&kvm->srcu, idx);
315 }
316
317 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
318                                                     struct mm_struct *mm,
319                                                     unsigned long start,
320                                                     unsigned long end)
321 {
322         struct kvm *kvm = mmu_notifier_to_kvm(mn);
323         int need_tlb_flush = 0, idx;
324
325         idx = srcu_read_lock(&kvm->srcu);
326         spin_lock(&kvm->mmu_lock);
327         /*
328          * The count increase must become visible at unlock time as no
329          * spte can be established without taking the mmu_lock and
330          * count is also read inside the mmu_lock critical section.
331          */
332         kvm->mmu_notifier_count++;
333         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
334         need_tlb_flush |= kvm->tlbs_dirty;
335         /* we've to flush the tlb before the pages can be freed */
336         if (need_tlb_flush)
337                 kvm_flush_remote_tlbs(kvm);
338
339         spin_unlock(&kvm->mmu_lock);
340         srcu_read_unlock(&kvm->srcu, idx);
341 }
342
343 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
344                                                   struct mm_struct *mm,
345                                                   unsigned long start,
346                                                   unsigned long end)
347 {
348         struct kvm *kvm = mmu_notifier_to_kvm(mn);
349
350         spin_lock(&kvm->mmu_lock);
351         /*
352          * This sequence increase will notify the kvm page fault that
353          * the page that is going to be mapped in the spte could have
354          * been freed.
355          */
356         kvm->mmu_notifier_seq++;
357         smp_wmb();
358         /*
359          * The above sequence increase must be visible before the
360          * below count decrease, which is ensured by the smp_wmb above
361          * in conjunction with the smp_rmb in mmu_notifier_retry().
362          */
363         kvm->mmu_notifier_count--;
364         spin_unlock(&kvm->mmu_lock);
365
366         BUG_ON(kvm->mmu_notifier_count < 0);
367 }
368
369 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
370                                               struct mm_struct *mm,
371                                               unsigned long start,
372                                               unsigned long end)
373 {
374         struct kvm *kvm = mmu_notifier_to_kvm(mn);
375         int young, idx;
376
377         idx = srcu_read_lock(&kvm->srcu);
378         spin_lock(&kvm->mmu_lock);
379
380         young = kvm_age_hva(kvm, start, end);
381         if (young)
382                 kvm_flush_remote_tlbs(kvm);
383
384         spin_unlock(&kvm->mmu_lock);
385         srcu_read_unlock(&kvm->srcu, idx);
386
387         return young;
388 }
389
390 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
391                                        struct mm_struct *mm,
392                                        unsigned long address)
393 {
394         struct kvm *kvm = mmu_notifier_to_kvm(mn);
395         int young, idx;
396
397         idx = srcu_read_lock(&kvm->srcu);
398         spin_lock(&kvm->mmu_lock);
399         young = kvm_test_age_hva(kvm, address);
400         spin_unlock(&kvm->mmu_lock);
401         srcu_read_unlock(&kvm->srcu, idx);
402
403         return young;
404 }
405
406 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
407                                      struct mm_struct *mm)
408 {
409         struct kvm *kvm = mmu_notifier_to_kvm(mn);
410         int idx;
411
412         idx = srcu_read_lock(&kvm->srcu);
413         kvm_arch_flush_shadow_all(kvm);
414         srcu_read_unlock(&kvm->srcu, idx);
415 }
416
417 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
418         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
419         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
420         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
421         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
422         .test_young             = kvm_mmu_notifier_test_young,
423         .change_pte             = kvm_mmu_notifier_change_pte,
424         .release                = kvm_mmu_notifier_release,
425 };
426
427 static int kvm_init_mmu_notifier(struct kvm *kvm)
428 {
429         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
430         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
431 }
432
433 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
434
435 static int kvm_init_mmu_notifier(struct kvm *kvm)
436 {
437         return 0;
438 }
439
440 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
441
442 static void kvm_init_memslots_id(struct kvm *kvm)
443 {
444         int i;
445         struct kvm_memslots *slots = kvm->memslots;
446
447         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
448                 slots->id_to_index[i] = slots->memslots[i].id = i;
449 }
450
451 static struct kvm *kvm_create_vm(unsigned long type)
452 {
453         int r, i;
454         struct kvm *kvm = kvm_arch_alloc_vm();
455
456         if (!kvm)
457                 return ERR_PTR(-ENOMEM);
458
459         r = kvm_arch_init_vm(kvm, type);
460         if (r)
461                 goto out_err_no_disable;
462
463         r = hardware_enable_all();
464         if (r)
465                 goto out_err_no_disable;
466
467 #ifdef CONFIG_HAVE_KVM_IRQFD
468         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
469 #endif
470
471         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
472
473         r = -ENOMEM;
474         kvm->memslots = kvm_kvzalloc(sizeof(struct kvm_memslots));
475         if (!kvm->memslots)
476                 goto out_err_no_srcu;
477
478         /*
479          * Init kvm generation close to the maximum to easily test the
480          * code of handling generation number wrap-around.
481          */
482         kvm->memslots->generation = -150;
483
484         kvm_init_memslots_id(kvm);
485         if (init_srcu_struct(&kvm->srcu))
486                 goto out_err_no_srcu;
487         if (init_srcu_struct(&kvm->irq_srcu))
488                 goto out_err_no_irq_srcu;
489         for (i = 0; i < KVM_NR_BUSES; i++) {
490                 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
491                                         GFP_KERNEL);
492                 if (!kvm->buses[i])
493                         goto out_err;
494         }
495
496         spin_lock_init(&kvm->mmu_lock);
497         kvm->mm = current->mm;
498         atomic_inc(&kvm->mm->mm_count);
499         kvm_eventfd_init(kvm);
500         mutex_init(&kvm->lock);
501         mutex_init(&kvm->irq_lock);
502         mutex_init(&kvm->slots_lock);
503         atomic_set(&kvm->users_count, 1);
504         INIT_LIST_HEAD(&kvm->devices);
505
506         r = kvm_init_mmu_notifier(kvm);
507         if (r)
508                 goto out_err;
509
510         spin_lock(&kvm_lock);
511         list_add(&kvm->vm_list, &vm_list);
512         spin_unlock(&kvm_lock);
513
514         return kvm;
515
516 out_err:
517         cleanup_srcu_struct(&kvm->irq_srcu);
518 out_err_no_irq_srcu:
519         cleanup_srcu_struct(&kvm->srcu);
520 out_err_no_srcu:
521         hardware_disable_all();
522 out_err_no_disable:
523         for (i = 0; i < KVM_NR_BUSES; i++)
524                 kfree(kvm->buses[i]);
525         kvfree(kvm->memslots);
526         kvm_arch_free_vm(kvm);
527         return ERR_PTR(r);
528 }
529
530 /*
531  * Avoid using vmalloc for a small buffer.
532  * Should not be used when the size is statically known.
533  */
534 void *kvm_kvzalloc(unsigned long size)
535 {
536         if (size > PAGE_SIZE)
537                 return vzalloc(size);
538         else
539                 return kzalloc(size, GFP_KERNEL);
540 }
541
542 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
543 {
544         if (!memslot->dirty_bitmap)
545                 return;
546
547         kvfree(memslot->dirty_bitmap);
548         memslot->dirty_bitmap = NULL;
549 }
550
551 /*
552  * Free any memory in @free but not in @dont.
553  */
554 static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free,
555                                   struct kvm_memory_slot *dont)
556 {
557         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
558                 kvm_destroy_dirty_bitmap(free);
559
560         kvm_arch_free_memslot(kvm, free, dont);
561
562         free->npages = 0;
563 }
564
565 static void kvm_free_physmem(struct kvm *kvm)
566 {
567         struct kvm_memslots *slots = kvm->memslots;
568         struct kvm_memory_slot *memslot;
569
570         kvm_for_each_memslot(memslot, slots)
571                 kvm_free_physmem_slot(kvm, memslot, NULL);
572
573         kvfree(kvm->memslots);
574 }
575
576 static void kvm_destroy_devices(struct kvm *kvm)
577 {
578         struct list_head *node, *tmp;
579
580         list_for_each_safe(node, tmp, &kvm->devices) {
581                 struct kvm_device *dev =
582                         list_entry(node, struct kvm_device, vm_node);
583
584                 list_del(node);
585                 dev->ops->destroy(dev);
586         }
587 }
588
589 static void kvm_destroy_vm(struct kvm *kvm)
590 {
591         int i;
592         struct mm_struct *mm = kvm->mm;
593
594         kvm_arch_sync_events(kvm);
595         spin_lock(&kvm_lock);
596         list_del(&kvm->vm_list);
597         spin_unlock(&kvm_lock);
598         kvm_free_irq_routing(kvm);
599         for (i = 0; i < KVM_NR_BUSES; i++)
600                 kvm_io_bus_destroy(kvm->buses[i]);
601         kvm_coalesced_mmio_free(kvm);
602 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
603         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
604 #else
605         kvm_arch_flush_shadow_all(kvm);
606 #endif
607         kvm_arch_destroy_vm(kvm);
608         kvm_destroy_devices(kvm);
609         kvm_free_physmem(kvm);
610         cleanup_srcu_struct(&kvm->irq_srcu);
611         cleanup_srcu_struct(&kvm->srcu);
612         kvm_arch_free_vm(kvm);
613         hardware_disable_all();
614         mmdrop(mm);
615 }
616
617 void kvm_get_kvm(struct kvm *kvm)
618 {
619         atomic_inc(&kvm->users_count);
620 }
621 EXPORT_SYMBOL_GPL(kvm_get_kvm);
622
623 void kvm_put_kvm(struct kvm *kvm)
624 {
625         if (atomic_dec_and_test(&kvm->users_count))
626                 kvm_destroy_vm(kvm);
627 }
628 EXPORT_SYMBOL_GPL(kvm_put_kvm);
629
630
631 static int kvm_vm_release(struct inode *inode, struct file *filp)
632 {
633         struct kvm *kvm = filp->private_data;
634
635         kvm_irqfd_release(kvm);
636
637         kvm_put_kvm(kvm);
638         return 0;
639 }
640
641 /*
642  * Allocation size is twice as large as the actual dirty bitmap size.
643  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
644  */
645 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
646 {
647         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
648
649         memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
650         if (!memslot->dirty_bitmap)
651                 return -ENOMEM;
652
653         return 0;
654 }
655
656 /*
657  * Insert memslot and re-sort memslots based on their GFN,
658  * so binary search could be used to lookup GFN.
659  * Sorting algorithm takes advantage of having initially
660  * sorted array and known changed memslot position.
661  */
662 static void update_memslots(struct kvm_memslots *slots,
663                             struct kvm_memory_slot *new)
664 {
665         int id = new->id;
666         int i = slots->id_to_index[id];
667         struct kvm_memory_slot *mslots = slots->memslots;
668
669         WARN_ON(mslots[i].id != id);
670         if (!new->npages) {
671                 WARN_ON(!mslots[i].npages);
672                 new->base_gfn = 0;
673                 new->flags = 0;
674                 if (mslots[i].npages)
675                         slots->used_slots--;
676         } else {
677                 if (!mslots[i].npages)
678                         slots->used_slots++;
679         }
680
681         while (i < KVM_MEM_SLOTS_NUM - 1 &&
682                new->base_gfn <= mslots[i + 1].base_gfn) {
683                 if (!mslots[i + 1].npages)
684                         break;
685                 mslots[i] = mslots[i + 1];
686                 slots->id_to_index[mslots[i].id] = i;
687                 i++;
688         }
689
690         /*
691          * The ">=" is needed when creating a slot with base_gfn == 0,
692          * so that it moves before all those with base_gfn == npages == 0.
693          *
694          * On the other hand, if new->npages is zero, the above loop has
695          * already left i pointing to the beginning of the empty part of
696          * mslots, and the ">=" would move the hole backwards in this
697          * case---which is wrong.  So skip the loop when deleting a slot.
698          */
699         if (new->npages) {
700                 while (i > 0 &&
701                        new->base_gfn >= mslots[i - 1].base_gfn) {
702                         mslots[i] = mslots[i - 1];
703                         slots->id_to_index[mslots[i].id] = i;
704                         i--;
705                 }
706         } else
707                 WARN_ON_ONCE(i != slots->used_slots);
708
709         mslots[i] = *new;
710         slots->id_to_index[mslots[i].id] = i;
711 }
712
713 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
714 {
715         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
716
717 #ifdef __KVM_HAVE_READONLY_MEM
718         valid_flags |= KVM_MEM_READONLY;
719 #endif
720
721         if (mem->flags & ~valid_flags)
722                 return -EINVAL;
723
724         return 0;
725 }
726
727 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
728                 struct kvm_memslots *slots)
729 {
730         struct kvm_memslots *old_memslots = kvm->memslots;
731
732         /*
733          * Set the low bit in the generation, which disables SPTE caching
734          * until the end of synchronize_srcu_expedited.
735          */
736         WARN_ON(old_memslots->generation & 1);
737         slots->generation = old_memslots->generation + 1;
738
739         rcu_assign_pointer(kvm->memslots, slots);
740         synchronize_srcu_expedited(&kvm->srcu);
741
742         /*
743          * Increment the new memslot generation a second time. This prevents
744          * vm exits that race with memslot updates from caching a memslot
745          * generation that will (potentially) be valid forever.
746          */
747         slots->generation++;
748
749         kvm_arch_memslots_updated(kvm);
750
751         return old_memslots;
752 }
753
754 /*
755  * Allocate some memory and give it an address in the guest physical address
756  * space.
757  *
758  * Discontiguous memory is allowed, mostly for framebuffers.
759  *
760  * Must be called holding kvm->slots_lock for write.
761  */
762 int __kvm_set_memory_region(struct kvm *kvm,
763                             struct kvm_userspace_memory_region *mem)
764 {
765         int r;
766         gfn_t base_gfn;
767         unsigned long npages;
768         struct kvm_memory_slot *slot;
769         struct kvm_memory_slot old, new;
770         struct kvm_memslots *slots = NULL, *old_memslots;
771         enum kvm_mr_change change;
772
773         r = check_memory_region_flags(mem);
774         if (r)
775                 goto out;
776
777         r = -EINVAL;
778         /* General sanity checks */
779         if (mem->memory_size & (PAGE_SIZE - 1))
780                 goto out;
781         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
782                 goto out;
783         /* We can read the guest memory with __xxx_user() later on. */
784         if ((mem->slot < KVM_USER_MEM_SLOTS) &&
785             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
786              !access_ok(VERIFY_WRITE,
787                         (void __user *)(unsigned long)mem->userspace_addr,
788                         mem->memory_size)))
789                 goto out;
790         if (mem->slot >= KVM_MEM_SLOTS_NUM)
791                 goto out;
792         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
793                 goto out;
794
795         slot = id_to_memslot(kvm->memslots, mem->slot);
796         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
797         npages = mem->memory_size >> PAGE_SHIFT;
798
799         if (npages > KVM_MEM_MAX_NR_PAGES)
800                 goto out;
801
802         if (!npages)
803                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
804
805         new = old = *slot;
806
807         new.id = mem->slot;
808         new.base_gfn = base_gfn;
809         new.npages = npages;
810         new.flags = mem->flags;
811
812         if (npages) {
813                 if (!old.npages)
814                         change = KVM_MR_CREATE;
815                 else { /* Modify an existing slot. */
816                         if ((mem->userspace_addr != old.userspace_addr) ||
817                             (npages != old.npages) ||
818                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
819                                 goto out;
820
821                         if (base_gfn != old.base_gfn)
822                                 change = KVM_MR_MOVE;
823                         else if (new.flags != old.flags)
824                                 change = KVM_MR_FLAGS_ONLY;
825                         else { /* Nothing to change. */
826                                 r = 0;
827                                 goto out;
828                         }
829                 }
830         } else if (old.npages) {
831                 change = KVM_MR_DELETE;
832         } else /* Modify a non-existent slot: disallowed. */
833                 goto out;
834
835         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
836                 /* Check for overlaps */
837                 r = -EEXIST;
838                 kvm_for_each_memslot(slot, kvm->memslots) {
839                         if ((slot->id >= KVM_USER_MEM_SLOTS) ||
840                             (slot->id == mem->slot))
841                                 continue;
842                         if (!((base_gfn + npages <= slot->base_gfn) ||
843                               (base_gfn >= slot->base_gfn + slot->npages)))
844                                 goto out;
845                 }
846         }
847
848         /* Free page dirty bitmap if unneeded */
849         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
850                 new.dirty_bitmap = NULL;
851
852         r = -ENOMEM;
853         if (change == KVM_MR_CREATE) {
854                 new.userspace_addr = mem->userspace_addr;
855
856                 if (kvm_arch_create_memslot(kvm, &new, npages))
857                         goto out_free;
858         }
859
860         /* Allocate page dirty bitmap if needed */
861         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
862                 if (kvm_create_dirty_bitmap(&new) < 0)
863                         goto out_free;
864         }
865
866         slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
867         if (!slots)
868                 goto out_free;
869         memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
870
871         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
872                 slot = id_to_memslot(slots, mem->slot);
873                 slot->flags |= KVM_MEMSLOT_INVALID;
874
875                 old_memslots = install_new_memslots(kvm, slots);
876
877                 /* slot was deleted or moved, clear iommu mapping */
878                 kvm_iommu_unmap_pages(kvm, &old);
879                 /* From this point no new shadow pages pointing to a deleted,
880                  * or moved, memslot will be created.
881                  *
882                  * validation of sp->gfn happens in:
883                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
884                  *      - kvm_is_visible_gfn (mmu_check_roots)
885                  */
886                 kvm_arch_flush_shadow_memslot(kvm, slot);
887
888                 /*
889                  * We can re-use the old_memslots from above, the only difference
890                  * from the currently installed memslots is the invalid flag.  This
891                  * will get overwritten by update_memslots anyway.
892                  */
893                 slots = old_memslots;
894         }
895
896         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
897         if (r)
898                 goto out_slots;
899
900         /* actual memory is freed via old in kvm_free_physmem_slot below */
901         if (change == KVM_MR_DELETE) {
902                 new.dirty_bitmap = NULL;
903                 memset(&new.arch, 0, sizeof(new.arch));
904         }
905
906         update_memslots(slots, &new);
907         old_memslots = install_new_memslots(kvm, slots);
908
909         kvm_arch_commit_memory_region(kvm, mem, &old, change);
910
911         kvm_free_physmem_slot(kvm, &old, &new);
912         kvfree(old_memslots);
913
914         /*
915          * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
916          * un-mapped and re-mapped if their base changes.  Since base change
917          * unmapping is handled above with slot deletion, mapping alone is
918          * needed here.  Anything else the iommu might care about for existing
919          * slots (size changes, userspace addr changes and read-only flag
920          * changes) is disallowed above, so any other attribute changes getting
921          * here can be skipped.
922          */
923         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
924                 r = kvm_iommu_map_pages(kvm, &new);
925                 return r;
926         }
927
928         return 0;
929
930 out_slots:
931         kvfree(slots);
932 out_free:
933         kvm_free_physmem_slot(kvm, &new, &old);
934 out:
935         return r;
936 }
937 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
938
939 int kvm_set_memory_region(struct kvm *kvm,
940                           struct kvm_userspace_memory_region *mem)
941 {
942         int r;
943
944         mutex_lock(&kvm->slots_lock);
945         r = __kvm_set_memory_region(kvm, mem);
946         mutex_unlock(&kvm->slots_lock);
947         return r;
948 }
949 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
950
951 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
952                                           struct kvm_userspace_memory_region *mem)
953 {
954         if (mem->slot >= KVM_USER_MEM_SLOTS)
955                 return -EINVAL;
956         return kvm_set_memory_region(kvm, mem);
957 }
958
959 int kvm_get_dirty_log(struct kvm *kvm,
960                         struct kvm_dirty_log *log, int *is_dirty)
961 {
962         struct kvm_memory_slot *memslot;
963         int r, i;
964         unsigned long n;
965         unsigned long any = 0;
966
967         r = -EINVAL;
968         if (log->slot >= KVM_USER_MEM_SLOTS)
969                 goto out;
970
971         memslot = id_to_memslot(kvm->memslots, log->slot);
972         r = -ENOENT;
973         if (!memslot->dirty_bitmap)
974                 goto out;
975
976         n = kvm_dirty_bitmap_bytes(memslot);
977
978         for (i = 0; !any && i < n/sizeof(long); ++i)
979                 any = memslot->dirty_bitmap[i];
980
981         r = -EFAULT;
982         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
983                 goto out;
984
985         if (any)
986                 *is_dirty = 1;
987
988         r = 0;
989 out:
990         return r;
991 }
992 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
993
994 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
995 /**
996  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
997  *      are dirty write protect them for next write.
998  * @kvm:        pointer to kvm instance
999  * @log:        slot id and address to which we copy the log
1000  * @is_dirty:   flag set if any page is dirty
1001  *
1002  * We need to keep it in mind that VCPU threads can write to the bitmap
1003  * concurrently. So, to avoid losing track of dirty pages we keep the
1004  * following order:
1005  *
1006  *    1. Take a snapshot of the bit and clear it if needed.
1007  *    2. Write protect the corresponding page.
1008  *    3. Copy the snapshot to the userspace.
1009  *    4. Upon return caller flushes TLB's if needed.
1010  *
1011  * Between 2 and 4, the guest may write to the page using the remaining TLB
1012  * entry.  This is not a problem because the page is reported dirty using
1013  * the snapshot taken before and step 4 ensures that writes done after
1014  * exiting to userspace will be logged for the next call.
1015  *
1016  */
1017 int kvm_get_dirty_log_protect(struct kvm *kvm,
1018                         struct kvm_dirty_log *log, bool *is_dirty)
1019 {
1020         struct kvm_memory_slot *memslot;
1021         int r, i;
1022         unsigned long n;
1023         unsigned long *dirty_bitmap;
1024         unsigned long *dirty_bitmap_buffer;
1025
1026         r = -EINVAL;
1027         if (log->slot >= KVM_USER_MEM_SLOTS)
1028                 goto out;
1029
1030         memslot = id_to_memslot(kvm->memslots, log->slot);
1031
1032         dirty_bitmap = memslot->dirty_bitmap;
1033         r = -ENOENT;
1034         if (!dirty_bitmap)
1035                 goto out;
1036
1037         n = kvm_dirty_bitmap_bytes(memslot);
1038
1039         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1040         memset(dirty_bitmap_buffer, 0, n);
1041
1042         spin_lock(&kvm->mmu_lock);
1043         *is_dirty = false;
1044         for (i = 0; i < n / sizeof(long); i++) {
1045                 unsigned long mask;
1046                 gfn_t offset;
1047
1048                 if (!dirty_bitmap[i])
1049                         continue;
1050
1051                 *is_dirty = true;
1052
1053                 mask = xchg(&dirty_bitmap[i], 0);
1054                 dirty_bitmap_buffer[i] = mask;
1055
1056                 if (mask) {
1057                         offset = i * BITS_PER_LONG;
1058                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1059                                                                 offset, mask);
1060                 }
1061         }
1062
1063         spin_unlock(&kvm->mmu_lock);
1064
1065         r = -EFAULT;
1066         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1067                 goto out;
1068
1069         r = 0;
1070 out:
1071         return r;
1072 }
1073 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1074 #endif
1075
1076 bool kvm_largepages_enabled(void)
1077 {
1078         return largepages_enabled;
1079 }
1080
1081 void kvm_disable_largepages(void)
1082 {
1083         largepages_enabled = false;
1084 }
1085 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1086
1087 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1088 {
1089         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1090 }
1091 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1092
1093 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1094 {
1095         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1096
1097         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1098               memslot->flags & KVM_MEMSLOT_INVALID)
1099                 return 0;
1100
1101         return 1;
1102 }
1103 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1104
1105 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1106 {
1107         struct vm_area_struct *vma;
1108         unsigned long addr, size;
1109
1110         size = PAGE_SIZE;
1111
1112         addr = gfn_to_hva(kvm, gfn);
1113         if (kvm_is_error_hva(addr))
1114                 return PAGE_SIZE;
1115
1116         down_read(&current->mm->mmap_sem);
1117         vma = find_vma(current->mm, addr);
1118         if (!vma)
1119                 goto out;
1120
1121         size = vma_kernel_pagesize(vma);
1122
1123 out:
1124         up_read(&current->mm->mmap_sem);
1125
1126         return size;
1127 }
1128
1129 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1130 {
1131         return slot->flags & KVM_MEM_READONLY;
1132 }
1133
1134 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1135                                        gfn_t *nr_pages, bool write)
1136 {
1137         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1138                 return KVM_HVA_ERR_BAD;
1139
1140         if (memslot_is_readonly(slot) && write)
1141                 return KVM_HVA_ERR_RO_BAD;
1142
1143         if (nr_pages)
1144                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1145
1146         return __gfn_to_hva_memslot(slot, gfn);
1147 }
1148
1149 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1150                                      gfn_t *nr_pages)
1151 {
1152         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1153 }
1154
1155 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1156                                         gfn_t gfn)
1157 {
1158         return gfn_to_hva_many(slot, gfn, NULL);
1159 }
1160 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1161
1162 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1163 {
1164         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1165 }
1166 EXPORT_SYMBOL_GPL(gfn_to_hva);
1167
1168 /*
1169  * If writable is set to false, the hva returned by this function is only
1170  * allowed to be read.
1171  */
1172 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1173                                       gfn_t gfn, bool *writable)
1174 {
1175         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1176
1177         if (!kvm_is_error_hva(hva) && writable)
1178                 *writable = !memslot_is_readonly(slot);
1179
1180         return hva;
1181 }
1182
1183 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1184 {
1185         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1186
1187         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1188 }
1189
1190 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1191         unsigned long start, int write, struct page **page)
1192 {
1193         int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1194
1195         if (write)
1196                 flags |= FOLL_WRITE;
1197
1198         return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1199 }
1200
1201 static inline int check_user_page_hwpoison(unsigned long addr)
1202 {
1203         int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1204
1205         rc = __get_user_pages(current, current->mm, addr, 1,
1206                               flags, NULL, NULL, NULL);
1207         return rc == -EHWPOISON;
1208 }
1209
1210 /*
1211  * The atomic path to get the writable pfn which will be stored in @pfn,
1212  * true indicates success, otherwise false is returned.
1213  */
1214 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1215                             bool write_fault, bool *writable, pfn_t *pfn)
1216 {
1217         struct page *page[1];
1218         int npages;
1219
1220         if (!(async || atomic))
1221                 return false;
1222
1223         /*
1224          * Fast pin a writable pfn only if it is a write fault request
1225          * or the caller allows to map a writable pfn for a read fault
1226          * request.
1227          */
1228         if (!(write_fault || writable))
1229                 return false;
1230
1231         npages = __get_user_pages_fast(addr, 1, 1, page);
1232         if (npages == 1) {
1233                 *pfn = page_to_pfn(page[0]);
1234
1235                 if (writable)
1236                         *writable = true;
1237                 return true;
1238         }
1239
1240         return false;
1241 }
1242
1243 /*
1244  * The slow path to get the pfn of the specified host virtual address,
1245  * 1 indicates success, -errno is returned if error is detected.
1246  */
1247 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1248                            bool *writable, pfn_t *pfn)
1249 {
1250         struct page *page[1];
1251         int npages = 0;
1252
1253         might_sleep();
1254
1255         if (writable)
1256                 *writable = write_fault;
1257
1258         if (async) {
1259                 down_read(&current->mm->mmap_sem);
1260                 npages = get_user_page_nowait(current, current->mm,
1261                                               addr, write_fault, page);
1262                 up_read(&current->mm->mmap_sem);
1263         } else
1264                 npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1265                                                    write_fault, 0, page,
1266                                                    FOLL_TOUCH|FOLL_HWPOISON);
1267         if (npages != 1)
1268                 return npages;
1269
1270         /* map read fault as writable if possible */
1271         if (unlikely(!write_fault) && writable) {
1272                 struct page *wpage[1];
1273
1274                 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1275                 if (npages == 1) {
1276                         *writable = true;
1277                         put_page(page[0]);
1278                         page[0] = wpage[0];
1279                 }
1280
1281                 npages = 1;
1282         }
1283         *pfn = page_to_pfn(page[0]);
1284         return npages;
1285 }
1286
1287 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1288 {
1289         if (unlikely(!(vma->vm_flags & VM_READ)))
1290                 return false;
1291
1292         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1293                 return false;
1294
1295         return true;
1296 }
1297
1298 /*
1299  * Pin guest page in memory and return its pfn.
1300  * @addr: host virtual address which maps memory to the guest
1301  * @atomic: whether this function can sleep
1302  * @async: whether this function need to wait IO complete if the
1303  *         host page is not in the memory
1304  * @write_fault: whether we should get a writable host page
1305  * @writable: whether it allows to map a writable host page for !@write_fault
1306  *
1307  * The function will map a writable host page for these two cases:
1308  * 1): @write_fault = true
1309  * 2): @write_fault = false && @writable, @writable will tell the caller
1310  *     whether the mapping is writable.
1311  */
1312 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1313                         bool write_fault, bool *writable)
1314 {
1315         struct vm_area_struct *vma;
1316         pfn_t pfn = 0;
1317         int npages;
1318
1319         /* we can do it either atomically or asynchronously, not both */
1320         BUG_ON(atomic && async);
1321
1322         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1323                 return pfn;
1324
1325         if (atomic)
1326                 return KVM_PFN_ERR_FAULT;
1327
1328         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1329         if (npages == 1)
1330                 return pfn;
1331
1332         down_read(&current->mm->mmap_sem);
1333         if (npages == -EHWPOISON ||
1334               (!async && check_user_page_hwpoison(addr))) {
1335                 pfn = KVM_PFN_ERR_HWPOISON;
1336                 goto exit;
1337         }
1338
1339         vma = find_vma_intersection(current->mm, addr, addr + 1);
1340
1341         if (vma == NULL)
1342                 pfn = KVM_PFN_ERR_FAULT;
1343         else if ((vma->vm_flags & VM_PFNMAP)) {
1344                 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1345                         vma->vm_pgoff;
1346                 BUG_ON(!kvm_is_reserved_pfn(pfn));
1347         } else {
1348                 if (async && vma_is_valid(vma, write_fault))
1349                         *async = true;
1350                 pfn = KVM_PFN_ERR_FAULT;
1351         }
1352 exit:
1353         up_read(&current->mm->mmap_sem);
1354         return pfn;
1355 }
1356
1357 static pfn_t
1358 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1359                      bool *async, bool write_fault, bool *writable)
1360 {
1361         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1362
1363         if (addr == KVM_HVA_ERR_RO_BAD)
1364                 return KVM_PFN_ERR_RO_FAULT;
1365
1366         if (kvm_is_error_hva(addr))
1367                 return KVM_PFN_NOSLOT;
1368
1369         /* Do not map writable pfn in the readonly memslot. */
1370         if (writable && memslot_is_readonly(slot)) {
1371                 *writable = false;
1372                 writable = NULL;
1373         }
1374
1375         return hva_to_pfn(addr, atomic, async, write_fault,
1376                           writable);
1377 }
1378
1379 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1380                           bool write_fault, bool *writable)
1381 {
1382         struct kvm_memory_slot *slot;
1383
1384         if (async)
1385                 *async = false;
1386
1387         slot = gfn_to_memslot(kvm, gfn);
1388
1389         return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1390                                     writable);
1391 }
1392
1393 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1394 {
1395         return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1396 }
1397 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1398
1399 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1400                        bool write_fault, bool *writable)
1401 {
1402         return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1403 }
1404 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1405
1406 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1407 {
1408         return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1409 }
1410 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1411
1412 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1413                       bool *writable)
1414 {
1415         return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1416 }
1417 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1418
1419 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1420 {
1421         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1422 }
1423
1424 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1425 {
1426         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1427 }
1428 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1429
1430 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1431                                                                   int nr_pages)
1432 {
1433         unsigned long addr;
1434         gfn_t entry;
1435
1436         addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1437         if (kvm_is_error_hva(addr))
1438                 return -1;
1439
1440         if (entry < nr_pages)
1441                 return 0;
1442
1443         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1444 }
1445 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1446
1447 static struct page *kvm_pfn_to_page(pfn_t pfn)
1448 {
1449         if (is_error_noslot_pfn(pfn))
1450                 return KVM_ERR_PTR_BAD_PAGE;
1451
1452         if (kvm_is_reserved_pfn(pfn)) {
1453                 WARN_ON(1);
1454                 return KVM_ERR_PTR_BAD_PAGE;
1455         }
1456
1457         return pfn_to_page(pfn);
1458 }
1459
1460 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1461 {
1462         pfn_t pfn;
1463
1464         pfn = gfn_to_pfn(kvm, gfn);
1465
1466         return kvm_pfn_to_page(pfn);
1467 }
1468 EXPORT_SYMBOL_GPL(gfn_to_page);
1469
1470 void kvm_release_page_clean(struct page *page)
1471 {
1472         WARN_ON(is_error_page(page));
1473
1474         kvm_release_pfn_clean(page_to_pfn(page));
1475 }
1476 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1477
1478 void kvm_release_pfn_clean(pfn_t pfn)
1479 {
1480         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1481                 put_page(pfn_to_page(pfn));
1482 }
1483 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1484
1485 void kvm_release_page_dirty(struct page *page)
1486 {
1487         WARN_ON(is_error_page(page));
1488
1489         kvm_release_pfn_dirty(page_to_pfn(page));
1490 }
1491 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1492
1493 static void kvm_release_pfn_dirty(pfn_t pfn)
1494 {
1495         kvm_set_pfn_dirty(pfn);
1496         kvm_release_pfn_clean(pfn);
1497 }
1498
1499 void kvm_set_pfn_dirty(pfn_t pfn)
1500 {
1501         if (!kvm_is_reserved_pfn(pfn)) {
1502                 struct page *page = pfn_to_page(pfn);
1503
1504                 if (!PageReserved(page))
1505                         SetPageDirty(page);
1506         }
1507 }
1508 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1509
1510 void kvm_set_pfn_accessed(pfn_t pfn)
1511 {
1512         if (!kvm_is_reserved_pfn(pfn))
1513                 mark_page_accessed(pfn_to_page(pfn));
1514 }
1515 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1516
1517 void kvm_get_pfn(pfn_t pfn)
1518 {
1519         if (!kvm_is_reserved_pfn(pfn))
1520                 get_page(pfn_to_page(pfn));
1521 }
1522 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1523
1524 static int next_segment(unsigned long len, int offset)
1525 {
1526         if (len > PAGE_SIZE - offset)
1527                 return PAGE_SIZE - offset;
1528         else
1529                 return len;
1530 }
1531
1532 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1533                         int len)
1534 {
1535         int r;
1536         unsigned long addr;
1537
1538         addr = gfn_to_hva_prot(kvm, gfn, NULL);
1539         if (kvm_is_error_hva(addr))
1540                 return -EFAULT;
1541         r = __copy_from_user(data, (void __user *)addr + offset, len);
1542         if (r)
1543                 return -EFAULT;
1544         return 0;
1545 }
1546 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1547
1548 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1549 {
1550         gfn_t gfn = gpa >> PAGE_SHIFT;
1551         int seg;
1552         int offset = offset_in_page(gpa);
1553         int ret;
1554
1555         while ((seg = next_segment(len, offset)) != 0) {
1556                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1557                 if (ret < 0)
1558                         return ret;
1559                 offset = 0;
1560                 len -= seg;
1561                 data += seg;
1562                 ++gfn;
1563         }
1564         return 0;
1565 }
1566 EXPORT_SYMBOL_GPL(kvm_read_guest);
1567
1568 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1569                           unsigned long len)
1570 {
1571         int r;
1572         unsigned long addr;
1573         gfn_t gfn = gpa >> PAGE_SHIFT;
1574         int offset = offset_in_page(gpa);
1575
1576         addr = gfn_to_hva_prot(kvm, gfn, NULL);
1577         if (kvm_is_error_hva(addr))
1578                 return -EFAULT;
1579         pagefault_disable();
1580         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1581         pagefault_enable();
1582         if (r)
1583                 return -EFAULT;
1584         return 0;
1585 }
1586 EXPORT_SYMBOL(kvm_read_guest_atomic);
1587
1588 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1589                          int offset, int len)
1590 {
1591         int r;
1592         unsigned long addr;
1593
1594         addr = gfn_to_hva(kvm, gfn);
1595         if (kvm_is_error_hva(addr))
1596                 return -EFAULT;
1597         r = __copy_to_user((void __user *)addr + offset, data, len);
1598         if (r)
1599                 return -EFAULT;
1600         mark_page_dirty(kvm, gfn);
1601         return 0;
1602 }
1603 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1604
1605 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1606                     unsigned long len)
1607 {
1608         gfn_t gfn = gpa >> PAGE_SHIFT;
1609         int seg;
1610         int offset = offset_in_page(gpa);
1611         int ret;
1612
1613         while ((seg = next_segment(len, offset)) != 0) {
1614                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1615                 if (ret < 0)
1616                         return ret;
1617                 offset = 0;
1618                 len -= seg;
1619                 data += seg;
1620                 ++gfn;
1621         }
1622         return 0;
1623 }
1624 EXPORT_SYMBOL_GPL(kvm_write_guest);
1625
1626 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1627                               gpa_t gpa, unsigned long len)
1628 {
1629         struct kvm_memslots *slots = kvm_memslots(kvm);
1630         int offset = offset_in_page(gpa);
1631         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1632         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1633         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1634         gfn_t nr_pages_avail;
1635
1636         ghc->gpa = gpa;
1637         ghc->generation = slots->generation;
1638         ghc->len = len;
1639         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1640         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1641         if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1642                 ghc->hva += offset;
1643         } else {
1644                 /*
1645                  * If the requested region crosses two memslots, we still
1646                  * verify that the entire region is valid here.
1647                  */
1648                 while (start_gfn <= end_gfn) {
1649                         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1650                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1651                                                    &nr_pages_avail);
1652                         if (kvm_is_error_hva(ghc->hva))
1653                                 return -EFAULT;
1654                         start_gfn += nr_pages_avail;
1655                 }
1656                 /* Use the slow path for cross page reads and writes. */
1657                 ghc->memslot = NULL;
1658         }
1659         return 0;
1660 }
1661 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1662
1663 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1664                            void *data, unsigned long len)
1665 {
1666         struct kvm_memslots *slots = kvm_memslots(kvm);
1667         int r;
1668
1669         BUG_ON(len > ghc->len);
1670
1671         if (slots->generation != ghc->generation)
1672                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1673
1674         if (unlikely(!ghc->memslot))
1675                 return kvm_write_guest(kvm, ghc->gpa, data, len);
1676
1677         if (kvm_is_error_hva(ghc->hva))
1678                 return -EFAULT;
1679
1680         r = __copy_to_user((void __user *)ghc->hva, data, len);
1681         if (r)
1682                 return -EFAULT;
1683         mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1684
1685         return 0;
1686 }
1687 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1688
1689 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1690                            void *data, unsigned long len)
1691 {
1692         struct kvm_memslots *slots = kvm_memslots(kvm);
1693         int r;
1694
1695         BUG_ON(len > ghc->len);
1696
1697         if (slots->generation != ghc->generation)
1698                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1699
1700         if (unlikely(!ghc->memslot))
1701                 return kvm_read_guest(kvm, ghc->gpa, data, len);
1702
1703         if (kvm_is_error_hva(ghc->hva))
1704                 return -EFAULT;
1705
1706         r = __copy_from_user(data, (void __user *)ghc->hva, len);
1707         if (r)
1708                 return -EFAULT;
1709
1710         return 0;
1711 }
1712 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1713
1714 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1715 {
1716         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1717
1718         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1719 }
1720 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1721
1722 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1723 {
1724         gfn_t gfn = gpa >> PAGE_SHIFT;
1725         int seg;
1726         int offset = offset_in_page(gpa);
1727         int ret;
1728
1729         while ((seg = next_segment(len, offset)) != 0) {
1730                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1731                 if (ret < 0)
1732                         return ret;
1733                 offset = 0;
1734                 len -= seg;
1735                 ++gfn;
1736         }
1737         return 0;
1738 }
1739 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1740
1741 static void mark_page_dirty_in_slot(struct kvm *kvm,
1742                                     struct kvm_memory_slot *memslot,
1743                                     gfn_t gfn)
1744 {
1745         if (memslot && memslot->dirty_bitmap) {
1746                 unsigned long rel_gfn = gfn - memslot->base_gfn;
1747
1748                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1749         }
1750 }
1751
1752 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1753 {
1754         struct kvm_memory_slot *memslot;
1755
1756         memslot = gfn_to_memslot(kvm, gfn);
1757         mark_page_dirty_in_slot(kvm, memslot, gfn);
1758 }
1759 EXPORT_SYMBOL_GPL(mark_page_dirty);
1760
1761 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
1762 {
1763         if (kvm_arch_vcpu_runnable(vcpu)) {
1764                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1765                 return -EINTR;
1766         }
1767         if (kvm_cpu_has_pending_timer(vcpu))
1768                 return -EINTR;
1769         if (signal_pending(current))
1770                 return -EINTR;
1771
1772         return 0;
1773 }
1774
1775 /*
1776  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1777  */
1778 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1779 {
1780         ktime_t start, cur;
1781         DEFINE_WAIT(wait);
1782         bool waited = false;
1783
1784         start = cur = ktime_get();
1785         if (halt_poll_ns) {
1786                 ktime_t stop = ktime_add_ns(ktime_get(), halt_poll_ns);
1787
1788                 do {
1789                         /*
1790                          * This sets KVM_REQ_UNHALT if an interrupt
1791                          * arrives.
1792                          */
1793                         if (kvm_vcpu_check_block(vcpu) < 0) {
1794                                 ++vcpu->stat.halt_successful_poll;
1795                                 goto out;
1796                         }
1797                         cur = ktime_get();
1798                 } while (single_task_running() && ktime_before(cur, stop));
1799         }
1800
1801         for (;;) {
1802                 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1803
1804                 if (kvm_vcpu_check_block(vcpu) < 0)
1805                         break;
1806
1807                 waited = true;
1808                 schedule();
1809         }
1810
1811         finish_wait(&vcpu->wq, &wait);
1812         cur = ktime_get();
1813
1814 out:
1815         trace_kvm_vcpu_wakeup(ktime_to_ns(cur) - ktime_to_ns(start), waited);
1816 }
1817 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
1818
1819 #ifndef CONFIG_S390
1820 /*
1821  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1822  */
1823 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1824 {
1825         int me;
1826         int cpu = vcpu->cpu;
1827         wait_queue_head_t *wqp;
1828
1829         wqp = kvm_arch_vcpu_wq(vcpu);
1830         if (waitqueue_active(wqp)) {
1831                 wake_up_interruptible(wqp);
1832                 ++vcpu->stat.halt_wakeup;
1833         }
1834
1835         me = get_cpu();
1836         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1837                 if (kvm_arch_vcpu_should_kick(vcpu))
1838                         smp_send_reschedule(cpu);
1839         put_cpu();
1840 }
1841 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1842 #endif /* !CONFIG_S390 */
1843
1844 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
1845 {
1846         struct pid *pid;
1847         struct task_struct *task = NULL;
1848         int ret = 0;
1849
1850         rcu_read_lock();
1851         pid = rcu_dereference(target->pid);
1852         if (pid)
1853                 task = get_pid_task(pid, PIDTYPE_PID);
1854         rcu_read_unlock();
1855         if (!task)
1856                 return ret;
1857         ret = yield_to(task, 1);
1858         put_task_struct(task);
1859
1860         return ret;
1861 }
1862 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1863
1864 /*
1865  * Helper that checks whether a VCPU is eligible for directed yield.
1866  * Most eligible candidate to yield is decided by following heuristics:
1867  *
1868  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1869  *  (preempted lock holder), indicated by @in_spin_loop.
1870  *  Set at the beiginning and cleared at the end of interception/PLE handler.
1871  *
1872  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1873  *  chance last time (mostly it has become eligible now since we have probably
1874  *  yielded to lockholder in last iteration. This is done by toggling
1875  *  @dy_eligible each time a VCPU checked for eligibility.)
1876  *
1877  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1878  *  to preempted lock-holder could result in wrong VCPU selection and CPU
1879  *  burning. Giving priority for a potential lock-holder increases lock
1880  *  progress.
1881  *
1882  *  Since algorithm is based on heuristics, accessing another VCPU data without
1883  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
1884  *  and continue with next VCPU and so on.
1885  */
1886 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1887 {
1888 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1889         bool eligible;
1890
1891         eligible = !vcpu->spin_loop.in_spin_loop ||
1892                     vcpu->spin_loop.dy_eligible;
1893
1894         if (vcpu->spin_loop.in_spin_loop)
1895                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1896
1897         return eligible;
1898 #else
1899         return true;
1900 #endif
1901 }
1902
1903 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1904 {
1905         struct kvm *kvm = me->kvm;
1906         struct kvm_vcpu *vcpu;
1907         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1908         int yielded = 0;
1909         int try = 3;
1910         int pass;
1911         int i;
1912
1913         kvm_vcpu_set_in_spin_loop(me, true);
1914         /*
1915          * We boost the priority of a VCPU that is runnable but not
1916          * currently running, because it got preempted by something
1917          * else and called schedule in __vcpu_run.  Hopefully that
1918          * VCPU is holding the lock that we need and will release it.
1919          * We approximate round-robin by starting at the last boosted VCPU.
1920          */
1921         for (pass = 0; pass < 2 && !yielded && try; pass++) {
1922                 kvm_for_each_vcpu(i, vcpu, kvm) {
1923                         if (!pass && i <= last_boosted_vcpu) {
1924                                 i = last_boosted_vcpu;
1925                                 continue;
1926                         } else if (pass && i > last_boosted_vcpu)
1927                                 break;
1928                         if (!ACCESS_ONCE(vcpu->preempted))
1929                                 continue;
1930                         if (vcpu == me)
1931                                 continue;
1932                         if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
1933                                 continue;
1934                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1935                                 continue;
1936
1937                         yielded = kvm_vcpu_yield_to(vcpu);
1938                         if (yielded > 0) {
1939                                 kvm->last_boosted_vcpu = i;
1940                                 break;
1941                         } else if (yielded < 0) {
1942                                 try--;
1943                                 if (!try)
1944                                         break;
1945                         }
1946                 }
1947         }
1948         kvm_vcpu_set_in_spin_loop(me, false);
1949
1950         /* Ensure vcpu is not eligible during next spinloop */
1951         kvm_vcpu_set_dy_eligible(me, false);
1952 }
1953 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1954
1955 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1956 {
1957         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1958         struct page *page;
1959
1960         if (vmf->pgoff == 0)
1961                 page = virt_to_page(vcpu->run);
1962 #ifdef CONFIG_X86
1963         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1964                 page = virt_to_page(vcpu->arch.pio_data);
1965 #endif
1966 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1967         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1968                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1969 #endif
1970         else
1971                 return kvm_arch_vcpu_fault(vcpu, vmf);
1972         get_page(page);
1973         vmf->page = page;
1974         return 0;
1975 }
1976
1977 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1978         .fault = kvm_vcpu_fault,
1979 };
1980
1981 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1982 {
1983         vma->vm_ops = &kvm_vcpu_vm_ops;
1984         return 0;
1985 }
1986
1987 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1988 {
1989         struct kvm_vcpu *vcpu = filp->private_data;
1990
1991         kvm_put_kvm(vcpu->kvm);
1992         return 0;
1993 }
1994
1995 static struct file_operations kvm_vcpu_fops = {
1996         .release        = kvm_vcpu_release,
1997         .unlocked_ioctl = kvm_vcpu_ioctl,
1998 #ifdef CONFIG_KVM_COMPAT
1999         .compat_ioctl   = kvm_vcpu_compat_ioctl,
2000 #endif
2001         .mmap           = kvm_vcpu_mmap,
2002         .llseek         = noop_llseek,
2003 };
2004
2005 /*
2006  * Allocates an inode for the vcpu.
2007  */
2008 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2009 {
2010         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2011 }
2012
2013 /*
2014  * Creates some virtual cpus.  Good luck creating more than one.
2015  */
2016 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2017 {
2018         int r;
2019         struct kvm_vcpu *vcpu, *v;
2020
2021         if (id >= KVM_MAX_VCPUS)
2022                 return -EINVAL;
2023
2024         vcpu = kvm_arch_vcpu_create(kvm, id);
2025         if (IS_ERR(vcpu))
2026                 return PTR_ERR(vcpu);
2027
2028         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2029
2030         r = kvm_arch_vcpu_setup(vcpu);
2031         if (r)
2032                 goto vcpu_destroy;
2033
2034         mutex_lock(&kvm->lock);
2035         if (!kvm_vcpu_compatible(vcpu)) {
2036                 r = -EINVAL;
2037                 goto unlock_vcpu_destroy;
2038         }
2039         if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
2040                 r = -EINVAL;
2041                 goto unlock_vcpu_destroy;
2042         }
2043
2044         kvm_for_each_vcpu(r, v, kvm)
2045                 if (v->vcpu_id == id) {
2046                         r = -EEXIST;
2047                         goto unlock_vcpu_destroy;
2048                 }
2049
2050         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2051
2052         /* Now it's all set up, let userspace reach it */
2053         kvm_get_kvm(kvm);
2054         r = create_vcpu_fd(vcpu);
2055         if (r < 0) {
2056                 kvm_put_kvm(kvm);
2057                 goto unlock_vcpu_destroy;
2058         }
2059
2060         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2061         smp_wmb();
2062         atomic_inc(&kvm->online_vcpus);
2063
2064         mutex_unlock(&kvm->lock);
2065         kvm_arch_vcpu_postcreate(vcpu);
2066         return r;
2067
2068 unlock_vcpu_destroy:
2069         mutex_unlock(&kvm->lock);
2070 vcpu_destroy:
2071         kvm_arch_vcpu_destroy(vcpu);
2072         return r;
2073 }
2074
2075 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2076 {
2077         if (sigset) {
2078                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2079                 vcpu->sigset_active = 1;
2080                 vcpu->sigset = *sigset;
2081         } else
2082                 vcpu->sigset_active = 0;
2083         return 0;
2084 }
2085
2086 static long kvm_vcpu_ioctl(struct file *filp,
2087                            unsigned int ioctl, unsigned long arg)
2088 {
2089         struct kvm_vcpu *vcpu = filp->private_data;
2090         void __user *argp = (void __user *)arg;
2091         int r;
2092         struct kvm_fpu *fpu = NULL;
2093         struct kvm_sregs *kvm_sregs = NULL;
2094
2095         if (vcpu->kvm->mm != current->mm)
2096                 return -EIO;
2097
2098         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2099                 return -EINVAL;
2100
2101 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2102         /*
2103          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2104          * so vcpu_load() would break it.
2105          */
2106         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2107                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2108 #endif
2109
2110
2111         r = vcpu_load(vcpu);
2112         if (r)
2113                 return r;
2114         switch (ioctl) {
2115         case KVM_RUN:
2116                 r = -EINVAL;
2117                 if (arg)
2118                         goto out;
2119                 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2120                         /* The thread running this VCPU changed. */
2121                         struct pid *oldpid = vcpu->pid;
2122                         struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2123
2124                         rcu_assign_pointer(vcpu->pid, newpid);
2125                         if (oldpid)
2126                                 synchronize_rcu();
2127                         put_pid(oldpid);
2128                 }
2129                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2130                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2131                 break;
2132         case KVM_GET_REGS: {
2133                 struct kvm_regs *kvm_regs;
2134
2135                 r = -ENOMEM;
2136                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2137                 if (!kvm_regs)
2138                         goto out;
2139                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2140                 if (r)
2141                         goto out_free1;
2142                 r = -EFAULT;
2143                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2144                         goto out_free1;
2145                 r = 0;
2146 out_free1:
2147                 kfree(kvm_regs);
2148                 break;
2149         }
2150         case KVM_SET_REGS: {
2151                 struct kvm_regs *kvm_regs;
2152
2153                 r = -ENOMEM;
2154                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2155                 if (IS_ERR(kvm_regs)) {
2156                         r = PTR_ERR(kvm_regs);
2157                         goto out;
2158                 }
2159                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2160                 kfree(kvm_regs);
2161                 break;
2162         }
2163         case KVM_GET_SREGS: {
2164                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2165                 r = -ENOMEM;
2166                 if (!kvm_sregs)
2167                         goto out;
2168                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2169                 if (r)
2170                         goto out;
2171                 r = -EFAULT;
2172                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2173                         goto out;
2174                 r = 0;
2175                 break;
2176         }
2177         case KVM_SET_SREGS: {
2178                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2179                 if (IS_ERR(kvm_sregs)) {
2180                         r = PTR_ERR(kvm_sregs);
2181                         kvm_sregs = NULL;
2182                         goto out;
2183                 }
2184                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2185                 break;
2186         }
2187         case KVM_GET_MP_STATE: {
2188                 struct kvm_mp_state mp_state;
2189
2190                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2191                 if (r)
2192                         goto out;
2193                 r = -EFAULT;
2194                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2195                         goto out;
2196                 r = 0;
2197                 break;
2198         }
2199         case KVM_SET_MP_STATE: {
2200                 struct kvm_mp_state mp_state;
2201
2202                 r = -EFAULT;
2203                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2204                         goto out;
2205                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2206                 break;
2207         }
2208         case KVM_TRANSLATE: {
2209                 struct kvm_translation tr;
2210
2211                 r = -EFAULT;
2212                 if (copy_from_user(&tr, argp, sizeof(tr)))
2213                         goto out;
2214                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2215                 if (r)
2216                         goto out;
2217                 r = -EFAULT;
2218                 if (copy_to_user(argp, &tr, sizeof(tr)))
2219                         goto out;
2220                 r = 0;
2221                 break;
2222         }
2223         case KVM_SET_GUEST_DEBUG: {
2224                 struct kvm_guest_debug dbg;
2225
2226                 r = -EFAULT;
2227                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2228                         goto out;
2229                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2230                 break;
2231         }
2232         case KVM_SET_SIGNAL_MASK: {
2233                 struct kvm_signal_mask __user *sigmask_arg = argp;
2234                 struct kvm_signal_mask kvm_sigmask;
2235                 sigset_t sigset, *p;
2236
2237                 p = NULL;
2238                 if (argp) {
2239                         r = -EFAULT;
2240                         if (copy_from_user(&kvm_sigmask, argp,
2241                                            sizeof(kvm_sigmask)))
2242                                 goto out;
2243                         r = -EINVAL;
2244                         if (kvm_sigmask.len != sizeof(sigset))
2245                                 goto out;
2246                         r = -EFAULT;
2247                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2248                                            sizeof(sigset)))
2249                                 goto out;
2250                         p = &sigset;
2251                 }
2252                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2253                 break;
2254         }
2255         case KVM_GET_FPU: {
2256                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2257                 r = -ENOMEM;
2258                 if (!fpu)
2259                         goto out;
2260                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2261                 if (r)
2262                         goto out;
2263                 r = -EFAULT;
2264                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2265                         goto out;
2266                 r = 0;
2267                 break;
2268         }
2269         case KVM_SET_FPU: {
2270                 fpu = memdup_user(argp, sizeof(*fpu));
2271                 if (IS_ERR(fpu)) {
2272                         r = PTR_ERR(fpu);
2273                         fpu = NULL;
2274                         goto out;
2275                 }
2276                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2277                 break;
2278         }
2279         default:
2280                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2281         }
2282 out:
2283         vcpu_put(vcpu);
2284         kfree(fpu);
2285         kfree(kvm_sregs);
2286         return r;
2287 }
2288
2289 #ifdef CONFIG_KVM_COMPAT
2290 static long kvm_vcpu_compat_ioctl(struct file *filp,
2291                                   unsigned int ioctl, unsigned long arg)
2292 {
2293         struct kvm_vcpu *vcpu = filp->private_data;
2294         void __user *argp = compat_ptr(arg);
2295         int r;
2296
2297         if (vcpu->kvm->mm != current->mm)
2298                 return -EIO;
2299
2300         switch (ioctl) {
2301         case KVM_SET_SIGNAL_MASK: {
2302                 struct kvm_signal_mask __user *sigmask_arg = argp;
2303                 struct kvm_signal_mask kvm_sigmask;
2304                 compat_sigset_t csigset;
2305                 sigset_t sigset;
2306
2307                 if (argp) {
2308                         r = -EFAULT;
2309                         if (copy_from_user(&kvm_sigmask, argp,
2310                                            sizeof(kvm_sigmask)))
2311                                 goto out;
2312                         r = -EINVAL;
2313                         if (kvm_sigmask.len != sizeof(csigset))
2314                                 goto out;
2315                         r = -EFAULT;
2316                         if (copy_from_user(&csigset, sigmask_arg->sigset,
2317                                            sizeof(csigset)))
2318                                 goto out;
2319                         sigset_from_compat(&sigset, &csigset);
2320                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2321                 } else
2322                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2323                 break;
2324         }
2325         default:
2326                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2327         }
2328
2329 out:
2330         return r;
2331 }
2332 #endif
2333
2334 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2335                                  int (*accessor)(struct kvm_device *dev,
2336                                                  struct kvm_device_attr *attr),
2337                                  unsigned long arg)
2338 {
2339         struct kvm_device_attr attr;
2340
2341         if (!accessor)
2342                 return -EPERM;
2343
2344         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2345                 return -EFAULT;
2346
2347         return accessor(dev, &attr);
2348 }
2349
2350 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2351                              unsigned long arg)
2352 {
2353         struct kvm_device *dev = filp->private_data;
2354
2355         switch (ioctl) {
2356         case KVM_SET_DEVICE_ATTR:
2357                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2358         case KVM_GET_DEVICE_ATTR:
2359                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2360         case KVM_HAS_DEVICE_ATTR:
2361                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2362         default:
2363                 if (dev->ops->ioctl)
2364                         return dev->ops->ioctl(dev, ioctl, arg);
2365
2366                 return -ENOTTY;
2367         }
2368 }
2369
2370 static int kvm_device_release(struct inode *inode, struct file *filp)
2371 {
2372         struct kvm_device *dev = filp->private_data;
2373         struct kvm *kvm = dev->kvm;
2374
2375         kvm_put_kvm(kvm);
2376         return 0;
2377 }
2378
2379 static const struct file_operations kvm_device_fops = {
2380         .unlocked_ioctl = kvm_device_ioctl,
2381 #ifdef CONFIG_KVM_COMPAT
2382         .compat_ioctl = kvm_device_ioctl,
2383 #endif
2384         .release = kvm_device_release,
2385 };
2386
2387 struct kvm_device *kvm_device_from_filp(struct file *filp)
2388 {
2389         if (filp->f_op != &kvm_device_fops)
2390                 return NULL;
2391
2392         return filp->private_data;
2393 }
2394
2395 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2396 #ifdef CONFIG_KVM_MPIC
2397         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2398         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2399 #endif
2400
2401 #ifdef CONFIG_KVM_XICS
2402         [KVM_DEV_TYPE_XICS]             = &kvm_xics_ops,
2403 #endif
2404 };
2405
2406 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2407 {
2408         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2409                 return -ENOSPC;
2410
2411         if (kvm_device_ops_table[type] != NULL)
2412                 return -EEXIST;
2413
2414         kvm_device_ops_table[type] = ops;
2415         return 0;
2416 }
2417
2418 void kvm_unregister_device_ops(u32 type)
2419 {
2420         if (kvm_device_ops_table[type] != NULL)
2421                 kvm_device_ops_table[type] = NULL;
2422 }
2423
2424 static int kvm_ioctl_create_device(struct kvm *kvm,
2425                                    struct kvm_create_device *cd)
2426 {
2427         struct kvm_device_ops *ops = NULL;
2428         struct kvm_device *dev;
2429         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2430         int ret;
2431
2432         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2433                 return -ENODEV;
2434
2435         ops = kvm_device_ops_table[cd->type];
2436         if (ops == NULL)
2437                 return -ENODEV;
2438
2439         if (test)
2440                 return 0;
2441
2442         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2443         if (!dev)
2444                 return -ENOMEM;
2445
2446         dev->ops = ops;
2447         dev->kvm = kvm;
2448
2449         ret = ops->create(dev, cd->type);
2450         if (ret < 0) {
2451                 kfree(dev);
2452                 return ret;
2453         }
2454
2455         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2456         if (ret < 0) {
2457                 ops->destroy(dev);
2458                 return ret;
2459         }
2460
2461         list_add(&dev->vm_node, &kvm->devices);
2462         kvm_get_kvm(kvm);
2463         cd->fd = ret;
2464         return 0;
2465 }
2466
2467 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2468 {
2469         switch (arg) {
2470         case KVM_CAP_USER_MEMORY:
2471         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2472         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2473 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2474         case KVM_CAP_SET_BOOT_CPU_ID:
2475 #endif
2476         case KVM_CAP_INTERNAL_ERROR_DATA:
2477 #ifdef CONFIG_HAVE_KVM_MSI
2478         case KVM_CAP_SIGNAL_MSI:
2479 #endif
2480 #ifdef CONFIG_HAVE_KVM_IRQFD
2481         case KVM_CAP_IRQFD:
2482         case KVM_CAP_IRQFD_RESAMPLE:
2483 #endif
2484         case KVM_CAP_CHECK_EXTENSION_VM:
2485                 return 1;
2486 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2487         case KVM_CAP_IRQ_ROUTING:
2488                 return KVM_MAX_IRQ_ROUTES;
2489 #endif
2490         default:
2491                 break;
2492         }
2493         return kvm_vm_ioctl_check_extension(kvm, arg);
2494 }
2495
2496 static long kvm_vm_ioctl(struct file *filp,
2497                            unsigned int ioctl, unsigned long arg)
2498 {
2499         struct kvm *kvm = filp->private_data;
2500         void __user *argp = (void __user *)arg;
2501         int r;
2502
2503         if (kvm->mm != current->mm)
2504                 return -EIO;
2505         switch (ioctl) {
2506         case KVM_CREATE_VCPU:
2507                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2508                 break;
2509         case KVM_SET_USER_MEMORY_REGION: {
2510                 struct kvm_userspace_memory_region kvm_userspace_mem;
2511
2512                 r = -EFAULT;
2513                 if (copy_from_user(&kvm_userspace_mem, argp,
2514                                                 sizeof(kvm_userspace_mem)))
2515                         goto out;
2516
2517                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2518                 break;
2519         }
2520         case KVM_GET_DIRTY_LOG: {
2521                 struct kvm_dirty_log log;
2522
2523                 r = -EFAULT;
2524                 if (copy_from_user(&log, argp, sizeof(log)))
2525                         goto out;
2526                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2527                 break;
2528         }
2529 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2530         case KVM_REGISTER_COALESCED_MMIO: {
2531                 struct kvm_coalesced_mmio_zone zone;
2532
2533                 r = -EFAULT;
2534                 if (copy_from_user(&zone, argp, sizeof(zone)))
2535                         goto out;
2536                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2537                 break;
2538         }
2539         case KVM_UNREGISTER_COALESCED_MMIO: {
2540                 struct kvm_coalesced_mmio_zone zone;
2541
2542                 r = -EFAULT;
2543                 if (copy_from_user(&zone, argp, sizeof(zone)))
2544                         goto out;
2545                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2546                 break;
2547         }
2548 #endif
2549         case KVM_IRQFD: {
2550                 struct kvm_irqfd data;
2551
2552                 r = -EFAULT;
2553                 if (copy_from_user(&data, argp, sizeof(data)))
2554                         goto out;
2555                 r = kvm_irqfd(kvm, &data);
2556                 break;
2557         }
2558         case KVM_IOEVENTFD: {
2559                 struct kvm_ioeventfd data;
2560
2561                 r = -EFAULT;
2562                 if (copy_from_user(&data, argp, sizeof(data)))
2563                         goto out;
2564                 r = kvm_ioeventfd(kvm, &data);
2565                 break;
2566         }
2567 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2568         case KVM_SET_BOOT_CPU_ID:
2569                 r = 0;
2570                 mutex_lock(&kvm->lock);
2571                 if (atomic_read(&kvm->online_vcpus) != 0)
2572                         r = -EBUSY;
2573                 else
2574                         kvm->bsp_vcpu_id = arg;
2575                 mutex_unlock(&kvm->lock);
2576                 break;
2577 #endif
2578 #ifdef CONFIG_HAVE_KVM_MSI
2579         case KVM_SIGNAL_MSI: {
2580                 struct kvm_msi msi;
2581
2582                 r = -EFAULT;
2583                 if (copy_from_user(&msi, argp, sizeof(msi)))
2584                         goto out;
2585                 r = kvm_send_userspace_msi(kvm, &msi);
2586                 break;
2587         }
2588 #endif
2589 #ifdef __KVM_HAVE_IRQ_LINE
2590         case KVM_IRQ_LINE_STATUS:
2591         case KVM_IRQ_LINE: {
2592                 struct kvm_irq_level irq_event;
2593
2594                 r = -EFAULT;
2595                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2596                         goto out;
2597
2598                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2599                                         ioctl == KVM_IRQ_LINE_STATUS);
2600                 if (r)
2601                         goto out;
2602
2603                 r = -EFAULT;
2604                 if (ioctl == KVM_IRQ_LINE_STATUS) {
2605                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2606                                 goto out;
2607                 }
2608
2609                 r = 0;
2610                 break;
2611         }
2612 #endif
2613 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2614         case KVM_SET_GSI_ROUTING: {
2615                 struct kvm_irq_routing routing;
2616                 struct kvm_irq_routing __user *urouting;
2617                 struct kvm_irq_routing_entry *entries;
2618
2619                 r = -EFAULT;
2620                 if (copy_from_user(&routing, argp, sizeof(routing)))
2621                         goto out;
2622                 r = -EINVAL;
2623                 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2624                         goto out;
2625                 if (routing.flags)
2626                         goto out;
2627                 r = -ENOMEM;
2628                 entries = vmalloc(routing.nr * sizeof(*entries));
2629                 if (!entries)
2630                         goto out;
2631                 r = -EFAULT;
2632                 urouting = argp;
2633                 if (copy_from_user(entries, urouting->entries,
2634                                    routing.nr * sizeof(*entries)))
2635                         goto out_free_irq_routing;
2636                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2637                                         routing.flags);
2638 out_free_irq_routing:
2639                 vfree(entries);
2640                 break;
2641         }
2642 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2643         case KVM_CREATE_DEVICE: {
2644                 struct kvm_create_device cd;
2645
2646                 r = -EFAULT;
2647                 if (copy_from_user(&cd, argp, sizeof(cd)))
2648                         goto out;
2649
2650                 r = kvm_ioctl_create_device(kvm, &cd);
2651                 if (r)
2652                         goto out;
2653
2654                 r = -EFAULT;
2655                 if (copy_to_user(argp, &cd, sizeof(cd)))
2656                         goto out;
2657
2658                 r = 0;
2659                 break;
2660         }
2661         case KVM_CHECK_EXTENSION:
2662                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2663                 break;
2664         default:
2665                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2666         }
2667 out:
2668         return r;
2669 }
2670
2671 #ifdef CONFIG_KVM_COMPAT
2672 struct compat_kvm_dirty_log {
2673         __u32 slot;
2674         __u32 padding1;
2675         union {
2676                 compat_uptr_t dirty_bitmap; /* one bit per page */
2677                 __u64 padding2;
2678         };
2679 };
2680
2681 static long kvm_vm_compat_ioctl(struct file *filp,
2682                            unsigned int ioctl, unsigned long arg)
2683 {
2684         struct kvm *kvm = filp->private_data;
2685         int r;
2686
2687         if (kvm->mm != current->mm)
2688                 return -EIO;
2689         switch (ioctl) {
2690         case KVM_GET_DIRTY_LOG: {
2691                 struct compat_kvm_dirty_log compat_log;
2692                 struct kvm_dirty_log log;
2693
2694                 r = -EFAULT;
2695                 if (copy_from_user(&compat_log, (void __user *)arg,
2696                                    sizeof(compat_log)))
2697                         goto out;
2698                 log.slot         = compat_log.slot;
2699                 log.padding1     = compat_log.padding1;
2700                 log.padding2     = compat_log.padding2;
2701                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2702
2703                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2704                 break;
2705         }
2706         default:
2707                 r = kvm_vm_ioctl(filp, ioctl, arg);
2708         }
2709
2710 out:
2711         return r;
2712 }
2713 #endif
2714
2715 static struct file_operations kvm_vm_fops = {
2716         .release        = kvm_vm_release,
2717         .unlocked_ioctl = kvm_vm_ioctl,
2718 #ifdef CONFIG_KVM_COMPAT
2719         .compat_ioctl   = kvm_vm_compat_ioctl,
2720 #endif
2721         .llseek         = noop_llseek,
2722 };
2723
2724 static int kvm_dev_ioctl_create_vm(unsigned long type)
2725 {
2726         int r;
2727         struct kvm *kvm;
2728
2729         kvm = kvm_create_vm(type);
2730         if (IS_ERR(kvm))
2731                 return PTR_ERR(kvm);
2732 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2733         r = kvm_coalesced_mmio_init(kvm);
2734         if (r < 0) {
2735                 kvm_put_kvm(kvm);
2736                 return r;
2737         }
2738 #endif
2739         r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2740         if (r < 0)
2741                 kvm_put_kvm(kvm);
2742
2743         return r;
2744 }
2745
2746 static long kvm_dev_ioctl(struct file *filp,
2747                           unsigned int ioctl, unsigned long arg)
2748 {
2749         long r = -EINVAL;
2750
2751         switch (ioctl) {
2752         case KVM_GET_API_VERSION:
2753                 if (arg)
2754                         goto out;
2755                 r = KVM_API_VERSION;
2756                 break;
2757         case KVM_CREATE_VM:
2758                 r = kvm_dev_ioctl_create_vm(arg);
2759                 break;
2760         case KVM_CHECK_EXTENSION:
2761                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2762                 break;
2763         case KVM_GET_VCPU_MMAP_SIZE:
2764                 if (arg)
2765                         goto out;
2766                 r = PAGE_SIZE;     /* struct kvm_run */
2767 #ifdef CONFIG_X86
2768                 r += PAGE_SIZE;    /* pio data page */
2769 #endif
2770 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2771                 r += PAGE_SIZE;    /* coalesced mmio ring page */
2772 #endif
2773                 break;
2774         case KVM_TRACE_ENABLE:
2775         case KVM_TRACE_PAUSE:
2776         case KVM_TRACE_DISABLE:
2777                 r = -EOPNOTSUPP;
2778                 break;
2779         default:
2780                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2781         }
2782 out:
2783         return r;
2784 }
2785
2786 static struct file_operations kvm_chardev_ops = {
2787         .unlocked_ioctl = kvm_dev_ioctl,
2788         .compat_ioctl   = kvm_dev_ioctl,
2789         .llseek         = noop_llseek,
2790 };
2791
2792 static struct miscdevice kvm_dev = {
2793         KVM_MINOR,
2794         "kvm",
2795         &kvm_chardev_ops,
2796 };
2797
2798 static void hardware_enable_nolock(void *junk)
2799 {
2800         int cpu = raw_smp_processor_id();
2801         int r;
2802
2803         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2804                 return;
2805
2806         cpumask_set_cpu(cpu, cpus_hardware_enabled);
2807
2808         r = kvm_arch_hardware_enable();
2809
2810         if (r) {
2811                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2812                 atomic_inc(&hardware_enable_failed);
2813                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
2814         }
2815 }
2816
2817 static void hardware_enable(void)
2818 {
2819         raw_spin_lock(&kvm_count_lock);
2820         if (kvm_usage_count)
2821                 hardware_enable_nolock(NULL);
2822         raw_spin_unlock(&kvm_count_lock);
2823 }
2824
2825 static void hardware_disable_nolock(void *junk)
2826 {
2827         int cpu = raw_smp_processor_id();
2828
2829         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2830                 return;
2831         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2832         kvm_arch_hardware_disable();
2833 }
2834
2835 static void hardware_disable(void)
2836 {
2837         raw_spin_lock(&kvm_count_lock);
2838         if (kvm_usage_count)
2839                 hardware_disable_nolock(NULL);
2840         raw_spin_unlock(&kvm_count_lock);
2841 }
2842
2843 static void hardware_disable_all_nolock(void)
2844 {
2845         BUG_ON(!kvm_usage_count);
2846
2847         kvm_usage_count--;
2848         if (!kvm_usage_count)
2849                 on_each_cpu(hardware_disable_nolock, NULL, 1);
2850 }
2851
2852 static void hardware_disable_all(void)
2853 {
2854         raw_spin_lock(&kvm_count_lock);
2855         hardware_disable_all_nolock();
2856         raw_spin_unlock(&kvm_count_lock);
2857 }
2858
2859 static int hardware_enable_all(void)
2860 {
2861         int r = 0;
2862
2863         raw_spin_lock(&kvm_count_lock);
2864
2865         kvm_usage_count++;
2866         if (kvm_usage_count == 1) {
2867                 atomic_set(&hardware_enable_failed, 0);
2868                 on_each_cpu(hardware_enable_nolock, NULL, 1);
2869
2870                 if (atomic_read(&hardware_enable_failed)) {
2871                         hardware_disable_all_nolock();
2872                         r = -EBUSY;
2873                 }
2874         }
2875
2876         raw_spin_unlock(&kvm_count_lock);
2877
2878         return r;
2879 }
2880
2881 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2882                            void *v)
2883 {
2884         int cpu = (long)v;
2885
2886         val &= ~CPU_TASKS_FROZEN;
2887         switch (val) {
2888         case CPU_DYING:
2889                 pr_info("kvm: disabling virtualization on CPU%d\n",
2890                        cpu);
2891                 hardware_disable();
2892                 break;
2893         case CPU_STARTING:
2894                 pr_info("kvm: enabling virtualization on CPU%d\n",
2895                        cpu);
2896                 hardware_enable();
2897                 break;
2898         }
2899         return NOTIFY_OK;
2900 }
2901
2902 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2903                       void *v)
2904 {
2905         /*
2906          * Some (well, at least mine) BIOSes hang on reboot if
2907          * in vmx root mode.
2908          *
2909          * And Intel TXT required VMX off for all cpu when system shutdown.
2910          */
2911         pr_info("kvm: exiting hardware virtualization\n");
2912         kvm_rebooting = true;
2913         on_each_cpu(hardware_disable_nolock, NULL, 1);
2914         return NOTIFY_OK;
2915 }
2916
2917 static struct notifier_block kvm_reboot_notifier = {
2918         .notifier_call = kvm_reboot,
2919         .priority = 0,
2920 };
2921
2922 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2923 {
2924         int i;
2925
2926         for (i = 0; i < bus->dev_count; i++) {
2927                 struct kvm_io_device *pos = bus->range[i].dev;
2928
2929                 kvm_iodevice_destructor(pos);
2930         }
2931         kfree(bus);
2932 }
2933
2934 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2935                                  const struct kvm_io_range *r2)
2936 {
2937         if (r1->addr < r2->addr)
2938                 return -1;
2939         if (r1->addr + r1->len > r2->addr + r2->len)
2940                 return 1;
2941         return 0;
2942 }
2943
2944 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2945 {
2946         return kvm_io_bus_cmp(p1, p2);
2947 }
2948
2949 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2950                           gpa_t addr, int len)
2951 {
2952         bus->range[bus->dev_count++] = (struct kvm_io_range) {
2953                 .addr = addr,
2954                 .len = len,
2955                 .dev = dev,
2956         };
2957
2958         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2959                 kvm_io_bus_sort_cmp, NULL);
2960
2961         return 0;
2962 }
2963
2964 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2965                              gpa_t addr, int len)
2966 {
2967         struct kvm_io_range *range, key;
2968         int off;
2969
2970         key = (struct kvm_io_range) {
2971                 .addr = addr,
2972                 .len = len,
2973         };
2974
2975         range = bsearch(&key, bus->range, bus->dev_count,
2976                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2977         if (range == NULL)
2978                 return -ENOENT;
2979
2980         off = range - bus->range;
2981
2982         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
2983                 off--;
2984
2985         return off;
2986 }
2987
2988 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
2989                               struct kvm_io_range *range, const void *val)
2990 {
2991         int idx;
2992
2993         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2994         if (idx < 0)
2995                 return -EOPNOTSUPP;
2996
2997         while (idx < bus->dev_count &&
2998                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2999                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3000                                         range->len, val))
3001                         return idx;
3002                 idx++;
3003         }
3004
3005         return -EOPNOTSUPP;
3006 }
3007
3008 /* kvm_io_bus_write - called under kvm->slots_lock */
3009 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3010                      int len, const void *val)
3011 {
3012         struct kvm_io_bus *bus;
3013         struct kvm_io_range range;
3014         int r;
3015
3016         range = (struct kvm_io_range) {
3017                 .addr = addr,
3018                 .len = len,
3019         };
3020
3021         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3022         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3023         return r < 0 ? r : 0;
3024 }
3025
3026 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3027 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3028                             gpa_t addr, int len, const void *val, long cookie)
3029 {
3030         struct kvm_io_bus *bus;
3031         struct kvm_io_range range;
3032
3033         range = (struct kvm_io_range) {
3034                 .addr = addr,
3035                 .len = len,
3036         };
3037
3038         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3039
3040         /* First try the device referenced by cookie. */
3041         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3042             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3043                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3044                                         val))
3045                         return cookie;
3046
3047         /*
3048          * cookie contained garbage; fall back to search and return the
3049          * correct cookie value.
3050          */
3051         return __kvm_io_bus_write(vcpu, bus, &range, val);
3052 }
3053
3054 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3055                              struct kvm_io_range *range, void *val)
3056 {
3057         int idx;
3058
3059         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3060         if (idx < 0)
3061                 return -EOPNOTSUPP;
3062
3063         while (idx < bus->dev_count &&
3064                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3065                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3066                                        range->len, val))
3067                         return idx;
3068                 idx++;
3069         }
3070
3071         return -EOPNOTSUPP;
3072 }
3073 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3074
3075 /* kvm_io_bus_read - called under kvm->slots_lock */
3076 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3077                     int len, void *val)
3078 {
3079         struct kvm_io_bus *bus;
3080         struct kvm_io_range range;
3081         int r;
3082
3083         range = (struct kvm_io_range) {
3084                 .addr = addr,
3085                 .len = len,
3086         };
3087
3088         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3089         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3090         return r < 0 ? r : 0;
3091 }
3092
3093
3094 /* Caller must hold slots_lock. */
3095 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3096                             int len, struct kvm_io_device *dev)
3097 {
3098         struct kvm_io_bus *new_bus, *bus;
3099
3100         bus = kvm->buses[bus_idx];
3101         /* exclude ioeventfd which is limited by maximum fd */
3102         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3103                 return -ENOSPC;
3104
3105         new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3106                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3107         if (!new_bus)
3108                 return -ENOMEM;
3109         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3110                sizeof(struct kvm_io_range)));
3111         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3112         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3113         synchronize_srcu_expedited(&kvm->srcu);
3114         kfree(bus);
3115
3116         return 0;
3117 }
3118
3119 /* Caller must hold slots_lock. */
3120 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3121                               struct kvm_io_device *dev)
3122 {
3123         int i, r;
3124         struct kvm_io_bus *new_bus, *bus;
3125
3126         bus = kvm->buses[bus_idx];
3127         r = -ENOENT;
3128         for (i = 0; i < bus->dev_count; i++)
3129                 if (bus->range[i].dev == dev) {
3130                         r = 0;
3131                         break;
3132                 }
3133
3134         if (r)
3135                 return r;
3136
3137         new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3138                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3139         if (!new_bus)
3140                 return -ENOMEM;
3141
3142         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3143         new_bus->dev_count--;
3144         memcpy(new_bus->range + i, bus->range + i + 1,
3145                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3146
3147         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3148         synchronize_srcu_expedited(&kvm->srcu);
3149         kfree(bus);
3150         return r;
3151 }
3152
3153 static struct notifier_block kvm_cpu_notifier = {
3154         .notifier_call = kvm_cpu_hotplug,
3155 };
3156
3157 static int vm_stat_get(void *_offset, u64 *val)
3158 {
3159         unsigned offset = (long)_offset;
3160         struct kvm *kvm;
3161
3162         *val = 0;
3163         spin_lock(&kvm_lock);
3164         list_for_each_entry(kvm, &vm_list, vm_list)
3165                 *val += *(u32 *)((void *)kvm + offset);
3166         spin_unlock(&kvm_lock);
3167         return 0;
3168 }
3169
3170 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3171
3172 static int vcpu_stat_get(void *_offset, u64 *val)
3173 {
3174         unsigned offset = (long)_offset;
3175         struct kvm *kvm;
3176         struct kvm_vcpu *vcpu;
3177         int i;
3178
3179         *val = 0;
3180         spin_lock(&kvm_lock);
3181         list_for_each_entry(kvm, &vm_list, vm_list)
3182                 kvm_for_each_vcpu(i, vcpu, kvm)
3183                         *val += *(u32 *)((void *)vcpu + offset);
3184
3185         spin_unlock(&kvm_lock);
3186         return 0;
3187 }
3188
3189 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3190
3191 static const struct file_operations *stat_fops[] = {
3192         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3193         [KVM_STAT_VM]   = &vm_stat_fops,
3194 };
3195
3196 static int kvm_init_debug(void)
3197 {
3198         int r = -EEXIST;
3199         struct kvm_stats_debugfs_item *p;
3200
3201         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3202         if (kvm_debugfs_dir == NULL)
3203                 goto out;
3204
3205         for (p = debugfs_entries; p->name; ++p) {
3206                 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3207                                                 (void *)(long)p->offset,
3208                                                 stat_fops[p->kind]);
3209                 if (p->dentry == NULL)
3210                         goto out_dir;
3211         }
3212
3213         return 0;
3214
3215 out_dir:
3216         debugfs_remove_recursive(kvm_debugfs_dir);
3217 out:
3218         return r;
3219 }
3220
3221 static void kvm_exit_debug(void)
3222 {
3223         struct kvm_stats_debugfs_item *p;
3224
3225         for (p = debugfs_entries; p->name; ++p)
3226                 debugfs_remove(p->dentry);
3227         debugfs_remove(kvm_debugfs_dir);
3228 }
3229
3230 static int kvm_suspend(void)
3231 {
3232         if (kvm_usage_count)
3233                 hardware_disable_nolock(NULL);
3234         return 0;
3235 }
3236
3237 static void kvm_resume(void)
3238 {
3239         if (kvm_usage_count) {
3240                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3241                 hardware_enable_nolock(NULL);
3242         }
3243 }
3244
3245 static struct syscore_ops kvm_syscore_ops = {
3246         .suspend = kvm_suspend,
3247         .resume = kvm_resume,
3248 };
3249
3250 static inline
3251 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3252 {
3253         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3254 }
3255
3256 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3257 {
3258         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3259
3260         if (vcpu->preempted)
3261                 vcpu->preempted = false;
3262
3263         kvm_arch_sched_in(vcpu, cpu);
3264
3265         kvm_arch_vcpu_load(vcpu, cpu);
3266 }
3267
3268 static void kvm_sched_out(struct preempt_notifier *pn,
3269                           struct task_struct *next)
3270 {
3271         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3272
3273         if (current->state == TASK_RUNNING)
3274                 vcpu->preempted = true;
3275         kvm_arch_vcpu_put(vcpu);
3276 }
3277
3278 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3279                   struct module *module)
3280 {
3281         int r;
3282         int cpu;
3283
3284         r = kvm_arch_init(opaque);
3285         if (r)
3286                 goto out_fail;
3287
3288         /*
3289          * kvm_arch_init makes sure there's at most one caller
3290          * for architectures that support multiple implementations,
3291          * like intel and amd on x86.
3292          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3293          * conflicts in case kvm is already setup for another implementation.
3294          */
3295         r = kvm_irqfd_init();
3296         if (r)
3297                 goto out_irqfd;
3298
3299         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3300                 r = -ENOMEM;
3301                 goto out_free_0;
3302         }
3303
3304         r = kvm_arch_hardware_setup();
3305         if (r < 0)
3306                 goto out_free_0a;
3307
3308         for_each_online_cpu(cpu) {
3309                 smp_call_function_single(cpu,
3310                                 kvm_arch_check_processor_compat,
3311                                 &r, 1);
3312                 if (r < 0)
3313                         goto out_free_1;
3314         }
3315
3316         r = register_cpu_notifier(&kvm_cpu_notifier);
3317         if (r)
3318                 goto out_free_2;
3319         register_reboot_notifier(&kvm_reboot_notifier);
3320
3321         /* A kmem cache lets us meet the alignment requirements of fx_save. */
3322         if (!vcpu_align)
3323                 vcpu_align = __alignof__(struct kvm_vcpu);
3324         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3325                                            0, NULL);
3326         if (!kvm_vcpu_cache) {
3327                 r = -ENOMEM;
3328                 goto out_free_3;
3329         }
3330
3331         r = kvm_async_pf_init();
3332         if (r)
3333                 goto out_free;
3334
3335         kvm_chardev_ops.owner = module;
3336         kvm_vm_fops.owner = module;
3337         kvm_vcpu_fops.owner = module;
3338
3339         r = misc_register(&kvm_dev);
3340         if (r) {
3341                 pr_err("kvm: misc device register failed\n");
3342                 goto out_unreg;
3343         }
3344
3345         register_syscore_ops(&kvm_syscore_ops);
3346
3347         kvm_preempt_ops.sched_in = kvm_sched_in;
3348         kvm_preempt_ops.sched_out = kvm_sched_out;
3349
3350         r = kvm_init_debug();
3351         if (r) {
3352                 pr_err("kvm: create debugfs files failed\n");
3353                 goto out_undebugfs;
3354         }
3355
3356         r = kvm_vfio_ops_init();
3357         WARN_ON(r);
3358
3359         return 0;
3360
3361 out_undebugfs:
3362         unregister_syscore_ops(&kvm_syscore_ops);
3363         misc_deregister(&kvm_dev);
3364 out_unreg:
3365         kvm_async_pf_deinit();
3366 out_free:
3367         kmem_cache_destroy(kvm_vcpu_cache);
3368 out_free_3:
3369         unregister_reboot_notifier(&kvm_reboot_notifier);
3370         unregister_cpu_notifier(&kvm_cpu_notifier);
3371 out_free_2:
3372 out_free_1:
3373         kvm_arch_hardware_unsetup();
3374 out_free_0a:
3375         free_cpumask_var(cpus_hardware_enabled);
3376 out_free_0:
3377         kvm_irqfd_exit();
3378 out_irqfd:
3379         kvm_arch_exit();
3380 out_fail:
3381         return r;
3382 }
3383 EXPORT_SYMBOL_GPL(kvm_init);
3384
3385 void kvm_exit(void)
3386 {
3387         kvm_exit_debug();
3388         misc_deregister(&kvm_dev);
3389         kmem_cache_destroy(kvm_vcpu_cache);
3390         kvm_async_pf_deinit();
3391         unregister_syscore_ops(&kvm_syscore_ops);
3392         unregister_reboot_notifier(&kvm_reboot_notifier);
3393         unregister_cpu_notifier(&kvm_cpu_notifier);
3394         on_each_cpu(hardware_disable_nolock, NULL, 1);
3395         kvm_arch_hardware_unsetup();
3396         kvm_arch_exit();
3397         kvm_irqfd_exit();
3398         free_cpumask_var(cpus_hardware_enabled);
3399         kvm_vfio_ops_exit();
3400 }
3401 EXPORT_SYMBOL_GPL(kvm_exit);