KVM: remove vm mmap method
[firefly-linux-kernel-4.4.55.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 /*
68  * Ordering of locks:
69  *
70  *              kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71  */
72
73 DEFINE_SPINLOCK(kvm_lock);
74 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
75 LIST_HEAD(vm_list);
76
77 static cpumask_var_t cpus_hardware_enabled;
78 static int kvm_usage_count = 0;
79 static atomic_t hardware_enable_failed;
80
81 struct kmem_cache *kvm_vcpu_cache;
82 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
83
84 static __read_mostly struct preempt_ops kvm_preempt_ops;
85
86 struct dentry *kvm_debugfs_dir;
87
88 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
89                            unsigned long arg);
90 #ifdef CONFIG_COMPAT
91 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
92                                   unsigned long arg);
93 #endif
94 static int hardware_enable_all(void);
95 static void hardware_disable_all(void);
96
97 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
98
99 bool kvm_rebooting;
100 EXPORT_SYMBOL_GPL(kvm_rebooting);
101
102 static bool largepages_enabled = true;
103
104 bool kvm_is_mmio_pfn(pfn_t pfn)
105 {
106         if (pfn_valid(pfn))
107                 return PageReserved(pfn_to_page(pfn));
108
109         return true;
110 }
111
112 /*
113  * Switches to specified vcpu, until a matching vcpu_put()
114  */
115 int vcpu_load(struct kvm_vcpu *vcpu)
116 {
117         int cpu;
118
119         if (mutex_lock_killable(&vcpu->mutex))
120                 return -EINTR;
121         if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
122                 /* The thread running this VCPU changed. */
123                 struct pid *oldpid = vcpu->pid;
124                 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
125                 rcu_assign_pointer(vcpu->pid, newpid);
126                 synchronize_rcu();
127                 put_pid(oldpid);
128         }
129         cpu = get_cpu();
130         preempt_notifier_register(&vcpu->preempt_notifier);
131         kvm_arch_vcpu_load(vcpu, cpu);
132         put_cpu();
133         return 0;
134 }
135
136 void vcpu_put(struct kvm_vcpu *vcpu)
137 {
138         preempt_disable();
139         kvm_arch_vcpu_put(vcpu);
140         preempt_notifier_unregister(&vcpu->preempt_notifier);
141         preempt_enable();
142         mutex_unlock(&vcpu->mutex);
143 }
144
145 static void ack_flush(void *_completed)
146 {
147 }
148
149 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
150 {
151         int i, cpu, me;
152         cpumask_var_t cpus;
153         bool called = true;
154         struct kvm_vcpu *vcpu;
155
156         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
157
158         me = get_cpu();
159         kvm_for_each_vcpu(i, vcpu, kvm) {
160                 kvm_make_request(req, vcpu);
161                 cpu = vcpu->cpu;
162
163                 /* Set ->requests bit before we read ->mode */
164                 smp_mb();
165
166                 if (cpus != NULL && cpu != -1 && cpu != me &&
167                       kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
168                         cpumask_set_cpu(cpu, cpus);
169         }
170         if (unlikely(cpus == NULL))
171                 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
172         else if (!cpumask_empty(cpus))
173                 smp_call_function_many(cpus, ack_flush, NULL, 1);
174         else
175                 called = false;
176         put_cpu();
177         free_cpumask_var(cpus);
178         return called;
179 }
180
181 void kvm_flush_remote_tlbs(struct kvm *kvm)
182 {
183         long dirty_count = kvm->tlbs_dirty;
184
185         smp_mb();
186         if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
187                 ++kvm->stat.remote_tlb_flush;
188         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
189 }
190
191 void kvm_reload_remote_mmus(struct kvm *kvm)
192 {
193         make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
194 }
195
196 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
197 {
198         make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
199 }
200
201 void kvm_make_scan_ioapic_request(struct kvm *kvm)
202 {
203         make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
204 }
205
206 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
207 {
208         struct page *page;
209         int r;
210
211         mutex_init(&vcpu->mutex);
212         vcpu->cpu = -1;
213         vcpu->kvm = kvm;
214         vcpu->vcpu_id = id;
215         vcpu->pid = NULL;
216         init_waitqueue_head(&vcpu->wq);
217         kvm_async_pf_vcpu_init(vcpu);
218
219         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
220         if (!page) {
221                 r = -ENOMEM;
222                 goto fail;
223         }
224         vcpu->run = page_address(page);
225
226         kvm_vcpu_set_in_spin_loop(vcpu, false);
227         kvm_vcpu_set_dy_eligible(vcpu, false);
228         vcpu->preempted = false;
229
230         r = kvm_arch_vcpu_init(vcpu);
231         if (r < 0)
232                 goto fail_free_run;
233         return 0;
234
235 fail_free_run:
236         free_page((unsigned long)vcpu->run);
237 fail:
238         return r;
239 }
240 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
241
242 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
243 {
244         put_pid(vcpu->pid);
245         kvm_arch_vcpu_uninit(vcpu);
246         free_page((unsigned long)vcpu->run);
247 }
248 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
249
250 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
251 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
252 {
253         return container_of(mn, struct kvm, mmu_notifier);
254 }
255
256 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
257                                              struct mm_struct *mm,
258                                              unsigned long address)
259 {
260         struct kvm *kvm = mmu_notifier_to_kvm(mn);
261         int need_tlb_flush, idx;
262
263         /*
264          * When ->invalidate_page runs, the linux pte has been zapped
265          * already but the page is still allocated until
266          * ->invalidate_page returns. So if we increase the sequence
267          * here the kvm page fault will notice if the spte can't be
268          * established because the page is going to be freed. If
269          * instead the kvm page fault establishes the spte before
270          * ->invalidate_page runs, kvm_unmap_hva will release it
271          * before returning.
272          *
273          * The sequence increase only need to be seen at spin_unlock
274          * time, and not at spin_lock time.
275          *
276          * Increasing the sequence after the spin_unlock would be
277          * unsafe because the kvm page fault could then establish the
278          * pte after kvm_unmap_hva returned, without noticing the page
279          * is going to be freed.
280          */
281         idx = srcu_read_lock(&kvm->srcu);
282         spin_lock(&kvm->mmu_lock);
283
284         kvm->mmu_notifier_seq++;
285         need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
286         /* we've to flush the tlb before the pages can be freed */
287         if (need_tlb_flush)
288                 kvm_flush_remote_tlbs(kvm);
289
290         spin_unlock(&kvm->mmu_lock);
291         srcu_read_unlock(&kvm->srcu, idx);
292 }
293
294 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
295                                         struct mm_struct *mm,
296                                         unsigned long address,
297                                         pte_t pte)
298 {
299         struct kvm *kvm = mmu_notifier_to_kvm(mn);
300         int idx;
301
302         idx = srcu_read_lock(&kvm->srcu);
303         spin_lock(&kvm->mmu_lock);
304         kvm->mmu_notifier_seq++;
305         kvm_set_spte_hva(kvm, address, pte);
306         spin_unlock(&kvm->mmu_lock);
307         srcu_read_unlock(&kvm->srcu, idx);
308 }
309
310 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
311                                                     struct mm_struct *mm,
312                                                     unsigned long start,
313                                                     unsigned long end)
314 {
315         struct kvm *kvm = mmu_notifier_to_kvm(mn);
316         int need_tlb_flush = 0, idx;
317
318         idx = srcu_read_lock(&kvm->srcu);
319         spin_lock(&kvm->mmu_lock);
320         /*
321          * The count increase must become visible at unlock time as no
322          * spte can be established without taking the mmu_lock and
323          * count is also read inside the mmu_lock critical section.
324          */
325         kvm->mmu_notifier_count++;
326         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
327         need_tlb_flush |= kvm->tlbs_dirty;
328         /* we've to flush the tlb before the pages can be freed */
329         if (need_tlb_flush)
330                 kvm_flush_remote_tlbs(kvm);
331
332         spin_unlock(&kvm->mmu_lock);
333         srcu_read_unlock(&kvm->srcu, idx);
334 }
335
336 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
337                                                   struct mm_struct *mm,
338                                                   unsigned long start,
339                                                   unsigned long end)
340 {
341         struct kvm *kvm = mmu_notifier_to_kvm(mn);
342
343         spin_lock(&kvm->mmu_lock);
344         /*
345          * This sequence increase will notify the kvm page fault that
346          * the page that is going to be mapped in the spte could have
347          * been freed.
348          */
349         kvm->mmu_notifier_seq++;
350         smp_wmb();
351         /*
352          * The above sequence increase must be visible before the
353          * below count decrease, which is ensured by the smp_wmb above
354          * in conjunction with the smp_rmb in mmu_notifier_retry().
355          */
356         kvm->mmu_notifier_count--;
357         spin_unlock(&kvm->mmu_lock);
358
359         BUG_ON(kvm->mmu_notifier_count < 0);
360 }
361
362 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
363                                               struct mm_struct *mm,
364                                               unsigned long address)
365 {
366         struct kvm *kvm = mmu_notifier_to_kvm(mn);
367         int young, idx;
368
369         idx = srcu_read_lock(&kvm->srcu);
370         spin_lock(&kvm->mmu_lock);
371
372         young = kvm_age_hva(kvm, address);
373         if (young)
374                 kvm_flush_remote_tlbs(kvm);
375
376         spin_unlock(&kvm->mmu_lock);
377         srcu_read_unlock(&kvm->srcu, idx);
378
379         return young;
380 }
381
382 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
383                                        struct mm_struct *mm,
384                                        unsigned long address)
385 {
386         struct kvm *kvm = mmu_notifier_to_kvm(mn);
387         int young, idx;
388
389         idx = srcu_read_lock(&kvm->srcu);
390         spin_lock(&kvm->mmu_lock);
391         young = kvm_test_age_hva(kvm, address);
392         spin_unlock(&kvm->mmu_lock);
393         srcu_read_unlock(&kvm->srcu, idx);
394
395         return young;
396 }
397
398 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
399                                      struct mm_struct *mm)
400 {
401         struct kvm *kvm = mmu_notifier_to_kvm(mn);
402         int idx;
403
404         idx = srcu_read_lock(&kvm->srcu);
405         kvm_arch_flush_shadow_all(kvm);
406         srcu_read_unlock(&kvm->srcu, idx);
407 }
408
409 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
410         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
411         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
412         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
413         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
414         .test_young             = kvm_mmu_notifier_test_young,
415         .change_pte             = kvm_mmu_notifier_change_pte,
416         .release                = kvm_mmu_notifier_release,
417 };
418
419 static int kvm_init_mmu_notifier(struct kvm *kvm)
420 {
421         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
422         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
423 }
424
425 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
426
427 static int kvm_init_mmu_notifier(struct kvm *kvm)
428 {
429         return 0;
430 }
431
432 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
433
434 static void kvm_init_memslots_id(struct kvm *kvm)
435 {
436         int i;
437         struct kvm_memslots *slots = kvm->memslots;
438
439         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
440                 slots->id_to_index[i] = slots->memslots[i].id = i;
441 }
442
443 static struct kvm *kvm_create_vm(unsigned long type)
444 {
445         int r, i;
446         struct kvm *kvm = kvm_arch_alloc_vm();
447
448         if (!kvm)
449                 return ERR_PTR(-ENOMEM);
450
451         r = kvm_arch_init_vm(kvm, type);
452         if (r)
453                 goto out_err_nodisable;
454
455         r = hardware_enable_all();
456         if (r)
457                 goto out_err_nodisable;
458
459 #ifdef CONFIG_HAVE_KVM_IRQCHIP
460         INIT_HLIST_HEAD(&kvm->mask_notifier_list);
461         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
462 #endif
463
464         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
465
466         r = -ENOMEM;
467         kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
468         if (!kvm->memslots)
469                 goto out_err_nosrcu;
470         kvm_init_memslots_id(kvm);
471         if (init_srcu_struct(&kvm->srcu))
472                 goto out_err_nosrcu;
473         for (i = 0; i < KVM_NR_BUSES; i++) {
474                 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
475                                         GFP_KERNEL);
476                 if (!kvm->buses[i])
477                         goto out_err;
478         }
479
480         spin_lock_init(&kvm->mmu_lock);
481         kvm->mm = current->mm;
482         atomic_inc(&kvm->mm->mm_count);
483         kvm_eventfd_init(kvm);
484         mutex_init(&kvm->lock);
485         mutex_init(&kvm->irq_lock);
486         mutex_init(&kvm->slots_lock);
487         atomic_set(&kvm->users_count, 1);
488         INIT_LIST_HEAD(&kvm->devices);
489
490         r = kvm_init_mmu_notifier(kvm);
491         if (r)
492                 goto out_err;
493
494         spin_lock(&kvm_lock);
495         list_add(&kvm->vm_list, &vm_list);
496         spin_unlock(&kvm_lock);
497
498         return kvm;
499
500 out_err:
501         cleanup_srcu_struct(&kvm->srcu);
502 out_err_nosrcu:
503         hardware_disable_all();
504 out_err_nodisable:
505         for (i = 0; i < KVM_NR_BUSES; i++)
506                 kfree(kvm->buses[i]);
507         kfree(kvm->memslots);
508         kvm_arch_free_vm(kvm);
509         return ERR_PTR(r);
510 }
511
512 /*
513  * Avoid using vmalloc for a small buffer.
514  * Should not be used when the size is statically known.
515  */
516 void *kvm_kvzalloc(unsigned long size)
517 {
518         if (size > PAGE_SIZE)
519                 return vzalloc(size);
520         else
521                 return kzalloc(size, GFP_KERNEL);
522 }
523
524 void kvm_kvfree(const void *addr)
525 {
526         if (is_vmalloc_addr(addr))
527                 vfree(addr);
528         else
529                 kfree(addr);
530 }
531
532 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
533 {
534         if (!memslot->dirty_bitmap)
535                 return;
536
537         kvm_kvfree(memslot->dirty_bitmap);
538         memslot->dirty_bitmap = NULL;
539 }
540
541 /*
542  * Free any memory in @free but not in @dont.
543  */
544 static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free,
545                                   struct kvm_memory_slot *dont)
546 {
547         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
548                 kvm_destroy_dirty_bitmap(free);
549
550         kvm_arch_free_memslot(kvm, free, dont);
551
552         free->npages = 0;
553 }
554
555 void kvm_free_physmem(struct kvm *kvm)
556 {
557         struct kvm_memslots *slots = kvm->memslots;
558         struct kvm_memory_slot *memslot;
559
560         kvm_for_each_memslot(memslot, slots)
561                 kvm_free_physmem_slot(kvm, memslot, NULL);
562
563         kfree(kvm->memslots);
564 }
565
566 static void kvm_destroy_devices(struct kvm *kvm)
567 {
568         struct list_head *node, *tmp;
569
570         list_for_each_safe(node, tmp, &kvm->devices) {
571                 struct kvm_device *dev =
572                         list_entry(node, struct kvm_device, vm_node);
573
574                 list_del(node);
575                 dev->ops->destroy(dev);
576         }
577 }
578
579 static void kvm_destroy_vm(struct kvm *kvm)
580 {
581         int i;
582         struct mm_struct *mm = kvm->mm;
583
584         kvm_arch_sync_events(kvm);
585         spin_lock(&kvm_lock);
586         list_del(&kvm->vm_list);
587         spin_unlock(&kvm_lock);
588         kvm_free_irq_routing(kvm);
589         for (i = 0; i < KVM_NR_BUSES; i++)
590                 kvm_io_bus_destroy(kvm->buses[i]);
591         kvm_coalesced_mmio_free(kvm);
592 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
593         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
594 #else
595         kvm_arch_flush_shadow_all(kvm);
596 #endif
597         kvm_arch_destroy_vm(kvm);
598         kvm_destroy_devices(kvm);
599         kvm_free_physmem(kvm);
600         cleanup_srcu_struct(&kvm->srcu);
601         kvm_arch_free_vm(kvm);
602         hardware_disable_all();
603         mmdrop(mm);
604 }
605
606 void kvm_get_kvm(struct kvm *kvm)
607 {
608         atomic_inc(&kvm->users_count);
609 }
610 EXPORT_SYMBOL_GPL(kvm_get_kvm);
611
612 void kvm_put_kvm(struct kvm *kvm)
613 {
614         if (atomic_dec_and_test(&kvm->users_count))
615                 kvm_destroy_vm(kvm);
616 }
617 EXPORT_SYMBOL_GPL(kvm_put_kvm);
618
619
620 static int kvm_vm_release(struct inode *inode, struct file *filp)
621 {
622         struct kvm *kvm = filp->private_data;
623
624         kvm_irqfd_release(kvm);
625
626         kvm_put_kvm(kvm);
627         return 0;
628 }
629
630 /*
631  * Allocation size is twice as large as the actual dirty bitmap size.
632  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
633  */
634 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
635 {
636 #ifndef CONFIG_S390
637         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
638
639         memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
640         if (!memslot->dirty_bitmap)
641                 return -ENOMEM;
642
643 #endif /* !CONFIG_S390 */
644         return 0;
645 }
646
647 static int cmp_memslot(const void *slot1, const void *slot2)
648 {
649         struct kvm_memory_slot *s1, *s2;
650
651         s1 = (struct kvm_memory_slot *)slot1;
652         s2 = (struct kvm_memory_slot *)slot2;
653
654         if (s1->npages < s2->npages)
655                 return 1;
656         if (s1->npages > s2->npages)
657                 return -1;
658
659         return 0;
660 }
661
662 /*
663  * Sort the memslots base on its size, so the larger slots
664  * will get better fit.
665  */
666 static void sort_memslots(struct kvm_memslots *slots)
667 {
668         int i;
669
670         sort(slots->memslots, KVM_MEM_SLOTS_NUM,
671               sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
672
673         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
674                 slots->id_to_index[slots->memslots[i].id] = i;
675 }
676
677 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new,
678                      u64 last_generation)
679 {
680         if (new) {
681                 int id = new->id;
682                 struct kvm_memory_slot *old = id_to_memslot(slots, id);
683                 unsigned long npages = old->npages;
684
685                 *old = *new;
686                 if (new->npages != npages)
687                         sort_memslots(slots);
688         }
689
690         slots->generation = last_generation + 1;
691 }
692
693 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
694 {
695         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
696
697 #ifdef KVM_CAP_READONLY_MEM
698         valid_flags |= KVM_MEM_READONLY;
699 #endif
700
701         if (mem->flags & ~valid_flags)
702                 return -EINVAL;
703
704         return 0;
705 }
706
707 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
708                 struct kvm_memslots *slots, struct kvm_memory_slot *new)
709 {
710         struct kvm_memslots *old_memslots = kvm->memslots;
711
712         update_memslots(slots, new, kvm->memslots->generation);
713         rcu_assign_pointer(kvm->memslots, slots);
714         synchronize_srcu_expedited(&kvm->srcu);
715
716         kvm_arch_memslots_updated(kvm);
717
718         return old_memslots;
719 }
720
721 /*
722  * Allocate some memory and give it an address in the guest physical address
723  * space.
724  *
725  * Discontiguous memory is allowed, mostly for framebuffers.
726  *
727  * Must be called holding mmap_sem for write.
728  */
729 int __kvm_set_memory_region(struct kvm *kvm,
730                             struct kvm_userspace_memory_region *mem)
731 {
732         int r;
733         gfn_t base_gfn;
734         unsigned long npages;
735         struct kvm_memory_slot *slot;
736         struct kvm_memory_slot old, new;
737         struct kvm_memslots *slots = NULL, *old_memslots;
738         enum kvm_mr_change change;
739
740         r = check_memory_region_flags(mem);
741         if (r)
742                 goto out;
743
744         r = -EINVAL;
745         /* General sanity checks */
746         if (mem->memory_size & (PAGE_SIZE - 1))
747                 goto out;
748         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
749                 goto out;
750         /* We can read the guest memory with __xxx_user() later on. */
751         if ((mem->slot < KVM_USER_MEM_SLOTS) &&
752             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
753              !access_ok(VERIFY_WRITE,
754                         (void __user *)(unsigned long)mem->userspace_addr,
755                         mem->memory_size)))
756                 goto out;
757         if (mem->slot >= KVM_MEM_SLOTS_NUM)
758                 goto out;
759         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
760                 goto out;
761
762         slot = id_to_memslot(kvm->memslots, mem->slot);
763         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
764         npages = mem->memory_size >> PAGE_SHIFT;
765
766         r = -EINVAL;
767         if (npages > KVM_MEM_MAX_NR_PAGES)
768                 goto out;
769
770         if (!npages)
771                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
772
773         new = old = *slot;
774
775         new.id = mem->slot;
776         new.base_gfn = base_gfn;
777         new.npages = npages;
778         new.flags = mem->flags;
779
780         r = -EINVAL;
781         if (npages) {
782                 if (!old.npages)
783                         change = KVM_MR_CREATE;
784                 else { /* Modify an existing slot. */
785                         if ((mem->userspace_addr != old.userspace_addr) ||
786                             (npages != old.npages) ||
787                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
788                                 goto out;
789
790                         if (base_gfn != old.base_gfn)
791                                 change = KVM_MR_MOVE;
792                         else if (new.flags != old.flags)
793                                 change = KVM_MR_FLAGS_ONLY;
794                         else { /* Nothing to change. */
795                                 r = 0;
796                                 goto out;
797                         }
798                 }
799         } else if (old.npages) {
800                 change = KVM_MR_DELETE;
801         } else /* Modify a non-existent slot: disallowed. */
802                 goto out;
803
804         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
805                 /* Check for overlaps */
806                 r = -EEXIST;
807                 kvm_for_each_memslot(slot, kvm->memslots) {
808                         if ((slot->id >= KVM_USER_MEM_SLOTS) ||
809                             (slot->id == mem->slot))
810                                 continue;
811                         if (!((base_gfn + npages <= slot->base_gfn) ||
812                               (base_gfn >= slot->base_gfn + slot->npages)))
813                                 goto out;
814                 }
815         }
816
817         /* Free page dirty bitmap if unneeded */
818         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
819                 new.dirty_bitmap = NULL;
820
821         r = -ENOMEM;
822         if (change == KVM_MR_CREATE) {
823                 new.userspace_addr = mem->userspace_addr;
824
825                 if (kvm_arch_create_memslot(kvm, &new, npages))
826                         goto out_free;
827         }
828
829         /* Allocate page dirty bitmap if needed */
830         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
831                 if (kvm_create_dirty_bitmap(&new) < 0)
832                         goto out_free;
833         }
834
835         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
836                 r = -ENOMEM;
837                 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
838                                 GFP_KERNEL);
839                 if (!slots)
840                         goto out_free;
841                 slot = id_to_memslot(slots, mem->slot);
842                 slot->flags |= KVM_MEMSLOT_INVALID;
843
844                 old_memslots = install_new_memslots(kvm, slots, NULL);
845
846                 /* slot was deleted or moved, clear iommu mapping */
847                 kvm_iommu_unmap_pages(kvm, &old);
848                 /* From this point no new shadow pages pointing to a deleted,
849                  * or moved, memslot will be created.
850                  *
851                  * validation of sp->gfn happens in:
852                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
853                  *      - kvm_is_visible_gfn (mmu_check_roots)
854                  */
855                 kvm_arch_flush_shadow_memslot(kvm, slot);
856                 slots = old_memslots;
857         }
858
859         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
860         if (r)
861                 goto out_slots;
862
863         r = -ENOMEM;
864         /*
865          * We can re-use the old_memslots from above, the only difference
866          * from the currently installed memslots is the invalid flag.  This
867          * will get overwritten by update_memslots anyway.
868          */
869         if (!slots) {
870                 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
871                                 GFP_KERNEL);
872                 if (!slots)
873                         goto out_free;
874         }
875
876         /* actual memory is freed via old in kvm_free_physmem_slot below */
877         if (change == KVM_MR_DELETE) {
878                 new.dirty_bitmap = NULL;
879                 memset(&new.arch, 0, sizeof(new.arch));
880         }
881
882         old_memslots = install_new_memslots(kvm, slots, &new);
883
884         kvm_arch_commit_memory_region(kvm, mem, &old, change);
885
886         kvm_free_physmem_slot(kvm, &old, &new);
887         kfree(old_memslots);
888
889         /*
890          * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
891          * un-mapped and re-mapped if their base changes.  Since base change
892          * unmapping is handled above with slot deletion, mapping alone is
893          * needed here.  Anything else the iommu might care about for existing
894          * slots (size changes, userspace addr changes and read-only flag
895          * changes) is disallowed above, so any other attribute changes getting
896          * here can be skipped.
897          */
898         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
899                 r = kvm_iommu_map_pages(kvm, &new);
900                 return r;
901         }
902
903         return 0;
904
905 out_slots:
906         kfree(slots);
907 out_free:
908         kvm_free_physmem_slot(kvm, &new, &old);
909 out:
910         return r;
911 }
912 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
913
914 int kvm_set_memory_region(struct kvm *kvm,
915                           struct kvm_userspace_memory_region *mem)
916 {
917         int r;
918
919         mutex_lock(&kvm->slots_lock);
920         r = __kvm_set_memory_region(kvm, mem);
921         mutex_unlock(&kvm->slots_lock);
922         return r;
923 }
924 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
925
926 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
927                                    struct kvm_userspace_memory_region *mem)
928 {
929         if (mem->slot >= KVM_USER_MEM_SLOTS)
930                 return -EINVAL;
931         return kvm_set_memory_region(kvm, mem);
932 }
933
934 int kvm_get_dirty_log(struct kvm *kvm,
935                         struct kvm_dirty_log *log, int *is_dirty)
936 {
937         struct kvm_memory_slot *memslot;
938         int r, i;
939         unsigned long n;
940         unsigned long any = 0;
941
942         r = -EINVAL;
943         if (log->slot >= KVM_USER_MEM_SLOTS)
944                 goto out;
945
946         memslot = id_to_memslot(kvm->memslots, log->slot);
947         r = -ENOENT;
948         if (!memslot->dirty_bitmap)
949                 goto out;
950
951         n = kvm_dirty_bitmap_bytes(memslot);
952
953         for (i = 0; !any && i < n/sizeof(long); ++i)
954                 any = memslot->dirty_bitmap[i];
955
956         r = -EFAULT;
957         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
958                 goto out;
959
960         if (any)
961                 *is_dirty = 1;
962
963         r = 0;
964 out:
965         return r;
966 }
967
968 bool kvm_largepages_enabled(void)
969 {
970         return largepages_enabled;
971 }
972
973 void kvm_disable_largepages(void)
974 {
975         largepages_enabled = false;
976 }
977 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
978
979 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
980 {
981         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
982 }
983 EXPORT_SYMBOL_GPL(gfn_to_memslot);
984
985 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
986 {
987         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
988
989         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
990               memslot->flags & KVM_MEMSLOT_INVALID)
991                 return 0;
992
993         return 1;
994 }
995 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
996
997 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
998 {
999         struct vm_area_struct *vma;
1000         unsigned long addr, size;
1001
1002         size = PAGE_SIZE;
1003
1004         addr = gfn_to_hva(kvm, gfn);
1005         if (kvm_is_error_hva(addr))
1006                 return PAGE_SIZE;
1007
1008         down_read(&current->mm->mmap_sem);
1009         vma = find_vma(current->mm, addr);
1010         if (!vma)
1011                 goto out;
1012
1013         size = vma_kernel_pagesize(vma);
1014
1015 out:
1016         up_read(&current->mm->mmap_sem);
1017
1018         return size;
1019 }
1020
1021 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1022 {
1023         return slot->flags & KVM_MEM_READONLY;
1024 }
1025
1026 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1027                                        gfn_t *nr_pages, bool write)
1028 {
1029         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1030                 return KVM_HVA_ERR_BAD;
1031
1032         if (memslot_is_readonly(slot) && write)
1033                 return KVM_HVA_ERR_RO_BAD;
1034
1035         if (nr_pages)
1036                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1037
1038         return __gfn_to_hva_memslot(slot, gfn);
1039 }
1040
1041 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1042                                      gfn_t *nr_pages)
1043 {
1044         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1045 }
1046
1047 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1048                                  gfn_t gfn)
1049 {
1050         return gfn_to_hva_many(slot, gfn, NULL);
1051 }
1052 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1053
1054 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1055 {
1056         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1057 }
1058 EXPORT_SYMBOL_GPL(gfn_to_hva);
1059
1060 /*
1061  * If writable is set to false, the hva returned by this function is only
1062  * allowed to be read.
1063  */
1064 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1065 {
1066         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1067         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1068
1069         if (!kvm_is_error_hva(hva) && writable)
1070                 *writable = !memslot_is_readonly(slot);
1071
1072         return hva;
1073 }
1074
1075 static int kvm_read_hva(void *data, void __user *hva, int len)
1076 {
1077         return __copy_from_user(data, hva, len);
1078 }
1079
1080 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1081 {
1082         return __copy_from_user_inatomic(data, hva, len);
1083 }
1084
1085 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1086         unsigned long start, int write, struct page **page)
1087 {
1088         int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1089
1090         if (write)
1091                 flags |= FOLL_WRITE;
1092
1093         return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1094 }
1095
1096 static inline int check_user_page_hwpoison(unsigned long addr)
1097 {
1098         int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1099
1100         rc = __get_user_pages(current, current->mm, addr, 1,
1101                               flags, NULL, NULL, NULL);
1102         return rc == -EHWPOISON;
1103 }
1104
1105 /*
1106  * The atomic path to get the writable pfn which will be stored in @pfn,
1107  * true indicates success, otherwise false is returned.
1108  */
1109 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1110                             bool write_fault, bool *writable, pfn_t *pfn)
1111 {
1112         struct page *page[1];
1113         int npages;
1114
1115         if (!(async || atomic))
1116                 return false;
1117
1118         /*
1119          * Fast pin a writable pfn only if it is a write fault request
1120          * or the caller allows to map a writable pfn for a read fault
1121          * request.
1122          */
1123         if (!(write_fault || writable))
1124                 return false;
1125
1126         npages = __get_user_pages_fast(addr, 1, 1, page);
1127         if (npages == 1) {
1128                 *pfn = page_to_pfn(page[0]);
1129
1130                 if (writable)
1131                         *writable = true;
1132                 return true;
1133         }
1134
1135         return false;
1136 }
1137
1138 /*
1139  * The slow path to get the pfn of the specified host virtual address,
1140  * 1 indicates success, -errno is returned if error is detected.
1141  */
1142 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1143                            bool *writable, pfn_t *pfn)
1144 {
1145         struct page *page[1];
1146         int npages = 0;
1147
1148         might_sleep();
1149
1150         if (writable)
1151                 *writable = write_fault;
1152
1153         if (async) {
1154                 down_read(&current->mm->mmap_sem);
1155                 npages = get_user_page_nowait(current, current->mm,
1156                                               addr, write_fault, page);
1157                 up_read(&current->mm->mmap_sem);
1158         } else
1159                 npages = get_user_pages_fast(addr, 1, write_fault,
1160                                              page);
1161         if (npages != 1)
1162                 return npages;
1163
1164         /* map read fault as writable if possible */
1165         if (unlikely(!write_fault) && writable) {
1166                 struct page *wpage[1];
1167
1168                 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1169                 if (npages == 1) {
1170                         *writable = true;
1171                         put_page(page[0]);
1172                         page[0] = wpage[0];
1173                 }
1174
1175                 npages = 1;
1176         }
1177         *pfn = page_to_pfn(page[0]);
1178         return npages;
1179 }
1180
1181 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1182 {
1183         if (unlikely(!(vma->vm_flags & VM_READ)))
1184                 return false;
1185
1186         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1187                 return false;
1188
1189         return true;
1190 }
1191
1192 /*
1193  * Pin guest page in memory and return its pfn.
1194  * @addr: host virtual address which maps memory to the guest
1195  * @atomic: whether this function can sleep
1196  * @async: whether this function need to wait IO complete if the
1197  *         host page is not in the memory
1198  * @write_fault: whether we should get a writable host page
1199  * @writable: whether it allows to map a writable host page for !@write_fault
1200  *
1201  * The function will map a writable host page for these two cases:
1202  * 1): @write_fault = true
1203  * 2): @write_fault = false && @writable, @writable will tell the caller
1204  *     whether the mapping is writable.
1205  */
1206 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1207                         bool write_fault, bool *writable)
1208 {
1209         struct vm_area_struct *vma;
1210         pfn_t pfn = 0;
1211         int npages;
1212
1213         /* we can do it either atomically or asynchronously, not both */
1214         BUG_ON(atomic && async);
1215
1216         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1217                 return pfn;
1218
1219         if (atomic)
1220                 return KVM_PFN_ERR_FAULT;
1221
1222         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1223         if (npages == 1)
1224                 return pfn;
1225
1226         down_read(&current->mm->mmap_sem);
1227         if (npages == -EHWPOISON ||
1228               (!async && check_user_page_hwpoison(addr))) {
1229                 pfn = KVM_PFN_ERR_HWPOISON;
1230                 goto exit;
1231         }
1232
1233         vma = find_vma_intersection(current->mm, addr, addr + 1);
1234
1235         if (vma == NULL)
1236                 pfn = KVM_PFN_ERR_FAULT;
1237         else if ((vma->vm_flags & VM_PFNMAP)) {
1238                 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1239                         vma->vm_pgoff;
1240                 BUG_ON(!kvm_is_mmio_pfn(pfn));
1241         } else {
1242                 if (async && vma_is_valid(vma, write_fault))
1243                         *async = true;
1244                 pfn = KVM_PFN_ERR_FAULT;
1245         }
1246 exit:
1247         up_read(&current->mm->mmap_sem);
1248         return pfn;
1249 }
1250
1251 static pfn_t
1252 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1253                      bool *async, bool write_fault, bool *writable)
1254 {
1255         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1256
1257         if (addr == KVM_HVA_ERR_RO_BAD)
1258                 return KVM_PFN_ERR_RO_FAULT;
1259
1260         if (kvm_is_error_hva(addr))
1261                 return KVM_PFN_NOSLOT;
1262
1263         /* Do not map writable pfn in the readonly memslot. */
1264         if (writable && memslot_is_readonly(slot)) {
1265                 *writable = false;
1266                 writable = NULL;
1267         }
1268
1269         return hva_to_pfn(addr, atomic, async, write_fault,
1270                           writable);
1271 }
1272
1273 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1274                           bool write_fault, bool *writable)
1275 {
1276         struct kvm_memory_slot *slot;
1277
1278         if (async)
1279                 *async = false;
1280
1281         slot = gfn_to_memslot(kvm, gfn);
1282
1283         return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1284                                     writable);
1285 }
1286
1287 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1288 {
1289         return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1290 }
1291 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1292
1293 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1294                        bool write_fault, bool *writable)
1295 {
1296         return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1297 }
1298 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1299
1300 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1301 {
1302         return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1303 }
1304 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1305
1306 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1307                       bool *writable)
1308 {
1309         return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1310 }
1311 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1312
1313 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1314 {
1315         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1316 }
1317
1318 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1319 {
1320         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1321 }
1322 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1323
1324 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1325                                                                   int nr_pages)
1326 {
1327         unsigned long addr;
1328         gfn_t entry;
1329
1330         addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1331         if (kvm_is_error_hva(addr))
1332                 return -1;
1333
1334         if (entry < nr_pages)
1335                 return 0;
1336
1337         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1338 }
1339 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1340
1341 static struct page *kvm_pfn_to_page(pfn_t pfn)
1342 {
1343         if (is_error_noslot_pfn(pfn))
1344                 return KVM_ERR_PTR_BAD_PAGE;
1345
1346         if (kvm_is_mmio_pfn(pfn)) {
1347                 WARN_ON(1);
1348                 return KVM_ERR_PTR_BAD_PAGE;
1349         }
1350
1351         return pfn_to_page(pfn);
1352 }
1353
1354 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1355 {
1356         pfn_t pfn;
1357
1358         pfn = gfn_to_pfn(kvm, gfn);
1359
1360         return kvm_pfn_to_page(pfn);
1361 }
1362
1363 EXPORT_SYMBOL_GPL(gfn_to_page);
1364
1365 void kvm_release_page_clean(struct page *page)
1366 {
1367         WARN_ON(is_error_page(page));
1368
1369         kvm_release_pfn_clean(page_to_pfn(page));
1370 }
1371 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1372
1373 void kvm_release_pfn_clean(pfn_t pfn)
1374 {
1375         if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1376                 put_page(pfn_to_page(pfn));
1377 }
1378 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1379
1380 void kvm_release_page_dirty(struct page *page)
1381 {
1382         WARN_ON(is_error_page(page));
1383
1384         kvm_release_pfn_dirty(page_to_pfn(page));
1385 }
1386 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1387
1388 void kvm_release_pfn_dirty(pfn_t pfn)
1389 {
1390         kvm_set_pfn_dirty(pfn);
1391         kvm_release_pfn_clean(pfn);
1392 }
1393 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1394
1395 void kvm_set_page_dirty(struct page *page)
1396 {
1397         kvm_set_pfn_dirty(page_to_pfn(page));
1398 }
1399 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1400
1401 void kvm_set_pfn_dirty(pfn_t pfn)
1402 {
1403         if (!kvm_is_mmio_pfn(pfn)) {
1404                 struct page *page = pfn_to_page(pfn);
1405                 if (!PageReserved(page))
1406                         SetPageDirty(page);
1407         }
1408 }
1409 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1410
1411 void kvm_set_pfn_accessed(pfn_t pfn)
1412 {
1413         if (!kvm_is_mmio_pfn(pfn))
1414                 mark_page_accessed(pfn_to_page(pfn));
1415 }
1416 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1417
1418 void kvm_get_pfn(pfn_t pfn)
1419 {
1420         if (!kvm_is_mmio_pfn(pfn))
1421                 get_page(pfn_to_page(pfn));
1422 }
1423 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1424
1425 static int next_segment(unsigned long len, int offset)
1426 {
1427         if (len > PAGE_SIZE - offset)
1428                 return PAGE_SIZE - offset;
1429         else
1430                 return len;
1431 }
1432
1433 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1434                         int len)
1435 {
1436         int r;
1437         unsigned long addr;
1438
1439         addr = gfn_to_hva_prot(kvm, gfn, NULL);
1440         if (kvm_is_error_hva(addr))
1441                 return -EFAULT;
1442         r = kvm_read_hva(data, (void __user *)addr + offset, len);
1443         if (r)
1444                 return -EFAULT;
1445         return 0;
1446 }
1447 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1448
1449 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1450 {
1451         gfn_t gfn = gpa >> PAGE_SHIFT;
1452         int seg;
1453         int offset = offset_in_page(gpa);
1454         int ret;
1455
1456         while ((seg = next_segment(len, offset)) != 0) {
1457                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1458                 if (ret < 0)
1459                         return ret;
1460                 offset = 0;
1461                 len -= seg;
1462                 data += seg;
1463                 ++gfn;
1464         }
1465         return 0;
1466 }
1467 EXPORT_SYMBOL_GPL(kvm_read_guest);
1468
1469 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1470                           unsigned long len)
1471 {
1472         int r;
1473         unsigned long addr;
1474         gfn_t gfn = gpa >> PAGE_SHIFT;
1475         int offset = offset_in_page(gpa);
1476
1477         addr = gfn_to_hva_prot(kvm, gfn, NULL);
1478         if (kvm_is_error_hva(addr))
1479                 return -EFAULT;
1480         pagefault_disable();
1481         r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1482         pagefault_enable();
1483         if (r)
1484                 return -EFAULT;
1485         return 0;
1486 }
1487 EXPORT_SYMBOL(kvm_read_guest_atomic);
1488
1489 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1490                          int offset, int len)
1491 {
1492         int r;
1493         unsigned long addr;
1494
1495         addr = gfn_to_hva(kvm, gfn);
1496         if (kvm_is_error_hva(addr))
1497                 return -EFAULT;
1498         r = __copy_to_user((void __user *)addr + offset, data, len);
1499         if (r)
1500                 return -EFAULT;
1501         mark_page_dirty(kvm, gfn);
1502         return 0;
1503 }
1504 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1505
1506 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1507                     unsigned long len)
1508 {
1509         gfn_t gfn = gpa >> PAGE_SHIFT;
1510         int seg;
1511         int offset = offset_in_page(gpa);
1512         int ret;
1513
1514         while ((seg = next_segment(len, offset)) != 0) {
1515                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1516                 if (ret < 0)
1517                         return ret;
1518                 offset = 0;
1519                 len -= seg;
1520                 data += seg;
1521                 ++gfn;
1522         }
1523         return 0;
1524 }
1525
1526 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1527                               gpa_t gpa, unsigned long len)
1528 {
1529         struct kvm_memslots *slots = kvm_memslots(kvm);
1530         int offset = offset_in_page(gpa);
1531         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1532         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1533         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1534         gfn_t nr_pages_avail;
1535
1536         ghc->gpa = gpa;
1537         ghc->generation = slots->generation;
1538         ghc->len = len;
1539         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1540         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
1541         if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
1542                 ghc->hva += offset;
1543         } else {
1544                 /*
1545                  * If the requested region crosses two memslots, we still
1546                  * verify that the entire region is valid here.
1547                  */
1548                 while (start_gfn <= end_gfn) {
1549                         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1550                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1551                                                    &nr_pages_avail);
1552                         if (kvm_is_error_hva(ghc->hva))
1553                                 return -EFAULT;
1554                         start_gfn += nr_pages_avail;
1555                 }
1556                 /* Use the slow path for cross page reads and writes. */
1557                 ghc->memslot = NULL;
1558         }
1559         return 0;
1560 }
1561 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1562
1563 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1564                            void *data, unsigned long len)
1565 {
1566         struct kvm_memslots *slots = kvm_memslots(kvm);
1567         int r;
1568
1569         BUG_ON(len > ghc->len);
1570
1571         if (slots->generation != ghc->generation)
1572                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1573
1574         if (unlikely(!ghc->memslot))
1575                 return kvm_write_guest(kvm, ghc->gpa, data, len);
1576
1577         if (kvm_is_error_hva(ghc->hva))
1578                 return -EFAULT;
1579
1580         r = __copy_to_user((void __user *)ghc->hva, data, len);
1581         if (r)
1582                 return -EFAULT;
1583         mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1584
1585         return 0;
1586 }
1587 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1588
1589 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1590                            void *data, unsigned long len)
1591 {
1592         struct kvm_memslots *slots = kvm_memslots(kvm);
1593         int r;
1594
1595         BUG_ON(len > ghc->len);
1596
1597         if (slots->generation != ghc->generation)
1598                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1599
1600         if (unlikely(!ghc->memslot))
1601                 return kvm_read_guest(kvm, ghc->gpa, data, len);
1602
1603         if (kvm_is_error_hva(ghc->hva))
1604                 return -EFAULT;
1605
1606         r = __copy_from_user(data, (void __user *)ghc->hva, len);
1607         if (r)
1608                 return -EFAULT;
1609
1610         return 0;
1611 }
1612 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1613
1614 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1615 {
1616         return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1617                                     offset, len);
1618 }
1619 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1620
1621 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1622 {
1623         gfn_t gfn = gpa >> PAGE_SHIFT;
1624         int seg;
1625         int offset = offset_in_page(gpa);
1626         int ret;
1627
1628         while ((seg = next_segment(len, offset)) != 0) {
1629                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1630                 if (ret < 0)
1631                         return ret;
1632                 offset = 0;
1633                 len -= seg;
1634                 ++gfn;
1635         }
1636         return 0;
1637 }
1638 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1639
1640 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1641                              gfn_t gfn)
1642 {
1643         if (memslot && memslot->dirty_bitmap) {
1644                 unsigned long rel_gfn = gfn - memslot->base_gfn;
1645
1646                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1647         }
1648 }
1649
1650 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1651 {
1652         struct kvm_memory_slot *memslot;
1653
1654         memslot = gfn_to_memslot(kvm, gfn);
1655         mark_page_dirty_in_slot(kvm, memslot, gfn);
1656 }
1657
1658 /*
1659  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1660  */
1661 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1662 {
1663         DEFINE_WAIT(wait);
1664
1665         for (;;) {
1666                 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1667
1668                 if (kvm_arch_vcpu_runnable(vcpu)) {
1669                         kvm_make_request(KVM_REQ_UNHALT, vcpu);
1670                         break;
1671                 }
1672                 if (kvm_cpu_has_pending_timer(vcpu))
1673                         break;
1674                 if (signal_pending(current))
1675                         break;
1676
1677                 schedule();
1678         }
1679
1680         finish_wait(&vcpu->wq, &wait);
1681 }
1682
1683 #ifndef CONFIG_S390
1684 /*
1685  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1686  */
1687 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1688 {
1689         int me;
1690         int cpu = vcpu->cpu;
1691         wait_queue_head_t *wqp;
1692
1693         wqp = kvm_arch_vcpu_wq(vcpu);
1694         if (waitqueue_active(wqp)) {
1695                 wake_up_interruptible(wqp);
1696                 ++vcpu->stat.halt_wakeup;
1697         }
1698
1699         me = get_cpu();
1700         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1701                 if (kvm_arch_vcpu_should_kick(vcpu))
1702                         smp_send_reschedule(cpu);
1703         put_cpu();
1704 }
1705 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1706 #endif /* !CONFIG_S390 */
1707
1708 void kvm_resched(struct kvm_vcpu *vcpu)
1709 {
1710         if (!need_resched())
1711                 return;
1712         cond_resched();
1713 }
1714 EXPORT_SYMBOL_GPL(kvm_resched);
1715
1716 bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1717 {
1718         struct pid *pid;
1719         struct task_struct *task = NULL;
1720         bool ret = false;
1721
1722         rcu_read_lock();
1723         pid = rcu_dereference(target->pid);
1724         if (pid)
1725                 task = get_pid_task(target->pid, PIDTYPE_PID);
1726         rcu_read_unlock();
1727         if (!task)
1728                 return ret;
1729         if (task->flags & PF_VCPU) {
1730                 put_task_struct(task);
1731                 return ret;
1732         }
1733         ret = yield_to(task, 1);
1734         put_task_struct(task);
1735
1736         return ret;
1737 }
1738 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1739
1740 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1741 /*
1742  * Helper that checks whether a VCPU is eligible for directed yield.
1743  * Most eligible candidate to yield is decided by following heuristics:
1744  *
1745  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1746  *  (preempted lock holder), indicated by @in_spin_loop.
1747  *  Set at the beiginning and cleared at the end of interception/PLE handler.
1748  *
1749  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1750  *  chance last time (mostly it has become eligible now since we have probably
1751  *  yielded to lockholder in last iteration. This is done by toggling
1752  *  @dy_eligible each time a VCPU checked for eligibility.)
1753  *
1754  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1755  *  to preempted lock-holder could result in wrong VCPU selection and CPU
1756  *  burning. Giving priority for a potential lock-holder increases lock
1757  *  progress.
1758  *
1759  *  Since algorithm is based on heuristics, accessing another VCPU data without
1760  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
1761  *  and continue with next VCPU and so on.
1762  */
1763 bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1764 {
1765         bool eligible;
1766
1767         eligible = !vcpu->spin_loop.in_spin_loop ||
1768                         (vcpu->spin_loop.in_spin_loop &&
1769                          vcpu->spin_loop.dy_eligible);
1770
1771         if (vcpu->spin_loop.in_spin_loop)
1772                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1773
1774         return eligible;
1775 }
1776 #endif
1777
1778 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1779 {
1780         struct kvm *kvm = me->kvm;
1781         struct kvm_vcpu *vcpu;
1782         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1783         int yielded = 0;
1784         int try = 3;
1785         int pass;
1786         int i;
1787
1788         kvm_vcpu_set_in_spin_loop(me, true);
1789         /*
1790          * We boost the priority of a VCPU that is runnable but not
1791          * currently running, because it got preempted by something
1792          * else and called schedule in __vcpu_run.  Hopefully that
1793          * VCPU is holding the lock that we need and will release it.
1794          * We approximate round-robin by starting at the last boosted VCPU.
1795          */
1796         for (pass = 0; pass < 2 && !yielded && try; pass++) {
1797                 kvm_for_each_vcpu(i, vcpu, kvm) {
1798                         if (!pass && i <= last_boosted_vcpu) {
1799                                 i = last_boosted_vcpu;
1800                                 continue;
1801                         } else if (pass && i > last_boosted_vcpu)
1802                                 break;
1803                         if (!ACCESS_ONCE(vcpu->preempted))
1804                                 continue;
1805                         if (vcpu == me)
1806                                 continue;
1807                         if (waitqueue_active(&vcpu->wq))
1808                                 continue;
1809                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1810                                 continue;
1811
1812                         yielded = kvm_vcpu_yield_to(vcpu);
1813                         if (yielded > 0) {
1814                                 kvm->last_boosted_vcpu = i;
1815                                 break;
1816                         } else if (yielded < 0) {
1817                                 try--;
1818                                 if (!try)
1819                                         break;
1820                         }
1821                 }
1822         }
1823         kvm_vcpu_set_in_spin_loop(me, false);
1824
1825         /* Ensure vcpu is not eligible during next spinloop */
1826         kvm_vcpu_set_dy_eligible(me, false);
1827 }
1828 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1829
1830 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1831 {
1832         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1833         struct page *page;
1834
1835         if (vmf->pgoff == 0)
1836                 page = virt_to_page(vcpu->run);
1837 #ifdef CONFIG_X86
1838         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1839                 page = virt_to_page(vcpu->arch.pio_data);
1840 #endif
1841 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1842         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1843                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1844 #endif
1845         else
1846                 return kvm_arch_vcpu_fault(vcpu, vmf);
1847         get_page(page);
1848         vmf->page = page;
1849         return 0;
1850 }
1851
1852 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1853         .fault = kvm_vcpu_fault,
1854 };
1855
1856 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1857 {
1858         vma->vm_ops = &kvm_vcpu_vm_ops;
1859         return 0;
1860 }
1861
1862 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1863 {
1864         struct kvm_vcpu *vcpu = filp->private_data;
1865
1866         kvm_put_kvm(vcpu->kvm);
1867         return 0;
1868 }
1869
1870 static struct file_operations kvm_vcpu_fops = {
1871         .release        = kvm_vcpu_release,
1872         .unlocked_ioctl = kvm_vcpu_ioctl,
1873 #ifdef CONFIG_COMPAT
1874         .compat_ioctl   = kvm_vcpu_compat_ioctl,
1875 #endif
1876         .mmap           = kvm_vcpu_mmap,
1877         .llseek         = noop_llseek,
1878 };
1879
1880 /*
1881  * Allocates an inode for the vcpu.
1882  */
1883 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1884 {
1885         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
1886 }
1887
1888 /*
1889  * Creates some virtual cpus.  Good luck creating more than one.
1890  */
1891 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1892 {
1893         int r;
1894         struct kvm_vcpu *vcpu, *v;
1895
1896         vcpu = kvm_arch_vcpu_create(kvm, id);
1897         if (IS_ERR(vcpu))
1898                 return PTR_ERR(vcpu);
1899
1900         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1901
1902         r = kvm_arch_vcpu_setup(vcpu);
1903         if (r)
1904                 goto vcpu_destroy;
1905
1906         mutex_lock(&kvm->lock);
1907         if (!kvm_vcpu_compatible(vcpu)) {
1908                 r = -EINVAL;
1909                 goto unlock_vcpu_destroy;
1910         }
1911         if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1912                 r = -EINVAL;
1913                 goto unlock_vcpu_destroy;
1914         }
1915
1916         kvm_for_each_vcpu(r, v, kvm)
1917                 if (v->vcpu_id == id) {
1918                         r = -EEXIST;
1919                         goto unlock_vcpu_destroy;
1920                 }
1921
1922         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1923
1924         /* Now it's all set up, let userspace reach it */
1925         kvm_get_kvm(kvm);
1926         r = create_vcpu_fd(vcpu);
1927         if (r < 0) {
1928                 kvm_put_kvm(kvm);
1929                 goto unlock_vcpu_destroy;
1930         }
1931
1932         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1933         smp_wmb();
1934         atomic_inc(&kvm->online_vcpus);
1935
1936         mutex_unlock(&kvm->lock);
1937         kvm_arch_vcpu_postcreate(vcpu);
1938         return r;
1939
1940 unlock_vcpu_destroy:
1941         mutex_unlock(&kvm->lock);
1942 vcpu_destroy:
1943         kvm_arch_vcpu_destroy(vcpu);
1944         return r;
1945 }
1946
1947 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1948 {
1949         if (sigset) {
1950                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1951                 vcpu->sigset_active = 1;
1952                 vcpu->sigset = *sigset;
1953         } else
1954                 vcpu->sigset_active = 0;
1955         return 0;
1956 }
1957
1958 static long kvm_vcpu_ioctl(struct file *filp,
1959                            unsigned int ioctl, unsigned long arg)
1960 {
1961         struct kvm_vcpu *vcpu = filp->private_data;
1962         void __user *argp = (void __user *)arg;
1963         int r;
1964         struct kvm_fpu *fpu = NULL;
1965         struct kvm_sregs *kvm_sregs = NULL;
1966
1967         if (vcpu->kvm->mm != current->mm)
1968                 return -EIO;
1969
1970 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
1971         /*
1972          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1973          * so vcpu_load() would break it.
1974          */
1975         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1976                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1977 #endif
1978
1979
1980         r = vcpu_load(vcpu);
1981         if (r)
1982                 return r;
1983         switch (ioctl) {
1984         case KVM_RUN:
1985                 r = -EINVAL;
1986                 if (arg)
1987                         goto out;
1988                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1989                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1990                 break;
1991         case KVM_GET_REGS: {
1992                 struct kvm_regs *kvm_regs;
1993
1994                 r = -ENOMEM;
1995                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1996                 if (!kvm_regs)
1997                         goto out;
1998                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1999                 if (r)
2000                         goto out_free1;
2001                 r = -EFAULT;
2002                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2003                         goto out_free1;
2004                 r = 0;
2005 out_free1:
2006                 kfree(kvm_regs);
2007                 break;
2008         }
2009         case KVM_SET_REGS: {
2010                 struct kvm_regs *kvm_regs;
2011
2012                 r = -ENOMEM;
2013                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2014                 if (IS_ERR(kvm_regs)) {
2015                         r = PTR_ERR(kvm_regs);
2016                         goto out;
2017                 }
2018                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2019                 kfree(kvm_regs);
2020                 break;
2021         }
2022         case KVM_GET_SREGS: {
2023                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2024                 r = -ENOMEM;
2025                 if (!kvm_sregs)
2026                         goto out;
2027                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2028                 if (r)
2029                         goto out;
2030                 r = -EFAULT;
2031                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2032                         goto out;
2033                 r = 0;
2034                 break;
2035         }
2036         case KVM_SET_SREGS: {
2037                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2038                 if (IS_ERR(kvm_sregs)) {
2039                         r = PTR_ERR(kvm_sregs);
2040                         kvm_sregs = NULL;
2041                         goto out;
2042                 }
2043                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2044                 break;
2045         }
2046         case KVM_GET_MP_STATE: {
2047                 struct kvm_mp_state mp_state;
2048
2049                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2050                 if (r)
2051                         goto out;
2052                 r = -EFAULT;
2053                 if (copy_to_user(argp, &mp_state, sizeof mp_state))
2054                         goto out;
2055                 r = 0;
2056                 break;
2057         }
2058         case KVM_SET_MP_STATE: {
2059                 struct kvm_mp_state mp_state;
2060
2061                 r = -EFAULT;
2062                 if (copy_from_user(&mp_state, argp, sizeof mp_state))
2063                         goto out;
2064                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2065                 break;
2066         }
2067         case KVM_TRANSLATE: {
2068                 struct kvm_translation tr;
2069
2070                 r = -EFAULT;
2071                 if (copy_from_user(&tr, argp, sizeof tr))
2072                         goto out;
2073                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2074                 if (r)
2075                         goto out;
2076                 r = -EFAULT;
2077                 if (copy_to_user(argp, &tr, sizeof tr))
2078                         goto out;
2079                 r = 0;
2080                 break;
2081         }
2082         case KVM_SET_GUEST_DEBUG: {
2083                 struct kvm_guest_debug dbg;
2084
2085                 r = -EFAULT;
2086                 if (copy_from_user(&dbg, argp, sizeof dbg))
2087                         goto out;
2088                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2089                 break;
2090         }
2091         case KVM_SET_SIGNAL_MASK: {
2092                 struct kvm_signal_mask __user *sigmask_arg = argp;
2093                 struct kvm_signal_mask kvm_sigmask;
2094                 sigset_t sigset, *p;
2095
2096                 p = NULL;
2097                 if (argp) {
2098                         r = -EFAULT;
2099                         if (copy_from_user(&kvm_sigmask, argp,
2100                                            sizeof kvm_sigmask))
2101                                 goto out;
2102                         r = -EINVAL;
2103                         if (kvm_sigmask.len != sizeof sigset)
2104                                 goto out;
2105                         r = -EFAULT;
2106                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2107                                            sizeof sigset))
2108                                 goto out;
2109                         p = &sigset;
2110                 }
2111                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2112                 break;
2113         }
2114         case KVM_GET_FPU: {
2115                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2116                 r = -ENOMEM;
2117                 if (!fpu)
2118                         goto out;
2119                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2120                 if (r)
2121                         goto out;
2122                 r = -EFAULT;
2123                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2124                         goto out;
2125                 r = 0;
2126                 break;
2127         }
2128         case KVM_SET_FPU: {
2129                 fpu = memdup_user(argp, sizeof(*fpu));
2130                 if (IS_ERR(fpu)) {
2131                         r = PTR_ERR(fpu);
2132                         fpu = NULL;
2133                         goto out;
2134                 }
2135                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2136                 break;
2137         }
2138         default:
2139                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2140         }
2141 out:
2142         vcpu_put(vcpu);
2143         kfree(fpu);
2144         kfree(kvm_sregs);
2145         return r;
2146 }
2147
2148 #ifdef CONFIG_COMPAT
2149 static long kvm_vcpu_compat_ioctl(struct file *filp,
2150                                   unsigned int ioctl, unsigned long arg)
2151 {
2152         struct kvm_vcpu *vcpu = filp->private_data;
2153         void __user *argp = compat_ptr(arg);
2154         int r;
2155
2156         if (vcpu->kvm->mm != current->mm)
2157                 return -EIO;
2158
2159         switch (ioctl) {
2160         case KVM_SET_SIGNAL_MASK: {
2161                 struct kvm_signal_mask __user *sigmask_arg = argp;
2162                 struct kvm_signal_mask kvm_sigmask;
2163                 compat_sigset_t csigset;
2164                 sigset_t sigset;
2165
2166                 if (argp) {
2167                         r = -EFAULT;
2168                         if (copy_from_user(&kvm_sigmask, argp,
2169                                            sizeof kvm_sigmask))
2170                                 goto out;
2171                         r = -EINVAL;
2172                         if (kvm_sigmask.len != sizeof csigset)
2173                                 goto out;
2174                         r = -EFAULT;
2175                         if (copy_from_user(&csigset, sigmask_arg->sigset,
2176                                            sizeof csigset))
2177                                 goto out;
2178                         sigset_from_compat(&sigset, &csigset);
2179                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2180                 } else
2181                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2182                 break;
2183         }
2184         default:
2185                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2186         }
2187
2188 out:
2189         return r;
2190 }
2191 #endif
2192
2193 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2194                                  int (*accessor)(struct kvm_device *dev,
2195                                                  struct kvm_device_attr *attr),
2196                                  unsigned long arg)
2197 {
2198         struct kvm_device_attr attr;
2199
2200         if (!accessor)
2201                 return -EPERM;
2202
2203         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2204                 return -EFAULT;
2205
2206         return accessor(dev, &attr);
2207 }
2208
2209 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2210                              unsigned long arg)
2211 {
2212         struct kvm_device *dev = filp->private_data;
2213
2214         switch (ioctl) {
2215         case KVM_SET_DEVICE_ATTR:
2216                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2217         case KVM_GET_DEVICE_ATTR:
2218                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2219         case KVM_HAS_DEVICE_ATTR:
2220                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2221         default:
2222                 if (dev->ops->ioctl)
2223                         return dev->ops->ioctl(dev, ioctl, arg);
2224
2225                 return -ENOTTY;
2226         }
2227 }
2228
2229 static int kvm_device_release(struct inode *inode, struct file *filp)
2230 {
2231         struct kvm_device *dev = filp->private_data;
2232         struct kvm *kvm = dev->kvm;
2233
2234         kvm_put_kvm(kvm);
2235         return 0;
2236 }
2237
2238 static const struct file_operations kvm_device_fops = {
2239         .unlocked_ioctl = kvm_device_ioctl,
2240 #ifdef CONFIG_COMPAT
2241         .compat_ioctl = kvm_device_ioctl,
2242 #endif
2243         .release = kvm_device_release,
2244 };
2245
2246 struct kvm_device *kvm_device_from_filp(struct file *filp)
2247 {
2248         if (filp->f_op != &kvm_device_fops)
2249                 return NULL;
2250
2251         return filp->private_data;
2252 }
2253
2254 static int kvm_ioctl_create_device(struct kvm *kvm,
2255                                    struct kvm_create_device *cd)
2256 {
2257         struct kvm_device_ops *ops = NULL;
2258         struct kvm_device *dev;
2259         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2260         int ret;
2261
2262         switch (cd->type) {
2263 #ifdef CONFIG_KVM_MPIC
2264         case KVM_DEV_TYPE_FSL_MPIC_20:
2265         case KVM_DEV_TYPE_FSL_MPIC_42:
2266                 ops = &kvm_mpic_ops;
2267                 break;
2268 #endif
2269 #ifdef CONFIG_KVM_XICS
2270         case KVM_DEV_TYPE_XICS:
2271                 ops = &kvm_xics_ops;
2272                 break;
2273 #endif
2274 #ifdef CONFIG_KVM_VFIO
2275         case KVM_DEV_TYPE_VFIO:
2276                 ops = &kvm_vfio_ops;
2277                 break;
2278 #endif
2279         default:
2280                 return -ENODEV;
2281         }
2282
2283         if (test)
2284                 return 0;
2285
2286         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2287         if (!dev)
2288                 return -ENOMEM;
2289
2290         dev->ops = ops;
2291         dev->kvm = kvm;
2292
2293         ret = ops->create(dev, cd->type);
2294         if (ret < 0) {
2295                 kfree(dev);
2296                 return ret;
2297         }
2298
2299         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2300         if (ret < 0) {
2301                 ops->destroy(dev);
2302                 return ret;
2303         }
2304
2305         list_add(&dev->vm_node, &kvm->devices);
2306         kvm_get_kvm(kvm);
2307         cd->fd = ret;
2308         return 0;
2309 }
2310
2311 static long kvm_vm_ioctl(struct file *filp,
2312                            unsigned int ioctl, unsigned long arg)
2313 {
2314         struct kvm *kvm = filp->private_data;
2315         void __user *argp = (void __user *)arg;
2316         int r;
2317
2318         if (kvm->mm != current->mm)
2319                 return -EIO;
2320         switch (ioctl) {
2321         case KVM_CREATE_VCPU:
2322                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2323                 break;
2324         case KVM_SET_USER_MEMORY_REGION: {
2325                 struct kvm_userspace_memory_region kvm_userspace_mem;
2326
2327                 r = -EFAULT;
2328                 if (copy_from_user(&kvm_userspace_mem, argp,
2329                                                 sizeof kvm_userspace_mem))
2330                         goto out;
2331
2332                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2333                 break;
2334         }
2335         case KVM_GET_DIRTY_LOG: {
2336                 struct kvm_dirty_log log;
2337
2338                 r = -EFAULT;
2339                 if (copy_from_user(&log, argp, sizeof log))
2340                         goto out;
2341                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2342                 break;
2343         }
2344 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2345         case KVM_REGISTER_COALESCED_MMIO: {
2346                 struct kvm_coalesced_mmio_zone zone;
2347                 r = -EFAULT;
2348                 if (copy_from_user(&zone, argp, sizeof zone))
2349                         goto out;
2350                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2351                 break;
2352         }
2353         case KVM_UNREGISTER_COALESCED_MMIO: {
2354                 struct kvm_coalesced_mmio_zone zone;
2355                 r = -EFAULT;
2356                 if (copy_from_user(&zone, argp, sizeof zone))
2357                         goto out;
2358                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2359                 break;
2360         }
2361 #endif
2362         case KVM_IRQFD: {
2363                 struct kvm_irqfd data;
2364
2365                 r = -EFAULT;
2366                 if (copy_from_user(&data, argp, sizeof data))
2367                         goto out;
2368                 r = kvm_irqfd(kvm, &data);
2369                 break;
2370         }
2371         case KVM_IOEVENTFD: {
2372                 struct kvm_ioeventfd data;
2373
2374                 r = -EFAULT;
2375                 if (copy_from_user(&data, argp, sizeof data))
2376                         goto out;
2377                 r = kvm_ioeventfd(kvm, &data);
2378                 break;
2379         }
2380 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2381         case KVM_SET_BOOT_CPU_ID:
2382                 r = 0;
2383                 mutex_lock(&kvm->lock);
2384                 if (atomic_read(&kvm->online_vcpus) != 0)
2385                         r = -EBUSY;
2386                 else
2387                         kvm->bsp_vcpu_id = arg;
2388                 mutex_unlock(&kvm->lock);
2389                 break;
2390 #endif
2391 #ifdef CONFIG_HAVE_KVM_MSI
2392         case KVM_SIGNAL_MSI: {
2393                 struct kvm_msi msi;
2394
2395                 r = -EFAULT;
2396                 if (copy_from_user(&msi, argp, sizeof msi))
2397                         goto out;
2398                 r = kvm_send_userspace_msi(kvm, &msi);
2399                 break;
2400         }
2401 #endif
2402 #ifdef __KVM_HAVE_IRQ_LINE
2403         case KVM_IRQ_LINE_STATUS:
2404         case KVM_IRQ_LINE: {
2405                 struct kvm_irq_level irq_event;
2406
2407                 r = -EFAULT;
2408                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2409                         goto out;
2410
2411                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2412                                         ioctl == KVM_IRQ_LINE_STATUS);
2413                 if (r)
2414                         goto out;
2415
2416                 r = -EFAULT;
2417                 if (ioctl == KVM_IRQ_LINE_STATUS) {
2418                         if (copy_to_user(argp, &irq_event, sizeof irq_event))
2419                                 goto out;
2420                 }
2421
2422                 r = 0;
2423                 break;
2424         }
2425 #endif
2426 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2427         case KVM_SET_GSI_ROUTING: {
2428                 struct kvm_irq_routing routing;
2429                 struct kvm_irq_routing __user *urouting;
2430                 struct kvm_irq_routing_entry *entries;
2431
2432                 r = -EFAULT;
2433                 if (copy_from_user(&routing, argp, sizeof(routing)))
2434                         goto out;
2435                 r = -EINVAL;
2436                 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2437                         goto out;
2438                 if (routing.flags)
2439                         goto out;
2440                 r = -ENOMEM;
2441                 entries = vmalloc(routing.nr * sizeof(*entries));
2442                 if (!entries)
2443                         goto out;
2444                 r = -EFAULT;
2445                 urouting = argp;
2446                 if (copy_from_user(entries, urouting->entries,
2447                                    routing.nr * sizeof(*entries)))
2448                         goto out_free_irq_routing;
2449                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2450                                         routing.flags);
2451         out_free_irq_routing:
2452                 vfree(entries);
2453                 break;
2454         }
2455 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2456         case KVM_CREATE_DEVICE: {
2457                 struct kvm_create_device cd;
2458
2459                 r = -EFAULT;
2460                 if (copy_from_user(&cd, argp, sizeof(cd)))
2461                         goto out;
2462
2463                 r = kvm_ioctl_create_device(kvm, &cd);
2464                 if (r)
2465                         goto out;
2466
2467                 r = -EFAULT;
2468                 if (copy_to_user(argp, &cd, sizeof(cd)))
2469                         goto out;
2470
2471                 r = 0;
2472                 break;
2473         }
2474         default:
2475                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2476                 if (r == -ENOTTY)
2477                         r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2478         }
2479 out:
2480         return r;
2481 }
2482
2483 #ifdef CONFIG_COMPAT
2484 struct compat_kvm_dirty_log {
2485         __u32 slot;
2486         __u32 padding1;
2487         union {
2488                 compat_uptr_t dirty_bitmap; /* one bit per page */
2489                 __u64 padding2;
2490         };
2491 };
2492
2493 static long kvm_vm_compat_ioctl(struct file *filp,
2494                            unsigned int ioctl, unsigned long arg)
2495 {
2496         struct kvm *kvm = filp->private_data;
2497         int r;
2498
2499         if (kvm->mm != current->mm)
2500                 return -EIO;
2501         switch (ioctl) {
2502         case KVM_GET_DIRTY_LOG: {
2503                 struct compat_kvm_dirty_log compat_log;
2504                 struct kvm_dirty_log log;
2505
2506                 r = -EFAULT;
2507                 if (copy_from_user(&compat_log, (void __user *)arg,
2508                                    sizeof(compat_log)))
2509                         goto out;
2510                 log.slot         = compat_log.slot;
2511                 log.padding1     = compat_log.padding1;
2512                 log.padding2     = compat_log.padding2;
2513                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2514
2515                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2516                 break;
2517         }
2518         default:
2519                 r = kvm_vm_ioctl(filp, ioctl, arg);
2520         }
2521
2522 out:
2523         return r;
2524 }
2525 #endif
2526
2527 static struct file_operations kvm_vm_fops = {
2528         .release        = kvm_vm_release,
2529         .unlocked_ioctl = kvm_vm_ioctl,
2530 #ifdef CONFIG_COMPAT
2531         .compat_ioctl   = kvm_vm_compat_ioctl,
2532 #endif
2533         .llseek         = noop_llseek,
2534 };
2535
2536 static int kvm_dev_ioctl_create_vm(unsigned long type)
2537 {
2538         int r;
2539         struct kvm *kvm;
2540
2541         kvm = kvm_create_vm(type);
2542         if (IS_ERR(kvm))
2543                 return PTR_ERR(kvm);
2544 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2545         r = kvm_coalesced_mmio_init(kvm);
2546         if (r < 0) {
2547                 kvm_put_kvm(kvm);
2548                 return r;
2549         }
2550 #endif
2551         r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2552         if (r < 0)
2553                 kvm_put_kvm(kvm);
2554
2555         return r;
2556 }
2557
2558 static long kvm_dev_ioctl_check_extension_generic(long arg)
2559 {
2560         switch (arg) {
2561         case KVM_CAP_USER_MEMORY:
2562         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2563         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2564 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2565         case KVM_CAP_SET_BOOT_CPU_ID:
2566 #endif
2567         case KVM_CAP_INTERNAL_ERROR_DATA:
2568 #ifdef CONFIG_HAVE_KVM_MSI
2569         case KVM_CAP_SIGNAL_MSI:
2570 #endif
2571 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2572         case KVM_CAP_IRQFD_RESAMPLE:
2573 #endif
2574                 return 1;
2575 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2576         case KVM_CAP_IRQ_ROUTING:
2577                 return KVM_MAX_IRQ_ROUTES;
2578 #endif
2579         default:
2580                 break;
2581         }
2582         return kvm_dev_ioctl_check_extension(arg);
2583 }
2584
2585 static long kvm_dev_ioctl(struct file *filp,
2586                           unsigned int ioctl, unsigned long arg)
2587 {
2588         long r = -EINVAL;
2589
2590         switch (ioctl) {
2591         case KVM_GET_API_VERSION:
2592                 r = -EINVAL;
2593                 if (arg)
2594                         goto out;
2595                 r = KVM_API_VERSION;
2596                 break;
2597         case KVM_CREATE_VM:
2598                 r = kvm_dev_ioctl_create_vm(arg);
2599                 break;
2600         case KVM_CHECK_EXTENSION:
2601                 r = kvm_dev_ioctl_check_extension_generic(arg);
2602                 break;
2603         case KVM_GET_VCPU_MMAP_SIZE:
2604                 r = -EINVAL;
2605                 if (arg)
2606                         goto out;
2607                 r = PAGE_SIZE;     /* struct kvm_run */
2608 #ifdef CONFIG_X86
2609                 r += PAGE_SIZE;    /* pio data page */
2610 #endif
2611 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2612                 r += PAGE_SIZE;    /* coalesced mmio ring page */
2613 #endif
2614                 break;
2615         case KVM_TRACE_ENABLE:
2616         case KVM_TRACE_PAUSE:
2617         case KVM_TRACE_DISABLE:
2618                 r = -EOPNOTSUPP;
2619                 break;
2620         default:
2621                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2622         }
2623 out:
2624         return r;
2625 }
2626
2627 static struct file_operations kvm_chardev_ops = {
2628         .unlocked_ioctl = kvm_dev_ioctl,
2629         .compat_ioctl   = kvm_dev_ioctl,
2630         .llseek         = noop_llseek,
2631 };
2632
2633 static struct miscdevice kvm_dev = {
2634         KVM_MINOR,
2635         "kvm",
2636         &kvm_chardev_ops,
2637 };
2638
2639 static void hardware_enable_nolock(void *junk)
2640 {
2641         int cpu = raw_smp_processor_id();
2642         int r;
2643
2644         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2645                 return;
2646
2647         cpumask_set_cpu(cpu, cpus_hardware_enabled);
2648
2649         r = kvm_arch_hardware_enable(NULL);
2650
2651         if (r) {
2652                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2653                 atomic_inc(&hardware_enable_failed);
2654                 printk(KERN_INFO "kvm: enabling virtualization on "
2655                                  "CPU%d failed\n", cpu);
2656         }
2657 }
2658
2659 static void hardware_enable(void)
2660 {
2661         raw_spin_lock(&kvm_count_lock);
2662         if (kvm_usage_count)
2663                 hardware_enable_nolock(NULL);
2664         raw_spin_unlock(&kvm_count_lock);
2665 }
2666
2667 static void hardware_disable_nolock(void *junk)
2668 {
2669         int cpu = raw_smp_processor_id();
2670
2671         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2672                 return;
2673         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2674         kvm_arch_hardware_disable(NULL);
2675 }
2676
2677 static void hardware_disable(void)
2678 {
2679         raw_spin_lock(&kvm_count_lock);
2680         if (kvm_usage_count)
2681                 hardware_disable_nolock(NULL);
2682         raw_spin_unlock(&kvm_count_lock);
2683 }
2684
2685 static void hardware_disable_all_nolock(void)
2686 {
2687         BUG_ON(!kvm_usage_count);
2688
2689         kvm_usage_count--;
2690         if (!kvm_usage_count)
2691                 on_each_cpu(hardware_disable_nolock, NULL, 1);
2692 }
2693
2694 static void hardware_disable_all(void)
2695 {
2696         raw_spin_lock(&kvm_count_lock);
2697         hardware_disable_all_nolock();
2698         raw_spin_unlock(&kvm_count_lock);
2699 }
2700
2701 static int hardware_enable_all(void)
2702 {
2703         int r = 0;
2704
2705         raw_spin_lock(&kvm_count_lock);
2706
2707         kvm_usage_count++;
2708         if (kvm_usage_count == 1) {
2709                 atomic_set(&hardware_enable_failed, 0);
2710                 on_each_cpu(hardware_enable_nolock, NULL, 1);
2711
2712                 if (atomic_read(&hardware_enable_failed)) {
2713                         hardware_disable_all_nolock();
2714                         r = -EBUSY;
2715                 }
2716         }
2717
2718         raw_spin_unlock(&kvm_count_lock);
2719
2720         return r;
2721 }
2722
2723 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2724                            void *v)
2725 {
2726         int cpu = (long)v;
2727
2728         val &= ~CPU_TASKS_FROZEN;
2729         switch (val) {
2730         case CPU_DYING:
2731                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2732                        cpu);
2733                 hardware_disable();
2734                 break;
2735         case CPU_STARTING:
2736                 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2737                        cpu);
2738                 hardware_enable();
2739                 break;
2740         }
2741         return NOTIFY_OK;
2742 }
2743
2744 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2745                       void *v)
2746 {
2747         /*
2748          * Some (well, at least mine) BIOSes hang on reboot if
2749          * in vmx root mode.
2750          *
2751          * And Intel TXT required VMX off for all cpu when system shutdown.
2752          */
2753         printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2754         kvm_rebooting = true;
2755         on_each_cpu(hardware_disable_nolock, NULL, 1);
2756         return NOTIFY_OK;
2757 }
2758
2759 static struct notifier_block kvm_reboot_notifier = {
2760         .notifier_call = kvm_reboot,
2761         .priority = 0,
2762 };
2763
2764 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2765 {
2766         int i;
2767
2768         for (i = 0; i < bus->dev_count; i++) {
2769                 struct kvm_io_device *pos = bus->range[i].dev;
2770
2771                 kvm_iodevice_destructor(pos);
2772         }
2773         kfree(bus);
2774 }
2775
2776 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2777 {
2778         const struct kvm_io_range *r1 = p1;
2779         const struct kvm_io_range *r2 = p2;
2780
2781         if (r1->addr < r2->addr)
2782                 return -1;
2783         if (r1->addr + r1->len > r2->addr + r2->len)
2784                 return 1;
2785         return 0;
2786 }
2787
2788 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2789                           gpa_t addr, int len)
2790 {
2791         bus->range[bus->dev_count++] = (struct kvm_io_range) {
2792                 .addr = addr,
2793                 .len = len,
2794                 .dev = dev,
2795         };
2796
2797         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2798                 kvm_io_bus_sort_cmp, NULL);
2799
2800         return 0;
2801 }
2802
2803 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2804                              gpa_t addr, int len)
2805 {
2806         struct kvm_io_range *range, key;
2807         int off;
2808
2809         key = (struct kvm_io_range) {
2810                 .addr = addr,
2811                 .len = len,
2812         };
2813
2814         range = bsearch(&key, bus->range, bus->dev_count,
2815                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2816         if (range == NULL)
2817                 return -ENOENT;
2818
2819         off = range - bus->range;
2820
2821         while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
2822                 off--;
2823
2824         return off;
2825 }
2826
2827 /* kvm_io_bus_write - called under kvm->slots_lock */
2828 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2829                      int len, const void *val)
2830 {
2831         int idx;
2832         struct kvm_io_bus *bus;
2833         struct kvm_io_range range;
2834
2835         range = (struct kvm_io_range) {
2836                 .addr = addr,
2837                 .len = len,
2838         };
2839
2840         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2841         idx = kvm_io_bus_get_first_dev(bus, addr, len);
2842         if (idx < 0)
2843                 return -EOPNOTSUPP;
2844
2845         while (idx < bus->dev_count &&
2846                 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2847                 if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
2848                         return 0;
2849                 idx++;
2850         }
2851
2852         return -EOPNOTSUPP;
2853 }
2854
2855 /* kvm_io_bus_read - called under kvm->slots_lock */
2856 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2857                     int len, void *val)
2858 {
2859         int idx;
2860         struct kvm_io_bus *bus;
2861         struct kvm_io_range range;
2862
2863         range = (struct kvm_io_range) {
2864                 .addr = addr,
2865                 .len = len,
2866         };
2867
2868         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2869         idx = kvm_io_bus_get_first_dev(bus, addr, len);
2870         if (idx < 0)
2871                 return -EOPNOTSUPP;
2872
2873         while (idx < bus->dev_count &&
2874                 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2875                 if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
2876                         return 0;
2877                 idx++;
2878         }
2879
2880         return -EOPNOTSUPP;
2881 }
2882
2883 /* Caller must hold slots_lock. */
2884 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2885                             int len, struct kvm_io_device *dev)
2886 {
2887         struct kvm_io_bus *new_bus, *bus;
2888
2889         bus = kvm->buses[bus_idx];
2890         if (bus->dev_count > NR_IOBUS_DEVS - 1)
2891                 return -ENOSPC;
2892
2893         new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2894                           sizeof(struct kvm_io_range)), GFP_KERNEL);
2895         if (!new_bus)
2896                 return -ENOMEM;
2897         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2898                sizeof(struct kvm_io_range)));
2899         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2900         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2901         synchronize_srcu_expedited(&kvm->srcu);
2902         kfree(bus);
2903
2904         return 0;
2905 }
2906
2907 /* Caller must hold slots_lock. */
2908 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2909                               struct kvm_io_device *dev)
2910 {
2911         int i, r;
2912         struct kvm_io_bus *new_bus, *bus;
2913
2914         bus = kvm->buses[bus_idx];
2915         r = -ENOENT;
2916         for (i = 0; i < bus->dev_count; i++)
2917                 if (bus->range[i].dev == dev) {
2918                         r = 0;
2919                         break;
2920                 }
2921
2922         if (r)
2923                 return r;
2924
2925         new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
2926                           sizeof(struct kvm_io_range)), GFP_KERNEL);
2927         if (!new_bus)
2928                 return -ENOMEM;
2929
2930         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
2931         new_bus->dev_count--;
2932         memcpy(new_bus->range + i, bus->range + i + 1,
2933                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
2934
2935         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2936         synchronize_srcu_expedited(&kvm->srcu);
2937         kfree(bus);
2938         return r;
2939 }
2940
2941 static struct notifier_block kvm_cpu_notifier = {
2942         .notifier_call = kvm_cpu_hotplug,
2943 };
2944
2945 static int vm_stat_get(void *_offset, u64 *val)
2946 {
2947         unsigned offset = (long)_offset;
2948         struct kvm *kvm;
2949
2950         *val = 0;
2951         spin_lock(&kvm_lock);
2952         list_for_each_entry(kvm, &vm_list, vm_list)
2953                 *val += *(u32 *)((void *)kvm + offset);
2954         spin_unlock(&kvm_lock);
2955         return 0;
2956 }
2957
2958 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2959
2960 static int vcpu_stat_get(void *_offset, u64 *val)
2961 {
2962         unsigned offset = (long)_offset;
2963         struct kvm *kvm;
2964         struct kvm_vcpu *vcpu;
2965         int i;
2966
2967         *val = 0;
2968         spin_lock(&kvm_lock);
2969         list_for_each_entry(kvm, &vm_list, vm_list)
2970                 kvm_for_each_vcpu(i, vcpu, kvm)
2971                         *val += *(u32 *)((void *)vcpu + offset);
2972
2973         spin_unlock(&kvm_lock);
2974         return 0;
2975 }
2976
2977 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2978
2979 static const struct file_operations *stat_fops[] = {
2980         [KVM_STAT_VCPU] = &vcpu_stat_fops,
2981         [KVM_STAT_VM]   = &vm_stat_fops,
2982 };
2983
2984 static int kvm_init_debug(void)
2985 {
2986         int r = -EEXIST;
2987         struct kvm_stats_debugfs_item *p;
2988
2989         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2990         if (kvm_debugfs_dir == NULL)
2991                 goto out;
2992
2993         for (p = debugfs_entries; p->name; ++p) {
2994                 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2995                                                 (void *)(long)p->offset,
2996                                                 stat_fops[p->kind]);
2997                 if (p->dentry == NULL)
2998                         goto out_dir;
2999         }
3000
3001         return 0;
3002
3003 out_dir:
3004         debugfs_remove_recursive(kvm_debugfs_dir);
3005 out:
3006         return r;
3007 }
3008
3009 static void kvm_exit_debug(void)
3010 {
3011         struct kvm_stats_debugfs_item *p;
3012
3013         for (p = debugfs_entries; p->name; ++p)
3014                 debugfs_remove(p->dentry);
3015         debugfs_remove(kvm_debugfs_dir);
3016 }
3017
3018 static int kvm_suspend(void)
3019 {
3020         if (kvm_usage_count)
3021                 hardware_disable_nolock(NULL);
3022         return 0;
3023 }
3024
3025 static void kvm_resume(void)
3026 {
3027         if (kvm_usage_count) {
3028                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3029                 hardware_enable_nolock(NULL);
3030         }
3031 }
3032
3033 static struct syscore_ops kvm_syscore_ops = {
3034         .suspend = kvm_suspend,
3035         .resume = kvm_resume,
3036 };
3037
3038 static inline
3039 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3040 {
3041         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3042 }
3043
3044 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3045 {
3046         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3047         if (vcpu->preempted)
3048                 vcpu->preempted = false;
3049
3050         kvm_arch_vcpu_load(vcpu, cpu);
3051 }
3052
3053 static void kvm_sched_out(struct preempt_notifier *pn,
3054                           struct task_struct *next)
3055 {
3056         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3057
3058         if (current->state == TASK_RUNNING)
3059                 vcpu->preempted = true;
3060         kvm_arch_vcpu_put(vcpu);
3061 }
3062
3063 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3064                   struct module *module)
3065 {
3066         int r;
3067         int cpu;
3068
3069         r = kvm_arch_init(opaque);
3070         if (r)
3071                 goto out_fail;
3072
3073         /*
3074          * kvm_arch_init makes sure there's at most one caller
3075          * for architectures that support multiple implementations,
3076          * like intel and amd on x86.
3077          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3078          * conflicts in case kvm is already setup for another implementation.
3079          */
3080         r = kvm_irqfd_init();
3081         if (r)
3082                 goto out_irqfd;
3083
3084         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3085                 r = -ENOMEM;
3086                 goto out_free_0;
3087         }
3088
3089         r = kvm_arch_hardware_setup();
3090         if (r < 0)
3091                 goto out_free_0a;
3092
3093         for_each_online_cpu(cpu) {
3094                 smp_call_function_single(cpu,
3095                                 kvm_arch_check_processor_compat,
3096                                 &r, 1);
3097                 if (r < 0)
3098                         goto out_free_1;
3099         }
3100
3101         r = register_cpu_notifier(&kvm_cpu_notifier);
3102         if (r)
3103                 goto out_free_2;
3104         register_reboot_notifier(&kvm_reboot_notifier);
3105
3106         /* A kmem cache lets us meet the alignment requirements of fx_save. */
3107         if (!vcpu_align)
3108                 vcpu_align = __alignof__(struct kvm_vcpu);
3109         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3110                                            0, NULL);
3111         if (!kvm_vcpu_cache) {
3112                 r = -ENOMEM;
3113                 goto out_free_3;
3114         }
3115
3116         r = kvm_async_pf_init();
3117         if (r)
3118                 goto out_free;
3119
3120         kvm_chardev_ops.owner = module;
3121         kvm_vm_fops.owner = module;
3122         kvm_vcpu_fops.owner = module;
3123
3124         r = misc_register(&kvm_dev);
3125         if (r) {
3126                 printk(KERN_ERR "kvm: misc device register failed\n");
3127                 goto out_unreg;
3128         }
3129
3130         register_syscore_ops(&kvm_syscore_ops);
3131
3132         kvm_preempt_ops.sched_in = kvm_sched_in;
3133         kvm_preempt_ops.sched_out = kvm_sched_out;
3134
3135         r = kvm_init_debug();
3136         if (r) {
3137                 printk(KERN_ERR "kvm: create debugfs files failed\n");
3138                 goto out_undebugfs;
3139         }
3140
3141         return 0;
3142
3143 out_undebugfs:
3144         unregister_syscore_ops(&kvm_syscore_ops);
3145         misc_deregister(&kvm_dev);
3146 out_unreg:
3147         kvm_async_pf_deinit();
3148 out_free:
3149         kmem_cache_destroy(kvm_vcpu_cache);
3150 out_free_3:
3151         unregister_reboot_notifier(&kvm_reboot_notifier);
3152         unregister_cpu_notifier(&kvm_cpu_notifier);
3153 out_free_2:
3154 out_free_1:
3155         kvm_arch_hardware_unsetup();
3156 out_free_0a:
3157         free_cpumask_var(cpus_hardware_enabled);
3158 out_free_0:
3159         kvm_irqfd_exit();
3160 out_irqfd:
3161         kvm_arch_exit();
3162 out_fail:
3163         return r;
3164 }
3165 EXPORT_SYMBOL_GPL(kvm_init);
3166
3167 void kvm_exit(void)
3168 {
3169         kvm_exit_debug();
3170         misc_deregister(&kvm_dev);
3171         kmem_cache_destroy(kvm_vcpu_cache);
3172         kvm_async_pf_deinit();
3173         unregister_syscore_ops(&kvm_syscore_ops);
3174         unregister_reboot_notifier(&kvm_reboot_notifier);
3175         unregister_cpu_notifier(&kvm_cpu_notifier);
3176         on_each_cpu(hardware_disable_nolock, NULL, 1);
3177         kvm_arch_hardware_unsetup();
3178         kvm_arch_exit();
3179         kvm_irqfd_exit();
3180         free_cpumask_var(cpus_hardware_enabled);
3181 }
3182 EXPORT_SYMBOL_GPL(kvm_exit);