KVM: Replace irq_requested with more generic irq_requested_type
[firefly-linux-kernel-4.4.55.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "iodev.h"
19
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44
45 #include <asm/processor.h>
46 #include <asm/io.h>
47 #include <asm/uaccess.h>
48 #include <asm/pgtable.h>
49
50 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
51 #include "coalesced_mmio.h"
52 #endif
53
54 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
55 #include <linux/pci.h>
56 #include <linux/interrupt.h>
57 #include "irq.h"
58 #endif
59
60 MODULE_AUTHOR("Qumranet");
61 MODULE_LICENSE("GPL");
62
63 DEFINE_SPINLOCK(kvm_lock);
64 LIST_HEAD(vm_list);
65
66 static cpumask_t cpus_hardware_enabled;
67
68 struct kmem_cache *kvm_vcpu_cache;
69 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
70
71 static __read_mostly struct preempt_ops kvm_preempt_ops;
72
73 struct dentry *kvm_debugfs_dir;
74
75 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
76                            unsigned long arg);
77
78 bool kvm_rebooting;
79
80 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
81 static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
82                                                       int assigned_dev_id)
83 {
84         struct list_head *ptr;
85         struct kvm_assigned_dev_kernel *match;
86
87         list_for_each(ptr, head) {
88                 match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
89                 if (match->assigned_dev_id == assigned_dev_id)
90                         return match;
91         }
92         return NULL;
93 }
94
95 static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
96 {
97         struct kvm_assigned_dev_kernel *assigned_dev;
98
99         assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
100                                     interrupt_work);
101
102         /* This is taken to safely inject irq inside the guest. When
103          * the interrupt injection (or the ioapic code) uses a
104          * finer-grained lock, update this
105          */
106         mutex_lock(&assigned_dev->kvm->lock);
107         kvm_set_irq(assigned_dev->kvm,
108                     assigned_dev->irq_source_id,
109                     assigned_dev->guest_irq, 1);
110         mutex_unlock(&assigned_dev->kvm->lock);
111         kvm_put_kvm(assigned_dev->kvm);
112 }
113
114 static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
115 {
116         struct kvm_assigned_dev_kernel *assigned_dev =
117                 (struct kvm_assigned_dev_kernel *) dev_id;
118
119         kvm_get_kvm(assigned_dev->kvm);
120         schedule_work(&assigned_dev->interrupt_work);
121         disable_irq_nosync(irq);
122         return IRQ_HANDLED;
123 }
124
125 /* Ack the irq line for an assigned device */
126 static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
127 {
128         struct kvm_assigned_dev_kernel *dev;
129
130         if (kian->gsi == -1)
131                 return;
132
133         dev = container_of(kian, struct kvm_assigned_dev_kernel,
134                            ack_notifier);
135         kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
136         enable_irq(dev->host_irq);
137 }
138
139 static void kvm_free_assigned_device(struct kvm *kvm,
140                                      struct kvm_assigned_dev_kernel
141                                      *assigned_dev)
142 {
143         if (irqchip_in_kernel(kvm) && assigned_dev->irq_requested_type)
144                 free_irq(assigned_dev->host_irq, (void *)assigned_dev);
145
146         kvm_unregister_irq_ack_notifier(&assigned_dev->ack_notifier);
147         kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
148
149         if (cancel_work_sync(&assigned_dev->interrupt_work))
150                 /* We had pending work. That means we will have to take
151                  * care of kvm_put_kvm.
152                  */
153                 kvm_put_kvm(kvm);
154
155         pci_reset_function(assigned_dev->dev);
156
157         pci_release_regions(assigned_dev->dev);
158         pci_disable_device(assigned_dev->dev);
159         pci_dev_put(assigned_dev->dev);
160
161         list_del(&assigned_dev->list);
162         kfree(assigned_dev);
163 }
164
165 void kvm_free_all_assigned_devices(struct kvm *kvm)
166 {
167         struct list_head *ptr, *ptr2;
168         struct kvm_assigned_dev_kernel *assigned_dev;
169
170         list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
171                 assigned_dev = list_entry(ptr,
172                                           struct kvm_assigned_dev_kernel,
173                                           list);
174
175                 kvm_free_assigned_device(kvm, assigned_dev);
176         }
177 }
178
179 static int assigned_device_update_intx(struct kvm *kvm,
180                         struct kvm_assigned_dev_kernel *adev,
181                         struct kvm_assigned_irq *airq)
182 {
183         if (adev->irq_requested_type & KVM_ASSIGNED_DEV_GUEST_INTX) {
184                 adev->guest_irq = airq->guest_irq;
185                 adev->ack_notifier.gsi = airq->guest_irq;
186                 return 0;
187         }
188
189         if (irqchip_in_kernel(kvm)) {
190                 if (!capable(CAP_SYS_RAWIO))
191                         return -EPERM;
192
193                 if (airq->host_irq)
194                         adev->host_irq = airq->host_irq;
195                 else
196                         adev->host_irq = adev->dev->irq;
197                 adev->guest_irq = airq->guest_irq;
198                 adev->ack_notifier.gsi = airq->guest_irq;
199
200                 /* Even though this is PCI, we don't want to use shared
201                  * interrupts. Sharing host devices with guest-assigned devices
202                  * on the same interrupt line is not a happy situation: there
203                  * are going to be long delays in accepting, acking, etc.
204                  */
205                 if (request_irq(adev->host_irq, kvm_assigned_dev_intr,
206                                 0, "kvm_assigned_intx_device", (void *)adev))
207                         return -EIO;
208         }
209
210         adev->irq_requested_type = KVM_ASSIGNED_DEV_GUEST_INTX |
211                                    KVM_ASSIGNED_DEV_HOST_INTX;
212         return 0;
213 }
214
215 static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
216                                    struct kvm_assigned_irq
217                                    *assigned_irq)
218 {
219         int r = 0;
220         struct kvm_assigned_dev_kernel *match;
221
222         mutex_lock(&kvm->lock);
223
224         match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
225                                       assigned_irq->assigned_dev_id);
226         if (!match) {
227                 mutex_unlock(&kvm->lock);
228                 return -EINVAL;
229         }
230
231         if (!match->irq_requested_type) {
232                 INIT_WORK(&match->interrupt_work,
233                                 kvm_assigned_dev_interrupt_work_handler);
234                 if (irqchip_in_kernel(kvm)) {
235                         /* Register ack nofitier */
236                         match->ack_notifier.gsi = -1;
237                         match->ack_notifier.irq_acked =
238                                         kvm_assigned_dev_ack_irq;
239                         kvm_register_irq_ack_notifier(kvm,
240                                         &match->ack_notifier);
241
242                         /* Request IRQ source ID */
243                         r = kvm_request_irq_source_id(kvm);
244                         if (r < 0)
245                                 goto out_release;
246                         else
247                                 match->irq_source_id = r;
248                 }
249         }
250
251         r = assigned_device_update_intx(kvm, match, assigned_irq);
252         if (r)
253                 goto out_release;
254
255         mutex_unlock(&kvm->lock);
256         return r;
257 out_release:
258         mutex_unlock(&kvm->lock);
259         kvm_free_assigned_device(kvm, match);
260         return r;
261 }
262
263 static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
264                                       struct kvm_assigned_pci_dev *assigned_dev)
265 {
266         int r = 0;
267         struct kvm_assigned_dev_kernel *match;
268         struct pci_dev *dev;
269
270         mutex_lock(&kvm->lock);
271
272         match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
273                                       assigned_dev->assigned_dev_id);
274         if (match) {
275                 /* device already assigned */
276                 r = -EINVAL;
277                 goto out;
278         }
279
280         match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
281         if (match == NULL) {
282                 printk(KERN_INFO "%s: Couldn't allocate memory\n",
283                        __func__);
284                 r = -ENOMEM;
285                 goto out;
286         }
287         dev = pci_get_bus_and_slot(assigned_dev->busnr,
288                                    assigned_dev->devfn);
289         if (!dev) {
290                 printk(KERN_INFO "%s: host device not found\n", __func__);
291                 r = -EINVAL;
292                 goto out_free;
293         }
294         if (pci_enable_device(dev)) {
295                 printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
296                 r = -EBUSY;
297                 goto out_put;
298         }
299         r = pci_request_regions(dev, "kvm_assigned_device");
300         if (r) {
301                 printk(KERN_INFO "%s: Could not get access to device regions\n",
302                        __func__);
303                 goto out_disable;
304         }
305
306         pci_reset_function(dev);
307
308         match->assigned_dev_id = assigned_dev->assigned_dev_id;
309         match->host_busnr = assigned_dev->busnr;
310         match->host_devfn = assigned_dev->devfn;
311         match->dev = dev;
312
313         match->kvm = kvm;
314
315         list_add(&match->list, &kvm->arch.assigned_dev_head);
316
317         if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
318                 r = kvm_iommu_map_guest(kvm, match);
319                 if (r)
320                         goto out_list_del;
321         }
322
323 out:
324         mutex_unlock(&kvm->lock);
325         return r;
326 out_list_del:
327         list_del(&match->list);
328         pci_release_regions(dev);
329 out_disable:
330         pci_disable_device(dev);
331 out_put:
332         pci_dev_put(dev);
333 out_free:
334         kfree(match);
335         mutex_unlock(&kvm->lock);
336         return r;
337 }
338 #endif
339
340 static inline int valid_vcpu(int n)
341 {
342         return likely(n >= 0 && n < KVM_MAX_VCPUS);
343 }
344
345 inline int kvm_is_mmio_pfn(pfn_t pfn)
346 {
347         if (pfn_valid(pfn))
348                 return PageReserved(pfn_to_page(pfn));
349
350         return true;
351 }
352
353 /*
354  * Switches to specified vcpu, until a matching vcpu_put()
355  */
356 void vcpu_load(struct kvm_vcpu *vcpu)
357 {
358         int cpu;
359
360         mutex_lock(&vcpu->mutex);
361         cpu = get_cpu();
362         preempt_notifier_register(&vcpu->preempt_notifier);
363         kvm_arch_vcpu_load(vcpu, cpu);
364         put_cpu();
365 }
366
367 void vcpu_put(struct kvm_vcpu *vcpu)
368 {
369         preempt_disable();
370         kvm_arch_vcpu_put(vcpu);
371         preempt_notifier_unregister(&vcpu->preempt_notifier);
372         preempt_enable();
373         mutex_unlock(&vcpu->mutex);
374 }
375
376 static void ack_flush(void *_completed)
377 {
378 }
379
380 void kvm_flush_remote_tlbs(struct kvm *kvm)
381 {
382         int i, cpu, me;
383         cpumask_t cpus;
384         struct kvm_vcpu *vcpu;
385
386         me = get_cpu();
387         cpus_clear(cpus);
388         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
389                 vcpu = kvm->vcpus[i];
390                 if (!vcpu)
391                         continue;
392                 if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
393                         continue;
394                 cpu = vcpu->cpu;
395                 if (cpu != -1 && cpu != me)
396                         cpu_set(cpu, cpus);
397         }
398         if (cpus_empty(cpus))
399                 goto out;
400         ++kvm->stat.remote_tlb_flush;
401         smp_call_function_mask(cpus, ack_flush, NULL, 1);
402 out:
403         put_cpu();
404 }
405
406 void kvm_reload_remote_mmus(struct kvm *kvm)
407 {
408         int i, cpu, me;
409         cpumask_t cpus;
410         struct kvm_vcpu *vcpu;
411
412         me = get_cpu();
413         cpus_clear(cpus);
414         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
415                 vcpu = kvm->vcpus[i];
416                 if (!vcpu)
417                         continue;
418                 if (test_and_set_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
419                         continue;
420                 cpu = vcpu->cpu;
421                 if (cpu != -1 && cpu != me)
422                         cpu_set(cpu, cpus);
423         }
424         if (cpus_empty(cpus))
425                 goto out;
426         smp_call_function_mask(cpus, ack_flush, NULL, 1);
427 out:
428         put_cpu();
429 }
430
431
432 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
433 {
434         struct page *page;
435         int r;
436
437         mutex_init(&vcpu->mutex);
438         vcpu->cpu = -1;
439         vcpu->kvm = kvm;
440         vcpu->vcpu_id = id;
441         init_waitqueue_head(&vcpu->wq);
442
443         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
444         if (!page) {
445                 r = -ENOMEM;
446                 goto fail;
447         }
448         vcpu->run = page_address(page);
449
450         r = kvm_arch_vcpu_init(vcpu);
451         if (r < 0)
452                 goto fail_free_run;
453         return 0;
454
455 fail_free_run:
456         free_page((unsigned long)vcpu->run);
457 fail:
458         return r;
459 }
460 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
461
462 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
463 {
464         kvm_arch_vcpu_uninit(vcpu);
465         free_page((unsigned long)vcpu->run);
466 }
467 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
468
469 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
470 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
471 {
472         return container_of(mn, struct kvm, mmu_notifier);
473 }
474
475 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
476                                              struct mm_struct *mm,
477                                              unsigned long address)
478 {
479         struct kvm *kvm = mmu_notifier_to_kvm(mn);
480         int need_tlb_flush;
481
482         /*
483          * When ->invalidate_page runs, the linux pte has been zapped
484          * already but the page is still allocated until
485          * ->invalidate_page returns. So if we increase the sequence
486          * here the kvm page fault will notice if the spte can't be
487          * established because the page is going to be freed. If
488          * instead the kvm page fault establishes the spte before
489          * ->invalidate_page runs, kvm_unmap_hva will release it
490          * before returning.
491          *
492          * The sequence increase only need to be seen at spin_unlock
493          * time, and not at spin_lock time.
494          *
495          * Increasing the sequence after the spin_unlock would be
496          * unsafe because the kvm page fault could then establish the
497          * pte after kvm_unmap_hva returned, without noticing the page
498          * is going to be freed.
499          */
500         spin_lock(&kvm->mmu_lock);
501         kvm->mmu_notifier_seq++;
502         need_tlb_flush = kvm_unmap_hva(kvm, address);
503         spin_unlock(&kvm->mmu_lock);
504
505         /* we've to flush the tlb before the pages can be freed */
506         if (need_tlb_flush)
507                 kvm_flush_remote_tlbs(kvm);
508
509 }
510
511 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
512                                                     struct mm_struct *mm,
513                                                     unsigned long start,
514                                                     unsigned long end)
515 {
516         struct kvm *kvm = mmu_notifier_to_kvm(mn);
517         int need_tlb_flush = 0;
518
519         spin_lock(&kvm->mmu_lock);
520         /*
521          * The count increase must become visible at unlock time as no
522          * spte can be established without taking the mmu_lock and
523          * count is also read inside the mmu_lock critical section.
524          */
525         kvm->mmu_notifier_count++;
526         for (; start < end; start += PAGE_SIZE)
527                 need_tlb_flush |= kvm_unmap_hva(kvm, start);
528         spin_unlock(&kvm->mmu_lock);
529
530         /* we've to flush the tlb before the pages can be freed */
531         if (need_tlb_flush)
532                 kvm_flush_remote_tlbs(kvm);
533 }
534
535 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
536                                                   struct mm_struct *mm,
537                                                   unsigned long start,
538                                                   unsigned long end)
539 {
540         struct kvm *kvm = mmu_notifier_to_kvm(mn);
541
542         spin_lock(&kvm->mmu_lock);
543         /*
544          * This sequence increase will notify the kvm page fault that
545          * the page that is going to be mapped in the spte could have
546          * been freed.
547          */
548         kvm->mmu_notifier_seq++;
549         /*
550          * The above sequence increase must be visible before the
551          * below count decrease but both values are read by the kvm
552          * page fault under mmu_lock spinlock so we don't need to add
553          * a smb_wmb() here in between the two.
554          */
555         kvm->mmu_notifier_count--;
556         spin_unlock(&kvm->mmu_lock);
557
558         BUG_ON(kvm->mmu_notifier_count < 0);
559 }
560
561 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
562                                               struct mm_struct *mm,
563                                               unsigned long address)
564 {
565         struct kvm *kvm = mmu_notifier_to_kvm(mn);
566         int young;
567
568         spin_lock(&kvm->mmu_lock);
569         young = kvm_age_hva(kvm, address);
570         spin_unlock(&kvm->mmu_lock);
571
572         if (young)
573                 kvm_flush_remote_tlbs(kvm);
574
575         return young;
576 }
577
578 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
579         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
580         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
581         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
582         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
583 };
584 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
585
586 static struct kvm *kvm_create_vm(void)
587 {
588         struct kvm *kvm = kvm_arch_create_vm();
589 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
590         struct page *page;
591 #endif
592
593         if (IS_ERR(kvm))
594                 goto out;
595
596 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
597         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
598         if (!page) {
599                 kfree(kvm);
600                 return ERR_PTR(-ENOMEM);
601         }
602         kvm->coalesced_mmio_ring =
603                         (struct kvm_coalesced_mmio_ring *)page_address(page);
604 #endif
605
606 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
607         {
608                 int err;
609                 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
610                 err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
611                 if (err) {
612 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
613                         put_page(page);
614 #endif
615                         kfree(kvm);
616                         return ERR_PTR(err);
617                 }
618         }
619 #endif
620
621         kvm->mm = current->mm;
622         atomic_inc(&kvm->mm->mm_count);
623         spin_lock_init(&kvm->mmu_lock);
624         kvm_io_bus_init(&kvm->pio_bus);
625         mutex_init(&kvm->lock);
626         kvm_io_bus_init(&kvm->mmio_bus);
627         init_rwsem(&kvm->slots_lock);
628         atomic_set(&kvm->users_count, 1);
629         spin_lock(&kvm_lock);
630         list_add(&kvm->vm_list, &vm_list);
631         spin_unlock(&kvm_lock);
632 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
633         kvm_coalesced_mmio_init(kvm);
634 #endif
635 out:
636         return kvm;
637 }
638
639 /*
640  * Free any memory in @free but not in @dont.
641  */
642 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
643                                   struct kvm_memory_slot *dont)
644 {
645         if (!dont || free->rmap != dont->rmap)
646                 vfree(free->rmap);
647
648         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
649                 vfree(free->dirty_bitmap);
650
651         if (!dont || free->lpage_info != dont->lpage_info)
652                 vfree(free->lpage_info);
653
654         free->npages = 0;
655         free->dirty_bitmap = NULL;
656         free->rmap = NULL;
657         free->lpage_info = NULL;
658 }
659
660 void kvm_free_physmem(struct kvm *kvm)
661 {
662         int i;
663
664         for (i = 0; i < kvm->nmemslots; ++i)
665                 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
666 }
667
668 static void kvm_destroy_vm(struct kvm *kvm)
669 {
670         struct mm_struct *mm = kvm->mm;
671
672         spin_lock(&kvm_lock);
673         list_del(&kvm->vm_list);
674         spin_unlock(&kvm_lock);
675         kvm_io_bus_destroy(&kvm->pio_bus);
676         kvm_io_bus_destroy(&kvm->mmio_bus);
677 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
678         if (kvm->coalesced_mmio_ring != NULL)
679                 free_page((unsigned long)kvm->coalesced_mmio_ring);
680 #endif
681 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
682         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
683 #endif
684         kvm_arch_destroy_vm(kvm);
685         mmdrop(mm);
686 }
687
688 void kvm_get_kvm(struct kvm *kvm)
689 {
690         atomic_inc(&kvm->users_count);
691 }
692 EXPORT_SYMBOL_GPL(kvm_get_kvm);
693
694 void kvm_put_kvm(struct kvm *kvm)
695 {
696         if (atomic_dec_and_test(&kvm->users_count))
697                 kvm_destroy_vm(kvm);
698 }
699 EXPORT_SYMBOL_GPL(kvm_put_kvm);
700
701
702 static int kvm_vm_release(struct inode *inode, struct file *filp)
703 {
704         struct kvm *kvm = filp->private_data;
705
706         kvm_put_kvm(kvm);
707         return 0;
708 }
709
710 /*
711  * Allocate some memory and give it an address in the guest physical address
712  * space.
713  *
714  * Discontiguous memory is allowed, mostly for framebuffers.
715  *
716  * Must be called holding mmap_sem for write.
717  */
718 int __kvm_set_memory_region(struct kvm *kvm,
719                             struct kvm_userspace_memory_region *mem,
720                             int user_alloc)
721 {
722         int r;
723         gfn_t base_gfn;
724         unsigned long npages;
725         unsigned long i;
726         struct kvm_memory_slot *memslot;
727         struct kvm_memory_slot old, new;
728
729         r = -EINVAL;
730         /* General sanity checks */
731         if (mem->memory_size & (PAGE_SIZE - 1))
732                 goto out;
733         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
734                 goto out;
735         if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
736                 goto out;
737         if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
738                 goto out;
739         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
740                 goto out;
741
742         memslot = &kvm->memslots[mem->slot];
743         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
744         npages = mem->memory_size >> PAGE_SHIFT;
745
746         if (!npages)
747                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
748
749         new = old = *memslot;
750
751         new.base_gfn = base_gfn;
752         new.npages = npages;
753         new.flags = mem->flags;
754
755         /* Disallow changing a memory slot's size. */
756         r = -EINVAL;
757         if (npages && old.npages && npages != old.npages)
758                 goto out_free;
759
760         /* Check for overlaps */
761         r = -EEXIST;
762         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
763                 struct kvm_memory_slot *s = &kvm->memslots[i];
764
765                 if (s == memslot)
766                         continue;
767                 if (!((base_gfn + npages <= s->base_gfn) ||
768                       (base_gfn >= s->base_gfn + s->npages)))
769                         goto out_free;
770         }
771
772         /* Free page dirty bitmap if unneeded */
773         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
774                 new.dirty_bitmap = NULL;
775
776         r = -ENOMEM;
777
778         /* Allocate if a slot is being created */
779 #ifndef CONFIG_S390
780         if (npages && !new.rmap) {
781                 new.rmap = vmalloc(npages * sizeof(struct page *));
782
783                 if (!new.rmap)
784                         goto out_free;
785
786                 memset(new.rmap, 0, npages * sizeof(*new.rmap));
787
788                 new.user_alloc = user_alloc;
789                 /*
790                  * hva_to_rmmap() serialzies with the mmu_lock and to be
791                  * safe it has to ignore memslots with !user_alloc &&
792                  * !userspace_addr.
793                  */
794                 if (user_alloc)
795                         new.userspace_addr = mem->userspace_addr;
796                 else
797                         new.userspace_addr = 0;
798         }
799         if (npages && !new.lpage_info) {
800                 int largepages = npages / KVM_PAGES_PER_HPAGE;
801                 if (npages % KVM_PAGES_PER_HPAGE)
802                         largepages++;
803                 if (base_gfn % KVM_PAGES_PER_HPAGE)
804                         largepages++;
805
806                 new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
807
808                 if (!new.lpage_info)
809                         goto out_free;
810
811                 memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
812
813                 if (base_gfn % KVM_PAGES_PER_HPAGE)
814                         new.lpage_info[0].write_count = 1;
815                 if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
816                         new.lpage_info[largepages-1].write_count = 1;
817         }
818
819         /* Allocate page dirty bitmap if needed */
820         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
821                 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
822
823                 new.dirty_bitmap = vmalloc(dirty_bytes);
824                 if (!new.dirty_bitmap)
825                         goto out_free;
826                 memset(new.dirty_bitmap, 0, dirty_bytes);
827         }
828 #endif /* not defined CONFIG_S390 */
829
830         if (!npages)
831                 kvm_arch_flush_shadow(kvm);
832
833         spin_lock(&kvm->mmu_lock);
834         if (mem->slot >= kvm->nmemslots)
835                 kvm->nmemslots = mem->slot + 1;
836
837         *memslot = new;
838         spin_unlock(&kvm->mmu_lock);
839
840         r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
841         if (r) {
842                 spin_lock(&kvm->mmu_lock);
843                 *memslot = old;
844                 spin_unlock(&kvm->mmu_lock);
845                 goto out_free;
846         }
847
848         kvm_free_physmem_slot(&old, &new);
849 #ifdef CONFIG_DMAR
850         /* map the pages in iommu page table */
851         r = kvm_iommu_map_pages(kvm, base_gfn, npages);
852         if (r)
853                 goto out;
854 #endif
855         return 0;
856
857 out_free:
858         kvm_free_physmem_slot(&new, &old);
859 out:
860         return r;
861
862 }
863 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
864
865 int kvm_set_memory_region(struct kvm *kvm,
866                           struct kvm_userspace_memory_region *mem,
867                           int user_alloc)
868 {
869         int r;
870
871         down_write(&kvm->slots_lock);
872         r = __kvm_set_memory_region(kvm, mem, user_alloc);
873         up_write(&kvm->slots_lock);
874         return r;
875 }
876 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
877
878 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
879                                    struct
880                                    kvm_userspace_memory_region *mem,
881                                    int user_alloc)
882 {
883         if (mem->slot >= KVM_MEMORY_SLOTS)
884                 return -EINVAL;
885         return kvm_set_memory_region(kvm, mem, user_alloc);
886 }
887
888 int kvm_get_dirty_log(struct kvm *kvm,
889                         struct kvm_dirty_log *log, int *is_dirty)
890 {
891         struct kvm_memory_slot *memslot;
892         int r, i;
893         int n;
894         unsigned long any = 0;
895
896         r = -EINVAL;
897         if (log->slot >= KVM_MEMORY_SLOTS)
898                 goto out;
899
900         memslot = &kvm->memslots[log->slot];
901         r = -ENOENT;
902         if (!memslot->dirty_bitmap)
903                 goto out;
904
905         n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
906
907         for (i = 0; !any && i < n/sizeof(long); ++i)
908                 any = memslot->dirty_bitmap[i];
909
910         r = -EFAULT;
911         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
912                 goto out;
913
914         if (any)
915                 *is_dirty = 1;
916
917         r = 0;
918 out:
919         return r;
920 }
921
922 int is_error_page(struct page *page)
923 {
924         return page == bad_page;
925 }
926 EXPORT_SYMBOL_GPL(is_error_page);
927
928 int is_error_pfn(pfn_t pfn)
929 {
930         return pfn == bad_pfn;
931 }
932 EXPORT_SYMBOL_GPL(is_error_pfn);
933
934 static inline unsigned long bad_hva(void)
935 {
936         return PAGE_OFFSET;
937 }
938
939 int kvm_is_error_hva(unsigned long addr)
940 {
941         return addr == bad_hva();
942 }
943 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
944
945 struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
946 {
947         int i;
948
949         for (i = 0; i < kvm->nmemslots; ++i) {
950                 struct kvm_memory_slot *memslot = &kvm->memslots[i];
951
952                 if (gfn >= memslot->base_gfn
953                     && gfn < memslot->base_gfn + memslot->npages)
954                         return memslot;
955         }
956         return NULL;
957 }
958 EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
959
960 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
961 {
962         gfn = unalias_gfn(kvm, gfn);
963         return gfn_to_memslot_unaliased(kvm, gfn);
964 }
965
966 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
967 {
968         int i;
969
970         gfn = unalias_gfn(kvm, gfn);
971         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
972                 struct kvm_memory_slot *memslot = &kvm->memslots[i];
973
974                 if (gfn >= memslot->base_gfn
975                     && gfn < memslot->base_gfn + memslot->npages)
976                         return 1;
977         }
978         return 0;
979 }
980 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
981
982 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
983 {
984         struct kvm_memory_slot *slot;
985
986         gfn = unalias_gfn(kvm, gfn);
987         slot = gfn_to_memslot_unaliased(kvm, gfn);
988         if (!slot)
989                 return bad_hva();
990         return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
991 }
992 EXPORT_SYMBOL_GPL(gfn_to_hva);
993
994 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
995 {
996         struct page *page[1];
997         unsigned long addr;
998         int npages;
999         pfn_t pfn;
1000
1001         might_sleep();
1002
1003         addr = gfn_to_hva(kvm, gfn);
1004         if (kvm_is_error_hva(addr)) {
1005                 get_page(bad_page);
1006                 return page_to_pfn(bad_page);
1007         }
1008
1009         npages = get_user_pages_fast(addr, 1, 1, page);
1010
1011         if (unlikely(npages != 1)) {
1012                 struct vm_area_struct *vma;
1013
1014                 down_read(&current->mm->mmap_sem);
1015                 vma = find_vma(current->mm, addr);
1016
1017                 if (vma == NULL || addr < vma->vm_start ||
1018                     !(vma->vm_flags & VM_PFNMAP)) {
1019                         up_read(&current->mm->mmap_sem);
1020                         get_page(bad_page);
1021                         return page_to_pfn(bad_page);
1022                 }
1023
1024                 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1025                 up_read(&current->mm->mmap_sem);
1026                 BUG_ON(!kvm_is_mmio_pfn(pfn));
1027         } else
1028                 pfn = page_to_pfn(page[0]);
1029
1030         return pfn;
1031 }
1032
1033 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1034
1035 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1036 {
1037         pfn_t pfn;
1038
1039         pfn = gfn_to_pfn(kvm, gfn);
1040         if (!kvm_is_mmio_pfn(pfn))
1041                 return pfn_to_page(pfn);
1042
1043         WARN_ON(kvm_is_mmio_pfn(pfn));
1044
1045         get_page(bad_page);
1046         return bad_page;
1047 }
1048
1049 EXPORT_SYMBOL_GPL(gfn_to_page);
1050
1051 void kvm_release_page_clean(struct page *page)
1052 {
1053         kvm_release_pfn_clean(page_to_pfn(page));
1054 }
1055 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1056
1057 void kvm_release_pfn_clean(pfn_t pfn)
1058 {
1059         if (!kvm_is_mmio_pfn(pfn))
1060                 put_page(pfn_to_page(pfn));
1061 }
1062 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1063
1064 void kvm_release_page_dirty(struct page *page)
1065 {
1066         kvm_release_pfn_dirty(page_to_pfn(page));
1067 }
1068 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1069
1070 void kvm_release_pfn_dirty(pfn_t pfn)
1071 {
1072         kvm_set_pfn_dirty(pfn);
1073         kvm_release_pfn_clean(pfn);
1074 }
1075 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1076
1077 void kvm_set_page_dirty(struct page *page)
1078 {
1079         kvm_set_pfn_dirty(page_to_pfn(page));
1080 }
1081 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1082
1083 void kvm_set_pfn_dirty(pfn_t pfn)
1084 {
1085         if (!kvm_is_mmio_pfn(pfn)) {
1086                 struct page *page = pfn_to_page(pfn);
1087                 if (!PageReserved(page))
1088                         SetPageDirty(page);
1089         }
1090 }
1091 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1092
1093 void kvm_set_pfn_accessed(pfn_t pfn)
1094 {
1095         if (!kvm_is_mmio_pfn(pfn))
1096                 mark_page_accessed(pfn_to_page(pfn));
1097 }
1098 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1099
1100 void kvm_get_pfn(pfn_t pfn)
1101 {
1102         if (!kvm_is_mmio_pfn(pfn))
1103                 get_page(pfn_to_page(pfn));
1104 }
1105 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1106
1107 static int next_segment(unsigned long len, int offset)
1108 {
1109         if (len > PAGE_SIZE - offset)
1110                 return PAGE_SIZE - offset;
1111         else
1112                 return len;
1113 }
1114
1115 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1116                         int len)
1117 {
1118         int r;
1119         unsigned long addr;
1120
1121         addr = gfn_to_hva(kvm, gfn);
1122         if (kvm_is_error_hva(addr))
1123                 return -EFAULT;
1124         r = copy_from_user(data, (void __user *)addr + offset, len);
1125         if (r)
1126                 return -EFAULT;
1127         return 0;
1128 }
1129 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1130
1131 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1132 {
1133         gfn_t gfn = gpa >> PAGE_SHIFT;
1134         int seg;
1135         int offset = offset_in_page(gpa);
1136         int ret;
1137
1138         while ((seg = next_segment(len, offset)) != 0) {
1139                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1140                 if (ret < 0)
1141                         return ret;
1142                 offset = 0;
1143                 len -= seg;
1144                 data += seg;
1145                 ++gfn;
1146         }
1147         return 0;
1148 }
1149 EXPORT_SYMBOL_GPL(kvm_read_guest);
1150
1151 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1152                           unsigned long len)
1153 {
1154         int r;
1155         unsigned long addr;
1156         gfn_t gfn = gpa >> PAGE_SHIFT;
1157         int offset = offset_in_page(gpa);
1158
1159         addr = gfn_to_hva(kvm, gfn);
1160         if (kvm_is_error_hva(addr))
1161                 return -EFAULT;
1162         pagefault_disable();
1163         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1164         pagefault_enable();
1165         if (r)
1166                 return -EFAULT;
1167         return 0;
1168 }
1169 EXPORT_SYMBOL(kvm_read_guest_atomic);
1170
1171 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1172                          int offset, int len)
1173 {
1174         int r;
1175         unsigned long addr;
1176
1177         addr = gfn_to_hva(kvm, gfn);
1178         if (kvm_is_error_hva(addr))
1179                 return -EFAULT;
1180         r = copy_to_user((void __user *)addr + offset, data, len);
1181         if (r)
1182                 return -EFAULT;
1183         mark_page_dirty(kvm, gfn);
1184         return 0;
1185 }
1186 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1187
1188 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1189                     unsigned long len)
1190 {
1191         gfn_t gfn = gpa >> PAGE_SHIFT;
1192         int seg;
1193         int offset = offset_in_page(gpa);
1194         int ret;
1195
1196         while ((seg = next_segment(len, offset)) != 0) {
1197                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1198                 if (ret < 0)
1199                         return ret;
1200                 offset = 0;
1201                 len -= seg;
1202                 data += seg;
1203                 ++gfn;
1204         }
1205         return 0;
1206 }
1207
1208 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1209 {
1210         return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1211 }
1212 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1213
1214 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1215 {
1216         gfn_t gfn = gpa >> PAGE_SHIFT;
1217         int seg;
1218         int offset = offset_in_page(gpa);
1219         int ret;
1220
1221         while ((seg = next_segment(len, offset)) != 0) {
1222                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1223                 if (ret < 0)
1224                         return ret;
1225                 offset = 0;
1226                 len -= seg;
1227                 ++gfn;
1228         }
1229         return 0;
1230 }
1231 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1232
1233 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1234 {
1235         struct kvm_memory_slot *memslot;
1236
1237         gfn = unalias_gfn(kvm, gfn);
1238         memslot = gfn_to_memslot_unaliased(kvm, gfn);
1239         if (memslot && memslot->dirty_bitmap) {
1240                 unsigned long rel_gfn = gfn - memslot->base_gfn;
1241
1242                 /* avoid RMW */
1243                 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1244                         set_bit(rel_gfn, memslot->dirty_bitmap);
1245         }
1246 }
1247
1248 /*
1249  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1250  */
1251 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1252 {
1253         DEFINE_WAIT(wait);
1254
1255         for (;;) {
1256                 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1257
1258                 if (kvm_cpu_has_interrupt(vcpu) ||
1259                     kvm_cpu_has_pending_timer(vcpu) ||
1260                     kvm_arch_vcpu_runnable(vcpu)) {
1261                         set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1262                         break;
1263                 }
1264                 if (signal_pending(current))
1265                         break;
1266
1267                 vcpu_put(vcpu);
1268                 schedule();
1269                 vcpu_load(vcpu);
1270         }
1271
1272         finish_wait(&vcpu->wq, &wait);
1273 }
1274
1275 void kvm_resched(struct kvm_vcpu *vcpu)
1276 {
1277         if (!need_resched())
1278                 return;
1279         cond_resched();
1280 }
1281 EXPORT_SYMBOL_GPL(kvm_resched);
1282
1283 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1284 {
1285         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1286         struct page *page;
1287
1288         if (vmf->pgoff == 0)
1289                 page = virt_to_page(vcpu->run);
1290 #ifdef CONFIG_X86
1291         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1292                 page = virt_to_page(vcpu->arch.pio_data);
1293 #endif
1294 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1295         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1296                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1297 #endif
1298         else
1299                 return VM_FAULT_SIGBUS;
1300         get_page(page);
1301         vmf->page = page;
1302         return 0;
1303 }
1304
1305 static struct vm_operations_struct kvm_vcpu_vm_ops = {
1306         .fault = kvm_vcpu_fault,
1307 };
1308
1309 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1310 {
1311         vma->vm_ops = &kvm_vcpu_vm_ops;
1312         return 0;
1313 }
1314
1315 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1316 {
1317         struct kvm_vcpu *vcpu = filp->private_data;
1318
1319         kvm_put_kvm(vcpu->kvm);
1320         return 0;
1321 }
1322
1323 static const struct file_operations kvm_vcpu_fops = {
1324         .release        = kvm_vcpu_release,
1325         .unlocked_ioctl = kvm_vcpu_ioctl,
1326         .compat_ioctl   = kvm_vcpu_ioctl,
1327         .mmap           = kvm_vcpu_mmap,
1328 };
1329
1330 /*
1331  * Allocates an inode for the vcpu.
1332  */
1333 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1334 {
1335         int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
1336         if (fd < 0)
1337                 kvm_put_kvm(vcpu->kvm);
1338         return fd;
1339 }
1340
1341 /*
1342  * Creates some virtual cpus.  Good luck creating more than one.
1343  */
1344 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
1345 {
1346         int r;
1347         struct kvm_vcpu *vcpu;
1348
1349         if (!valid_vcpu(n))
1350                 return -EINVAL;
1351
1352         vcpu = kvm_arch_vcpu_create(kvm, n);
1353         if (IS_ERR(vcpu))
1354                 return PTR_ERR(vcpu);
1355
1356         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1357
1358         r = kvm_arch_vcpu_setup(vcpu);
1359         if (r)
1360                 return r;
1361
1362         mutex_lock(&kvm->lock);
1363         if (kvm->vcpus[n]) {
1364                 r = -EEXIST;
1365                 goto vcpu_destroy;
1366         }
1367         kvm->vcpus[n] = vcpu;
1368         mutex_unlock(&kvm->lock);
1369
1370         /* Now it's all set up, let userspace reach it */
1371         kvm_get_kvm(kvm);
1372         r = create_vcpu_fd(vcpu);
1373         if (r < 0)
1374                 goto unlink;
1375         return r;
1376
1377 unlink:
1378         mutex_lock(&kvm->lock);
1379         kvm->vcpus[n] = NULL;
1380 vcpu_destroy:
1381         mutex_unlock(&kvm->lock);
1382         kvm_arch_vcpu_destroy(vcpu);
1383         return r;
1384 }
1385
1386 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1387 {
1388         if (sigset) {
1389                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1390                 vcpu->sigset_active = 1;
1391                 vcpu->sigset = *sigset;
1392         } else
1393                 vcpu->sigset_active = 0;
1394         return 0;
1395 }
1396
1397 static long kvm_vcpu_ioctl(struct file *filp,
1398                            unsigned int ioctl, unsigned long arg)
1399 {
1400         struct kvm_vcpu *vcpu = filp->private_data;
1401         void __user *argp = (void __user *)arg;
1402         int r;
1403         struct kvm_fpu *fpu = NULL;
1404         struct kvm_sregs *kvm_sregs = NULL;
1405
1406         if (vcpu->kvm->mm != current->mm)
1407                 return -EIO;
1408         switch (ioctl) {
1409         case KVM_RUN:
1410                 r = -EINVAL;
1411                 if (arg)
1412                         goto out;
1413                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1414                 break;
1415         case KVM_GET_REGS: {
1416                 struct kvm_regs *kvm_regs;
1417
1418                 r = -ENOMEM;
1419                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1420                 if (!kvm_regs)
1421                         goto out;
1422                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1423                 if (r)
1424                         goto out_free1;
1425                 r = -EFAULT;
1426                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1427                         goto out_free1;
1428                 r = 0;
1429 out_free1:
1430                 kfree(kvm_regs);
1431                 break;
1432         }
1433         case KVM_SET_REGS: {
1434                 struct kvm_regs *kvm_regs;
1435
1436                 r = -ENOMEM;
1437                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1438                 if (!kvm_regs)
1439                         goto out;
1440                 r = -EFAULT;
1441                 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1442                         goto out_free2;
1443                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1444                 if (r)
1445                         goto out_free2;
1446                 r = 0;
1447 out_free2:
1448                 kfree(kvm_regs);
1449                 break;
1450         }
1451         case KVM_GET_SREGS: {
1452                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1453                 r = -ENOMEM;
1454                 if (!kvm_sregs)
1455                         goto out;
1456                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1457                 if (r)
1458                         goto out;
1459                 r = -EFAULT;
1460                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1461                         goto out;
1462                 r = 0;
1463                 break;
1464         }
1465         case KVM_SET_SREGS: {
1466                 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1467                 r = -ENOMEM;
1468                 if (!kvm_sregs)
1469                         goto out;
1470                 r = -EFAULT;
1471                 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1472                         goto out;
1473                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1474                 if (r)
1475                         goto out;
1476                 r = 0;
1477                 break;
1478         }
1479         case KVM_GET_MP_STATE: {
1480                 struct kvm_mp_state mp_state;
1481
1482                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1483                 if (r)
1484                         goto out;
1485                 r = -EFAULT;
1486                 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1487                         goto out;
1488                 r = 0;
1489                 break;
1490         }
1491         case KVM_SET_MP_STATE: {
1492                 struct kvm_mp_state mp_state;
1493
1494                 r = -EFAULT;
1495                 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1496                         goto out;
1497                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1498                 if (r)
1499                         goto out;
1500                 r = 0;
1501                 break;
1502         }
1503         case KVM_TRANSLATE: {
1504                 struct kvm_translation tr;
1505
1506                 r = -EFAULT;
1507                 if (copy_from_user(&tr, argp, sizeof tr))
1508                         goto out;
1509                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1510                 if (r)
1511                         goto out;
1512                 r = -EFAULT;
1513                 if (copy_to_user(argp, &tr, sizeof tr))
1514                         goto out;
1515                 r = 0;
1516                 break;
1517         }
1518         case KVM_DEBUG_GUEST: {
1519                 struct kvm_debug_guest dbg;
1520
1521                 r = -EFAULT;
1522                 if (copy_from_user(&dbg, argp, sizeof dbg))
1523                         goto out;
1524                 r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
1525                 if (r)
1526                         goto out;
1527                 r = 0;
1528                 break;
1529         }
1530         case KVM_SET_SIGNAL_MASK: {
1531                 struct kvm_signal_mask __user *sigmask_arg = argp;
1532                 struct kvm_signal_mask kvm_sigmask;
1533                 sigset_t sigset, *p;
1534
1535                 p = NULL;
1536                 if (argp) {
1537                         r = -EFAULT;
1538                         if (copy_from_user(&kvm_sigmask, argp,
1539                                            sizeof kvm_sigmask))
1540                                 goto out;
1541                         r = -EINVAL;
1542                         if (kvm_sigmask.len != sizeof sigset)
1543                                 goto out;
1544                         r = -EFAULT;
1545                         if (copy_from_user(&sigset, sigmask_arg->sigset,
1546                                            sizeof sigset))
1547                                 goto out;
1548                         p = &sigset;
1549                 }
1550                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1551                 break;
1552         }
1553         case KVM_GET_FPU: {
1554                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1555                 r = -ENOMEM;
1556                 if (!fpu)
1557                         goto out;
1558                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1559                 if (r)
1560                         goto out;
1561                 r = -EFAULT;
1562                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1563                         goto out;
1564                 r = 0;
1565                 break;
1566         }
1567         case KVM_SET_FPU: {
1568                 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1569                 r = -ENOMEM;
1570                 if (!fpu)
1571                         goto out;
1572                 r = -EFAULT;
1573                 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1574                         goto out;
1575                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1576                 if (r)
1577                         goto out;
1578                 r = 0;
1579                 break;
1580         }
1581         default:
1582                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1583         }
1584 out:
1585         kfree(fpu);
1586         kfree(kvm_sregs);
1587         return r;
1588 }
1589
1590 static long kvm_vm_ioctl(struct file *filp,
1591                            unsigned int ioctl, unsigned long arg)
1592 {
1593         struct kvm *kvm = filp->private_data;
1594         void __user *argp = (void __user *)arg;
1595         int r;
1596
1597         if (kvm->mm != current->mm)
1598                 return -EIO;
1599         switch (ioctl) {
1600         case KVM_CREATE_VCPU:
1601                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1602                 if (r < 0)
1603                         goto out;
1604                 break;
1605         case KVM_SET_USER_MEMORY_REGION: {
1606                 struct kvm_userspace_memory_region kvm_userspace_mem;
1607
1608                 r = -EFAULT;
1609                 if (copy_from_user(&kvm_userspace_mem, argp,
1610                                                 sizeof kvm_userspace_mem))
1611                         goto out;
1612
1613                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1614                 if (r)
1615                         goto out;
1616                 break;
1617         }
1618         case KVM_GET_DIRTY_LOG: {
1619                 struct kvm_dirty_log log;
1620
1621                 r = -EFAULT;
1622                 if (copy_from_user(&log, argp, sizeof log))
1623                         goto out;
1624                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1625                 if (r)
1626                         goto out;
1627                 break;
1628         }
1629 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1630         case KVM_REGISTER_COALESCED_MMIO: {
1631                 struct kvm_coalesced_mmio_zone zone;
1632                 r = -EFAULT;
1633                 if (copy_from_user(&zone, argp, sizeof zone))
1634                         goto out;
1635                 r = -ENXIO;
1636                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1637                 if (r)
1638                         goto out;
1639                 r = 0;
1640                 break;
1641         }
1642         case KVM_UNREGISTER_COALESCED_MMIO: {
1643                 struct kvm_coalesced_mmio_zone zone;
1644                 r = -EFAULT;
1645                 if (copy_from_user(&zone, argp, sizeof zone))
1646                         goto out;
1647                 r = -ENXIO;
1648                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1649                 if (r)
1650                         goto out;
1651                 r = 0;
1652                 break;
1653         }
1654 #endif
1655 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
1656         case KVM_ASSIGN_PCI_DEVICE: {
1657                 struct kvm_assigned_pci_dev assigned_dev;
1658
1659                 r = -EFAULT;
1660                 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
1661                         goto out;
1662                 r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
1663                 if (r)
1664                         goto out;
1665                 break;
1666         }
1667         case KVM_ASSIGN_IRQ: {
1668                 struct kvm_assigned_irq assigned_irq;
1669
1670                 r = -EFAULT;
1671                 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
1672                         goto out;
1673                 r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
1674                 if (r)
1675                         goto out;
1676                 break;
1677         }
1678 #endif
1679         default:
1680                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1681         }
1682 out:
1683         return r;
1684 }
1685
1686 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1687 {
1688         struct page *page[1];
1689         unsigned long addr;
1690         int npages;
1691         gfn_t gfn = vmf->pgoff;
1692         struct kvm *kvm = vma->vm_file->private_data;
1693
1694         addr = gfn_to_hva(kvm, gfn);
1695         if (kvm_is_error_hva(addr))
1696                 return VM_FAULT_SIGBUS;
1697
1698         npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
1699                                 NULL);
1700         if (unlikely(npages != 1))
1701                 return VM_FAULT_SIGBUS;
1702
1703         vmf->page = page[0];
1704         return 0;
1705 }
1706
1707 static struct vm_operations_struct kvm_vm_vm_ops = {
1708         .fault = kvm_vm_fault,
1709 };
1710
1711 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1712 {
1713         vma->vm_ops = &kvm_vm_vm_ops;
1714         return 0;
1715 }
1716
1717 static const struct file_operations kvm_vm_fops = {
1718         .release        = kvm_vm_release,
1719         .unlocked_ioctl = kvm_vm_ioctl,
1720         .compat_ioctl   = kvm_vm_ioctl,
1721         .mmap           = kvm_vm_mmap,
1722 };
1723
1724 static int kvm_dev_ioctl_create_vm(void)
1725 {
1726         int fd;
1727         struct kvm *kvm;
1728
1729         kvm = kvm_create_vm();
1730         if (IS_ERR(kvm))
1731                 return PTR_ERR(kvm);
1732         fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
1733         if (fd < 0)
1734                 kvm_put_kvm(kvm);
1735
1736         return fd;
1737 }
1738
1739 static long kvm_dev_ioctl(struct file *filp,
1740                           unsigned int ioctl, unsigned long arg)
1741 {
1742         long r = -EINVAL;
1743
1744         switch (ioctl) {
1745         case KVM_GET_API_VERSION:
1746                 r = -EINVAL;
1747                 if (arg)
1748                         goto out;
1749                 r = KVM_API_VERSION;
1750                 break;
1751         case KVM_CREATE_VM:
1752                 r = -EINVAL;
1753                 if (arg)
1754                         goto out;
1755                 r = kvm_dev_ioctl_create_vm();
1756                 break;
1757         case KVM_CHECK_EXTENSION:
1758                 r = kvm_dev_ioctl_check_extension(arg);
1759                 break;
1760         case KVM_GET_VCPU_MMAP_SIZE:
1761                 r = -EINVAL;
1762                 if (arg)
1763                         goto out;
1764                 r = PAGE_SIZE;     /* struct kvm_run */
1765 #ifdef CONFIG_X86
1766                 r += PAGE_SIZE;    /* pio data page */
1767 #endif
1768 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1769                 r += PAGE_SIZE;    /* coalesced mmio ring page */
1770 #endif
1771                 break;
1772         case KVM_TRACE_ENABLE:
1773         case KVM_TRACE_PAUSE:
1774         case KVM_TRACE_DISABLE:
1775                 r = kvm_trace_ioctl(ioctl, arg);
1776                 break;
1777         default:
1778                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
1779         }
1780 out:
1781         return r;
1782 }
1783
1784 static struct file_operations kvm_chardev_ops = {
1785         .unlocked_ioctl = kvm_dev_ioctl,
1786         .compat_ioctl   = kvm_dev_ioctl,
1787 };
1788
1789 static struct miscdevice kvm_dev = {
1790         KVM_MINOR,
1791         "kvm",
1792         &kvm_chardev_ops,
1793 };
1794
1795 static void hardware_enable(void *junk)
1796 {
1797         int cpu = raw_smp_processor_id();
1798
1799         if (cpu_isset(cpu, cpus_hardware_enabled))
1800                 return;
1801         cpu_set(cpu, cpus_hardware_enabled);
1802         kvm_arch_hardware_enable(NULL);
1803 }
1804
1805 static void hardware_disable(void *junk)
1806 {
1807         int cpu = raw_smp_processor_id();
1808
1809         if (!cpu_isset(cpu, cpus_hardware_enabled))
1810                 return;
1811         cpu_clear(cpu, cpus_hardware_enabled);
1812         kvm_arch_hardware_disable(NULL);
1813 }
1814
1815 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
1816                            void *v)
1817 {
1818         int cpu = (long)v;
1819
1820         val &= ~CPU_TASKS_FROZEN;
1821         switch (val) {
1822         case CPU_DYING:
1823                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1824                        cpu);
1825                 hardware_disable(NULL);
1826                 break;
1827         case CPU_UP_CANCELED:
1828                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1829                        cpu);
1830                 smp_call_function_single(cpu, hardware_disable, NULL, 1);
1831                 break;
1832         case CPU_ONLINE:
1833                 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
1834                        cpu);
1835                 smp_call_function_single(cpu, hardware_enable, NULL, 1);
1836                 break;
1837         }
1838         return NOTIFY_OK;
1839 }
1840
1841
1842 asmlinkage void kvm_handle_fault_on_reboot(void)
1843 {
1844         if (kvm_rebooting)
1845                 /* spin while reset goes on */
1846                 while (true)
1847                         ;
1848         /* Fault while not rebooting.  We want the trace. */
1849         BUG();
1850 }
1851 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
1852
1853 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
1854                       void *v)
1855 {
1856         if (val == SYS_RESTART) {
1857                 /*
1858                  * Some (well, at least mine) BIOSes hang on reboot if
1859                  * in vmx root mode.
1860                  */
1861                 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
1862                 kvm_rebooting = true;
1863                 on_each_cpu(hardware_disable, NULL, 1);
1864         }
1865         return NOTIFY_OK;
1866 }
1867
1868 static struct notifier_block kvm_reboot_notifier = {
1869         .notifier_call = kvm_reboot,
1870         .priority = 0,
1871 };
1872
1873 void kvm_io_bus_init(struct kvm_io_bus *bus)
1874 {
1875         memset(bus, 0, sizeof(*bus));
1876 }
1877
1878 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
1879 {
1880         int i;
1881
1882         for (i = 0; i < bus->dev_count; i++) {
1883                 struct kvm_io_device *pos = bus->devs[i];
1884
1885                 kvm_iodevice_destructor(pos);
1886         }
1887 }
1888
1889 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
1890                                           gpa_t addr, int len, int is_write)
1891 {
1892         int i;
1893
1894         for (i = 0; i < bus->dev_count; i++) {
1895                 struct kvm_io_device *pos = bus->devs[i];
1896
1897                 if (pos->in_range(pos, addr, len, is_write))
1898                         return pos;
1899         }
1900
1901         return NULL;
1902 }
1903
1904 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
1905 {
1906         BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
1907
1908         bus->devs[bus->dev_count++] = dev;
1909 }
1910
1911 static struct notifier_block kvm_cpu_notifier = {
1912         .notifier_call = kvm_cpu_hotplug,
1913         .priority = 20, /* must be > scheduler priority */
1914 };
1915
1916 static int vm_stat_get(void *_offset, u64 *val)
1917 {
1918         unsigned offset = (long)_offset;
1919         struct kvm *kvm;
1920
1921         *val = 0;
1922         spin_lock(&kvm_lock);
1923         list_for_each_entry(kvm, &vm_list, vm_list)
1924                 *val += *(u32 *)((void *)kvm + offset);
1925         spin_unlock(&kvm_lock);
1926         return 0;
1927 }
1928
1929 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
1930
1931 static int vcpu_stat_get(void *_offset, u64 *val)
1932 {
1933         unsigned offset = (long)_offset;
1934         struct kvm *kvm;
1935         struct kvm_vcpu *vcpu;
1936         int i;
1937
1938         *val = 0;
1939         spin_lock(&kvm_lock);
1940         list_for_each_entry(kvm, &vm_list, vm_list)
1941                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
1942                         vcpu = kvm->vcpus[i];
1943                         if (vcpu)
1944                                 *val += *(u32 *)((void *)vcpu + offset);
1945                 }
1946         spin_unlock(&kvm_lock);
1947         return 0;
1948 }
1949
1950 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
1951
1952 static struct file_operations *stat_fops[] = {
1953         [KVM_STAT_VCPU] = &vcpu_stat_fops,
1954         [KVM_STAT_VM]   = &vm_stat_fops,
1955 };
1956
1957 static void kvm_init_debug(void)
1958 {
1959         struct kvm_stats_debugfs_item *p;
1960
1961         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
1962         for (p = debugfs_entries; p->name; ++p)
1963                 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
1964                                                 (void *)(long)p->offset,
1965                                                 stat_fops[p->kind]);
1966 }
1967
1968 static void kvm_exit_debug(void)
1969 {
1970         struct kvm_stats_debugfs_item *p;
1971
1972         for (p = debugfs_entries; p->name; ++p)
1973                 debugfs_remove(p->dentry);
1974         debugfs_remove(kvm_debugfs_dir);
1975 }
1976
1977 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
1978 {
1979         hardware_disable(NULL);
1980         return 0;
1981 }
1982
1983 static int kvm_resume(struct sys_device *dev)
1984 {
1985         hardware_enable(NULL);
1986         return 0;
1987 }
1988
1989 static struct sysdev_class kvm_sysdev_class = {
1990         .name = "kvm",
1991         .suspend = kvm_suspend,
1992         .resume = kvm_resume,
1993 };
1994
1995 static struct sys_device kvm_sysdev = {
1996         .id = 0,
1997         .cls = &kvm_sysdev_class,
1998 };
1999
2000 struct page *bad_page;
2001 pfn_t bad_pfn;
2002
2003 static inline
2004 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2005 {
2006         return container_of(pn, struct kvm_vcpu, preempt_notifier);
2007 }
2008
2009 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2010 {
2011         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2012
2013         kvm_arch_vcpu_load(vcpu, cpu);
2014 }
2015
2016 static void kvm_sched_out(struct preempt_notifier *pn,
2017                           struct task_struct *next)
2018 {
2019         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2020
2021         kvm_arch_vcpu_put(vcpu);
2022 }
2023
2024 int kvm_init(void *opaque, unsigned int vcpu_size,
2025                   struct module *module)
2026 {
2027         int r;
2028         int cpu;
2029
2030         kvm_init_debug();
2031
2032         r = kvm_arch_init(opaque);
2033         if (r)
2034                 goto out_fail;
2035
2036         bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2037
2038         if (bad_page == NULL) {
2039                 r = -ENOMEM;
2040                 goto out;
2041         }
2042
2043         bad_pfn = page_to_pfn(bad_page);
2044
2045         r = kvm_arch_hardware_setup();
2046         if (r < 0)
2047                 goto out_free_0;
2048
2049         for_each_online_cpu(cpu) {
2050                 smp_call_function_single(cpu,
2051                                 kvm_arch_check_processor_compat,
2052                                 &r, 1);
2053                 if (r < 0)
2054                         goto out_free_1;
2055         }
2056
2057         on_each_cpu(hardware_enable, NULL, 1);
2058         r = register_cpu_notifier(&kvm_cpu_notifier);
2059         if (r)
2060                 goto out_free_2;
2061         register_reboot_notifier(&kvm_reboot_notifier);
2062
2063         r = sysdev_class_register(&kvm_sysdev_class);
2064         if (r)
2065                 goto out_free_3;
2066
2067         r = sysdev_register(&kvm_sysdev);
2068         if (r)
2069                 goto out_free_4;
2070
2071         /* A kmem cache lets us meet the alignment requirements of fx_save. */
2072         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
2073                                            __alignof__(struct kvm_vcpu),
2074                                            0, NULL);
2075         if (!kvm_vcpu_cache) {
2076                 r = -ENOMEM;
2077                 goto out_free_5;
2078         }
2079
2080         kvm_chardev_ops.owner = module;
2081
2082         r = misc_register(&kvm_dev);
2083         if (r) {
2084                 printk(KERN_ERR "kvm: misc device register failed\n");
2085                 goto out_free;
2086         }
2087
2088         kvm_preempt_ops.sched_in = kvm_sched_in;
2089         kvm_preempt_ops.sched_out = kvm_sched_out;
2090
2091         return 0;
2092
2093 out_free:
2094         kmem_cache_destroy(kvm_vcpu_cache);
2095 out_free_5:
2096         sysdev_unregister(&kvm_sysdev);
2097 out_free_4:
2098         sysdev_class_unregister(&kvm_sysdev_class);
2099 out_free_3:
2100         unregister_reboot_notifier(&kvm_reboot_notifier);
2101         unregister_cpu_notifier(&kvm_cpu_notifier);
2102 out_free_2:
2103         on_each_cpu(hardware_disable, NULL, 1);
2104 out_free_1:
2105         kvm_arch_hardware_unsetup();
2106 out_free_0:
2107         __free_page(bad_page);
2108 out:
2109         kvm_arch_exit();
2110         kvm_exit_debug();
2111 out_fail:
2112         return r;
2113 }
2114 EXPORT_SYMBOL_GPL(kvm_init);
2115
2116 void kvm_exit(void)
2117 {
2118         kvm_trace_cleanup();
2119         misc_deregister(&kvm_dev);
2120         kmem_cache_destroy(kvm_vcpu_cache);
2121         sysdev_unregister(&kvm_sysdev);
2122         sysdev_class_unregister(&kvm_sysdev_class);
2123         unregister_reboot_notifier(&kvm_reboot_notifier);
2124         unregister_cpu_notifier(&kvm_cpu_notifier);
2125         on_each_cpu(hardware_disable, NULL, 1);
2126         kvm_arch_hardware_unsetup();
2127         kvm_arch_exit();
2128         kvm_exit_debug();
2129         __free_page(bad_page);
2130 }
2131 EXPORT_SYMBOL_GPL(kvm_exit);