Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[firefly-linux-kernel-4.4.55.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68
69 /* halt polling only reduces halt latency by 5-7 us, 500us is enough */
70 static unsigned int halt_poll_ns = 500000;
71 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
72
73 /* Default doubles per-vcpu halt_poll_ns. */
74 static unsigned int halt_poll_ns_grow = 2;
75 module_param(halt_poll_ns_grow, int, S_IRUGO);
76
77 /* Default resets per-vcpu halt_poll_ns . */
78 static unsigned int halt_poll_ns_shrink;
79 module_param(halt_poll_ns_shrink, int, S_IRUGO);
80
81 /*
82  * Ordering of locks:
83  *
84  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
85  */
86
87 DEFINE_SPINLOCK(kvm_lock);
88 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
89 LIST_HEAD(vm_list);
90
91 static cpumask_var_t cpus_hardware_enabled;
92 static int kvm_usage_count;
93 static atomic_t hardware_enable_failed;
94
95 struct kmem_cache *kvm_vcpu_cache;
96 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
97
98 static __read_mostly struct preempt_ops kvm_preempt_ops;
99
100 struct dentry *kvm_debugfs_dir;
101 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
102
103 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
104                            unsigned long arg);
105 #ifdef CONFIG_KVM_COMPAT
106 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
107                                   unsigned long arg);
108 #endif
109 static int hardware_enable_all(void);
110 static void hardware_disable_all(void);
111
112 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
113
114 static void kvm_release_pfn_dirty(pfn_t pfn);
115 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
116
117 __visible bool kvm_rebooting;
118 EXPORT_SYMBOL_GPL(kvm_rebooting);
119
120 static bool largepages_enabled = true;
121
122 bool kvm_is_reserved_pfn(pfn_t pfn)
123 {
124         if (pfn_valid(pfn))
125                 return PageReserved(pfn_to_page(pfn));
126
127         return true;
128 }
129
130 /*
131  * Switches to specified vcpu, until a matching vcpu_put()
132  */
133 int vcpu_load(struct kvm_vcpu *vcpu)
134 {
135         int cpu;
136
137         if (mutex_lock_killable(&vcpu->mutex))
138                 return -EINTR;
139         cpu = get_cpu();
140         preempt_notifier_register(&vcpu->preempt_notifier);
141         kvm_arch_vcpu_load(vcpu, cpu);
142         put_cpu();
143         return 0;
144 }
145
146 void vcpu_put(struct kvm_vcpu *vcpu)
147 {
148         preempt_disable();
149         kvm_arch_vcpu_put(vcpu);
150         preempt_notifier_unregister(&vcpu->preempt_notifier);
151         preempt_enable();
152         mutex_unlock(&vcpu->mutex);
153 }
154
155 static void ack_flush(void *_completed)
156 {
157 }
158
159 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
160 {
161         int i, cpu, me;
162         cpumask_var_t cpus;
163         bool called = true;
164         struct kvm_vcpu *vcpu;
165
166         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
167
168         me = get_cpu();
169         kvm_for_each_vcpu(i, vcpu, kvm) {
170                 kvm_make_request(req, vcpu);
171                 cpu = vcpu->cpu;
172
173                 /* Set ->requests bit before we read ->mode */
174                 smp_mb();
175
176                 if (cpus != NULL && cpu != -1 && cpu != me &&
177                       kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
178                         cpumask_set_cpu(cpu, cpus);
179         }
180         if (unlikely(cpus == NULL))
181                 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
182         else if (!cpumask_empty(cpus))
183                 smp_call_function_many(cpus, ack_flush, NULL, 1);
184         else
185                 called = false;
186         put_cpu();
187         free_cpumask_var(cpus);
188         return called;
189 }
190
191 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
192 void kvm_flush_remote_tlbs(struct kvm *kvm)
193 {
194         long dirty_count = kvm->tlbs_dirty;
195
196         smp_mb();
197         if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
198                 ++kvm->stat.remote_tlb_flush;
199         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
200 }
201 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
202 #endif
203
204 void kvm_reload_remote_mmus(struct kvm *kvm)
205 {
206         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
207 }
208
209 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
210 {
211         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
212 }
213
214 void kvm_make_scan_ioapic_request(struct kvm *kvm)
215 {
216         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
217 }
218
219 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
220 {
221         struct page *page;
222         int r;
223
224         mutex_init(&vcpu->mutex);
225         vcpu->cpu = -1;
226         vcpu->kvm = kvm;
227         vcpu->vcpu_id = id;
228         vcpu->pid = NULL;
229         vcpu->halt_poll_ns = 0;
230         init_waitqueue_head(&vcpu->wq);
231         kvm_async_pf_vcpu_init(vcpu);
232
233         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
234         if (!page) {
235                 r = -ENOMEM;
236                 goto fail;
237         }
238         vcpu->run = page_address(page);
239
240         kvm_vcpu_set_in_spin_loop(vcpu, false);
241         kvm_vcpu_set_dy_eligible(vcpu, false);
242         vcpu->preempted = false;
243
244         r = kvm_arch_vcpu_init(vcpu);
245         if (r < 0)
246                 goto fail_free_run;
247         return 0;
248
249 fail_free_run:
250         free_page((unsigned long)vcpu->run);
251 fail:
252         return r;
253 }
254 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
255
256 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
257 {
258         put_pid(vcpu->pid);
259         kvm_arch_vcpu_uninit(vcpu);
260         free_page((unsigned long)vcpu->run);
261 }
262 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
263
264 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
265 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
266 {
267         return container_of(mn, struct kvm, mmu_notifier);
268 }
269
270 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
271                                              struct mm_struct *mm,
272                                              unsigned long address)
273 {
274         struct kvm *kvm = mmu_notifier_to_kvm(mn);
275         int need_tlb_flush, idx;
276
277         /*
278          * When ->invalidate_page runs, the linux pte has been zapped
279          * already but the page is still allocated until
280          * ->invalidate_page returns. So if we increase the sequence
281          * here the kvm page fault will notice if the spte can't be
282          * established because the page is going to be freed. If
283          * instead the kvm page fault establishes the spte before
284          * ->invalidate_page runs, kvm_unmap_hva will release it
285          * before returning.
286          *
287          * The sequence increase only need to be seen at spin_unlock
288          * time, and not at spin_lock time.
289          *
290          * Increasing the sequence after the spin_unlock would be
291          * unsafe because the kvm page fault could then establish the
292          * pte after kvm_unmap_hva returned, without noticing the page
293          * is going to be freed.
294          */
295         idx = srcu_read_lock(&kvm->srcu);
296         spin_lock(&kvm->mmu_lock);
297
298         kvm->mmu_notifier_seq++;
299         need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
300         /* we've to flush the tlb before the pages can be freed */
301         if (need_tlb_flush)
302                 kvm_flush_remote_tlbs(kvm);
303
304         spin_unlock(&kvm->mmu_lock);
305
306         kvm_arch_mmu_notifier_invalidate_page(kvm, address);
307
308         srcu_read_unlock(&kvm->srcu, idx);
309 }
310
311 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
312                                         struct mm_struct *mm,
313                                         unsigned long address,
314                                         pte_t pte)
315 {
316         struct kvm *kvm = mmu_notifier_to_kvm(mn);
317         int idx;
318
319         idx = srcu_read_lock(&kvm->srcu);
320         spin_lock(&kvm->mmu_lock);
321         kvm->mmu_notifier_seq++;
322         kvm_set_spte_hva(kvm, address, pte);
323         spin_unlock(&kvm->mmu_lock);
324         srcu_read_unlock(&kvm->srcu, idx);
325 }
326
327 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
328                                                     struct mm_struct *mm,
329                                                     unsigned long start,
330                                                     unsigned long end)
331 {
332         struct kvm *kvm = mmu_notifier_to_kvm(mn);
333         int need_tlb_flush = 0, idx;
334
335         idx = srcu_read_lock(&kvm->srcu);
336         spin_lock(&kvm->mmu_lock);
337         /*
338          * The count increase must become visible at unlock time as no
339          * spte can be established without taking the mmu_lock and
340          * count is also read inside the mmu_lock critical section.
341          */
342         kvm->mmu_notifier_count++;
343         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
344         need_tlb_flush |= kvm->tlbs_dirty;
345         /* we've to flush the tlb before the pages can be freed */
346         if (need_tlb_flush)
347                 kvm_flush_remote_tlbs(kvm);
348
349         spin_unlock(&kvm->mmu_lock);
350         srcu_read_unlock(&kvm->srcu, idx);
351 }
352
353 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
354                                                   struct mm_struct *mm,
355                                                   unsigned long start,
356                                                   unsigned long end)
357 {
358         struct kvm *kvm = mmu_notifier_to_kvm(mn);
359
360         spin_lock(&kvm->mmu_lock);
361         /*
362          * This sequence increase will notify the kvm page fault that
363          * the page that is going to be mapped in the spte could have
364          * been freed.
365          */
366         kvm->mmu_notifier_seq++;
367         smp_wmb();
368         /*
369          * The above sequence increase must be visible before the
370          * below count decrease, which is ensured by the smp_wmb above
371          * in conjunction with the smp_rmb in mmu_notifier_retry().
372          */
373         kvm->mmu_notifier_count--;
374         spin_unlock(&kvm->mmu_lock);
375
376         BUG_ON(kvm->mmu_notifier_count < 0);
377 }
378
379 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
380                                               struct mm_struct *mm,
381                                               unsigned long start,
382                                               unsigned long end)
383 {
384         struct kvm *kvm = mmu_notifier_to_kvm(mn);
385         int young, idx;
386
387         idx = srcu_read_lock(&kvm->srcu);
388         spin_lock(&kvm->mmu_lock);
389
390         young = kvm_age_hva(kvm, start, end);
391         if (young)
392                 kvm_flush_remote_tlbs(kvm);
393
394         spin_unlock(&kvm->mmu_lock);
395         srcu_read_unlock(&kvm->srcu, idx);
396
397         return young;
398 }
399
400 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
401                                        struct mm_struct *mm,
402                                        unsigned long address)
403 {
404         struct kvm *kvm = mmu_notifier_to_kvm(mn);
405         int young, idx;
406
407         idx = srcu_read_lock(&kvm->srcu);
408         spin_lock(&kvm->mmu_lock);
409         young = kvm_test_age_hva(kvm, address);
410         spin_unlock(&kvm->mmu_lock);
411         srcu_read_unlock(&kvm->srcu, idx);
412
413         return young;
414 }
415
416 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
417                                      struct mm_struct *mm)
418 {
419         struct kvm *kvm = mmu_notifier_to_kvm(mn);
420         int idx;
421
422         idx = srcu_read_lock(&kvm->srcu);
423         kvm_arch_flush_shadow_all(kvm);
424         srcu_read_unlock(&kvm->srcu, idx);
425 }
426
427 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
428         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
429         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
430         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
431         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
432         .test_young             = kvm_mmu_notifier_test_young,
433         .change_pte             = kvm_mmu_notifier_change_pte,
434         .release                = kvm_mmu_notifier_release,
435 };
436
437 static int kvm_init_mmu_notifier(struct kvm *kvm)
438 {
439         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
440         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
441 }
442
443 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
444
445 static int kvm_init_mmu_notifier(struct kvm *kvm)
446 {
447         return 0;
448 }
449
450 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
451
452 static struct kvm_memslots *kvm_alloc_memslots(void)
453 {
454         int i;
455         struct kvm_memslots *slots;
456
457         slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
458         if (!slots)
459                 return NULL;
460
461         /*
462          * Init kvm generation close to the maximum to easily test the
463          * code of handling generation number wrap-around.
464          */
465         slots->generation = -150;
466         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
467                 slots->id_to_index[i] = slots->memslots[i].id = i;
468
469         return slots;
470 }
471
472 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
473 {
474         if (!memslot->dirty_bitmap)
475                 return;
476
477         kvfree(memslot->dirty_bitmap);
478         memslot->dirty_bitmap = NULL;
479 }
480
481 /*
482  * Free any memory in @free but not in @dont.
483  */
484 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
485                               struct kvm_memory_slot *dont)
486 {
487         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
488                 kvm_destroy_dirty_bitmap(free);
489
490         kvm_arch_free_memslot(kvm, free, dont);
491
492         free->npages = 0;
493 }
494
495 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
496 {
497         struct kvm_memory_slot *memslot;
498
499         if (!slots)
500                 return;
501
502         kvm_for_each_memslot(memslot, slots)
503                 kvm_free_memslot(kvm, memslot, NULL);
504
505         kvfree(slots);
506 }
507
508 static struct kvm *kvm_create_vm(unsigned long type)
509 {
510         int r, i;
511         struct kvm *kvm = kvm_arch_alloc_vm();
512
513         if (!kvm)
514                 return ERR_PTR(-ENOMEM);
515
516         r = kvm_arch_init_vm(kvm, type);
517         if (r)
518                 goto out_err_no_disable;
519
520         r = hardware_enable_all();
521         if (r)
522                 goto out_err_no_disable;
523
524 #ifdef CONFIG_HAVE_KVM_IRQFD
525         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
526 #endif
527
528         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
529
530         r = -ENOMEM;
531         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
532                 kvm->memslots[i] = kvm_alloc_memslots();
533                 if (!kvm->memslots[i])
534                         goto out_err_no_srcu;
535         }
536
537         if (init_srcu_struct(&kvm->srcu))
538                 goto out_err_no_srcu;
539         if (init_srcu_struct(&kvm->irq_srcu))
540                 goto out_err_no_irq_srcu;
541         for (i = 0; i < KVM_NR_BUSES; i++) {
542                 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
543                                         GFP_KERNEL);
544                 if (!kvm->buses[i])
545                         goto out_err;
546         }
547
548         spin_lock_init(&kvm->mmu_lock);
549         kvm->mm = current->mm;
550         atomic_inc(&kvm->mm->mm_count);
551         kvm_eventfd_init(kvm);
552         mutex_init(&kvm->lock);
553         mutex_init(&kvm->irq_lock);
554         mutex_init(&kvm->slots_lock);
555         atomic_set(&kvm->users_count, 1);
556         INIT_LIST_HEAD(&kvm->devices);
557
558         r = kvm_init_mmu_notifier(kvm);
559         if (r)
560                 goto out_err;
561
562         spin_lock(&kvm_lock);
563         list_add(&kvm->vm_list, &vm_list);
564         spin_unlock(&kvm_lock);
565
566         preempt_notifier_inc();
567
568         return kvm;
569
570 out_err:
571         cleanup_srcu_struct(&kvm->irq_srcu);
572 out_err_no_irq_srcu:
573         cleanup_srcu_struct(&kvm->srcu);
574 out_err_no_srcu:
575         hardware_disable_all();
576 out_err_no_disable:
577         for (i = 0; i < KVM_NR_BUSES; i++)
578                 kfree(kvm->buses[i]);
579         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
580                 kvm_free_memslots(kvm, kvm->memslots[i]);
581         kvm_arch_free_vm(kvm);
582         return ERR_PTR(r);
583 }
584
585 /*
586  * Avoid using vmalloc for a small buffer.
587  * Should not be used when the size is statically known.
588  */
589 void *kvm_kvzalloc(unsigned long size)
590 {
591         if (size > PAGE_SIZE)
592                 return vzalloc(size);
593         else
594                 return kzalloc(size, GFP_KERNEL);
595 }
596
597 static void kvm_destroy_devices(struct kvm *kvm)
598 {
599         struct list_head *node, *tmp;
600
601         list_for_each_safe(node, tmp, &kvm->devices) {
602                 struct kvm_device *dev =
603                         list_entry(node, struct kvm_device, vm_node);
604
605                 list_del(node);
606                 dev->ops->destroy(dev);
607         }
608 }
609
610 static void kvm_destroy_vm(struct kvm *kvm)
611 {
612         int i;
613         struct mm_struct *mm = kvm->mm;
614
615         kvm_arch_sync_events(kvm);
616         spin_lock(&kvm_lock);
617         list_del(&kvm->vm_list);
618         spin_unlock(&kvm_lock);
619         kvm_free_irq_routing(kvm);
620         for (i = 0; i < KVM_NR_BUSES; i++)
621                 kvm_io_bus_destroy(kvm->buses[i]);
622         kvm_coalesced_mmio_free(kvm);
623 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
624         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
625 #else
626         kvm_arch_flush_shadow_all(kvm);
627 #endif
628         kvm_arch_destroy_vm(kvm);
629         kvm_destroy_devices(kvm);
630         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
631                 kvm_free_memslots(kvm, kvm->memslots[i]);
632         cleanup_srcu_struct(&kvm->irq_srcu);
633         cleanup_srcu_struct(&kvm->srcu);
634         kvm_arch_free_vm(kvm);
635         preempt_notifier_dec();
636         hardware_disable_all();
637         mmdrop(mm);
638 }
639
640 void kvm_get_kvm(struct kvm *kvm)
641 {
642         atomic_inc(&kvm->users_count);
643 }
644 EXPORT_SYMBOL_GPL(kvm_get_kvm);
645
646 void kvm_put_kvm(struct kvm *kvm)
647 {
648         if (atomic_dec_and_test(&kvm->users_count))
649                 kvm_destroy_vm(kvm);
650 }
651 EXPORT_SYMBOL_GPL(kvm_put_kvm);
652
653
654 static int kvm_vm_release(struct inode *inode, struct file *filp)
655 {
656         struct kvm *kvm = filp->private_data;
657
658         kvm_irqfd_release(kvm);
659
660         kvm_put_kvm(kvm);
661         return 0;
662 }
663
664 /*
665  * Allocation size is twice as large as the actual dirty bitmap size.
666  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
667  */
668 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
669 {
670         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
671
672         memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
673         if (!memslot->dirty_bitmap)
674                 return -ENOMEM;
675
676         return 0;
677 }
678
679 /*
680  * Insert memslot and re-sort memslots based on their GFN,
681  * so binary search could be used to lookup GFN.
682  * Sorting algorithm takes advantage of having initially
683  * sorted array and known changed memslot position.
684  */
685 static void update_memslots(struct kvm_memslots *slots,
686                             struct kvm_memory_slot *new)
687 {
688         int id = new->id;
689         int i = slots->id_to_index[id];
690         struct kvm_memory_slot *mslots = slots->memslots;
691
692         WARN_ON(mslots[i].id != id);
693         if (!new->npages) {
694                 WARN_ON(!mslots[i].npages);
695                 if (mslots[i].npages)
696                         slots->used_slots--;
697         } else {
698                 if (!mslots[i].npages)
699                         slots->used_slots++;
700         }
701
702         while (i < KVM_MEM_SLOTS_NUM - 1 &&
703                new->base_gfn <= mslots[i + 1].base_gfn) {
704                 if (!mslots[i + 1].npages)
705                         break;
706                 mslots[i] = mslots[i + 1];
707                 slots->id_to_index[mslots[i].id] = i;
708                 i++;
709         }
710
711         /*
712          * The ">=" is needed when creating a slot with base_gfn == 0,
713          * so that it moves before all those with base_gfn == npages == 0.
714          *
715          * On the other hand, if new->npages is zero, the above loop has
716          * already left i pointing to the beginning of the empty part of
717          * mslots, and the ">=" would move the hole backwards in this
718          * case---which is wrong.  So skip the loop when deleting a slot.
719          */
720         if (new->npages) {
721                 while (i > 0 &&
722                        new->base_gfn >= mslots[i - 1].base_gfn) {
723                         mslots[i] = mslots[i - 1];
724                         slots->id_to_index[mslots[i].id] = i;
725                         i--;
726                 }
727         } else
728                 WARN_ON_ONCE(i != slots->used_slots);
729
730         mslots[i] = *new;
731         slots->id_to_index[mslots[i].id] = i;
732 }
733
734 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
735 {
736         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
737
738 #ifdef __KVM_HAVE_READONLY_MEM
739         valid_flags |= KVM_MEM_READONLY;
740 #endif
741
742         if (mem->flags & ~valid_flags)
743                 return -EINVAL;
744
745         return 0;
746 }
747
748 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
749                 int as_id, struct kvm_memslots *slots)
750 {
751         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
752
753         /*
754          * Set the low bit in the generation, which disables SPTE caching
755          * until the end of synchronize_srcu_expedited.
756          */
757         WARN_ON(old_memslots->generation & 1);
758         slots->generation = old_memslots->generation + 1;
759
760         rcu_assign_pointer(kvm->memslots[as_id], slots);
761         synchronize_srcu_expedited(&kvm->srcu);
762
763         /*
764          * Increment the new memslot generation a second time. This prevents
765          * vm exits that race with memslot updates from caching a memslot
766          * generation that will (potentially) be valid forever.
767          */
768         slots->generation++;
769
770         kvm_arch_memslots_updated(kvm, slots);
771
772         return old_memslots;
773 }
774
775 /*
776  * Allocate some memory and give it an address in the guest physical address
777  * space.
778  *
779  * Discontiguous memory is allowed, mostly for framebuffers.
780  *
781  * Must be called holding kvm->slots_lock for write.
782  */
783 int __kvm_set_memory_region(struct kvm *kvm,
784                             const struct kvm_userspace_memory_region *mem)
785 {
786         int r;
787         gfn_t base_gfn;
788         unsigned long npages;
789         struct kvm_memory_slot *slot;
790         struct kvm_memory_slot old, new;
791         struct kvm_memslots *slots = NULL, *old_memslots;
792         int as_id, id;
793         enum kvm_mr_change change;
794
795         r = check_memory_region_flags(mem);
796         if (r)
797                 goto out;
798
799         r = -EINVAL;
800         as_id = mem->slot >> 16;
801         id = (u16)mem->slot;
802
803         /* General sanity checks */
804         if (mem->memory_size & (PAGE_SIZE - 1))
805                 goto out;
806         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
807                 goto out;
808         /* We can read the guest memory with __xxx_user() later on. */
809         if ((id < KVM_USER_MEM_SLOTS) &&
810             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
811              !access_ok(VERIFY_WRITE,
812                         (void __user *)(unsigned long)mem->userspace_addr,
813                         mem->memory_size)))
814                 goto out;
815         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
816                 goto out;
817         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
818                 goto out;
819
820         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
821         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
822         npages = mem->memory_size >> PAGE_SHIFT;
823
824         if (npages > KVM_MEM_MAX_NR_PAGES)
825                 goto out;
826
827         new = old = *slot;
828
829         new.id = id;
830         new.base_gfn = base_gfn;
831         new.npages = npages;
832         new.flags = mem->flags;
833
834         if (npages) {
835                 if (!old.npages)
836                         change = KVM_MR_CREATE;
837                 else { /* Modify an existing slot. */
838                         if ((mem->userspace_addr != old.userspace_addr) ||
839                             (npages != old.npages) ||
840                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
841                                 goto out;
842
843                         if (base_gfn != old.base_gfn)
844                                 change = KVM_MR_MOVE;
845                         else if (new.flags != old.flags)
846                                 change = KVM_MR_FLAGS_ONLY;
847                         else { /* Nothing to change. */
848                                 r = 0;
849                                 goto out;
850                         }
851                 }
852         } else {
853                 if (!old.npages)
854                         goto out;
855
856                 change = KVM_MR_DELETE;
857                 new.base_gfn = 0;
858                 new.flags = 0;
859         }
860
861         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
862                 /* Check for overlaps */
863                 r = -EEXIST;
864                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
865                         if ((slot->id >= KVM_USER_MEM_SLOTS) ||
866                             (slot->id == id))
867                                 continue;
868                         if (!((base_gfn + npages <= slot->base_gfn) ||
869                               (base_gfn >= slot->base_gfn + slot->npages)))
870                                 goto out;
871                 }
872         }
873
874         /* Free page dirty bitmap if unneeded */
875         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
876                 new.dirty_bitmap = NULL;
877
878         r = -ENOMEM;
879         if (change == KVM_MR_CREATE) {
880                 new.userspace_addr = mem->userspace_addr;
881
882                 if (kvm_arch_create_memslot(kvm, &new, npages))
883                         goto out_free;
884         }
885
886         /* Allocate page dirty bitmap if needed */
887         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
888                 if (kvm_create_dirty_bitmap(&new) < 0)
889                         goto out_free;
890         }
891
892         slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
893         if (!slots)
894                 goto out_free;
895         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
896
897         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
898                 slot = id_to_memslot(slots, id);
899                 slot->flags |= KVM_MEMSLOT_INVALID;
900
901                 old_memslots = install_new_memslots(kvm, as_id, slots);
902
903                 /* slot was deleted or moved, clear iommu mapping */
904                 kvm_iommu_unmap_pages(kvm, &old);
905                 /* From this point no new shadow pages pointing to a deleted,
906                  * or moved, memslot will be created.
907                  *
908                  * validation of sp->gfn happens in:
909                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
910                  *      - kvm_is_visible_gfn (mmu_check_roots)
911                  */
912                 kvm_arch_flush_shadow_memslot(kvm, slot);
913
914                 /*
915                  * We can re-use the old_memslots from above, the only difference
916                  * from the currently installed memslots is the invalid flag.  This
917                  * will get overwritten by update_memslots anyway.
918                  */
919                 slots = old_memslots;
920         }
921
922         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
923         if (r)
924                 goto out_slots;
925
926         /* actual memory is freed via old in kvm_free_memslot below */
927         if (change == KVM_MR_DELETE) {
928                 new.dirty_bitmap = NULL;
929                 memset(&new.arch, 0, sizeof(new.arch));
930         }
931
932         update_memslots(slots, &new);
933         old_memslots = install_new_memslots(kvm, as_id, slots);
934
935         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
936
937         kvm_free_memslot(kvm, &old, &new);
938         kvfree(old_memslots);
939
940         /*
941          * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
942          * un-mapped and re-mapped if their base changes.  Since base change
943          * unmapping is handled above with slot deletion, mapping alone is
944          * needed here.  Anything else the iommu might care about for existing
945          * slots (size changes, userspace addr changes and read-only flag
946          * changes) is disallowed above, so any other attribute changes getting
947          * here can be skipped.
948          */
949         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
950                 r = kvm_iommu_map_pages(kvm, &new);
951                 return r;
952         }
953
954         return 0;
955
956 out_slots:
957         kvfree(slots);
958 out_free:
959         kvm_free_memslot(kvm, &new, &old);
960 out:
961         return r;
962 }
963 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
964
965 int kvm_set_memory_region(struct kvm *kvm,
966                           const struct kvm_userspace_memory_region *mem)
967 {
968         int r;
969
970         mutex_lock(&kvm->slots_lock);
971         r = __kvm_set_memory_region(kvm, mem);
972         mutex_unlock(&kvm->slots_lock);
973         return r;
974 }
975 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
976
977 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
978                                           struct kvm_userspace_memory_region *mem)
979 {
980         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
981                 return -EINVAL;
982
983         return kvm_set_memory_region(kvm, mem);
984 }
985
986 int kvm_get_dirty_log(struct kvm *kvm,
987                         struct kvm_dirty_log *log, int *is_dirty)
988 {
989         struct kvm_memslots *slots;
990         struct kvm_memory_slot *memslot;
991         int r, i, as_id, id;
992         unsigned long n;
993         unsigned long any = 0;
994
995         r = -EINVAL;
996         as_id = log->slot >> 16;
997         id = (u16)log->slot;
998         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
999                 goto out;
1000
1001         slots = __kvm_memslots(kvm, as_id);
1002         memslot = id_to_memslot(slots, id);
1003         r = -ENOENT;
1004         if (!memslot->dirty_bitmap)
1005                 goto out;
1006
1007         n = kvm_dirty_bitmap_bytes(memslot);
1008
1009         for (i = 0; !any && i < n/sizeof(long); ++i)
1010                 any = memslot->dirty_bitmap[i];
1011
1012         r = -EFAULT;
1013         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1014                 goto out;
1015
1016         if (any)
1017                 *is_dirty = 1;
1018
1019         r = 0;
1020 out:
1021         return r;
1022 }
1023 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1024
1025 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1026 /**
1027  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1028  *      are dirty write protect them for next write.
1029  * @kvm:        pointer to kvm instance
1030  * @log:        slot id and address to which we copy the log
1031  * @is_dirty:   flag set if any page is dirty
1032  *
1033  * We need to keep it in mind that VCPU threads can write to the bitmap
1034  * concurrently. So, to avoid losing track of dirty pages we keep the
1035  * following order:
1036  *
1037  *    1. Take a snapshot of the bit and clear it if needed.
1038  *    2. Write protect the corresponding page.
1039  *    3. Copy the snapshot to the userspace.
1040  *    4. Upon return caller flushes TLB's if needed.
1041  *
1042  * Between 2 and 4, the guest may write to the page using the remaining TLB
1043  * entry.  This is not a problem because the page is reported dirty using
1044  * the snapshot taken before and step 4 ensures that writes done after
1045  * exiting to userspace will be logged for the next call.
1046  *
1047  */
1048 int kvm_get_dirty_log_protect(struct kvm *kvm,
1049                         struct kvm_dirty_log *log, bool *is_dirty)
1050 {
1051         struct kvm_memslots *slots;
1052         struct kvm_memory_slot *memslot;
1053         int r, i, as_id, id;
1054         unsigned long n;
1055         unsigned long *dirty_bitmap;
1056         unsigned long *dirty_bitmap_buffer;
1057
1058         r = -EINVAL;
1059         as_id = log->slot >> 16;
1060         id = (u16)log->slot;
1061         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1062                 goto out;
1063
1064         slots = __kvm_memslots(kvm, as_id);
1065         memslot = id_to_memslot(slots, id);
1066
1067         dirty_bitmap = memslot->dirty_bitmap;
1068         r = -ENOENT;
1069         if (!dirty_bitmap)
1070                 goto out;
1071
1072         n = kvm_dirty_bitmap_bytes(memslot);
1073
1074         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1075         memset(dirty_bitmap_buffer, 0, n);
1076
1077         spin_lock(&kvm->mmu_lock);
1078         *is_dirty = false;
1079         for (i = 0; i < n / sizeof(long); i++) {
1080                 unsigned long mask;
1081                 gfn_t offset;
1082
1083                 if (!dirty_bitmap[i])
1084                         continue;
1085
1086                 *is_dirty = true;
1087
1088                 mask = xchg(&dirty_bitmap[i], 0);
1089                 dirty_bitmap_buffer[i] = mask;
1090
1091                 if (mask) {
1092                         offset = i * BITS_PER_LONG;
1093                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1094                                                                 offset, mask);
1095                 }
1096         }
1097
1098         spin_unlock(&kvm->mmu_lock);
1099
1100         r = -EFAULT;
1101         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1102                 goto out;
1103
1104         r = 0;
1105 out:
1106         return r;
1107 }
1108 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1109 #endif
1110
1111 bool kvm_largepages_enabled(void)
1112 {
1113         return largepages_enabled;
1114 }
1115
1116 void kvm_disable_largepages(void)
1117 {
1118         largepages_enabled = false;
1119 }
1120 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1121
1122 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1123 {
1124         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1125 }
1126 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1127
1128 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1129 {
1130         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1131 }
1132
1133 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1134 {
1135         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1136
1137         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1138               memslot->flags & KVM_MEMSLOT_INVALID)
1139                 return 0;
1140
1141         return 1;
1142 }
1143 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1144
1145 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1146 {
1147         struct vm_area_struct *vma;
1148         unsigned long addr, size;
1149
1150         size = PAGE_SIZE;
1151
1152         addr = gfn_to_hva(kvm, gfn);
1153         if (kvm_is_error_hva(addr))
1154                 return PAGE_SIZE;
1155
1156         down_read(&current->mm->mmap_sem);
1157         vma = find_vma(current->mm, addr);
1158         if (!vma)
1159                 goto out;
1160
1161         size = vma_kernel_pagesize(vma);
1162
1163 out:
1164         up_read(&current->mm->mmap_sem);
1165
1166         return size;
1167 }
1168
1169 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1170 {
1171         return slot->flags & KVM_MEM_READONLY;
1172 }
1173
1174 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1175                                        gfn_t *nr_pages, bool write)
1176 {
1177         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1178                 return KVM_HVA_ERR_BAD;
1179
1180         if (memslot_is_readonly(slot) && write)
1181                 return KVM_HVA_ERR_RO_BAD;
1182
1183         if (nr_pages)
1184                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1185
1186         return __gfn_to_hva_memslot(slot, gfn);
1187 }
1188
1189 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1190                                      gfn_t *nr_pages)
1191 {
1192         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1193 }
1194
1195 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1196                                         gfn_t gfn)
1197 {
1198         return gfn_to_hva_many(slot, gfn, NULL);
1199 }
1200 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1201
1202 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1203 {
1204         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1205 }
1206 EXPORT_SYMBOL_GPL(gfn_to_hva);
1207
1208 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1209 {
1210         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1211 }
1212 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1213
1214 /*
1215  * If writable is set to false, the hva returned by this function is only
1216  * allowed to be read.
1217  */
1218 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1219                                       gfn_t gfn, bool *writable)
1220 {
1221         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1222
1223         if (!kvm_is_error_hva(hva) && writable)
1224                 *writable = !memslot_is_readonly(slot);
1225
1226         return hva;
1227 }
1228
1229 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1230 {
1231         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1232
1233         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1234 }
1235
1236 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1237 {
1238         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1239
1240         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1241 }
1242
1243 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1244         unsigned long start, int write, struct page **page)
1245 {
1246         int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1247
1248         if (write)
1249                 flags |= FOLL_WRITE;
1250
1251         return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1252 }
1253
1254 static inline int check_user_page_hwpoison(unsigned long addr)
1255 {
1256         int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1257
1258         rc = __get_user_pages(current, current->mm, addr, 1,
1259                               flags, NULL, NULL, NULL);
1260         return rc == -EHWPOISON;
1261 }
1262
1263 /*
1264  * The atomic path to get the writable pfn which will be stored in @pfn,
1265  * true indicates success, otherwise false is returned.
1266  */
1267 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1268                             bool write_fault, bool *writable, pfn_t *pfn)
1269 {
1270         struct page *page[1];
1271         int npages;
1272
1273         if (!(async || atomic))
1274                 return false;
1275
1276         /*
1277          * Fast pin a writable pfn only if it is a write fault request
1278          * or the caller allows to map a writable pfn for a read fault
1279          * request.
1280          */
1281         if (!(write_fault || writable))
1282                 return false;
1283
1284         npages = __get_user_pages_fast(addr, 1, 1, page);
1285         if (npages == 1) {
1286                 *pfn = page_to_pfn(page[0]);
1287
1288                 if (writable)
1289                         *writable = true;
1290                 return true;
1291         }
1292
1293         return false;
1294 }
1295
1296 /*
1297  * The slow path to get the pfn of the specified host virtual address,
1298  * 1 indicates success, -errno is returned if error is detected.
1299  */
1300 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1301                            bool *writable, pfn_t *pfn)
1302 {
1303         struct page *page[1];
1304         int npages = 0;
1305
1306         might_sleep();
1307
1308         if (writable)
1309                 *writable = write_fault;
1310
1311         if (async) {
1312                 down_read(&current->mm->mmap_sem);
1313                 npages = get_user_page_nowait(current, current->mm,
1314                                               addr, write_fault, page);
1315                 up_read(&current->mm->mmap_sem);
1316         } else
1317                 npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1318                                                    write_fault, 0, page,
1319                                                    FOLL_TOUCH|FOLL_HWPOISON);
1320         if (npages != 1)
1321                 return npages;
1322
1323         /* map read fault as writable if possible */
1324         if (unlikely(!write_fault) && writable) {
1325                 struct page *wpage[1];
1326
1327                 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1328                 if (npages == 1) {
1329                         *writable = true;
1330                         put_page(page[0]);
1331                         page[0] = wpage[0];
1332                 }
1333
1334                 npages = 1;
1335         }
1336         *pfn = page_to_pfn(page[0]);
1337         return npages;
1338 }
1339
1340 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1341 {
1342         if (unlikely(!(vma->vm_flags & VM_READ)))
1343                 return false;
1344
1345         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1346                 return false;
1347
1348         return true;
1349 }
1350
1351 /*
1352  * Pin guest page in memory and return its pfn.
1353  * @addr: host virtual address which maps memory to the guest
1354  * @atomic: whether this function can sleep
1355  * @async: whether this function need to wait IO complete if the
1356  *         host page is not in the memory
1357  * @write_fault: whether we should get a writable host page
1358  * @writable: whether it allows to map a writable host page for !@write_fault
1359  *
1360  * The function will map a writable host page for these two cases:
1361  * 1): @write_fault = true
1362  * 2): @write_fault = false && @writable, @writable will tell the caller
1363  *     whether the mapping is writable.
1364  */
1365 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1366                         bool write_fault, bool *writable)
1367 {
1368         struct vm_area_struct *vma;
1369         pfn_t pfn = 0;
1370         int npages;
1371
1372         /* we can do it either atomically or asynchronously, not both */
1373         BUG_ON(atomic && async);
1374
1375         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1376                 return pfn;
1377
1378         if (atomic)
1379                 return KVM_PFN_ERR_FAULT;
1380
1381         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1382         if (npages == 1)
1383                 return pfn;
1384
1385         down_read(&current->mm->mmap_sem);
1386         if (npages == -EHWPOISON ||
1387               (!async && check_user_page_hwpoison(addr))) {
1388                 pfn = KVM_PFN_ERR_HWPOISON;
1389                 goto exit;
1390         }
1391
1392         vma = find_vma_intersection(current->mm, addr, addr + 1);
1393
1394         if (vma == NULL)
1395                 pfn = KVM_PFN_ERR_FAULT;
1396         else if ((vma->vm_flags & VM_PFNMAP)) {
1397                 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1398                         vma->vm_pgoff;
1399                 BUG_ON(!kvm_is_reserved_pfn(pfn));
1400         } else {
1401                 if (async && vma_is_valid(vma, write_fault))
1402                         *async = true;
1403                 pfn = KVM_PFN_ERR_FAULT;
1404         }
1405 exit:
1406         up_read(&current->mm->mmap_sem);
1407         return pfn;
1408 }
1409
1410 pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1411                            bool *async, bool write_fault, bool *writable)
1412 {
1413         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1414
1415         if (addr == KVM_HVA_ERR_RO_BAD)
1416                 return KVM_PFN_ERR_RO_FAULT;
1417
1418         if (kvm_is_error_hva(addr))
1419                 return KVM_PFN_NOSLOT;
1420
1421         /* Do not map writable pfn in the readonly memslot. */
1422         if (writable && memslot_is_readonly(slot)) {
1423                 *writable = false;
1424                 writable = NULL;
1425         }
1426
1427         return hva_to_pfn(addr, atomic, async, write_fault,
1428                           writable);
1429 }
1430 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1431
1432 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1433                       bool *writable)
1434 {
1435         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1436                                     write_fault, writable);
1437 }
1438 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1439
1440 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1441 {
1442         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1443 }
1444 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1445
1446 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1447 {
1448         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1449 }
1450 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1451
1452 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1453 {
1454         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1455 }
1456 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1457
1458 pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1459 {
1460         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1461 }
1462 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1463
1464 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1465 {
1466         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1467 }
1468 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1469
1470 pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1471 {
1472         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1473 }
1474 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1475
1476 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1477                             struct page **pages, int nr_pages)
1478 {
1479         unsigned long addr;
1480         gfn_t entry;
1481
1482         addr = gfn_to_hva_many(slot, gfn, &entry);
1483         if (kvm_is_error_hva(addr))
1484                 return -1;
1485
1486         if (entry < nr_pages)
1487                 return 0;
1488
1489         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1490 }
1491 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1492
1493 static struct page *kvm_pfn_to_page(pfn_t pfn)
1494 {
1495         if (is_error_noslot_pfn(pfn))
1496                 return KVM_ERR_PTR_BAD_PAGE;
1497
1498         if (kvm_is_reserved_pfn(pfn)) {
1499                 WARN_ON(1);
1500                 return KVM_ERR_PTR_BAD_PAGE;
1501         }
1502
1503         return pfn_to_page(pfn);
1504 }
1505
1506 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1507 {
1508         pfn_t pfn;
1509
1510         pfn = gfn_to_pfn(kvm, gfn);
1511
1512         return kvm_pfn_to_page(pfn);
1513 }
1514 EXPORT_SYMBOL_GPL(gfn_to_page);
1515
1516 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1517 {
1518         pfn_t pfn;
1519
1520         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1521
1522         return kvm_pfn_to_page(pfn);
1523 }
1524 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1525
1526 void kvm_release_page_clean(struct page *page)
1527 {
1528         WARN_ON(is_error_page(page));
1529
1530         kvm_release_pfn_clean(page_to_pfn(page));
1531 }
1532 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1533
1534 void kvm_release_pfn_clean(pfn_t pfn)
1535 {
1536         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1537                 put_page(pfn_to_page(pfn));
1538 }
1539 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1540
1541 void kvm_release_page_dirty(struct page *page)
1542 {
1543         WARN_ON(is_error_page(page));
1544
1545         kvm_release_pfn_dirty(page_to_pfn(page));
1546 }
1547 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1548
1549 static void kvm_release_pfn_dirty(pfn_t pfn)
1550 {
1551         kvm_set_pfn_dirty(pfn);
1552         kvm_release_pfn_clean(pfn);
1553 }
1554
1555 void kvm_set_pfn_dirty(pfn_t pfn)
1556 {
1557         if (!kvm_is_reserved_pfn(pfn)) {
1558                 struct page *page = pfn_to_page(pfn);
1559
1560                 if (!PageReserved(page))
1561                         SetPageDirty(page);
1562         }
1563 }
1564 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1565
1566 void kvm_set_pfn_accessed(pfn_t pfn)
1567 {
1568         if (!kvm_is_reserved_pfn(pfn))
1569                 mark_page_accessed(pfn_to_page(pfn));
1570 }
1571 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1572
1573 void kvm_get_pfn(pfn_t pfn)
1574 {
1575         if (!kvm_is_reserved_pfn(pfn))
1576                 get_page(pfn_to_page(pfn));
1577 }
1578 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1579
1580 static int next_segment(unsigned long len, int offset)
1581 {
1582         if (len > PAGE_SIZE - offset)
1583                 return PAGE_SIZE - offset;
1584         else
1585                 return len;
1586 }
1587
1588 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1589                                  void *data, int offset, int len)
1590 {
1591         int r;
1592         unsigned long addr;
1593
1594         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1595         if (kvm_is_error_hva(addr))
1596                 return -EFAULT;
1597         r = __copy_from_user(data, (void __user *)addr + offset, len);
1598         if (r)
1599                 return -EFAULT;
1600         return 0;
1601 }
1602
1603 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1604                         int len)
1605 {
1606         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1607
1608         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1609 }
1610 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1611
1612 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1613                              int offset, int len)
1614 {
1615         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1616
1617         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1618 }
1619 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1620
1621 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1622 {
1623         gfn_t gfn = gpa >> PAGE_SHIFT;
1624         int seg;
1625         int offset = offset_in_page(gpa);
1626         int ret;
1627
1628         while ((seg = next_segment(len, offset)) != 0) {
1629                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1630                 if (ret < 0)
1631                         return ret;
1632                 offset = 0;
1633                 len -= seg;
1634                 data += seg;
1635                 ++gfn;
1636         }
1637         return 0;
1638 }
1639 EXPORT_SYMBOL_GPL(kvm_read_guest);
1640
1641 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1642 {
1643         gfn_t gfn = gpa >> PAGE_SHIFT;
1644         int seg;
1645         int offset = offset_in_page(gpa);
1646         int ret;
1647
1648         while ((seg = next_segment(len, offset)) != 0) {
1649                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1650                 if (ret < 0)
1651                         return ret;
1652                 offset = 0;
1653                 len -= seg;
1654                 data += seg;
1655                 ++gfn;
1656         }
1657         return 0;
1658 }
1659 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1660
1661 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1662                                    void *data, int offset, unsigned long len)
1663 {
1664         int r;
1665         unsigned long addr;
1666
1667         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1668         if (kvm_is_error_hva(addr))
1669                 return -EFAULT;
1670         pagefault_disable();
1671         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1672         pagefault_enable();
1673         if (r)
1674                 return -EFAULT;
1675         return 0;
1676 }
1677
1678 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1679                           unsigned long len)
1680 {
1681         gfn_t gfn = gpa >> PAGE_SHIFT;
1682         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1683         int offset = offset_in_page(gpa);
1684
1685         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1686 }
1687 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1688
1689 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1690                                void *data, unsigned long len)
1691 {
1692         gfn_t gfn = gpa >> PAGE_SHIFT;
1693         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1694         int offset = offset_in_page(gpa);
1695
1696         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1697 }
1698 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1699
1700 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1701                                   const void *data, int offset, int len)
1702 {
1703         int r;
1704         unsigned long addr;
1705
1706         addr = gfn_to_hva_memslot(memslot, gfn);
1707         if (kvm_is_error_hva(addr))
1708                 return -EFAULT;
1709         r = __copy_to_user((void __user *)addr + offset, data, len);
1710         if (r)
1711                 return -EFAULT;
1712         mark_page_dirty_in_slot(memslot, gfn);
1713         return 0;
1714 }
1715
1716 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1717                          const void *data, int offset, int len)
1718 {
1719         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1720
1721         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1722 }
1723 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1724
1725 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1726                               const void *data, int offset, int len)
1727 {
1728         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1729
1730         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1731 }
1732 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1733
1734 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1735                     unsigned long len)
1736 {
1737         gfn_t gfn = gpa >> PAGE_SHIFT;
1738         int seg;
1739         int offset = offset_in_page(gpa);
1740         int ret;
1741
1742         while ((seg = next_segment(len, offset)) != 0) {
1743                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1744                 if (ret < 0)
1745                         return ret;
1746                 offset = 0;
1747                 len -= seg;
1748                 data += seg;
1749                 ++gfn;
1750         }
1751         return 0;
1752 }
1753 EXPORT_SYMBOL_GPL(kvm_write_guest);
1754
1755 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1756                          unsigned long len)
1757 {
1758         gfn_t gfn = gpa >> PAGE_SHIFT;
1759         int seg;
1760         int offset = offset_in_page(gpa);
1761         int ret;
1762
1763         while ((seg = next_segment(len, offset)) != 0) {
1764                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1765                 if (ret < 0)
1766                         return ret;
1767                 offset = 0;
1768                 len -= seg;
1769                 data += seg;
1770                 ++gfn;
1771         }
1772         return 0;
1773 }
1774 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1775
1776 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1777                               gpa_t gpa, unsigned long len)
1778 {
1779         struct kvm_memslots *slots = kvm_memslots(kvm);
1780         int offset = offset_in_page(gpa);
1781         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1782         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1783         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1784         gfn_t nr_pages_avail;
1785
1786         ghc->gpa = gpa;
1787         ghc->generation = slots->generation;
1788         ghc->len = len;
1789         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1790         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1791         if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1792                 ghc->hva += offset;
1793         } else {
1794                 /*
1795                  * If the requested region crosses two memslots, we still
1796                  * verify that the entire region is valid here.
1797                  */
1798                 while (start_gfn <= end_gfn) {
1799                         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1800                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1801                                                    &nr_pages_avail);
1802                         if (kvm_is_error_hva(ghc->hva))
1803                                 return -EFAULT;
1804                         start_gfn += nr_pages_avail;
1805                 }
1806                 /* Use the slow path for cross page reads and writes. */
1807                 ghc->memslot = NULL;
1808         }
1809         return 0;
1810 }
1811 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1812
1813 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1814                            void *data, unsigned long len)
1815 {
1816         struct kvm_memslots *slots = kvm_memslots(kvm);
1817         int r;
1818
1819         BUG_ON(len > ghc->len);
1820
1821         if (slots->generation != ghc->generation)
1822                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1823
1824         if (unlikely(!ghc->memslot))
1825                 return kvm_write_guest(kvm, ghc->gpa, data, len);
1826
1827         if (kvm_is_error_hva(ghc->hva))
1828                 return -EFAULT;
1829
1830         r = __copy_to_user((void __user *)ghc->hva, data, len);
1831         if (r)
1832                 return -EFAULT;
1833         mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1834
1835         return 0;
1836 }
1837 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1838
1839 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1840                            void *data, unsigned long len)
1841 {
1842         struct kvm_memslots *slots = kvm_memslots(kvm);
1843         int r;
1844
1845         BUG_ON(len > ghc->len);
1846
1847         if (slots->generation != ghc->generation)
1848                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1849
1850         if (unlikely(!ghc->memslot))
1851                 return kvm_read_guest(kvm, ghc->gpa, data, len);
1852
1853         if (kvm_is_error_hva(ghc->hva))
1854                 return -EFAULT;
1855
1856         r = __copy_from_user(data, (void __user *)ghc->hva, len);
1857         if (r)
1858                 return -EFAULT;
1859
1860         return 0;
1861 }
1862 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1863
1864 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1865 {
1866         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1867
1868         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1869 }
1870 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1871
1872 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1873 {
1874         gfn_t gfn = gpa >> PAGE_SHIFT;
1875         int seg;
1876         int offset = offset_in_page(gpa);
1877         int ret;
1878
1879         while ((seg = next_segment(len, offset)) != 0) {
1880                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1881                 if (ret < 0)
1882                         return ret;
1883                 offset = 0;
1884                 len -= seg;
1885                 ++gfn;
1886         }
1887         return 0;
1888 }
1889 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1890
1891 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
1892                                     gfn_t gfn)
1893 {
1894         if (memslot && memslot->dirty_bitmap) {
1895                 unsigned long rel_gfn = gfn - memslot->base_gfn;
1896
1897                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1898         }
1899 }
1900
1901 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1902 {
1903         struct kvm_memory_slot *memslot;
1904
1905         memslot = gfn_to_memslot(kvm, gfn);
1906         mark_page_dirty_in_slot(memslot, gfn);
1907 }
1908 EXPORT_SYMBOL_GPL(mark_page_dirty);
1909
1910 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
1911 {
1912         struct kvm_memory_slot *memslot;
1913
1914         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1915         mark_page_dirty_in_slot(memslot, gfn);
1916 }
1917 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
1918
1919 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
1920 {
1921         int old, val;
1922
1923         old = val = vcpu->halt_poll_ns;
1924         /* 10us base */
1925         if (val == 0 && halt_poll_ns_grow)
1926                 val = 10000;
1927         else
1928                 val *= halt_poll_ns_grow;
1929
1930         vcpu->halt_poll_ns = val;
1931         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
1932 }
1933
1934 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
1935 {
1936         int old, val;
1937
1938         old = val = vcpu->halt_poll_ns;
1939         if (halt_poll_ns_shrink == 0)
1940                 val = 0;
1941         else
1942                 val /= halt_poll_ns_shrink;
1943
1944         vcpu->halt_poll_ns = val;
1945         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
1946 }
1947
1948 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
1949 {
1950         if (kvm_arch_vcpu_runnable(vcpu)) {
1951                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1952                 return -EINTR;
1953         }
1954         if (kvm_cpu_has_pending_timer(vcpu))
1955                 return -EINTR;
1956         if (signal_pending(current))
1957                 return -EINTR;
1958
1959         return 0;
1960 }
1961
1962 /*
1963  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1964  */
1965 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1966 {
1967         ktime_t start, cur;
1968         DEFINE_WAIT(wait);
1969         bool waited = false;
1970         u64 block_ns;
1971
1972         start = cur = ktime_get();
1973         if (vcpu->halt_poll_ns) {
1974                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
1975
1976                 do {
1977                         /*
1978                          * This sets KVM_REQ_UNHALT if an interrupt
1979                          * arrives.
1980                          */
1981                         if (kvm_vcpu_check_block(vcpu) < 0) {
1982                                 ++vcpu->stat.halt_successful_poll;
1983                                 goto out;
1984                         }
1985                         cur = ktime_get();
1986                 } while (single_task_running() && ktime_before(cur, stop));
1987         }
1988
1989         for (;;) {
1990                 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1991
1992                 if (kvm_vcpu_check_block(vcpu) < 0)
1993                         break;
1994
1995                 waited = true;
1996                 schedule();
1997         }
1998
1999         finish_wait(&vcpu->wq, &wait);
2000         cur = ktime_get();
2001
2002 out:
2003         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2004
2005         if (halt_poll_ns) {
2006                 if (block_ns <= vcpu->halt_poll_ns)
2007                         ;
2008                 /* we had a long block, shrink polling */
2009                 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2010                         shrink_halt_poll_ns(vcpu);
2011                 /* we had a short halt and our poll time is too small */
2012                 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2013                         block_ns < halt_poll_ns)
2014                         grow_halt_poll_ns(vcpu);
2015         }
2016
2017         trace_kvm_vcpu_wakeup(block_ns, waited);
2018 }
2019 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2020
2021 #ifndef CONFIG_S390
2022 /*
2023  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2024  */
2025 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2026 {
2027         int me;
2028         int cpu = vcpu->cpu;
2029         wait_queue_head_t *wqp;
2030
2031         wqp = kvm_arch_vcpu_wq(vcpu);
2032         if (waitqueue_active(wqp)) {
2033                 wake_up_interruptible(wqp);
2034                 ++vcpu->stat.halt_wakeup;
2035         }
2036
2037         me = get_cpu();
2038         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2039                 if (kvm_arch_vcpu_should_kick(vcpu))
2040                         smp_send_reschedule(cpu);
2041         put_cpu();
2042 }
2043 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2044 #endif /* !CONFIG_S390 */
2045
2046 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2047 {
2048         struct pid *pid;
2049         struct task_struct *task = NULL;
2050         int ret = 0;
2051
2052         rcu_read_lock();
2053         pid = rcu_dereference(target->pid);
2054         if (pid)
2055                 task = get_pid_task(pid, PIDTYPE_PID);
2056         rcu_read_unlock();
2057         if (!task)
2058                 return ret;
2059         ret = yield_to(task, 1);
2060         put_task_struct(task);
2061
2062         return ret;
2063 }
2064 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2065
2066 /*
2067  * Helper that checks whether a VCPU is eligible for directed yield.
2068  * Most eligible candidate to yield is decided by following heuristics:
2069  *
2070  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2071  *  (preempted lock holder), indicated by @in_spin_loop.
2072  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2073  *
2074  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2075  *  chance last time (mostly it has become eligible now since we have probably
2076  *  yielded to lockholder in last iteration. This is done by toggling
2077  *  @dy_eligible each time a VCPU checked for eligibility.)
2078  *
2079  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2080  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2081  *  burning. Giving priority for a potential lock-holder increases lock
2082  *  progress.
2083  *
2084  *  Since algorithm is based on heuristics, accessing another VCPU data without
2085  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2086  *  and continue with next VCPU and so on.
2087  */
2088 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2089 {
2090 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2091         bool eligible;
2092
2093         eligible = !vcpu->spin_loop.in_spin_loop ||
2094                     vcpu->spin_loop.dy_eligible;
2095
2096         if (vcpu->spin_loop.in_spin_loop)
2097                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2098
2099         return eligible;
2100 #else
2101         return true;
2102 #endif
2103 }
2104
2105 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2106 {
2107         struct kvm *kvm = me->kvm;
2108         struct kvm_vcpu *vcpu;
2109         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2110         int yielded = 0;
2111         int try = 3;
2112         int pass;
2113         int i;
2114
2115         kvm_vcpu_set_in_spin_loop(me, true);
2116         /*
2117          * We boost the priority of a VCPU that is runnable but not
2118          * currently running, because it got preempted by something
2119          * else and called schedule in __vcpu_run.  Hopefully that
2120          * VCPU is holding the lock that we need and will release it.
2121          * We approximate round-robin by starting at the last boosted VCPU.
2122          */
2123         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2124                 kvm_for_each_vcpu(i, vcpu, kvm) {
2125                         if (!pass && i <= last_boosted_vcpu) {
2126                                 i = last_boosted_vcpu;
2127                                 continue;
2128                         } else if (pass && i > last_boosted_vcpu)
2129                                 break;
2130                         if (!ACCESS_ONCE(vcpu->preempted))
2131                                 continue;
2132                         if (vcpu == me)
2133                                 continue;
2134                         if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2135                                 continue;
2136                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2137                                 continue;
2138
2139                         yielded = kvm_vcpu_yield_to(vcpu);
2140                         if (yielded > 0) {
2141                                 kvm->last_boosted_vcpu = i;
2142                                 break;
2143                         } else if (yielded < 0) {
2144                                 try--;
2145                                 if (!try)
2146                                         break;
2147                         }
2148                 }
2149         }
2150         kvm_vcpu_set_in_spin_loop(me, false);
2151
2152         /* Ensure vcpu is not eligible during next spinloop */
2153         kvm_vcpu_set_dy_eligible(me, false);
2154 }
2155 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2156
2157 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2158 {
2159         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2160         struct page *page;
2161
2162         if (vmf->pgoff == 0)
2163                 page = virt_to_page(vcpu->run);
2164 #ifdef CONFIG_X86
2165         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2166                 page = virt_to_page(vcpu->arch.pio_data);
2167 #endif
2168 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2169         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2170                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2171 #endif
2172         else
2173                 return kvm_arch_vcpu_fault(vcpu, vmf);
2174         get_page(page);
2175         vmf->page = page;
2176         return 0;
2177 }
2178
2179 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2180         .fault = kvm_vcpu_fault,
2181 };
2182
2183 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2184 {
2185         vma->vm_ops = &kvm_vcpu_vm_ops;
2186         return 0;
2187 }
2188
2189 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2190 {
2191         struct kvm_vcpu *vcpu = filp->private_data;
2192
2193         kvm_put_kvm(vcpu->kvm);
2194         return 0;
2195 }
2196
2197 static struct file_operations kvm_vcpu_fops = {
2198         .release        = kvm_vcpu_release,
2199         .unlocked_ioctl = kvm_vcpu_ioctl,
2200 #ifdef CONFIG_KVM_COMPAT
2201         .compat_ioctl   = kvm_vcpu_compat_ioctl,
2202 #endif
2203         .mmap           = kvm_vcpu_mmap,
2204         .llseek         = noop_llseek,
2205 };
2206
2207 /*
2208  * Allocates an inode for the vcpu.
2209  */
2210 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2211 {
2212         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2213 }
2214
2215 /*
2216  * Creates some virtual cpus.  Good luck creating more than one.
2217  */
2218 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2219 {
2220         int r;
2221         struct kvm_vcpu *vcpu, *v;
2222
2223         if (id >= KVM_MAX_VCPUS)
2224                 return -EINVAL;
2225
2226         vcpu = kvm_arch_vcpu_create(kvm, id);
2227         if (IS_ERR(vcpu))
2228                 return PTR_ERR(vcpu);
2229
2230         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2231
2232         r = kvm_arch_vcpu_setup(vcpu);
2233         if (r)
2234                 goto vcpu_destroy;
2235
2236         mutex_lock(&kvm->lock);
2237         if (!kvm_vcpu_compatible(vcpu)) {
2238                 r = -EINVAL;
2239                 goto unlock_vcpu_destroy;
2240         }
2241         if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
2242                 r = -EINVAL;
2243                 goto unlock_vcpu_destroy;
2244         }
2245
2246         kvm_for_each_vcpu(r, v, kvm)
2247                 if (v->vcpu_id == id) {
2248                         r = -EEXIST;
2249                         goto unlock_vcpu_destroy;
2250                 }
2251
2252         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2253
2254         /* Now it's all set up, let userspace reach it */
2255         kvm_get_kvm(kvm);
2256         r = create_vcpu_fd(vcpu);
2257         if (r < 0) {
2258                 kvm_put_kvm(kvm);
2259                 goto unlock_vcpu_destroy;
2260         }
2261
2262         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2263
2264         /*
2265          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2266          * before kvm->online_vcpu's incremented value.
2267          */
2268         smp_wmb();
2269         atomic_inc(&kvm->online_vcpus);
2270
2271         mutex_unlock(&kvm->lock);
2272         kvm_arch_vcpu_postcreate(vcpu);
2273         return r;
2274
2275 unlock_vcpu_destroy:
2276         mutex_unlock(&kvm->lock);
2277 vcpu_destroy:
2278         kvm_arch_vcpu_destroy(vcpu);
2279         return r;
2280 }
2281
2282 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2283 {
2284         if (sigset) {
2285                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2286                 vcpu->sigset_active = 1;
2287                 vcpu->sigset = *sigset;
2288         } else
2289                 vcpu->sigset_active = 0;
2290         return 0;
2291 }
2292
2293 static long kvm_vcpu_ioctl(struct file *filp,
2294                            unsigned int ioctl, unsigned long arg)
2295 {
2296         struct kvm_vcpu *vcpu = filp->private_data;
2297         void __user *argp = (void __user *)arg;
2298         int r;
2299         struct kvm_fpu *fpu = NULL;
2300         struct kvm_sregs *kvm_sregs = NULL;
2301
2302         if (vcpu->kvm->mm != current->mm)
2303                 return -EIO;
2304
2305         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2306                 return -EINVAL;
2307
2308 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2309         /*
2310          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2311          * so vcpu_load() would break it.
2312          */
2313         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2314                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2315 #endif
2316
2317
2318         r = vcpu_load(vcpu);
2319         if (r)
2320                 return r;
2321         switch (ioctl) {
2322         case KVM_RUN:
2323                 r = -EINVAL;
2324                 if (arg)
2325                         goto out;
2326                 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2327                         /* The thread running this VCPU changed. */
2328                         struct pid *oldpid = vcpu->pid;
2329                         struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2330
2331                         rcu_assign_pointer(vcpu->pid, newpid);
2332                         if (oldpid)
2333                                 synchronize_rcu();
2334                         put_pid(oldpid);
2335                 }
2336                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2337                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2338                 break;
2339         case KVM_GET_REGS: {
2340                 struct kvm_regs *kvm_regs;
2341
2342                 r = -ENOMEM;
2343                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2344                 if (!kvm_regs)
2345                         goto out;
2346                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2347                 if (r)
2348                         goto out_free1;
2349                 r = -EFAULT;
2350                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2351                         goto out_free1;
2352                 r = 0;
2353 out_free1:
2354                 kfree(kvm_regs);
2355                 break;
2356         }
2357         case KVM_SET_REGS: {
2358                 struct kvm_regs *kvm_regs;
2359
2360                 r = -ENOMEM;
2361                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2362                 if (IS_ERR(kvm_regs)) {
2363                         r = PTR_ERR(kvm_regs);
2364                         goto out;
2365                 }
2366                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2367                 kfree(kvm_regs);
2368                 break;
2369         }
2370         case KVM_GET_SREGS: {
2371                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2372                 r = -ENOMEM;
2373                 if (!kvm_sregs)
2374                         goto out;
2375                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2376                 if (r)
2377                         goto out;
2378                 r = -EFAULT;
2379                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2380                         goto out;
2381                 r = 0;
2382                 break;
2383         }
2384         case KVM_SET_SREGS: {
2385                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2386                 if (IS_ERR(kvm_sregs)) {
2387                         r = PTR_ERR(kvm_sregs);
2388                         kvm_sregs = NULL;
2389                         goto out;
2390                 }
2391                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2392                 break;
2393         }
2394         case KVM_GET_MP_STATE: {
2395                 struct kvm_mp_state mp_state;
2396
2397                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2398                 if (r)
2399                         goto out;
2400                 r = -EFAULT;
2401                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2402                         goto out;
2403                 r = 0;
2404                 break;
2405         }
2406         case KVM_SET_MP_STATE: {
2407                 struct kvm_mp_state mp_state;
2408
2409                 r = -EFAULT;
2410                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2411                         goto out;
2412                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2413                 break;
2414         }
2415         case KVM_TRANSLATE: {
2416                 struct kvm_translation tr;
2417
2418                 r = -EFAULT;
2419                 if (copy_from_user(&tr, argp, sizeof(tr)))
2420                         goto out;
2421                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2422                 if (r)
2423                         goto out;
2424                 r = -EFAULT;
2425                 if (copy_to_user(argp, &tr, sizeof(tr)))
2426                         goto out;
2427                 r = 0;
2428                 break;
2429         }
2430         case KVM_SET_GUEST_DEBUG: {
2431                 struct kvm_guest_debug dbg;
2432
2433                 r = -EFAULT;
2434                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2435                         goto out;
2436                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2437                 break;
2438         }
2439         case KVM_SET_SIGNAL_MASK: {
2440                 struct kvm_signal_mask __user *sigmask_arg = argp;
2441                 struct kvm_signal_mask kvm_sigmask;
2442                 sigset_t sigset, *p;
2443
2444                 p = NULL;
2445                 if (argp) {
2446                         r = -EFAULT;
2447                         if (copy_from_user(&kvm_sigmask, argp,
2448                                            sizeof(kvm_sigmask)))
2449                                 goto out;
2450                         r = -EINVAL;
2451                         if (kvm_sigmask.len != sizeof(sigset))
2452                                 goto out;
2453                         r = -EFAULT;
2454                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2455                                            sizeof(sigset)))
2456                                 goto out;
2457                         p = &sigset;
2458                 }
2459                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2460                 break;
2461         }
2462         case KVM_GET_FPU: {
2463                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2464                 r = -ENOMEM;
2465                 if (!fpu)
2466                         goto out;
2467                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2468                 if (r)
2469                         goto out;
2470                 r = -EFAULT;
2471                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2472                         goto out;
2473                 r = 0;
2474                 break;
2475         }
2476         case KVM_SET_FPU: {
2477                 fpu = memdup_user(argp, sizeof(*fpu));
2478                 if (IS_ERR(fpu)) {
2479                         r = PTR_ERR(fpu);
2480                         fpu = NULL;
2481                         goto out;
2482                 }
2483                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2484                 break;
2485         }
2486         default:
2487                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2488         }
2489 out:
2490         vcpu_put(vcpu);
2491         kfree(fpu);
2492         kfree(kvm_sregs);
2493         return r;
2494 }
2495
2496 #ifdef CONFIG_KVM_COMPAT
2497 static long kvm_vcpu_compat_ioctl(struct file *filp,
2498                                   unsigned int ioctl, unsigned long arg)
2499 {
2500         struct kvm_vcpu *vcpu = filp->private_data;
2501         void __user *argp = compat_ptr(arg);
2502         int r;
2503
2504         if (vcpu->kvm->mm != current->mm)
2505                 return -EIO;
2506
2507         switch (ioctl) {
2508         case KVM_SET_SIGNAL_MASK: {
2509                 struct kvm_signal_mask __user *sigmask_arg = argp;
2510                 struct kvm_signal_mask kvm_sigmask;
2511                 compat_sigset_t csigset;
2512                 sigset_t sigset;
2513
2514                 if (argp) {
2515                         r = -EFAULT;
2516                         if (copy_from_user(&kvm_sigmask, argp,
2517                                            sizeof(kvm_sigmask)))
2518                                 goto out;
2519                         r = -EINVAL;
2520                         if (kvm_sigmask.len != sizeof(csigset))
2521                                 goto out;
2522                         r = -EFAULT;
2523                         if (copy_from_user(&csigset, sigmask_arg->sigset,
2524                                            sizeof(csigset)))
2525                                 goto out;
2526                         sigset_from_compat(&sigset, &csigset);
2527                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2528                 } else
2529                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2530                 break;
2531         }
2532         default:
2533                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2534         }
2535
2536 out:
2537         return r;
2538 }
2539 #endif
2540
2541 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2542                                  int (*accessor)(struct kvm_device *dev,
2543                                                  struct kvm_device_attr *attr),
2544                                  unsigned long arg)
2545 {
2546         struct kvm_device_attr attr;
2547
2548         if (!accessor)
2549                 return -EPERM;
2550
2551         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2552                 return -EFAULT;
2553
2554         return accessor(dev, &attr);
2555 }
2556
2557 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2558                              unsigned long arg)
2559 {
2560         struct kvm_device *dev = filp->private_data;
2561
2562         switch (ioctl) {
2563         case KVM_SET_DEVICE_ATTR:
2564                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2565         case KVM_GET_DEVICE_ATTR:
2566                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2567         case KVM_HAS_DEVICE_ATTR:
2568                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2569         default:
2570                 if (dev->ops->ioctl)
2571                         return dev->ops->ioctl(dev, ioctl, arg);
2572
2573                 return -ENOTTY;
2574         }
2575 }
2576
2577 static int kvm_device_release(struct inode *inode, struct file *filp)
2578 {
2579         struct kvm_device *dev = filp->private_data;
2580         struct kvm *kvm = dev->kvm;
2581
2582         kvm_put_kvm(kvm);
2583         return 0;
2584 }
2585
2586 static const struct file_operations kvm_device_fops = {
2587         .unlocked_ioctl = kvm_device_ioctl,
2588 #ifdef CONFIG_KVM_COMPAT
2589         .compat_ioctl = kvm_device_ioctl,
2590 #endif
2591         .release = kvm_device_release,
2592 };
2593
2594 struct kvm_device *kvm_device_from_filp(struct file *filp)
2595 {
2596         if (filp->f_op != &kvm_device_fops)
2597                 return NULL;
2598
2599         return filp->private_data;
2600 }
2601
2602 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2603 #ifdef CONFIG_KVM_MPIC
2604         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2605         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2606 #endif
2607
2608 #ifdef CONFIG_KVM_XICS
2609         [KVM_DEV_TYPE_XICS]             = &kvm_xics_ops,
2610 #endif
2611 };
2612
2613 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2614 {
2615         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2616                 return -ENOSPC;
2617
2618         if (kvm_device_ops_table[type] != NULL)
2619                 return -EEXIST;
2620
2621         kvm_device_ops_table[type] = ops;
2622         return 0;
2623 }
2624
2625 void kvm_unregister_device_ops(u32 type)
2626 {
2627         if (kvm_device_ops_table[type] != NULL)
2628                 kvm_device_ops_table[type] = NULL;
2629 }
2630
2631 static int kvm_ioctl_create_device(struct kvm *kvm,
2632                                    struct kvm_create_device *cd)
2633 {
2634         struct kvm_device_ops *ops = NULL;
2635         struct kvm_device *dev;
2636         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2637         int ret;
2638
2639         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2640                 return -ENODEV;
2641
2642         ops = kvm_device_ops_table[cd->type];
2643         if (ops == NULL)
2644                 return -ENODEV;
2645
2646         if (test)
2647                 return 0;
2648
2649         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2650         if (!dev)
2651                 return -ENOMEM;
2652
2653         dev->ops = ops;
2654         dev->kvm = kvm;
2655
2656         ret = ops->create(dev, cd->type);
2657         if (ret < 0) {
2658                 kfree(dev);
2659                 return ret;
2660         }
2661
2662         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2663         if (ret < 0) {
2664                 ops->destroy(dev);
2665                 return ret;
2666         }
2667
2668         list_add(&dev->vm_node, &kvm->devices);
2669         kvm_get_kvm(kvm);
2670         cd->fd = ret;
2671         return 0;
2672 }
2673
2674 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2675 {
2676         switch (arg) {
2677         case KVM_CAP_USER_MEMORY:
2678         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2679         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2680         case KVM_CAP_INTERNAL_ERROR_DATA:
2681 #ifdef CONFIG_HAVE_KVM_MSI
2682         case KVM_CAP_SIGNAL_MSI:
2683 #endif
2684 #ifdef CONFIG_HAVE_KVM_IRQFD
2685         case KVM_CAP_IRQFD:
2686         case KVM_CAP_IRQFD_RESAMPLE:
2687 #endif
2688         case KVM_CAP_CHECK_EXTENSION_VM:
2689                 return 1;
2690 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2691         case KVM_CAP_IRQ_ROUTING:
2692                 return KVM_MAX_IRQ_ROUTES;
2693 #endif
2694 #if KVM_ADDRESS_SPACE_NUM > 1
2695         case KVM_CAP_MULTI_ADDRESS_SPACE:
2696                 return KVM_ADDRESS_SPACE_NUM;
2697 #endif
2698         default:
2699                 break;
2700         }
2701         return kvm_vm_ioctl_check_extension(kvm, arg);
2702 }
2703
2704 static long kvm_vm_ioctl(struct file *filp,
2705                            unsigned int ioctl, unsigned long arg)
2706 {
2707         struct kvm *kvm = filp->private_data;
2708         void __user *argp = (void __user *)arg;
2709         int r;
2710
2711         if (kvm->mm != current->mm)
2712                 return -EIO;
2713         switch (ioctl) {
2714         case KVM_CREATE_VCPU:
2715                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2716                 break;
2717         case KVM_SET_USER_MEMORY_REGION: {
2718                 struct kvm_userspace_memory_region kvm_userspace_mem;
2719
2720                 r = -EFAULT;
2721                 if (copy_from_user(&kvm_userspace_mem, argp,
2722                                                 sizeof(kvm_userspace_mem)))
2723                         goto out;
2724
2725                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2726                 break;
2727         }
2728         case KVM_GET_DIRTY_LOG: {
2729                 struct kvm_dirty_log log;
2730
2731                 r = -EFAULT;
2732                 if (copy_from_user(&log, argp, sizeof(log)))
2733                         goto out;
2734                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2735                 break;
2736         }
2737 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2738         case KVM_REGISTER_COALESCED_MMIO: {
2739                 struct kvm_coalesced_mmio_zone zone;
2740
2741                 r = -EFAULT;
2742                 if (copy_from_user(&zone, argp, sizeof(zone)))
2743                         goto out;
2744                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2745                 break;
2746         }
2747         case KVM_UNREGISTER_COALESCED_MMIO: {
2748                 struct kvm_coalesced_mmio_zone zone;
2749
2750                 r = -EFAULT;
2751                 if (copy_from_user(&zone, argp, sizeof(zone)))
2752                         goto out;
2753                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2754                 break;
2755         }
2756 #endif
2757         case KVM_IRQFD: {
2758                 struct kvm_irqfd data;
2759
2760                 r = -EFAULT;
2761                 if (copy_from_user(&data, argp, sizeof(data)))
2762                         goto out;
2763                 r = kvm_irqfd(kvm, &data);
2764                 break;
2765         }
2766         case KVM_IOEVENTFD: {
2767                 struct kvm_ioeventfd data;
2768
2769                 r = -EFAULT;
2770                 if (copy_from_user(&data, argp, sizeof(data)))
2771                         goto out;
2772                 r = kvm_ioeventfd(kvm, &data);
2773                 break;
2774         }
2775 #ifdef CONFIG_HAVE_KVM_MSI
2776         case KVM_SIGNAL_MSI: {
2777                 struct kvm_msi msi;
2778
2779                 r = -EFAULT;
2780                 if (copy_from_user(&msi, argp, sizeof(msi)))
2781                         goto out;
2782                 r = kvm_send_userspace_msi(kvm, &msi);
2783                 break;
2784         }
2785 #endif
2786 #ifdef __KVM_HAVE_IRQ_LINE
2787         case KVM_IRQ_LINE_STATUS:
2788         case KVM_IRQ_LINE: {
2789                 struct kvm_irq_level irq_event;
2790
2791                 r = -EFAULT;
2792                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2793                         goto out;
2794
2795                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2796                                         ioctl == KVM_IRQ_LINE_STATUS);
2797                 if (r)
2798                         goto out;
2799
2800                 r = -EFAULT;
2801                 if (ioctl == KVM_IRQ_LINE_STATUS) {
2802                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2803                                 goto out;
2804                 }
2805
2806                 r = 0;
2807                 break;
2808         }
2809 #endif
2810 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2811         case KVM_SET_GSI_ROUTING: {
2812                 struct kvm_irq_routing routing;
2813                 struct kvm_irq_routing __user *urouting;
2814                 struct kvm_irq_routing_entry *entries;
2815
2816                 r = -EFAULT;
2817                 if (copy_from_user(&routing, argp, sizeof(routing)))
2818                         goto out;
2819                 r = -EINVAL;
2820                 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2821                         goto out;
2822                 if (routing.flags)
2823                         goto out;
2824                 r = -ENOMEM;
2825                 entries = vmalloc(routing.nr * sizeof(*entries));
2826                 if (!entries)
2827                         goto out;
2828                 r = -EFAULT;
2829                 urouting = argp;
2830                 if (copy_from_user(entries, urouting->entries,
2831                                    routing.nr * sizeof(*entries)))
2832                         goto out_free_irq_routing;
2833                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2834                                         routing.flags);
2835 out_free_irq_routing:
2836                 vfree(entries);
2837                 break;
2838         }
2839 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2840         case KVM_CREATE_DEVICE: {
2841                 struct kvm_create_device cd;
2842
2843                 r = -EFAULT;
2844                 if (copy_from_user(&cd, argp, sizeof(cd)))
2845                         goto out;
2846
2847                 r = kvm_ioctl_create_device(kvm, &cd);
2848                 if (r)
2849                         goto out;
2850
2851                 r = -EFAULT;
2852                 if (copy_to_user(argp, &cd, sizeof(cd)))
2853                         goto out;
2854
2855                 r = 0;
2856                 break;
2857         }
2858         case KVM_CHECK_EXTENSION:
2859                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2860                 break;
2861         default:
2862                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2863         }
2864 out:
2865         return r;
2866 }
2867
2868 #ifdef CONFIG_KVM_COMPAT
2869 struct compat_kvm_dirty_log {
2870         __u32 slot;
2871         __u32 padding1;
2872         union {
2873                 compat_uptr_t dirty_bitmap; /* one bit per page */
2874                 __u64 padding2;
2875         };
2876 };
2877
2878 static long kvm_vm_compat_ioctl(struct file *filp,
2879                            unsigned int ioctl, unsigned long arg)
2880 {
2881         struct kvm *kvm = filp->private_data;
2882         int r;
2883
2884         if (kvm->mm != current->mm)
2885                 return -EIO;
2886         switch (ioctl) {
2887         case KVM_GET_DIRTY_LOG: {
2888                 struct compat_kvm_dirty_log compat_log;
2889                 struct kvm_dirty_log log;
2890
2891                 r = -EFAULT;
2892                 if (copy_from_user(&compat_log, (void __user *)arg,
2893                                    sizeof(compat_log)))
2894                         goto out;
2895                 log.slot         = compat_log.slot;
2896                 log.padding1     = compat_log.padding1;
2897                 log.padding2     = compat_log.padding2;
2898                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2899
2900                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2901                 break;
2902         }
2903         default:
2904                 r = kvm_vm_ioctl(filp, ioctl, arg);
2905         }
2906
2907 out:
2908         return r;
2909 }
2910 #endif
2911
2912 static struct file_operations kvm_vm_fops = {
2913         .release        = kvm_vm_release,
2914         .unlocked_ioctl = kvm_vm_ioctl,
2915 #ifdef CONFIG_KVM_COMPAT
2916         .compat_ioctl   = kvm_vm_compat_ioctl,
2917 #endif
2918         .llseek         = noop_llseek,
2919 };
2920
2921 static int kvm_dev_ioctl_create_vm(unsigned long type)
2922 {
2923         int r;
2924         struct kvm *kvm;
2925
2926         kvm = kvm_create_vm(type);
2927         if (IS_ERR(kvm))
2928                 return PTR_ERR(kvm);
2929 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2930         r = kvm_coalesced_mmio_init(kvm);
2931         if (r < 0) {
2932                 kvm_put_kvm(kvm);
2933                 return r;
2934         }
2935 #endif
2936         r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2937         if (r < 0)
2938                 kvm_put_kvm(kvm);
2939
2940         return r;
2941 }
2942
2943 static long kvm_dev_ioctl(struct file *filp,
2944                           unsigned int ioctl, unsigned long arg)
2945 {
2946         long r = -EINVAL;
2947
2948         switch (ioctl) {
2949         case KVM_GET_API_VERSION:
2950                 if (arg)
2951                         goto out;
2952                 r = KVM_API_VERSION;
2953                 break;
2954         case KVM_CREATE_VM:
2955                 r = kvm_dev_ioctl_create_vm(arg);
2956                 break;
2957         case KVM_CHECK_EXTENSION:
2958                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2959                 break;
2960         case KVM_GET_VCPU_MMAP_SIZE:
2961                 if (arg)
2962                         goto out;
2963                 r = PAGE_SIZE;     /* struct kvm_run */
2964 #ifdef CONFIG_X86
2965                 r += PAGE_SIZE;    /* pio data page */
2966 #endif
2967 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2968                 r += PAGE_SIZE;    /* coalesced mmio ring page */
2969 #endif
2970                 break;
2971         case KVM_TRACE_ENABLE:
2972         case KVM_TRACE_PAUSE:
2973         case KVM_TRACE_DISABLE:
2974                 r = -EOPNOTSUPP;
2975                 break;
2976         default:
2977                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2978         }
2979 out:
2980         return r;
2981 }
2982
2983 static struct file_operations kvm_chardev_ops = {
2984         .unlocked_ioctl = kvm_dev_ioctl,
2985         .compat_ioctl   = kvm_dev_ioctl,
2986         .llseek         = noop_llseek,
2987 };
2988
2989 static struct miscdevice kvm_dev = {
2990         KVM_MINOR,
2991         "kvm",
2992         &kvm_chardev_ops,
2993 };
2994
2995 static void hardware_enable_nolock(void *junk)
2996 {
2997         int cpu = raw_smp_processor_id();
2998         int r;
2999
3000         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3001                 return;
3002
3003         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3004
3005         r = kvm_arch_hardware_enable();
3006
3007         if (r) {
3008                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3009                 atomic_inc(&hardware_enable_failed);
3010                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3011         }
3012 }
3013
3014 static void hardware_enable(void)
3015 {
3016         raw_spin_lock(&kvm_count_lock);
3017         if (kvm_usage_count)
3018                 hardware_enable_nolock(NULL);
3019         raw_spin_unlock(&kvm_count_lock);
3020 }
3021
3022 static void hardware_disable_nolock(void *junk)
3023 {
3024         int cpu = raw_smp_processor_id();
3025
3026         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3027                 return;
3028         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3029         kvm_arch_hardware_disable();
3030 }
3031
3032 static void hardware_disable(void)
3033 {
3034         raw_spin_lock(&kvm_count_lock);
3035         if (kvm_usage_count)
3036                 hardware_disable_nolock(NULL);
3037         raw_spin_unlock(&kvm_count_lock);
3038 }
3039
3040 static void hardware_disable_all_nolock(void)
3041 {
3042         BUG_ON(!kvm_usage_count);
3043
3044         kvm_usage_count--;
3045         if (!kvm_usage_count)
3046                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3047 }
3048
3049 static void hardware_disable_all(void)
3050 {
3051         raw_spin_lock(&kvm_count_lock);
3052         hardware_disable_all_nolock();
3053         raw_spin_unlock(&kvm_count_lock);
3054 }
3055
3056 static int hardware_enable_all(void)
3057 {
3058         int r = 0;
3059
3060         raw_spin_lock(&kvm_count_lock);
3061
3062         kvm_usage_count++;
3063         if (kvm_usage_count == 1) {
3064                 atomic_set(&hardware_enable_failed, 0);
3065                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3066
3067                 if (atomic_read(&hardware_enable_failed)) {
3068                         hardware_disable_all_nolock();
3069                         r = -EBUSY;
3070                 }
3071         }
3072
3073         raw_spin_unlock(&kvm_count_lock);
3074
3075         return r;
3076 }
3077
3078 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3079                            void *v)
3080 {
3081         val &= ~CPU_TASKS_FROZEN;
3082         switch (val) {
3083         case CPU_DYING:
3084                 hardware_disable();
3085                 break;
3086         case CPU_STARTING:
3087                 hardware_enable();
3088                 break;
3089         }
3090         return NOTIFY_OK;
3091 }
3092
3093 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3094                       void *v)
3095 {
3096         /*
3097          * Some (well, at least mine) BIOSes hang on reboot if
3098          * in vmx root mode.
3099          *
3100          * And Intel TXT required VMX off for all cpu when system shutdown.
3101          */
3102         pr_info("kvm: exiting hardware virtualization\n");
3103         kvm_rebooting = true;
3104         on_each_cpu(hardware_disable_nolock, NULL, 1);
3105         return NOTIFY_OK;
3106 }
3107
3108 static struct notifier_block kvm_reboot_notifier = {
3109         .notifier_call = kvm_reboot,
3110         .priority = 0,
3111 };
3112
3113 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3114 {
3115         int i;
3116
3117         for (i = 0; i < bus->dev_count; i++) {
3118                 struct kvm_io_device *pos = bus->range[i].dev;
3119
3120                 kvm_iodevice_destructor(pos);
3121         }
3122         kfree(bus);
3123 }
3124
3125 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3126                                  const struct kvm_io_range *r2)
3127 {
3128         if (r1->addr < r2->addr)
3129                 return -1;
3130         if (r1->addr + r1->len > r2->addr + r2->len)
3131                 return 1;
3132         return 0;
3133 }
3134
3135 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3136 {
3137         return kvm_io_bus_cmp(p1, p2);
3138 }
3139
3140 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3141                           gpa_t addr, int len)
3142 {
3143         bus->range[bus->dev_count++] = (struct kvm_io_range) {
3144                 .addr = addr,
3145                 .len = len,
3146                 .dev = dev,
3147         };
3148
3149         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3150                 kvm_io_bus_sort_cmp, NULL);
3151
3152         return 0;
3153 }
3154
3155 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3156                              gpa_t addr, int len)
3157 {
3158         struct kvm_io_range *range, key;
3159         int off;
3160
3161         key = (struct kvm_io_range) {
3162                 .addr = addr,
3163                 .len = len,
3164         };
3165
3166         range = bsearch(&key, bus->range, bus->dev_count,
3167                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3168         if (range == NULL)
3169                 return -ENOENT;
3170
3171         off = range - bus->range;
3172
3173         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3174                 off--;
3175
3176         return off;
3177 }
3178
3179 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3180                               struct kvm_io_range *range, const void *val)
3181 {
3182         int idx;
3183
3184         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3185         if (idx < 0)
3186                 return -EOPNOTSUPP;
3187
3188         while (idx < bus->dev_count &&
3189                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3190                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3191                                         range->len, val))
3192                         return idx;
3193                 idx++;
3194         }
3195
3196         return -EOPNOTSUPP;
3197 }
3198
3199 /* kvm_io_bus_write - called under kvm->slots_lock */
3200 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3201                      int len, const void *val)
3202 {
3203         struct kvm_io_bus *bus;
3204         struct kvm_io_range range;
3205         int r;
3206
3207         range = (struct kvm_io_range) {
3208                 .addr = addr,
3209                 .len = len,
3210         };
3211
3212         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3213         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3214         return r < 0 ? r : 0;
3215 }
3216
3217 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3218 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3219                             gpa_t addr, int len, const void *val, long cookie)
3220 {
3221         struct kvm_io_bus *bus;
3222         struct kvm_io_range range;
3223
3224         range = (struct kvm_io_range) {
3225                 .addr = addr,
3226                 .len = len,
3227         };
3228
3229         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3230
3231         /* First try the device referenced by cookie. */
3232         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3233             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3234                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3235                                         val))
3236                         return cookie;
3237
3238         /*
3239          * cookie contained garbage; fall back to search and return the
3240          * correct cookie value.
3241          */
3242         return __kvm_io_bus_write(vcpu, bus, &range, val);
3243 }
3244
3245 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3246                              struct kvm_io_range *range, void *val)
3247 {
3248         int idx;
3249
3250         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3251         if (idx < 0)
3252                 return -EOPNOTSUPP;
3253
3254         while (idx < bus->dev_count &&
3255                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3256                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3257                                        range->len, val))
3258                         return idx;
3259                 idx++;
3260         }
3261
3262         return -EOPNOTSUPP;
3263 }
3264 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3265
3266 /* kvm_io_bus_read - called under kvm->slots_lock */
3267 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3268                     int len, void *val)
3269 {
3270         struct kvm_io_bus *bus;
3271         struct kvm_io_range range;
3272         int r;
3273
3274         range = (struct kvm_io_range) {
3275                 .addr = addr,
3276                 .len = len,
3277         };
3278
3279         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3280         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3281         return r < 0 ? r : 0;
3282 }
3283
3284
3285 /* Caller must hold slots_lock. */
3286 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3287                             int len, struct kvm_io_device *dev)
3288 {
3289         struct kvm_io_bus *new_bus, *bus;
3290
3291         bus = kvm->buses[bus_idx];
3292         /* exclude ioeventfd which is limited by maximum fd */
3293         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3294                 return -ENOSPC;
3295
3296         new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3297                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3298         if (!new_bus)
3299                 return -ENOMEM;
3300         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3301                sizeof(struct kvm_io_range)));
3302         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3303         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3304         synchronize_srcu_expedited(&kvm->srcu);
3305         kfree(bus);
3306
3307         return 0;
3308 }
3309
3310 /* Caller must hold slots_lock. */
3311 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3312                               struct kvm_io_device *dev)
3313 {
3314         int i, r;
3315         struct kvm_io_bus *new_bus, *bus;
3316
3317         bus = kvm->buses[bus_idx];
3318         r = -ENOENT;
3319         for (i = 0; i < bus->dev_count; i++)
3320                 if (bus->range[i].dev == dev) {
3321                         r = 0;
3322                         break;
3323                 }
3324
3325         if (r)
3326                 return r;
3327
3328         new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3329                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3330         if (!new_bus)
3331                 return -ENOMEM;
3332
3333         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3334         new_bus->dev_count--;
3335         memcpy(new_bus->range + i, bus->range + i + 1,
3336                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3337
3338         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3339         synchronize_srcu_expedited(&kvm->srcu);
3340         kfree(bus);
3341         return r;
3342 }
3343
3344 static struct notifier_block kvm_cpu_notifier = {
3345         .notifier_call = kvm_cpu_hotplug,
3346 };
3347
3348 static int vm_stat_get(void *_offset, u64 *val)
3349 {
3350         unsigned offset = (long)_offset;
3351         struct kvm *kvm;
3352
3353         *val = 0;
3354         spin_lock(&kvm_lock);
3355         list_for_each_entry(kvm, &vm_list, vm_list)
3356                 *val += *(u32 *)((void *)kvm + offset);
3357         spin_unlock(&kvm_lock);
3358         return 0;
3359 }
3360
3361 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3362
3363 static int vcpu_stat_get(void *_offset, u64 *val)
3364 {
3365         unsigned offset = (long)_offset;
3366         struct kvm *kvm;
3367         struct kvm_vcpu *vcpu;
3368         int i;
3369
3370         *val = 0;
3371         spin_lock(&kvm_lock);
3372         list_for_each_entry(kvm, &vm_list, vm_list)
3373                 kvm_for_each_vcpu(i, vcpu, kvm)
3374                         *val += *(u32 *)((void *)vcpu + offset);
3375
3376         spin_unlock(&kvm_lock);
3377         return 0;
3378 }
3379
3380 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3381
3382 static const struct file_operations *stat_fops[] = {
3383         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3384         [KVM_STAT_VM]   = &vm_stat_fops,
3385 };
3386
3387 static int kvm_init_debug(void)
3388 {
3389         int r = -EEXIST;
3390         struct kvm_stats_debugfs_item *p;
3391
3392         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3393         if (kvm_debugfs_dir == NULL)
3394                 goto out;
3395
3396         for (p = debugfs_entries; p->name; ++p) {
3397                 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3398                                                 (void *)(long)p->offset,
3399                                                 stat_fops[p->kind]);
3400                 if (p->dentry == NULL)
3401                         goto out_dir;
3402         }
3403
3404         return 0;
3405
3406 out_dir:
3407         debugfs_remove_recursive(kvm_debugfs_dir);
3408 out:
3409         return r;
3410 }
3411
3412 static void kvm_exit_debug(void)
3413 {
3414         struct kvm_stats_debugfs_item *p;
3415
3416         for (p = debugfs_entries; p->name; ++p)
3417                 debugfs_remove(p->dentry);
3418         debugfs_remove(kvm_debugfs_dir);
3419 }
3420
3421 static int kvm_suspend(void)
3422 {
3423         if (kvm_usage_count)
3424                 hardware_disable_nolock(NULL);
3425         return 0;
3426 }
3427
3428 static void kvm_resume(void)
3429 {
3430         if (kvm_usage_count) {
3431                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3432                 hardware_enable_nolock(NULL);
3433         }
3434 }
3435
3436 static struct syscore_ops kvm_syscore_ops = {
3437         .suspend = kvm_suspend,
3438         .resume = kvm_resume,
3439 };
3440
3441 static inline
3442 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3443 {
3444         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3445 }
3446
3447 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3448 {
3449         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3450
3451         if (vcpu->preempted)
3452                 vcpu->preempted = false;
3453
3454         kvm_arch_sched_in(vcpu, cpu);
3455
3456         kvm_arch_vcpu_load(vcpu, cpu);
3457 }
3458
3459 static void kvm_sched_out(struct preempt_notifier *pn,
3460                           struct task_struct *next)
3461 {
3462         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3463
3464         if (current->state == TASK_RUNNING)
3465                 vcpu->preempted = true;
3466         kvm_arch_vcpu_put(vcpu);
3467 }
3468
3469 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3470                   struct module *module)
3471 {
3472         int r;
3473         int cpu;
3474
3475         r = kvm_arch_init(opaque);
3476         if (r)
3477                 goto out_fail;
3478
3479         /*
3480          * kvm_arch_init makes sure there's at most one caller
3481          * for architectures that support multiple implementations,
3482          * like intel and amd on x86.
3483          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3484          * conflicts in case kvm is already setup for another implementation.
3485          */
3486         r = kvm_irqfd_init();
3487         if (r)
3488                 goto out_irqfd;
3489
3490         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3491                 r = -ENOMEM;
3492                 goto out_free_0;
3493         }
3494
3495         r = kvm_arch_hardware_setup();
3496         if (r < 0)
3497                 goto out_free_0a;
3498
3499         for_each_online_cpu(cpu) {
3500                 smp_call_function_single(cpu,
3501                                 kvm_arch_check_processor_compat,
3502                                 &r, 1);
3503                 if (r < 0)
3504                         goto out_free_1;
3505         }
3506
3507         r = register_cpu_notifier(&kvm_cpu_notifier);
3508         if (r)
3509                 goto out_free_2;
3510         register_reboot_notifier(&kvm_reboot_notifier);
3511
3512         /* A kmem cache lets us meet the alignment requirements of fx_save. */
3513         if (!vcpu_align)
3514                 vcpu_align = __alignof__(struct kvm_vcpu);
3515         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3516                                            0, NULL);
3517         if (!kvm_vcpu_cache) {
3518                 r = -ENOMEM;
3519                 goto out_free_3;
3520         }
3521
3522         r = kvm_async_pf_init();
3523         if (r)
3524                 goto out_free;
3525
3526         kvm_chardev_ops.owner = module;
3527         kvm_vm_fops.owner = module;
3528         kvm_vcpu_fops.owner = module;
3529
3530         r = misc_register(&kvm_dev);
3531         if (r) {
3532                 pr_err("kvm: misc device register failed\n");
3533                 goto out_unreg;
3534         }
3535
3536         register_syscore_ops(&kvm_syscore_ops);
3537
3538         kvm_preempt_ops.sched_in = kvm_sched_in;
3539         kvm_preempt_ops.sched_out = kvm_sched_out;
3540
3541         r = kvm_init_debug();
3542         if (r) {
3543                 pr_err("kvm: create debugfs files failed\n");
3544                 goto out_undebugfs;
3545         }
3546
3547         r = kvm_vfio_ops_init();
3548         WARN_ON(r);
3549
3550         return 0;
3551
3552 out_undebugfs:
3553         unregister_syscore_ops(&kvm_syscore_ops);
3554         misc_deregister(&kvm_dev);
3555 out_unreg:
3556         kvm_async_pf_deinit();
3557 out_free:
3558         kmem_cache_destroy(kvm_vcpu_cache);
3559 out_free_3:
3560         unregister_reboot_notifier(&kvm_reboot_notifier);
3561         unregister_cpu_notifier(&kvm_cpu_notifier);
3562 out_free_2:
3563 out_free_1:
3564         kvm_arch_hardware_unsetup();
3565 out_free_0a:
3566         free_cpumask_var(cpus_hardware_enabled);
3567 out_free_0:
3568         kvm_irqfd_exit();
3569 out_irqfd:
3570         kvm_arch_exit();
3571 out_fail:
3572         return r;
3573 }
3574 EXPORT_SYMBOL_GPL(kvm_init);
3575
3576 void kvm_exit(void)
3577 {
3578         kvm_exit_debug();
3579         misc_deregister(&kvm_dev);
3580         kmem_cache_destroy(kvm_vcpu_cache);
3581         kvm_async_pf_deinit();
3582         unregister_syscore_ops(&kvm_syscore_ops);
3583         unregister_reboot_notifier(&kvm_reboot_notifier);
3584         unregister_cpu_notifier(&kvm_cpu_notifier);
3585         on_each_cpu(hardware_disable_nolock, NULL, 1);
3586         kvm_arch_hardware_unsetup();
3587         kvm_arch_exit();
3588         kvm_irqfd_exit();
3589         free_cpumask_var(cpus_hardware_enabled);
3590         kvm_vfio_ops_exit();
3591 }
3592 EXPORT_SYMBOL_GPL(kvm_exit);