Merge tag 'kvm-arm-for-4.1' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm...
[firefly-linux-kernel-4.4.55.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68
69 static unsigned int halt_poll_ns;
70 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
71
72 /*
73  * Ordering of locks:
74  *
75  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
76  */
77
78 DEFINE_SPINLOCK(kvm_lock);
79 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
80 LIST_HEAD(vm_list);
81
82 static cpumask_var_t cpus_hardware_enabled;
83 static int kvm_usage_count;
84 static atomic_t hardware_enable_failed;
85
86 struct kmem_cache *kvm_vcpu_cache;
87 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
88
89 static __read_mostly struct preempt_ops kvm_preempt_ops;
90
91 struct dentry *kvm_debugfs_dir;
92
93 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
94                            unsigned long arg);
95 #ifdef CONFIG_KVM_COMPAT
96 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
97                                   unsigned long arg);
98 #endif
99 static int hardware_enable_all(void);
100 static void hardware_disable_all(void);
101
102 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
103
104 static void kvm_release_pfn_dirty(pfn_t pfn);
105 static void mark_page_dirty_in_slot(struct kvm *kvm,
106                                     struct kvm_memory_slot *memslot, gfn_t gfn);
107
108 __visible bool kvm_rebooting;
109 EXPORT_SYMBOL_GPL(kvm_rebooting);
110
111 static bool largepages_enabled = true;
112
113 bool kvm_is_reserved_pfn(pfn_t pfn)
114 {
115         if (pfn_valid(pfn))
116                 return PageReserved(pfn_to_page(pfn));
117
118         return true;
119 }
120
121 /*
122  * Switches to specified vcpu, until a matching vcpu_put()
123  */
124 int vcpu_load(struct kvm_vcpu *vcpu)
125 {
126         int cpu;
127
128         if (mutex_lock_killable(&vcpu->mutex))
129                 return -EINTR;
130         cpu = get_cpu();
131         preempt_notifier_register(&vcpu->preempt_notifier);
132         kvm_arch_vcpu_load(vcpu, cpu);
133         put_cpu();
134         return 0;
135 }
136
137 void vcpu_put(struct kvm_vcpu *vcpu)
138 {
139         preempt_disable();
140         kvm_arch_vcpu_put(vcpu);
141         preempt_notifier_unregister(&vcpu->preempt_notifier);
142         preempt_enable();
143         mutex_unlock(&vcpu->mutex);
144 }
145
146 static void ack_flush(void *_completed)
147 {
148 }
149
150 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
151 {
152         int i, cpu, me;
153         cpumask_var_t cpus;
154         bool called = true;
155         struct kvm_vcpu *vcpu;
156
157         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
158
159         me = get_cpu();
160         kvm_for_each_vcpu(i, vcpu, kvm) {
161                 kvm_make_request(req, vcpu);
162                 cpu = vcpu->cpu;
163
164                 /* Set ->requests bit before we read ->mode */
165                 smp_mb();
166
167                 if (cpus != NULL && cpu != -1 && cpu != me &&
168                       kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
169                         cpumask_set_cpu(cpu, cpus);
170         }
171         if (unlikely(cpus == NULL))
172                 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
173         else if (!cpumask_empty(cpus))
174                 smp_call_function_many(cpus, ack_flush, NULL, 1);
175         else
176                 called = false;
177         put_cpu();
178         free_cpumask_var(cpus);
179         return called;
180 }
181
182 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
183 void kvm_flush_remote_tlbs(struct kvm *kvm)
184 {
185         long dirty_count = kvm->tlbs_dirty;
186
187         smp_mb();
188         if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
189                 ++kvm->stat.remote_tlb_flush;
190         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
191 }
192 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
193 #endif
194
195 void kvm_reload_remote_mmus(struct kvm *kvm)
196 {
197         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
198 }
199
200 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
201 {
202         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
203 }
204
205 void kvm_make_scan_ioapic_request(struct kvm *kvm)
206 {
207         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
208 }
209
210 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
211 {
212         struct page *page;
213         int r;
214
215         mutex_init(&vcpu->mutex);
216         vcpu->cpu = -1;
217         vcpu->kvm = kvm;
218         vcpu->vcpu_id = id;
219         vcpu->pid = NULL;
220         init_waitqueue_head(&vcpu->wq);
221         kvm_async_pf_vcpu_init(vcpu);
222
223         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
224         if (!page) {
225                 r = -ENOMEM;
226                 goto fail;
227         }
228         vcpu->run = page_address(page);
229
230         kvm_vcpu_set_in_spin_loop(vcpu, false);
231         kvm_vcpu_set_dy_eligible(vcpu, false);
232         vcpu->preempted = false;
233
234         r = kvm_arch_vcpu_init(vcpu);
235         if (r < 0)
236                 goto fail_free_run;
237         return 0;
238
239 fail_free_run:
240         free_page((unsigned long)vcpu->run);
241 fail:
242         return r;
243 }
244 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
245
246 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
247 {
248         put_pid(vcpu->pid);
249         kvm_arch_vcpu_uninit(vcpu);
250         free_page((unsigned long)vcpu->run);
251 }
252 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
253
254 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
255 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
256 {
257         return container_of(mn, struct kvm, mmu_notifier);
258 }
259
260 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
261                                              struct mm_struct *mm,
262                                              unsigned long address)
263 {
264         struct kvm *kvm = mmu_notifier_to_kvm(mn);
265         int need_tlb_flush, idx;
266
267         /*
268          * When ->invalidate_page runs, the linux pte has been zapped
269          * already but the page is still allocated until
270          * ->invalidate_page returns. So if we increase the sequence
271          * here the kvm page fault will notice if the spte can't be
272          * established because the page is going to be freed. If
273          * instead the kvm page fault establishes the spte before
274          * ->invalidate_page runs, kvm_unmap_hva will release it
275          * before returning.
276          *
277          * The sequence increase only need to be seen at spin_unlock
278          * time, and not at spin_lock time.
279          *
280          * Increasing the sequence after the spin_unlock would be
281          * unsafe because the kvm page fault could then establish the
282          * pte after kvm_unmap_hva returned, without noticing the page
283          * is going to be freed.
284          */
285         idx = srcu_read_lock(&kvm->srcu);
286         spin_lock(&kvm->mmu_lock);
287
288         kvm->mmu_notifier_seq++;
289         need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
290         /* we've to flush the tlb before the pages can be freed */
291         if (need_tlb_flush)
292                 kvm_flush_remote_tlbs(kvm);
293
294         spin_unlock(&kvm->mmu_lock);
295
296         kvm_arch_mmu_notifier_invalidate_page(kvm, address);
297
298         srcu_read_unlock(&kvm->srcu, idx);
299 }
300
301 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
302                                         struct mm_struct *mm,
303                                         unsigned long address,
304                                         pte_t pte)
305 {
306         struct kvm *kvm = mmu_notifier_to_kvm(mn);
307         int idx;
308
309         idx = srcu_read_lock(&kvm->srcu);
310         spin_lock(&kvm->mmu_lock);
311         kvm->mmu_notifier_seq++;
312         kvm_set_spte_hva(kvm, address, pte);
313         spin_unlock(&kvm->mmu_lock);
314         srcu_read_unlock(&kvm->srcu, idx);
315 }
316
317 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
318                                                     struct mm_struct *mm,
319                                                     unsigned long start,
320                                                     unsigned long end)
321 {
322         struct kvm *kvm = mmu_notifier_to_kvm(mn);
323         int need_tlb_flush = 0, idx;
324
325         idx = srcu_read_lock(&kvm->srcu);
326         spin_lock(&kvm->mmu_lock);
327         /*
328          * The count increase must become visible at unlock time as no
329          * spte can be established without taking the mmu_lock and
330          * count is also read inside the mmu_lock critical section.
331          */
332         kvm->mmu_notifier_count++;
333         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
334         need_tlb_flush |= kvm->tlbs_dirty;
335         /* we've to flush the tlb before the pages can be freed */
336         if (need_tlb_flush)
337                 kvm_flush_remote_tlbs(kvm);
338
339         spin_unlock(&kvm->mmu_lock);
340         srcu_read_unlock(&kvm->srcu, idx);
341 }
342
343 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
344                                                   struct mm_struct *mm,
345                                                   unsigned long start,
346                                                   unsigned long end)
347 {
348         struct kvm *kvm = mmu_notifier_to_kvm(mn);
349
350         spin_lock(&kvm->mmu_lock);
351         /*
352          * This sequence increase will notify the kvm page fault that
353          * the page that is going to be mapped in the spte could have
354          * been freed.
355          */
356         kvm->mmu_notifier_seq++;
357         smp_wmb();
358         /*
359          * The above sequence increase must be visible before the
360          * below count decrease, which is ensured by the smp_wmb above
361          * in conjunction with the smp_rmb in mmu_notifier_retry().
362          */
363         kvm->mmu_notifier_count--;
364         spin_unlock(&kvm->mmu_lock);
365
366         BUG_ON(kvm->mmu_notifier_count < 0);
367 }
368
369 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
370                                               struct mm_struct *mm,
371                                               unsigned long start,
372                                               unsigned long end)
373 {
374         struct kvm *kvm = mmu_notifier_to_kvm(mn);
375         int young, idx;
376
377         idx = srcu_read_lock(&kvm->srcu);
378         spin_lock(&kvm->mmu_lock);
379
380         young = kvm_age_hva(kvm, start, end);
381         if (young)
382                 kvm_flush_remote_tlbs(kvm);
383
384         spin_unlock(&kvm->mmu_lock);
385         srcu_read_unlock(&kvm->srcu, idx);
386
387         return young;
388 }
389
390 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
391                                        struct mm_struct *mm,
392                                        unsigned long address)
393 {
394         struct kvm *kvm = mmu_notifier_to_kvm(mn);
395         int young, idx;
396
397         idx = srcu_read_lock(&kvm->srcu);
398         spin_lock(&kvm->mmu_lock);
399         young = kvm_test_age_hva(kvm, address);
400         spin_unlock(&kvm->mmu_lock);
401         srcu_read_unlock(&kvm->srcu, idx);
402
403         return young;
404 }
405
406 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
407                                      struct mm_struct *mm)
408 {
409         struct kvm *kvm = mmu_notifier_to_kvm(mn);
410         int idx;
411
412         idx = srcu_read_lock(&kvm->srcu);
413         kvm_arch_flush_shadow_all(kvm);
414         srcu_read_unlock(&kvm->srcu, idx);
415 }
416
417 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
418         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
419         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
420         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
421         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
422         .test_young             = kvm_mmu_notifier_test_young,
423         .change_pte             = kvm_mmu_notifier_change_pte,
424         .release                = kvm_mmu_notifier_release,
425 };
426
427 static int kvm_init_mmu_notifier(struct kvm *kvm)
428 {
429         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
430         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
431 }
432
433 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
434
435 static int kvm_init_mmu_notifier(struct kvm *kvm)
436 {
437         return 0;
438 }
439
440 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
441
442 static void kvm_init_memslots_id(struct kvm *kvm)
443 {
444         int i;
445         struct kvm_memslots *slots = kvm->memslots;
446
447         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
448                 slots->id_to_index[i] = slots->memslots[i].id = i;
449 }
450
451 static struct kvm *kvm_create_vm(unsigned long type)
452 {
453         int r, i;
454         struct kvm *kvm = kvm_arch_alloc_vm();
455
456         if (!kvm)
457                 return ERR_PTR(-ENOMEM);
458
459         r = kvm_arch_init_vm(kvm, type);
460         if (r)
461                 goto out_err_no_disable;
462
463         r = hardware_enable_all();
464         if (r)
465                 goto out_err_no_disable;
466
467 #ifdef CONFIG_HAVE_KVM_IRQFD
468         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
469 #endif
470
471         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
472
473         r = -ENOMEM;
474         kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
475         if (!kvm->memslots)
476                 goto out_err_no_srcu;
477
478         /*
479          * Init kvm generation close to the maximum to easily test the
480          * code of handling generation number wrap-around.
481          */
482         kvm->memslots->generation = -150;
483
484         kvm_init_memslots_id(kvm);
485         if (init_srcu_struct(&kvm->srcu))
486                 goto out_err_no_srcu;
487         if (init_srcu_struct(&kvm->irq_srcu))
488                 goto out_err_no_irq_srcu;
489         for (i = 0; i < KVM_NR_BUSES; i++) {
490                 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
491                                         GFP_KERNEL);
492                 if (!kvm->buses[i])
493                         goto out_err;
494         }
495
496         spin_lock_init(&kvm->mmu_lock);
497         kvm->mm = current->mm;
498         atomic_inc(&kvm->mm->mm_count);
499         kvm_eventfd_init(kvm);
500         mutex_init(&kvm->lock);
501         mutex_init(&kvm->irq_lock);
502         mutex_init(&kvm->slots_lock);
503         atomic_set(&kvm->users_count, 1);
504         INIT_LIST_HEAD(&kvm->devices);
505
506         r = kvm_init_mmu_notifier(kvm);
507         if (r)
508                 goto out_err;
509
510         spin_lock(&kvm_lock);
511         list_add(&kvm->vm_list, &vm_list);
512         spin_unlock(&kvm_lock);
513
514         return kvm;
515
516 out_err:
517         cleanup_srcu_struct(&kvm->irq_srcu);
518 out_err_no_irq_srcu:
519         cleanup_srcu_struct(&kvm->srcu);
520 out_err_no_srcu:
521         hardware_disable_all();
522 out_err_no_disable:
523         for (i = 0; i < KVM_NR_BUSES; i++)
524                 kfree(kvm->buses[i]);
525         kfree(kvm->memslots);
526         kvm_arch_free_vm(kvm);
527         return ERR_PTR(r);
528 }
529
530 /*
531  * Avoid using vmalloc for a small buffer.
532  * Should not be used when the size is statically known.
533  */
534 void *kvm_kvzalloc(unsigned long size)
535 {
536         if (size > PAGE_SIZE)
537                 return vzalloc(size);
538         else
539                 return kzalloc(size, GFP_KERNEL);
540 }
541
542 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
543 {
544         if (!memslot->dirty_bitmap)
545                 return;
546
547         kvfree(memslot->dirty_bitmap);
548         memslot->dirty_bitmap = NULL;
549 }
550
551 /*
552  * Free any memory in @free but not in @dont.
553  */
554 static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free,
555                                   struct kvm_memory_slot *dont)
556 {
557         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
558                 kvm_destroy_dirty_bitmap(free);
559
560         kvm_arch_free_memslot(kvm, free, dont);
561
562         free->npages = 0;
563 }
564
565 static void kvm_free_physmem(struct kvm *kvm)
566 {
567         struct kvm_memslots *slots = kvm->memslots;
568         struct kvm_memory_slot *memslot;
569
570         kvm_for_each_memslot(memslot, slots)
571                 kvm_free_physmem_slot(kvm, memslot, NULL);
572
573         kfree(kvm->memslots);
574 }
575
576 static void kvm_destroy_devices(struct kvm *kvm)
577 {
578         struct list_head *node, *tmp;
579
580         list_for_each_safe(node, tmp, &kvm->devices) {
581                 struct kvm_device *dev =
582                         list_entry(node, struct kvm_device, vm_node);
583
584                 list_del(node);
585                 dev->ops->destroy(dev);
586         }
587 }
588
589 static void kvm_destroy_vm(struct kvm *kvm)
590 {
591         int i;
592         struct mm_struct *mm = kvm->mm;
593
594         kvm_arch_sync_events(kvm);
595         spin_lock(&kvm_lock);
596         list_del(&kvm->vm_list);
597         spin_unlock(&kvm_lock);
598         kvm_free_irq_routing(kvm);
599         for (i = 0; i < KVM_NR_BUSES; i++)
600                 kvm_io_bus_destroy(kvm->buses[i]);
601         kvm_coalesced_mmio_free(kvm);
602 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
603         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
604 #else
605         kvm_arch_flush_shadow_all(kvm);
606 #endif
607         kvm_arch_destroy_vm(kvm);
608         kvm_destroy_devices(kvm);
609         kvm_free_physmem(kvm);
610         cleanup_srcu_struct(&kvm->irq_srcu);
611         cleanup_srcu_struct(&kvm->srcu);
612         kvm_arch_free_vm(kvm);
613         hardware_disable_all();
614         mmdrop(mm);
615 }
616
617 void kvm_get_kvm(struct kvm *kvm)
618 {
619         atomic_inc(&kvm->users_count);
620 }
621 EXPORT_SYMBOL_GPL(kvm_get_kvm);
622
623 void kvm_put_kvm(struct kvm *kvm)
624 {
625         if (atomic_dec_and_test(&kvm->users_count))
626                 kvm_destroy_vm(kvm);
627 }
628 EXPORT_SYMBOL_GPL(kvm_put_kvm);
629
630
631 static int kvm_vm_release(struct inode *inode, struct file *filp)
632 {
633         struct kvm *kvm = filp->private_data;
634
635         kvm_irqfd_release(kvm);
636
637         kvm_put_kvm(kvm);
638         return 0;
639 }
640
641 /*
642  * Allocation size is twice as large as the actual dirty bitmap size.
643  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
644  */
645 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
646 {
647         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
648
649         memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
650         if (!memslot->dirty_bitmap)
651                 return -ENOMEM;
652
653         return 0;
654 }
655
656 /*
657  * Insert memslot and re-sort memslots based on their GFN,
658  * so binary search could be used to lookup GFN.
659  * Sorting algorithm takes advantage of having initially
660  * sorted array and known changed memslot position.
661  */
662 static void update_memslots(struct kvm_memslots *slots,
663                             struct kvm_memory_slot *new)
664 {
665         int id = new->id;
666         int i = slots->id_to_index[id];
667         struct kvm_memory_slot *mslots = slots->memslots;
668
669         WARN_ON(mslots[i].id != id);
670         if (!new->npages) {
671                 WARN_ON(!mslots[i].npages);
672                 new->base_gfn = 0;
673                 new->flags = 0;
674                 if (mslots[i].npages)
675                         slots->used_slots--;
676         } else {
677                 if (!mslots[i].npages)
678                         slots->used_slots++;
679         }
680
681         while (i < KVM_MEM_SLOTS_NUM - 1 &&
682                new->base_gfn <= mslots[i + 1].base_gfn) {
683                 if (!mslots[i + 1].npages)
684                         break;
685                 mslots[i] = mslots[i + 1];
686                 slots->id_to_index[mslots[i].id] = i;
687                 i++;
688         }
689
690         /*
691          * The ">=" is needed when creating a slot with base_gfn == 0,
692          * so that it moves before all those with base_gfn == npages == 0.
693          *
694          * On the other hand, if new->npages is zero, the above loop has
695          * already left i pointing to the beginning of the empty part of
696          * mslots, and the ">=" would move the hole backwards in this
697          * case---which is wrong.  So skip the loop when deleting a slot.
698          */
699         if (new->npages) {
700                 while (i > 0 &&
701                        new->base_gfn >= mslots[i - 1].base_gfn) {
702                         mslots[i] = mslots[i - 1];
703                         slots->id_to_index[mslots[i].id] = i;
704                         i--;
705                 }
706         } else
707                 WARN_ON_ONCE(i != slots->used_slots);
708
709         mslots[i] = *new;
710         slots->id_to_index[mslots[i].id] = i;
711 }
712
713 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
714 {
715         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
716
717 #ifdef __KVM_HAVE_READONLY_MEM
718         valid_flags |= KVM_MEM_READONLY;
719 #endif
720
721         if (mem->flags & ~valid_flags)
722                 return -EINVAL;
723
724         return 0;
725 }
726
727 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
728                 struct kvm_memslots *slots)
729 {
730         struct kvm_memslots *old_memslots = kvm->memslots;
731
732         /*
733          * Set the low bit in the generation, which disables SPTE caching
734          * until the end of synchronize_srcu_expedited.
735          */
736         WARN_ON(old_memslots->generation & 1);
737         slots->generation = old_memslots->generation + 1;
738
739         rcu_assign_pointer(kvm->memslots, slots);
740         synchronize_srcu_expedited(&kvm->srcu);
741
742         /*
743          * Increment the new memslot generation a second time. This prevents
744          * vm exits that race with memslot updates from caching a memslot
745          * generation that will (potentially) be valid forever.
746          */
747         slots->generation++;
748
749         kvm_arch_memslots_updated(kvm);
750
751         return old_memslots;
752 }
753
754 /*
755  * Allocate some memory and give it an address in the guest physical address
756  * space.
757  *
758  * Discontiguous memory is allowed, mostly for framebuffers.
759  *
760  * Must be called holding kvm->slots_lock for write.
761  */
762 int __kvm_set_memory_region(struct kvm *kvm,
763                             struct kvm_userspace_memory_region *mem)
764 {
765         int r;
766         gfn_t base_gfn;
767         unsigned long npages;
768         struct kvm_memory_slot *slot;
769         struct kvm_memory_slot old, new;
770         struct kvm_memslots *slots = NULL, *old_memslots;
771         enum kvm_mr_change change;
772
773         r = check_memory_region_flags(mem);
774         if (r)
775                 goto out;
776
777         r = -EINVAL;
778         /* General sanity checks */
779         if (mem->memory_size & (PAGE_SIZE - 1))
780                 goto out;
781         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
782                 goto out;
783         /* We can read the guest memory with __xxx_user() later on. */
784         if ((mem->slot < KVM_USER_MEM_SLOTS) &&
785             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
786              !access_ok(VERIFY_WRITE,
787                         (void __user *)(unsigned long)mem->userspace_addr,
788                         mem->memory_size)))
789                 goto out;
790         if (mem->slot >= KVM_MEM_SLOTS_NUM)
791                 goto out;
792         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
793                 goto out;
794
795         slot = id_to_memslot(kvm->memslots, mem->slot);
796         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
797         npages = mem->memory_size >> PAGE_SHIFT;
798
799         if (npages > KVM_MEM_MAX_NR_PAGES)
800                 goto out;
801
802         if (!npages)
803                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
804
805         new = old = *slot;
806
807         new.id = mem->slot;
808         new.base_gfn = base_gfn;
809         new.npages = npages;
810         new.flags = mem->flags;
811
812         if (npages) {
813                 if (!old.npages)
814                         change = KVM_MR_CREATE;
815                 else { /* Modify an existing slot. */
816                         if ((mem->userspace_addr != old.userspace_addr) ||
817                             (npages != old.npages) ||
818                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
819                                 goto out;
820
821                         if (base_gfn != old.base_gfn)
822                                 change = KVM_MR_MOVE;
823                         else if (new.flags != old.flags)
824                                 change = KVM_MR_FLAGS_ONLY;
825                         else { /* Nothing to change. */
826                                 r = 0;
827                                 goto out;
828                         }
829                 }
830         } else if (old.npages) {
831                 change = KVM_MR_DELETE;
832         } else /* Modify a non-existent slot: disallowed. */
833                 goto out;
834
835         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
836                 /* Check for overlaps */
837                 r = -EEXIST;
838                 kvm_for_each_memslot(slot, kvm->memslots) {
839                         if ((slot->id >= KVM_USER_MEM_SLOTS) ||
840                             (slot->id == mem->slot))
841                                 continue;
842                         if (!((base_gfn + npages <= slot->base_gfn) ||
843                               (base_gfn >= slot->base_gfn + slot->npages)))
844                                 goto out;
845                 }
846         }
847
848         /* Free page dirty bitmap if unneeded */
849         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
850                 new.dirty_bitmap = NULL;
851
852         r = -ENOMEM;
853         if (change == KVM_MR_CREATE) {
854                 new.userspace_addr = mem->userspace_addr;
855
856                 if (kvm_arch_create_memslot(kvm, &new, npages))
857                         goto out_free;
858         }
859
860         /* Allocate page dirty bitmap if needed */
861         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
862                 if (kvm_create_dirty_bitmap(&new) < 0)
863                         goto out_free;
864         }
865
866         slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
867                         GFP_KERNEL);
868         if (!slots)
869                 goto out_free;
870
871         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
872                 slot = id_to_memslot(slots, mem->slot);
873                 slot->flags |= KVM_MEMSLOT_INVALID;
874
875                 old_memslots = install_new_memslots(kvm, slots);
876
877                 /* slot was deleted or moved, clear iommu mapping */
878                 kvm_iommu_unmap_pages(kvm, &old);
879                 /* From this point no new shadow pages pointing to a deleted,
880                  * or moved, memslot will be created.
881                  *
882                  * validation of sp->gfn happens in:
883                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
884                  *      - kvm_is_visible_gfn (mmu_check_roots)
885                  */
886                 kvm_arch_flush_shadow_memslot(kvm, slot);
887
888                 /*
889                  * We can re-use the old_memslots from above, the only difference
890                  * from the currently installed memslots is the invalid flag.  This
891                  * will get overwritten by update_memslots anyway.
892                  */
893                 slots = old_memslots;
894         }
895
896         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
897         if (r)
898                 goto out_slots;
899
900         /* actual memory is freed via old in kvm_free_physmem_slot below */
901         if (change == KVM_MR_DELETE) {
902                 new.dirty_bitmap = NULL;
903                 memset(&new.arch, 0, sizeof(new.arch));
904         }
905
906         update_memslots(slots, &new);
907         old_memslots = install_new_memslots(kvm, slots);
908
909         kvm_arch_commit_memory_region(kvm, mem, &old, change);
910
911         kvm_free_physmem_slot(kvm, &old, &new);
912         kfree(old_memslots);
913
914         /*
915          * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
916          * un-mapped and re-mapped if their base changes.  Since base change
917          * unmapping is handled above with slot deletion, mapping alone is
918          * needed here.  Anything else the iommu might care about for existing
919          * slots (size changes, userspace addr changes and read-only flag
920          * changes) is disallowed above, so any other attribute changes getting
921          * here can be skipped.
922          */
923         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
924                 r = kvm_iommu_map_pages(kvm, &new);
925                 return r;
926         }
927
928         return 0;
929
930 out_slots:
931         kfree(slots);
932 out_free:
933         kvm_free_physmem_slot(kvm, &new, &old);
934 out:
935         return r;
936 }
937 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
938
939 int kvm_set_memory_region(struct kvm *kvm,
940                           struct kvm_userspace_memory_region *mem)
941 {
942         int r;
943
944         mutex_lock(&kvm->slots_lock);
945         r = __kvm_set_memory_region(kvm, mem);
946         mutex_unlock(&kvm->slots_lock);
947         return r;
948 }
949 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
950
951 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
952                                           struct kvm_userspace_memory_region *mem)
953 {
954         if (mem->slot >= KVM_USER_MEM_SLOTS)
955                 return -EINVAL;
956         return kvm_set_memory_region(kvm, mem);
957 }
958
959 int kvm_get_dirty_log(struct kvm *kvm,
960                         struct kvm_dirty_log *log, int *is_dirty)
961 {
962         struct kvm_memory_slot *memslot;
963         int r, i;
964         unsigned long n;
965         unsigned long any = 0;
966
967         r = -EINVAL;
968         if (log->slot >= KVM_USER_MEM_SLOTS)
969                 goto out;
970
971         memslot = id_to_memslot(kvm->memslots, log->slot);
972         r = -ENOENT;
973         if (!memslot->dirty_bitmap)
974                 goto out;
975
976         n = kvm_dirty_bitmap_bytes(memslot);
977
978         for (i = 0; !any && i < n/sizeof(long); ++i)
979                 any = memslot->dirty_bitmap[i];
980
981         r = -EFAULT;
982         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
983                 goto out;
984
985         if (any)
986                 *is_dirty = 1;
987
988         r = 0;
989 out:
990         return r;
991 }
992 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
993
994 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
995 /**
996  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
997  *      are dirty write protect them for next write.
998  * @kvm:        pointer to kvm instance
999  * @log:        slot id and address to which we copy the log
1000  * @is_dirty:   flag set if any page is dirty
1001  *
1002  * We need to keep it in mind that VCPU threads can write to the bitmap
1003  * concurrently. So, to avoid losing track of dirty pages we keep the
1004  * following order:
1005  *
1006  *    1. Take a snapshot of the bit and clear it if needed.
1007  *    2. Write protect the corresponding page.
1008  *    3. Copy the snapshot to the userspace.
1009  *    4. Upon return caller flushes TLB's if needed.
1010  *
1011  * Between 2 and 4, the guest may write to the page using the remaining TLB
1012  * entry.  This is not a problem because the page is reported dirty using
1013  * the snapshot taken before and step 4 ensures that writes done after
1014  * exiting to userspace will be logged for the next call.
1015  *
1016  */
1017 int kvm_get_dirty_log_protect(struct kvm *kvm,
1018                         struct kvm_dirty_log *log, bool *is_dirty)
1019 {
1020         struct kvm_memory_slot *memslot;
1021         int r, i;
1022         unsigned long n;
1023         unsigned long *dirty_bitmap;
1024         unsigned long *dirty_bitmap_buffer;
1025
1026         r = -EINVAL;
1027         if (log->slot >= KVM_USER_MEM_SLOTS)
1028                 goto out;
1029
1030         memslot = id_to_memslot(kvm->memslots, log->slot);
1031
1032         dirty_bitmap = memslot->dirty_bitmap;
1033         r = -ENOENT;
1034         if (!dirty_bitmap)
1035                 goto out;
1036
1037         n = kvm_dirty_bitmap_bytes(memslot);
1038
1039         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1040         memset(dirty_bitmap_buffer, 0, n);
1041
1042         spin_lock(&kvm->mmu_lock);
1043         *is_dirty = false;
1044         for (i = 0; i < n / sizeof(long); i++) {
1045                 unsigned long mask;
1046                 gfn_t offset;
1047
1048                 if (!dirty_bitmap[i])
1049                         continue;
1050
1051                 *is_dirty = true;
1052
1053                 mask = xchg(&dirty_bitmap[i], 0);
1054                 dirty_bitmap_buffer[i] = mask;
1055
1056                 if (mask) {
1057                         offset = i * BITS_PER_LONG;
1058                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1059                                                                 offset, mask);
1060                 }
1061         }
1062
1063         spin_unlock(&kvm->mmu_lock);
1064
1065         r = -EFAULT;
1066         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1067                 goto out;
1068
1069         r = 0;
1070 out:
1071         return r;
1072 }
1073 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1074 #endif
1075
1076 bool kvm_largepages_enabled(void)
1077 {
1078         return largepages_enabled;
1079 }
1080
1081 void kvm_disable_largepages(void)
1082 {
1083         largepages_enabled = false;
1084 }
1085 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1086
1087 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1088 {
1089         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1090 }
1091 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1092
1093 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1094 {
1095         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1096
1097         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1098               memslot->flags & KVM_MEMSLOT_INVALID)
1099                 return 0;
1100
1101         return 1;
1102 }
1103 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1104
1105 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1106 {
1107         struct vm_area_struct *vma;
1108         unsigned long addr, size;
1109
1110         size = PAGE_SIZE;
1111
1112         addr = gfn_to_hva(kvm, gfn);
1113         if (kvm_is_error_hva(addr))
1114                 return PAGE_SIZE;
1115
1116         down_read(&current->mm->mmap_sem);
1117         vma = find_vma(current->mm, addr);
1118         if (!vma)
1119                 goto out;
1120
1121         size = vma_kernel_pagesize(vma);
1122
1123 out:
1124         up_read(&current->mm->mmap_sem);
1125
1126         return size;
1127 }
1128
1129 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1130 {
1131         return slot->flags & KVM_MEM_READONLY;
1132 }
1133
1134 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1135                                        gfn_t *nr_pages, bool write)
1136 {
1137         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1138                 return KVM_HVA_ERR_BAD;
1139
1140         if (memslot_is_readonly(slot) && write)
1141                 return KVM_HVA_ERR_RO_BAD;
1142
1143         if (nr_pages)
1144                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1145
1146         return __gfn_to_hva_memslot(slot, gfn);
1147 }
1148
1149 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1150                                      gfn_t *nr_pages)
1151 {
1152         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1153 }
1154
1155 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1156                                         gfn_t gfn)
1157 {
1158         return gfn_to_hva_many(slot, gfn, NULL);
1159 }
1160 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1161
1162 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1163 {
1164         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1165 }
1166 EXPORT_SYMBOL_GPL(gfn_to_hva);
1167
1168 /*
1169  * If writable is set to false, the hva returned by this function is only
1170  * allowed to be read.
1171  */
1172 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1173                                       gfn_t gfn, bool *writable)
1174 {
1175         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1176
1177         if (!kvm_is_error_hva(hva) && writable)
1178                 *writable = !memslot_is_readonly(slot);
1179
1180         return hva;
1181 }
1182
1183 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1184 {
1185         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1186
1187         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1188 }
1189
1190 static int kvm_read_hva(void *data, void __user *hva, int len)
1191 {
1192         return __copy_from_user(data, hva, len);
1193 }
1194
1195 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1196 {
1197         return __copy_from_user_inatomic(data, hva, len);
1198 }
1199
1200 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1201         unsigned long start, int write, struct page **page)
1202 {
1203         int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1204
1205         if (write)
1206                 flags |= FOLL_WRITE;
1207
1208         return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1209 }
1210
1211 static inline int check_user_page_hwpoison(unsigned long addr)
1212 {
1213         int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1214
1215         rc = __get_user_pages(current, current->mm, addr, 1,
1216                               flags, NULL, NULL, NULL);
1217         return rc == -EHWPOISON;
1218 }
1219
1220 /*
1221  * The atomic path to get the writable pfn which will be stored in @pfn,
1222  * true indicates success, otherwise false is returned.
1223  */
1224 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1225                             bool write_fault, bool *writable, pfn_t *pfn)
1226 {
1227         struct page *page[1];
1228         int npages;
1229
1230         if (!(async || atomic))
1231                 return false;
1232
1233         /*
1234          * Fast pin a writable pfn only if it is a write fault request
1235          * or the caller allows to map a writable pfn for a read fault
1236          * request.
1237          */
1238         if (!(write_fault || writable))
1239                 return false;
1240
1241         npages = __get_user_pages_fast(addr, 1, 1, page);
1242         if (npages == 1) {
1243                 *pfn = page_to_pfn(page[0]);
1244
1245                 if (writable)
1246                         *writable = true;
1247                 return true;
1248         }
1249
1250         return false;
1251 }
1252
1253 /*
1254  * The slow path to get the pfn of the specified host virtual address,
1255  * 1 indicates success, -errno is returned if error is detected.
1256  */
1257 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1258                            bool *writable, pfn_t *pfn)
1259 {
1260         struct page *page[1];
1261         int npages = 0;
1262
1263         might_sleep();
1264
1265         if (writable)
1266                 *writable = write_fault;
1267
1268         if (async) {
1269                 down_read(&current->mm->mmap_sem);
1270                 npages = get_user_page_nowait(current, current->mm,
1271                                               addr, write_fault, page);
1272                 up_read(&current->mm->mmap_sem);
1273         } else
1274                 npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1275                                                    write_fault, 0, page,
1276                                                    FOLL_TOUCH|FOLL_HWPOISON);
1277         if (npages != 1)
1278                 return npages;
1279
1280         /* map read fault as writable if possible */
1281         if (unlikely(!write_fault) && writable) {
1282                 struct page *wpage[1];
1283
1284                 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1285                 if (npages == 1) {
1286                         *writable = true;
1287                         put_page(page[0]);
1288                         page[0] = wpage[0];
1289                 }
1290
1291                 npages = 1;
1292         }
1293         *pfn = page_to_pfn(page[0]);
1294         return npages;
1295 }
1296
1297 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1298 {
1299         if (unlikely(!(vma->vm_flags & VM_READ)))
1300                 return false;
1301
1302         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1303                 return false;
1304
1305         return true;
1306 }
1307
1308 /*
1309  * Pin guest page in memory and return its pfn.
1310  * @addr: host virtual address which maps memory to the guest
1311  * @atomic: whether this function can sleep
1312  * @async: whether this function need to wait IO complete if the
1313  *         host page is not in the memory
1314  * @write_fault: whether we should get a writable host page
1315  * @writable: whether it allows to map a writable host page for !@write_fault
1316  *
1317  * The function will map a writable host page for these two cases:
1318  * 1): @write_fault = true
1319  * 2): @write_fault = false && @writable, @writable will tell the caller
1320  *     whether the mapping is writable.
1321  */
1322 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1323                         bool write_fault, bool *writable)
1324 {
1325         struct vm_area_struct *vma;
1326         pfn_t pfn = 0;
1327         int npages;
1328
1329         /* we can do it either atomically or asynchronously, not both */
1330         BUG_ON(atomic && async);
1331
1332         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1333                 return pfn;
1334
1335         if (atomic)
1336                 return KVM_PFN_ERR_FAULT;
1337
1338         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1339         if (npages == 1)
1340                 return pfn;
1341
1342         down_read(&current->mm->mmap_sem);
1343         if (npages == -EHWPOISON ||
1344               (!async && check_user_page_hwpoison(addr))) {
1345                 pfn = KVM_PFN_ERR_HWPOISON;
1346                 goto exit;
1347         }
1348
1349         vma = find_vma_intersection(current->mm, addr, addr + 1);
1350
1351         if (vma == NULL)
1352                 pfn = KVM_PFN_ERR_FAULT;
1353         else if ((vma->vm_flags & VM_PFNMAP)) {
1354                 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1355                         vma->vm_pgoff;
1356                 BUG_ON(!kvm_is_reserved_pfn(pfn));
1357         } else {
1358                 if (async && vma_is_valid(vma, write_fault))
1359                         *async = true;
1360                 pfn = KVM_PFN_ERR_FAULT;
1361         }
1362 exit:
1363         up_read(&current->mm->mmap_sem);
1364         return pfn;
1365 }
1366
1367 static pfn_t
1368 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1369                      bool *async, bool write_fault, bool *writable)
1370 {
1371         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1372
1373         if (addr == KVM_HVA_ERR_RO_BAD)
1374                 return KVM_PFN_ERR_RO_FAULT;
1375
1376         if (kvm_is_error_hva(addr))
1377                 return KVM_PFN_NOSLOT;
1378
1379         /* Do not map writable pfn in the readonly memslot. */
1380         if (writable && memslot_is_readonly(slot)) {
1381                 *writable = false;
1382                 writable = NULL;
1383         }
1384
1385         return hva_to_pfn(addr, atomic, async, write_fault,
1386                           writable);
1387 }
1388
1389 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1390                           bool write_fault, bool *writable)
1391 {
1392         struct kvm_memory_slot *slot;
1393
1394         if (async)
1395                 *async = false;
1396
1397         slot = gfn_to_memslot(kvm, gfn);
1398
1399         return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1400                                     writable);
1401 }
1402
1403 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1404 {
1405         return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1406 }
1407 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1408
1409 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1410                        bool write_fault, bool *writable)
1411 {
1412         return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1413 }
1414 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1415
1416 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1417 {
1418         return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1419 }
1420 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1421
1422 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1423                       bool *writable)
1424 {
1425         return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1426 }
1427 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1428
1429 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1430 {
1431         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1432 }
1433
1434 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1435 {
1436         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1437 }
1438 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1439
1440 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1441                                                                   int nr_pages)
1442 {
1443         unsigned long addr;
1444         gfn_t entry;
1445
1446         addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1447         if (kvm_is_error_hva(addr))
1448                 return -1;
1449
1450         if (entry < nr_pages)
1451                 return 0;
1452
1453         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1454 }
1455 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1456
1457 static struct page *kvm_pfn_to_page(pfn_t pfn)
1458 {
1459         if (is_error_noslot_pfn(pfn))
1460                 return KVM_ERR_PTR_BAD_PAGE;
1461
1462         if (kvm_is_reserved_pfn(pfn)) {
1463                 WARN_ON(1);
1464                 return KVM_ERR_PTR_BAD_PAGE;
1465         }
1466
1467         return pfn_to_page(pfn);
1468 }
1469
1470 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1471 {
1472         pfn_t pfn;
1473
1474         pfn = gfn_to_pfn(kvm, gfn);
1475
1476         return kvm_pfn_to_page(pfn);
1477 }
1478 EXPORT_SYMBOL_GPL(gfn_to_page);
1479
1480 void kvm_release_page_clean(struct page *page)
1481 {
1482         WARN_ON(is_error_page(page));
1483
1484         kvm_release_pfn_clean(page_to_pfn(page));
1485 }
1486 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1487
1488 void kvm_release_pfn_clean(pfn_t pfn)
1489 {
1490         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1491                 put_page(pfn_to_page(pfn));
1492 }
1493 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1494
1495 void kvm_release_page_dirty(struct page *page)
1496 {
1497         WARN_ON(is_error_page(page));
1498
1499         kvm_release_pfn_dirty(page_to_pfn(page));
1500 }
1501 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1502
1503 static void kvm_release_pfn_dirty(pfn_t pfn)
1504 {
1505         kvm_set_pfn_dirty(pfn);
1506         kvm_release_pfn_clean(pfn);
1507 }
1508
1509 void kvm_set_pfn_dirty(pfn_t pfn)
1510 {
1511         if (!kvm_is_reserved_pfn(pfn)) {
1512                 struct page *page = pfn_to_page(pfn);
1513
1514                 if (!PageReserved(page))
1515                         SetPageDirty(page);
1516         }
1517 }
1518 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1519
1520 void kvm_set_pfn_accessed(pfn_t pfn)
1521 {
1522         if (!kvm_is_reserved_pfn(pfn))
1523                 mark_page_accessed(pfn_to_page(pfn));
1524 }
1525 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1526
1527 void kvm_get_pfn(pfn_t pfn)
1528 {
1529         if (!kvm_is_reserved_pfn(pfn))
1530                 get_page(pfn_to_page(pfn));
1531 }
1532 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1533
1534 static int next_segment(unsigned long len, int offset)
1535 {
1536         if (len > PAGE_SIZE - offset)
1537                 return PAGE_SIZE - offset;
1538         else
1539                 return len;
1540 }
1541
1542 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1543                         int len)
1544 {
1545         int r;
1546         unsigned long addr;
1547
1548         addr = gfn_to_hva_prot(kvm, gfn, NULL);
1549         if (kvm_is_error_hva(addr))
1550                 return -EFAULT;
1551         r = kvm_read_hva(data, (void __user *)addr + offset, len);
1552         if (r)
1553                 return -EFAULT;
1554         return 0;
1555 }
1556 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1557
1558 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1559 {
1560         gfn_t gfn = gpa >> PAGE_SHIFT;
1561         int seg;
1562         int offset = offset_in_page(gpa);
1563         int ret;
1564
1565         while ((seg = next_segment(len, offset)) != 0) {
1566                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1567                 if (ret < 0)
1568                         return ret;
1569                 offset = 0;
1570                 len -= seg;
1571                 data += seg;
1572                 ++gfn;
1573         }
1574         return 0;
1575 }
1576 EXPORT_SYMBOL_GPL(kvm_read_guest);
1577
1578 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1579                           unsigned long len)
1580 {
1581         int r;
1582         unsigned long addr;
1583         gfn_t gfn = gpa >> PAGE_SHIFT;
1584         int offset = offset_in_page(gpa);
1585
1586         addr = gfn_to_hva_prot(kvm, gfn, NULL);
1587         if (kvm_is_error_hva(addr))
1588                 return -EFAULT;
1589         pagefault_disable();
1590         r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1591         pagefault_enable();
1592         if (r)
1593                 return -EFAULT;
1594         return 0;
1595 }
1596 EXPORT_SYMBOL(kvm_read_guest_atomic);
1597
1598 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1599                          int offset, int len)
1600 {
1601         int r;
1602         unsigned long addr;
1603
1604         addr = gfn_to_hva(kvm, gfn);
1605         if (kvm_is_error_hva(addr))
1606                 return -EFAULT;
1607         r = __copy_to_user((void __user *)addr + offset, data, len);
1608         if (r)
1609                 return -EFAULT;
1610         mark_page_dirty(kvm, gfn);
1611         return 0;
1612 }
1613 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1614
1615 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1616                     unsigned long len)
1617 {
1618         gfn_t gfn = gpa >> PAGE_SHIFT;
1619         int seg;
1620         int offset = offset_in_page(gpa);
1621         int ret;
1622
1623         while ((seg = next_segment(len, offset)) != 0) {
1624                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1625                 if (ret < 0)
1626                         return ret;
1627                 offset = 0;
1628                 len -= seg;
1629                 data += seg;
1630                 ++gfn;
1631         }
1632         return 0;
1633 }
1634 EXPORT_SYMBOL_GPL(kvm_write_guest);
1635
1636 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1637                               gpa_t gpa, unsigned long len)
1638 {
1639         struct kvm_memslots *slots = kvm_memslots(kvm);
1640         int offset = offset_in_page(gpa);
1641         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1642         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1643         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1644         gfn_t nr_pages_avail;
1645
1646         ghc->gpa = gpa;
1647         ghc->generation = slots->generation;
1648         ghc->len = len;
1649         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1650         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
1651         if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
1652                 ghc->hva += offset;
1653         } else {
1654                 /*
1655                  * If the requested region crosses two memslots, we still
1656                  * verify that the entire region is valid here.
1657                  */
1658                 while (start_gfn <= end_gfn) {
1659                         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1660                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1661                                                    &nr_pages_avail);
1662                         if (kvm_is_error_hva(ghc->hva))
1663                                 return -EFAULT;
1664                         start_gfn += nr_pages_avail;
1665                 }
1666                 /* Use the slow path for cross page reads and writes. */
1667                 ghc->memslot = NULL;
1668         }
1669         return 0;
1670 }
1671 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1672
1673 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1674                            void *data, unsigned long len)
1675 {
1676         struct kvm_memslots *slots = kvm_memslots(kvm);
1677         int r;
1678
1679         BUG_ON(len > ghc->len);
1680
1681         if (slots->generation != ghc->generation)
1682                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1683
1684         if (unlikely(!ghc->memslot))
1685                 return kvm_write_guest(kvm, ghc->gpa, data, len);
1686
1687         if (kvm_is_error_hva(ghc->hva))
1688                 return -EFAULT;
1689
1690         r = __copy_to_user((void __user *)ghc->hva, data, len);
1691         if (r)
1692                 return -EFAULT;
1693         mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1694
1695         return 0;
1696 }
1697 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1698
1699 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1700                            void *data, unsigned long len)
1701 {
1702         struct kvm_memslots *slots = kvm_memslots(kvm);
1703         int r;
1704
1705         BUG_ON(len > ghc->len);
1706
1707         if (slots->generation != ghc->generation)
1708                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1709
1710         if (unlikely(!ghc->memslot))
1711                 return kvm_read_guest(kvm, ghc->gpa, data, len);
1712
1713         if (kvm_is_error_hva(ghc->hva))
1714                 return -EFAULT;
1715
1716         r = __copy_from_user(data, (void __user *)ghc->hva, len);
1717         if (r)
1718                 return -EFAULT;
1719
1720         return 0;
1721 }
1722 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1723
1724 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1725 {
1726         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1727
1728         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1729 }
1730 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1731
1732 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1733 {
1734         gfn_t gfn = gpa >> PAGE_SHIFT;
1735         int seg;
1736         int offset = offset_in_page(gpa);
1737         int ret;
1738
1739         while ((seg = next_segment(len, offset)) != 0) {
1740                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1741                 if (ret < 0)
1742                         return ret;
1743                 offset = 0;
1744                 len -= seg;
1745                 ++gfn;
1746         }
1747         return 0;
1748 }
1749 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1750
1751 static void mark_page_dirty_in_slot(struct kvm *kvm,
1752                                     struct kvm_memory_slot *memslot,
1753                                     gfn_t gfn)
1754 {
1755         if (memslot && memslot->dirty_bitmap) {
1756                 unsigned long rel_gfn = gfn - memslot->base_gfn;
1757
1758                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1759         }
1760 }
1761
1762 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1763 {
1764         struct kvm_memory_slot *memslot;
1765
1766         memslot = gfn_to_memslot(kvm, gfn);
1767         mark_page_dirty_in_slot(kvm, memslot, gfn);
1768 }
1769 EXPORT_SYMBOL_GPL(mark_page_dirty);
1770
1771 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
1772 {
1773         if (kvm_arch_vcpu_runnable(vcpu)) {
1774                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1775                 return -EINTR;
1776         }
1777         if (kvm_cpu_has_pending_timer(vcpu))
1778                 return -EINTR;
1779         if (signal_pending(current))
1780                 return -EINTR;
1781
1782         return 0;
1783 }
1784
1785 /*
1786  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1787  */
1788 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1789 {
1790         ktime_t start, cur;
1791         DEFINE_WAIT(wait);
1792         bool waited = false;
1793
1794         start = cur = ktime_get();
1795         if (halt_poll_ns) {
1796                 ktime_t stop = ktime_add_ns(ktime_get(), halt_poll_ns);
1797
1798                 do {
1799                         /*
1800                          * This sets KVM_REQ_UNHALT if an interrupt
1801                          * arrives.
1802                          */
1803                         if (kvm_vcpu_check_block(vcpu) < 0) {
1804                                 ++vcpu->stat.halt_successful_poll;
1805                                 goto out;
1806                         }
1807                         cur = ktime_get();
1808                 } while (single_task_running() && ktime_before(cur, stop));
1809         }
1810
1811         for (;;) {
1812                 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1813
1814                 if (kvm_vcpu_check_block(vcpu) < 0)
1815                         break;
1816
1817                 waited = true;
1818                 schedule();
1819         }
1820
1821         finish_wait(&vcpu->wq, &wait);
1822         cur = ktime_get();
1823
1824 out:
1825         trace_kvm_vcpu_wakeup(ktime_to_ns(cur) - ktime_to_ns(start), waited);
1826 }
1827 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
1828
1829 #ifndef CONFIG_S390
1830 /*
1831  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1832  */
1833 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1834 {
1835         int me;
1836         int cpu = vcpu->cpu;
1837         wait_queue_head_t *wqp;
1838
1839         wqp = kvm_arch_vcpu_wq(vcpu);
1840         if (waitqueue_active(wqp)) {
1841                 wake_up_interruptible(wqp);
1842                 ++vcpu->stat.halt_wakeup;
1843         }
1844
1845         me = get_cpu();
1846         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1847                 if (kvm_arch_vcpu_should_kick(vcpu))
1848                         smp_send_reschedule(cpu);
1849         put_cpu();
1850 }
1851 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1852 #endif /* !CONFIG_S390 */
1853
1854 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
1855 {
1856         struct pid *pid;
1857         struct task_struct *task = NULL;
1858         int ret = 0;
1859
1860         rcu_read_lock();
1861         pid = rcu_dereference(target->pid);
1862         if (pid)
1863                 task = get_pid_task(pid, PIDTYPE_PID);
1864         rcu_read_unlock();
1865         if (!task)
1866                 return ret;
1867         ret = yield_to(task, 1);
1868         put_task_struct(task);
1869
1870         return ret;
1871 }
1872 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1873
1874 /*
1875  * Helper that checks whether a VCPU is eligible for directed yield.
1876  * Most eligible candidate to yield is decided by following heuristics:
1877  *
1878  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1879  *  (preempted lock holder), indicated by @in_spin_loop.
1880  *  Set at the beiginning and cleared at the end of interception/PLE handler.
1881  *
1882  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1883  *  chance last time (mostly it has become eligible now since we have probably
1884  *  yielded to lockholder in last iteration. This is done by toggling
1885  *  @dy_eligible each time a VCPU checked for eligibility.)
1886  *
1887  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1888  *  to preempted lock-holder could result in wrong VCPU selection and CPU
1889  *  burning. Giving priority for a potential lock-holder increases lock
1890  *  progress.
1891  *
1892  *  Since algorithm is based on heuristics, accessing another VCPU data without
1893  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
1894  *  and continue with next VCPU and so on.
1895  */
1896 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1897 {
1898 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1899         bool eligible;
1900
1901         eligible = !vcpu->spin_loop.in_spin_loop ||
1902                     vcpu->spin_loop.dy_eligible;
1903
1904         if (vcpu->spin_loop.in_spin_loop)
1905                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1906
1907         return eligible;
1908 #else
1909         return true;
1910 #endif
1911 }
1912
1913 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1914 {
1915         struct kvm *kvm = me->kvm;
1916         struct kvm_vcpu *vcpu;
1917         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1918         int yielded = 0;
1919         int try = 3;
1920         int pass;
1921         int i;
1922
1923         kvm_vcpu_set_in_spin_loop(me, true);
1924         /*
1925          * We boost the priority of a VCPU that is runnable but not
1926          * currently running, because it got preempted by something
1927          * else and called schedule in __vcpu_run.  Hopefully that
1928          * VCPU is holding the lock that we need and will release it.
1929          * We approximate round-robin by starting at the last boosted VCPU.
1930          */
1931         for (pass = 0; pass < 2 && !yielded && try; pass++) {
1932                 kvm_for_each_vcpu(i, vcpu, kvm) {
1933                         if (!pass && i <= last_boosted_vcpu) {
1934                                 i = last_boosted_vcpu;
1935                                 continue;
1936                         } else if (pass && i > last_boosted_vcpu)
1937                                 break;
1938                         if (!ACCESS_ONCE(vcpu->preempted))
1939                                 continue;
1940                         if (vcpu == me)
1941                                 continue;
1942                         if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
1943                                 continue;
1944                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1945                                 continue;
1946
1947                         yielded = kvm_vcpu_yield_to(vcpu);
1948                         if (yielded > 0) {
1949                                 kvm->last_boosted_vcpu = i;
1950                                 break;
1951                         } else if (yielded < 0) {
1952                                 try--;
1953                                 if (!try)
1954                                         break;
1955                         }
1956                 }
1957         }
1958         kvm_vcpu_set_in_spin_loop(me, false);
1959
1960         /* Ensure vcpu is not eligible during next spinloop */
1961         kvm_vcpu_set_dy_eligible(me, false);
1962 }
1963 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1964
1965 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1966 {
1967         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1968         struct page *page;
1969
1970         if (vmf->pgoff == 0)
1971                 page = virt_to_page(vcpu->run);
1972 #ifdef CONFIG_X86
1973         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1974                 page = virt_to_page(vcpu->arch.pio_data);
1975 #endif
1976 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1977         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1978                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1979 #endif
1980         else
1981                 return kvm_arch_vcpu_fault(vcpu, vmf);
1982         get_page(page);
1983         vmf->page = page;
1984         return 0;
1985 }
1986
1987 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1988         .fault = kvm_vcpu_fault,
1989 };
1990
1991 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1992 {
1993         vma->vm_ops = &kvm_vcpu_vm_ops;
1994         return 0;
1995 }
1996
1997 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1998 {
1999         struct kvm_vcpu *vcpu = filp->private_data;
2000
2001         kvm_put_kvm(vcpu->kvm);
2002         return 0;
2003 }
2004
2005 static struct file_operations kvm_vcpu_fops = {
2006         .release        = kvm_vcpu_release,
2007         .unlocked_ioctl = kvm_vcpu_ioctl,
2008 #ifdef CONFIG_KVM_COMPAT
2009         .compat_ioctl   = kvm_vcpu_compat_ioctl,
2010 #endif
2011         .mmap           = kvm_vcpu_mmap,
2012         .llseek         = noop_llseek,
2013 };
2014
2015 /*
2016  * Allocates an inode for the vcpu.
2017  */
2018 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2019 {
2020         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2021 }
2022
2023 /*
2024  * Creates some virtual cpus.  Good luck creating more than one.
2025  */
2026 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2027 {
2028         int r;
2029         struct kvm_vcpu *vcpu, *v;
2030
2031         if (id >= KVM_MAX_VCPUS)
2032                 return -EINVAL;
2033
2034         vcpu = kvm_arch_vcpu_create(kvm, id);
2035         if (IS_ERR(vcpu))
2036                 return PTR_ERR(vcpu);
2037
2038         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2039
2040         r = kvm_arch_vcpu_setup(vcpu);
2041         if (r)
2042                 goto vcpu_destroy;
2043
2044         mutex_lock(&kvm->lock);
2045         if (!kvm_vcpu_compatible(vcpu)) {
2046                 r = -EINVAL;
2047                 goto unlock_vcpu_destroy;
2048         }
2049         if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
2050                 r = -EINVAL;
2051                 goto unlock_vcpu_destroy;
2052         }
2053
2054         kvm_for_each_vcpu(r, v, kvm)
2055                 if (v->vcpu_id == id) {
2056                         r = -EEXIST;
2057                         goto unlock_vcpu_destroy;
2058                 }
2059
2060         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2061
2062         /* Now it's all set up, let userspace reach it */
2063         kvm_get_kvm(kvm);
2064         r = create_vcpu_fd(vcpu);
2065         if (r < 0) {
2066                 kvm_put_kvm(kvm);
2067                 goto unlock_vcpu_destroy;
2068         }
2069
2070         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2071         smp_wmb();
2072         atomic_inc(&kvm->online_vcpus);
2073
2074         mutex_unlock(&kvm->lock);
2075         kvm_arch_vcpu_postcreate(vcpu);
2076         return r;
2077
2078 unlock_vcpu_destroy:
2079         mutex_unlock(&kvm->lock);
2080 vcpu_destroy:
2081         kvm_arch_vcpu_destroy(vcpu);
2082         return r;
2083 }
2084
2085 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2086 {
2087         if (sigset) {
2088                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2089                 vcpu->sigset_active = 1;
2090                 vcpu->sigset = *sigset;
2091         } else
2092                 vcpu->sigset_active = 0;
2093         return 0;
2094 }
2095
2096 static long kvm_vcpu_ioctl(struct file *filp,
2097                            unsigned int ioctl, unsigned long arg)
2098 {
2099         struct kvm_vcpu *vcpu = filp->private_data;
2100         void __user *argp = (void __user *)arg;
2101         int r;
2102         struct kvm_fpu *fpu = NULL;
2103         struct kvm_sregs *kvm_sregs = NULL;
2104
2105         if (vcpu->kvm->mm != current->mm)
2106                 return -EIO;
2107
2108         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2109                 return -EINVAL;
2110
2111 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2112         /*
2113          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2114          * so vcpu_load() would break it.
2115          */
2116         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
2117                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2118 #endif
2119
2120
2121         r = vcpu_load(vcpu);
2122         if (r)
2123                 return r;
2124         switch (ioctl) {
2125         case KVM_RUN:
2126                 r = -EINVAL;
2127                 if (arg)
2128                         goto out;
2129                 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2130                         /* The thread running this VCPU changed. */
2131                         struct pid *oldpid = vcpu->pid;
2132                         struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2133
2134                         rcu_assign_pointer(vcpu->pid, newpid);
2135                         if (oldpid)
2136                                 synchronize_rcu();
2137                         put_pid(oldpid);
2138                 }
2139                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2140                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2141                 break;
2142         case KVM_GET_REGS: {
2143                 struct kvm_regs *kvm_regs;
2144
2145                 r = -ENOMEM;
2146                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2147                 if (!kvm_regs)
2148                         goto out;
2149                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2150                 if (r)
2151                         goto out_free1;
2152                 r = -EFAULT;
2153                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2154                         goto out_free1;
2155                 r = 0;
2156 out_free1:
2157                 kfree(kvm_regs);
2158                 break;
2159         }
2160         case KVM_SET_REGS: {
2161                 struct kvm_regs *kvm_regs;
2162
2163                 r = -ENOMEM;
2164                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2165                 if (IS_ERR(kvm_regs)) {
2166                         r = PTR_ERR(kvm_regs);
2167                         goto out;
2168                 }
2169                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2170                 kfree(kvm_regs);
2171                 break;
2172         }
2173         case KVM_GET_SREGS: {
2174                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2175                 r = -ENOMEM;
2176                 if (!kvm_sregs)
2177                         goto out;
2178                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2179                 if (r)
2180                         goto out;
2181                 r = -EFAULT;
2182                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2183                         goto out;
2184                 r = 0;
2185                 break;
2186         }
2187         case KVM_SET_SREGS: {
2188                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2189                 if (IS_ERR(kvm_sregs)) {
2190                         r = PTR_ERR(kvm_sregs);
2191                         kvm_sregs = NULL;
2192                         goto out;
2193                 }
2194                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2195                 break;
2196         }
2197         case KVM_GET_MP_STATE: {
2198                 struct kvm_mp_state mp_state;
2199
2200                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2201                 if (r)
2202                         goto out;
2203                 r = -EFAULT;
2204                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2205                         goto out;
2206                 r = 0;
2207                 break;
2208         }
2209         case KVM_SET_MP_STATE: {
2210                 struct kvm_mp_state mp_state;
2211
2212                 r = -EFAULT;
2213                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2214                         goto out;
2215                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2216                 break;
2217         }
2218         case KVM_TRANSLATE: {
2219                 struct kvm_translation tr;
2220
2221                 r = -EFAULT;
2222                 if (copy_from_user(&tr, argp, sizeof(tr)))
2223                         goto out;
2224                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2225                 if (r)
2226                         goto out;
2227                 r = -EFAULT;
2228                 if (copy_to_user(argp, &tr, sizeof(tr)))
2229                         goto out;
2230                 r = 0;
2231                 break;
2232         }
2233         case KVM_SET_GUEST_DEBUG: {
2234                 struct kvm_guest_debug dbg;
2235
2236                 r = -EFAULT;
2237                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2238                         goto out;
2239                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2240                 break;
2241         }
2242         case KVM_SET_SIGNAL_MASK: {
2243                 struct kvm_signal_mask __user *sigmask_arg = argp;
2244                 struct kvm_signal_mask kvm_sigmask;
2245                 sigset_t sigset, *p;
2246
2247                 p = NULL;
2248                 if (argp) {
2249                         r = -EFAULT;
2250                         if (copy_from_user(&kvm_sigmask, argp,
2251                                            sizeof(kvm_sigmask)))
2252                                 goto out;
2253                         r = -EINVAL;
2254                         if (kvm_sigmask.len != sizeof(sigset))
2255                                 goto out;
2256                         r = -EFAULT;
2257                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2258                                            sizeof(sigset)))
2259                                 goto out;
2260                         p = &sigset;
2261                 }
2262                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2263                 break;
2264         }
2265         case KVM_GET_FPU: {
2266                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2267                 r = -ENOMEM;
2268                 if (!fpu)
2269                         goto out;
2270                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2271                 if (r)
2272                         goto out;
2273                 r = -EFAULT;
2274                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2275                         goto out;
2276                 r = 0;
2277                 break;
2278         }
2279         case KVM_SET_FPU: {
2280                 fpu = memdup_user(argp, sizeof(*fpu));
2281                 if (IS_ERR(fpu)) {
2282                         r = PTR_ERR(fpu);
2283                         fpu = NULL;
2284                         goto out;
2285                 }
2286                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2287                 break;
2288         }
2289         default:
2290                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2291         }
2292 out:
2293         vcpu_put(vcpu);
2294         kfree(fpu);
2295         kfree(kvm_sregs);
2296         return r;
2297 }
2298
2299 #ifdef CONFIG_KVM_COMPAT
2300 static long kvm_vcpu_compat_ioctl(struct file *filp,
2301                                   unsigned int ioctl, unsigned long arg)
2302 {
2303         struct kvm_vcpu *vcpu = filp->private_data;
2304         void __user *argp = compat_ptr(arg);
2305         int r;
2306
2307         if (vcpu->kvm->mm != current->mm)
2308                 return -EIO;
2309
2310         switch (ioctl) {
2311         case KVM_SET_SIGNAL_MASK: {
2312                 struct kvm_signal_mask __user *sigmask_arg = argp;
2313                 struct kvm_signal_mask kvm_sigmask;
2314                 compat_sigset_t csigset;
2315                 sigset_t sigset;
2316
2317                 if (argp) {
2318                         r = -EFAULT;
2319                         if (copy_from_user(&kvm_sigmask, argp,
2320                                            sizeof(kvm_sigmask)))
2321                                 goto out;
2322                         r = -EINVAL;
2323                         if (kvm_sigmask.len != sizeof(csigset))
2324                                 goto out;
2325                         r = -EFAULT;
2326                         if (copy_from_user(&csigset, sigmask_arg->sigset,
2327                                            sizeof(csigset)))
2328                                 goto out;
2329                         sigset_from_compat(&sigset, &csigset);
2330                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2331                 } else
2332                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2333                 break;
2334         }
2335         default:
2336                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2337         }
2338
2339 out:
2340         return r;
2341 }
2342 #endif
2343
2344 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2345                                  int (*accessor)(struct kvm_device *dev,
2346                                                  struct kvm_device_attr *attr),
2347                                  unsigned long arg)
2348 {
2349         struct kvm_device_attr attr;
2350
2351         if (!accessor)
2352                 return -EPERM;
2353
2354         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2355                 return -EFAULT;
2356
2357         return accessor(dev, &attr);
2358 }
2359
2360 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2361                              unsigned long arg)
2362 {
2363         struct kvm_device *dev = filp->private_data;
2364
2365         switch (ioctl) {
2366         case KVM_SET_DEVICE_ATTR:
2367                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2368         case KVM_GET_DEVICE_ATTR:
2369                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2370         case KVM_HAS_DEVICE_ATTR:
2371                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2372         default:
2373                 if (dev->ops->ioctl)
2374                         return dev->ops->ioctl(dev, ioctl, arg);
2375
2376                 return -ENOTTY;
2377         }
2378 }
2379
2380 static int kvm_device_release(struct inode *inode, struct file *filp)
2381 {
2382         struct kvm_device *dev = filp->private_data;
2383         struct kvm *kvm = dev->kvm;
2384
2385         kvm_put_kvm(kvm);
2386         return 0;
2387 }
2388
2389 static const struct file_operations kvm_device_fops = {
2390         .unlocked_ioctl = kvm_device_ioctl,
2391 #ifdef CONFIG_KVM_COMPAT
2392         .compat_ioctl = kvm_device_ioctl,
2393 #endif
2394         .release = kvm_device_release,
2395 };
2396
2397 struct kvm_device *kvm_device_from_filp(struct file *filp)
2398 {
2399         if (filp->f_op != &kvm_device_fops)
2400                 return NULL;
2401
2402         return filp->private_data;
2403 }
2404
2405 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2406 #ifdef CONFIG_KVM_MPIC
2407         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2408         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2409 #endif
2410
2411 #ifdef CONFIG_KVM_XICS
2412         [KVM_DEV_TYPE_XICS]             = &kvm_xics_ops,
2413 #endif
2414 };
2415
2416 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2417 {
2418         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2419                 return -ENOSPC;
2420
2421         if (kvm_device_ops_table[type] != NULL)
2422                 return -EEXIST;
2423
2424         kvm_device_ops_table[type] = ops;
2425         return 0;
2426 }
2427
2428 void kvm_unregister_device_ops(u32 type)
2429 {
2430         if (kvm_device_ops_table[type] != NULL)
2431                 kvm_device_ops_table[type] = NULL;
2432 }
2433
2434 static int kvm_ioctl_create_device(struct kvm *kvm,
2435                                    struct kvm_create_device *cd)
2436 {
2437         struct kvm_device_ops *ops = NULL;
2438         struct kvm_device *dev;
2439         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2440         int ret;
2441
2442         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2443                 return -ENODEV;
2444
2445         ops = kvm_device_ops_table[cd->type];
2446         if (ops == NULL)
2447                 return -ENODEV;
2448
2449         if (test)
2450                 return 0;
2451
2452         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2453         if (!dev)
2454                 return -ENOMEM;
2455
2456         dev->ops = ops;
2457         dev->kvm = kvm;
2458
2459         ret = ops->create(dev, cd->type);
2460         if (ret < 0) {
2461                 kfree(dev);
2462                 return ret;
2463         }
2464
2465         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2466         if (ret < 0) {
2467                 ops->destroy(dev);
2468                 return ret;
2469         }
2470
2471         list_add(&dev->vm_node, &kvm->devices);
2472         kvm_get_kvm(kvm);
2473         cd->fd = ret;
2474         return 0;
2475 }
2476
2477 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2478 {
2479         switch (arg) {
2480         case KVM_CAP_USER_MEMORY:
2481         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2482         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2483 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2484         case KVM_CAP_SET_BOOT_CPU_ID:
2485 #endif
2486         case KVM_CAP_INTERNAL_ERROR_DATA:
2487 #ifdef CONFIG_HAVE_KVM_MSI
2488         case KVM_CAP_SIGNAL_MSI:
2489 #endif
2490 #ifdef CONFIG_HAVE_KVM_IRQFD
2491         case KVM_CAP_IRQFD_RESAMPLE:
2492 #endif
2493         case KVM_CAP_CHECK_EXTENSION_VM:
2494                 return 1;
2495 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2496         case KVM_CAP_IRQ_ROUTING:
2497                 return KVM_MAX_IRQ_ROUTES;
2498 #endif
2499         default:
2500                 break;
2501         }
2502         return kvm_vm_ioctl_check_extension(kvm, arg);
2503 }
2504
2505 static long kvm_vm_ioctl(struct file *filp,
2506                            unsigned int ioctl, unsigned long arg)
2507 {
2508         struct kvm *kvm = filp->private_data;
2509         void __user *argp = (void __user *)arg;
2510         int r;
2511
2512         if (kvm->mm != current->mm)
2513                 return -EIO;
2514         switch (ioctl) {
2515         case KVM_CREATE_VCPU:
2516                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2517                 break;
2518         case KVM_SET_USER_MEMORY_REGION: {
2519                 struct kvm_userspace_memory_region kvm_userspace_mem;
2520
2521                 r = -EFAULT;
2522                 if (copy_from_user(&kvm_userspace_mem, argp,
2523                                                 sizeof(kvm_userspace_mem)))
2524                         goto out;
2525
2526                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2527                 break;
2528         }
2529         case KVM_GET_DIRTY_LOG: {
2530                 struct kvm_dirty_log log;
2531
2532                 r = -EFAULT;
2533                 if (copy_from_user(&log, argp, sizeof(log)))
2534                         goto out;
2535                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2536                 break;
2537         }
2538 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2539         case KVM_REGISTER_COALESCED_MMIO: {
2540                 struct kvm_coalesced_mmio_zone zone;
2541
2542                 r = -EFAULT;
2543                 if (copy_from_user(&zone, argp, sizeof(zone)))
2544                         goto out;
2545                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2546                 break;
2547         }
2548         case KVM_UNREGISTER_COALESCED_MMIO: {
2549                 struct kvm_coalesced_mmio_zone zone;
2550
2551                 r = -EFAULT;
2552                 if (copy_from_user(&zone, argp, sizeof(zone)))
2553                         goto out;
2554                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2555                 break;
2556         }
2557 #endif
2558         case KVM_IRQFD: {
2559                 struct kvm_irqfd data;
2560
2561                 r = -EFAULT;
2562                 if (copy_from_user(&data, argp, sizeof(data)))
2563                         goto out;
2564                 r = kvm_irqfd(kvm, &data);
2565                 break;
2566         }
2567         case KVM_IOEVENTFD: {
2568                 struct kvm_ioeventfd data;
2569
2570                 r = -EFAULT;
2571                 if (copy_from_user(&data, argp, sizeof(data)))
2572                         goto out;
2573                 r = kvm_ioeventfd(kvm, &data);
2574                 break;
2575         }
2576 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2577         case KVM_SET_BOOT_CPU_ID:
2578                 r = 0;
2579                 mutex_lock(&kvm->lock);
2580                 if (atomic_read(&kvm->online_vcpus) != 0)
2581                         r = -EBUSY;
2582                 else
2583                         kvm->bsp_vcpu_id = arg;
2584                 mutex_unlock(&kvm->lock);
2585                 break;
2586 #endif
2587 #ifdef CONFIG_HAVE_KVM_MSI
2588         case KVM_SIGNAL_MSI: {
2589                 struct kvm_msi msi;
2590
2591                 r = -EFAULT;
2592                 if (copy_from_user(&msi, argp, sizeof(msi)))
2593                         goto out;
2594                 r = kvm_send_userspace_msi(kvm, &msi);
2595                 break;
2596         }
2597 #endif
2598 #ifdef __KVM_HAVE_IRQ_LINE
2599         case KVM_IRQ_LINE_STATUS:
2600         case KVM_IRQ_LINE: {
2601                 struct kvm_irq_level irq_event;
2602
2603                 r = -EFAULT;
2604                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2605                         goto out;
2606
2607                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2608                                         ioctl == KVM_IRQ_LINE_STATUS);
2609                 if (r)
2610                         goto out;
2611
2612                 r = -EFAULT;
2613                 if (ioctl == KVM_IRQ_LINE_STATUS) {
2614                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2615                                 goto out;
2616                 }
2617
2618                 r = 0;
2619                 break;
2620         }
2621 #endif
2622 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2623         case KVM_SET_GSI_ROUTING: {
2624                 struct kvm_irq_routing routing;
2625                 struct kvm_irq_routing __user *urouting;
2626                 struct kvm_irq_routing_entry *entries;
2627
2628                 r = -EFAULT;
2629                 if (copy_from_user(&routing, argp, sizeof(routing)))
2630                         goto out;
2631                 r = -EINVAL;
2632                 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2633                         goto out;
2634                 if (routing.flags)
2635                         goto out;
2636                 r = -ENOMEM;
2637                 entries = vmalloc(routing.nr * sizeof(*entries));
2638                 if (!entries)
2639                         goto out;
2640                 r = -EFAULT;
2641                 urouting = argp;
2642                 if (copy_from_user(entries, urouting->entries,
2643                                    routing.nr * sizeof(*entries)))
2644                         goto out_free_irq_routing;
2645                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2646                                         routing.flags);
2647 out_free_irq_routing:
2648                 vfree(entries);
2649                 break;
2650         }
2651 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2652         case KVM_CREATE_DEVICE: {
2653                 struct kvm_create_device cd;
2654
2655                 r = -EFAULT;
2656                 if (copy_from_user(&cd, argp, sizeof(cd)))
2657                         goto out;
2658
2659                 r = kvm_ioctl_create_device(kvm, &cd);
2660                 if (r)
2661                         goto out;
2662
2663                 r = -EFAULT;
2664                 if (copy_to_user(argp, &cd, sizeof(cd)))
2665                         goto out;
2666
2667                 r = 0;
2668                 break;
2669         }
2670         case KVM_CHECK_EXTENSION:
2671                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2672                 break;
2673         default:
2674                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2675         }
2676 out:
2677         return r;
2678 }
2679
2680 #ifdef CONFIG_KVM_COMPAT
2681 struct compat_kvm_dirty_log {
2682         __u32 slot;
2683         __u32 padding1;
2684         union {
2685                 compat_uptr_t dirty_bitmap; /* one bit per page */
2686                 __u64 padding2;
2687         };
2688 };
2689
2690 static long kvm_vm_compat_ioctl(struct file *filp,
2691                            unsigned int ioctl, unsigned long arg)
2692 {
2693         struct kvm *kvm = filp->private_data;
2694         int r;
2695
2696         if (kvm->mm != current->mm)
2697                 return -EIO;
2698         switch (ioctl) {
2699         case KVM_GET_DIRTY_LOG: {
2700                 struct compat_kvm_dirty_log compat_log;
2701                 struct kvm_dirty_log log;
2702
2703                 r = -EFAULT;
2704                 if (copy_from_user(&compat_log, (void __user *)arg,
2705                                    sizeof(compat_log)))
2706                         goto out;
2707                 log.slot         = compat_log.slot;
2708                 log.padding1     = compat_log.padding1;
2709                 log.padding2     = compat_log.padding2;
2710                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2711
2712                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2713                 break;
2714         }
2715         default:
2716                 r = kvm_vm_ioctl(filp, ioctl, arg);
2717         }
2718
2719 out:
2720         return r;
2721 }
2722 #endif
2723
2724 static struct file_operations kvm_vm_fops = {
2725         .release        = kvm_vm_release,
2726         .unlocked_ioctl = kvm_vm_ioctl,
2727 #ifdef CONFIG_KVM_COMPAT
2728         .compat_ioctl   = kvm_vm_compat_ioctl,
2729 #endif
2730         .llseek         = noop_llseek,
2731 };
2732
2733 static int kvm_dev_ioctl_create_vm(unsigned long type)
2734 {
2735         int r;
2736         struct kvm *kvm;
2737
2738         kvm = kvm_create_vm(type);
2739         if (IS_ERR(kvm))
2740                 return PTR_ERR(kvm);
2741 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2742         r = kvm_coalesced_mmio_init(kvm);
2743         if (r < 0) {
2744                 kvm_put_kvm(kvm);
2745                 return r;
2746         }
2747 #endif
2748         r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2749         if (r < 0)
2750                 kvm_put_kvm(kvm);
2751
2752         return r;
2753 }
2754
2755 static long kvm_dev_ioctl(struct file *filp,
2756                           unsigned int ioctl, unsigned long arg)
2757 {
2758         long r = -EINVAL;
2759
2760         switch (ioctl) {
2761         case KVM_GET_API_VERSION:
2762                 if (arg)
2763                         goto out;
2764                 r = KVM_API_VERSION;
2765                 break;
2766         case KVM_CREATE_VM:
2767                 r = kvm_dev_ioctl_create_vm(arg);
2768                 break;
2769         case KVM_CHECK_EXTENSION:
2770                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2771                 break;
2772         case KVM_GET_VCPU_MMAP_SIZE:
2773                 if (arg)
2774                         goto out;
2775                 r = PAGE_SIZE;     /* struct kvm_run */
2776 #ifdef CONFIG_X86
2777                 r += PAGE_SIZE;    /* pio data page */
2778 #endif
2779 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2780                 r += PAGE_SIZE;    /* coalesced mmio ring page */
2781 #endif
2782                 break;
2783         case KVM_TRACE_ENABLE:
2784         case KVM_TRACE_PAUSE:
2785         case KVM_TRACE_DISABLE:
2786                 r = -EOPNOTSUPP;
2787                 break;
2788         default:
2789                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2790         }
2791 out:
2792         return r;
2793 }
2794
2795 static struct file_operations kvm_chardev_ops = {
2796         .unlocked_ioctl = kvm_dev_ioctl,
2797         .compat_ioctl   = kvm_dev_ioctl,
2798         .llseek         = noop_llseek,
2799 };
2800
2801 static struct miscdevice kvm_dev = {
2802         KVM_MINOR,
2803         "kvm",
2804         &kvm_chardev_ops,
2805 };
2806
2807 static void hardware_enable_nolock(void *junk)
2808 {
2809         int cpu = raw_smp_processor_id();
2810         int r;
2811
2812         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2813                 return;
2814
2815         cpumask_set_cpu(cpu, cpus_hardware_enabled);
2816
2817         r = kvm_arch_hardware_enable();
2818
2819         if (r) {
2820                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2821                 atomic_inc(&hardware_enable_failed);
2822                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
2823         }
2824 }
2825
2826 static void hardware_enable(void)
2827 {
2828         raw_spin_lock(&kvm_count_lock);
2829         if (kvm_usage_count)
2830                 hardware_enable_nolock(NULL);
2831         raw_spin_unlock(&kvm_count_lock);
2832 }
2833
2834 static void hardware_disable_nolock(void *junk)
2835 {
2836         int cpu = raw_smp_processor_id();
2837
2838         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2839                 return;
2840         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2841         kvm_arch_hardware_disable();
2842 }
2843
2844 static void hardware_disable(void)
2845 {
2846         raw_spin_lock(&kvm_count_lock);
2847         if (kvm_usage_count)
2848                 hardware_disable_nolock(NULL);
2849         raw_spin_unlock(&kvm_count_lock);
2850 }
2851
2852 static void hardware_disable_all_nolock(void)
2853 {
2854         BUG_ON(!kvm_usage_count);
2855
2856         kvm_usage_count--;
2857         if (!kvm_usage_count)
2858                 on_each_cpu(hardware_disable_nolock, NULL, 1);
2859 }
2860
2861 static void hardware_disable_all(void)
2862 {
2863         raw_spin_lock(&kvm_count_lock);
2864         hardware_disable_all_nolock();
2865         raw_spin_unlock(&kvm_count_lock);
2866 }
2867
2868 static int hardware_enable_all(void)
2869 {
2870         int r = 0;
2871
2872         raw_spin_lock(&kvm_count_lock);
2873
2874         kvm_usage_count++;
2875         if (kvm_usage_count == 1) {
2876                 atomic_set(&hardware_enable_failed, 0);
2877                 on_each_cpu(hardware_enable_nolock, NULL, 1);
2878
2879                 if (atomic_read(&hardware_enable_failed)) {
2880                         hardware_disable_all_nolock();
2881                         r = -EBUSY;
2882                 }
2883         }
2884
2885         raw_spin_unlock(&kvm_count_lock);
2886
2887         return r;
2888 }
2889
2890 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2891                            void *v)
2892 {
2893         int cpu = (long)v;
2894
2895         val &= ~CPU_TASKS_FROZEN;
2896         switch (val) {
2897         case CPU_DYING:
2898                 pr_info("kvm: disabling virtualization on CPU%d\n",
2899                        cpu);
2900                 hardware_disable();
2901                 break;
2902         case CPU_STARTING:
2903                 pr_info("kvm: enabling virtualization on CPU%d\n",
2904                        cpu);
2905                 hardware_enable();
2906                 break;
2907         }
2908         return NOTIFY_OK;
2909 }
2910
2911 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2912                       void *v)
2913 {
2914         /*
2915          * Some (well, at least mine) BIOSes hang on reboot if
2916          * in vmx root mode.
2917          *
2918          * And Intel TXT required VMX off for all cpu when system shutdown.
2919          */
2920         pr_info("kvm: exiting hardware virtualization\n");
2921         kvm_rebooting = true;
2922         on_each_cpu(hardware_disable_nolock, NULL, 1);
2923         return NOTIFY_OK;
2924 }
2925
2926 static struct notifier_block kvm_reboot_notifier = {
2927         .notifier_call = kvm_reboot,
2928         .priority = 0,
2929 };
2930
2931 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2932 {
2933         int i;
2934
2935         for (i = 0; i < bus->dev_count; i++) {
2936                 struct kvm_io_device *pos = bus->range[i].dev;
2937
2938                 kvm_iodevice_destructor(pos);
2939         }
2940         kfree(bus);
2941 }
2942
2943 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2944                                  const struct kvm_io_range *r2)
2945 {
2946         if (r1->addr < r2->addr)
2947                 return -1;
2948         if (r1->addr + r1->len > r2->addr + r2->len)
2949                 return 1;
2950         return 0;
2951 }
2952
2953 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2954 {
2955         return kvm_io_bus_cmp(p1, p2);
2956 }
2957
2958 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2959                           gpa_t addr, int len)
2960 {
2961         bus->range[bus->dev_count++] = (struct kvm_io_range) {
2962                 .addr = addr,
2963                 .len = len,
2964                 .dev = dev,
2965         };
2966
2967         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2968                 kvm_io_bus_sort_cmp, NULL);
2969
2970         return 0;
2971 }
2972
2973 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2974                              gpa_t addr, int len)
2975 {
2976         struct kvm_io_range *range, key;
2977         int off;
2978
2979         key = (struct kvm_io_range) {
2980                 .addr = addr,
2981                 .len = len,
2982         };
2983
2984         range = bsearch(&key, bus->range, bus->dev_count,
2985                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2986         if (range == NULL)
2987                 return -ENOENT;
2988
2989         off = range - bus->range;
2990
2991         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
2992                 off--;
2993
2994         return off;
2995 }
2996
2997 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
2998                               struct kvm_io_range *range, const void *val)
2999 {
3000         int idx;
3001
3002         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3003         if (idx < 0)
3004                 return -EOPNOTSUPP;
3005
3006         while (idx < bus->dev_count &&
3007                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3008                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3009                                         range->len, val))
3010                         return idx;
3011                 idx++;
3012         }
3013
3014         return -EOPNOTSUPP;
3015 }
3016
3017 /* kvm_io_bus_write - called under kvm->slots_lock */
3018 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3019                      int len, const void *val)
3020 {
3021         struct kvm_io_bus *bus;
3022         struct kvm_io_range range;
3023         int r;
3024
3025         range = (struct kvm_io_range) {
3026                 .addr = addr,
3027                 .len = len,
3028         };
3029
3030         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3031         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3032         return r < 0 ? r : 0;
3033 }
3034
3035 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3036 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3037                             gpa_t addr, int len, const void *val, long cookie)
3038 {
3039         struct kvm_io_bus *bus;
3040         struct kvm_io_range range;
3041
3042         range = (struct kvm_io_range) {
3043                 .addr = addr,
3044                 .len = len,
3045         };
3046
3047         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3048
3049         /* First try the device referenced by cookie. */
3050         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3051             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3052                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3053                                         val))
3054                         return cookie;
3055
3056         /*
3057          * cookie contained garbage; fall back to search and return the
3058          * correct cookie value.
3059          */
3060         return __kvm_io_bus_write(vcpu, bus, &range, val);
3061 }
3062
3063 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3064                              struct kvm_io_range *range, void *val)
3065 {
3066         int idx;
3067
3068         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3069         if (idx < 0)
3070                 return -EOPNOTSUPP;
3071
3072         while (idx < bus->dev_count &&
3073                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3074                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3075                                        range->len, val))
3076                         return idx;
3077                 idx++;
3078         }
3079
3080         return -EOPNOTSUPP;
3081 }
3082 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3083
3084 /* kvm_io_bus_read - called under kvm->slots_lock */
3085 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3086                     int len, void *val)
3087 {
3088         struct kvm_io_bus *bus;
3089         struct kvm_io_range range;
3090         int r;
3091
3092         range = (struct kvm_io_range) {
3093                 .addr = addr,
3094                 .len = len,
3095         };
3096
3097         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3098         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3099         return r < 0 ? r : 0;
3100 }
3101
3102
3103 /* Caller must hold slots_lock. */
3104 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3105                             int len, struct kvm_io_device *dev)
3106 {
3107         struct kvm_io_bus *new_bus, *bus;
3108
3109         bus = kvm->buses[bus_idx];
3110         /* exclude ioeventfd which is limited by maximum fd */
3111         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3112                 return -ENOSPC;
3113
3114         new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3115                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3116         if (!new_bus)
3117                 return -ENOMEM;
3118         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3119                sizeof(struct kvm_io_range)));
3120         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3121         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3122         synchronize_srcu_expedited(&kvm->srcu);
3123         kfree(bus);
3124
3125         return 0;
3126 }
3127
3128 /* Caller must hold slots_lock. */
3129 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3130                               struct kvm_io_device *dev)
3131 {
3132         int i, r;
3133         struct kvm_io_bus *new_bus, *bus;
3134
3135         bus = kvm->buses[bus_idx];
3136         r = -ENOENT;
3137         for (i = 0; i < bus->dev_count; i++)
3138                 if (bus->range[i].dev == dev) {
3139                         r = 0;
3140                         break;
3141                 }
3142
3143         if (r)
3144                 return r;
3145
3146         new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3147                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3148         if (!new_bus)
3149                 return -ENOMEM;
3150
3151         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3152         new_bus->dev_count--;
3153         memcpy(new_bus->range + i, bus->range + i + 1,
3154                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3155
3156         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3157         synchronize_srcu_expedited(&kvm->srcu);
3158         kfree(bus);
3159         return r;
3160 }
3161
3162 static struct notifier_block kvm_cpu_notifier = {
3163         .notifier_call = kvm_cpu_hotplug,
3164 };
3165
3166 static int vm_stat_get(void *_offset, u64 *val)
3167 {
3168         unsigned offset = (long)_offset;
3169         struct kvm *kvm;
3170
3171         *val = 0;
3172         spin_lock(&kvm_lock);
3173         list_for_each_entry(kvm, &vm_list, vm_list)
3174                 *val += *(u32 *)((void *)kvm + offset);
3175         spin_unlock(&kvm_lock);
3176         return 0;
3177 }
3178
3179 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3180
3181 static int vcpu_stat_get(void *_offset, u64 *val)
3182 {
3183         unsigned offset = (long)_offset;
3184         struct kvm *kvm;
3185         struct kvm_vcpu *vcpu;
3186         int i;
3187
3188         *val = 0;
3189         spin_lock(&kvm_lock);
3190         list_for_each_entry(kvm, &vm_list, vm_list)
3191                 kvm_for_each_vcpu(i, vcpu, kvm)
3192                         *val += *(u32 *)((void *)vcpu + offset);
3193
3194         spin_unlock(&kvm_lock);
3195         return 0;
3196 }
3197
3198 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3199
3200 static const struct file_operations *stat_fops[] = {
3201         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3202         [KVM_STAT_VM]   = &vm_stat_fops,
3203 };
3204
3205 static int kvm_init_debug(void)
3206 {
3207         int r = -EEXIST;
3208         struct kvm_stats_debugfs_item *p;
3209
3210         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3211         if (kvm_debugfs_dir == NULL)
3212                 goto out;
3213
3214         for (p = debugfs_entries; p->name; ++p) {
3215                 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3216                                                 (void *)(long)p->offset,
3217                                                 stat_fops[p->kind]);
3218                 if (p->dentry == NULL)
3219                         goto out_dir;
3220         }
3221
3222         return 0;
3223
3224 out_dir:
3225         debugfs_remove_recursive(kvm_debugfs_dir);
3226 out:
3227         return r;
3228 }
3229
3230 static void kvm_exit_debug(void)
3231 {
3232         struct kvm_stats_debugfs_item *p;
3233
3234         for (p = debugfs_entries; p->name; ++p)
3235                 debugfs_remove(p->dentry);
3236         debugfs_remove(kvm_debugfs_dir);
3237 }
3238
3239 static int kvm_suspend(void)
3240 {
3241         if (kvm_usage_count)
3242                 hardware_disable_nolock(NULL);
3243         return 0;
3244 }
3245
3246 static void kvm_resume(void)
3247 {
3248         if (kvm_usage_count) {
3249                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3250                 hardware_enable_nolock(NULL);
3251         }
3252 }
3253
3254 static struct syscore_ops kvm_syscore_ops = {
3255         .suspend = kvm_suspend,
3256         .resume = kvm_resume,
3257 };
3258
3259 static inline
3260 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3261 {
3262         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3263 }
3264
3265 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3266 {
3267         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3268
3269         if (vcpu->preempted)
3270                 vcpu->preempted = false;
3271
3272         kvm_arch_sched_in(vcpu, cpu);
3273
3274         kvm_arch_vcpu_load(vcpu, cpu);
3275 }
3276
3277 static void kvm_sched_out(struct preempt_notifier *pn,
3278                           struct task_struct *next)
3279 {
3280         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3281
3282         if (current->state == TASK_RUNNING)
3283                 vcpu->preempted = true;
3284         kvm_arch_vcpu_put(vcpu);
3285 }
3286
3287 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3288                   struct module *module)
3289 {
3290         int r;
3291         int cpu;
3292
3293         r = kvm_arch_init(opaque);
3294         if (r)
3295                 goto out_fail;
3296
3297         /*
3298          * kvm_arch_init makes sure there's at most one caller
3299          * for architectures that support multiple implementations,
3300          * like intel and amd on x86.
3301          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3302          * conflicts in case kvm is already setup for another implementation.
3303          */
3304         r = kvm_irqfd_init();
3305         if (r)
3306                 goto out_irqfd;
3307
3308         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3309                 r = -ENOMEM;
3310                 goto out_free_0;
3311         }
3312
3313         r = kvm_arch_hardware_setup();
3314         if (r < 0)
3315                 goto out_free_0a;
3316
3317         for_each_online_cpu(cpu) {
3318                 smp_call_function_single(cpu,
3319                                 kvm_arch_check_processor_compat,
3320                                 &r, 1);
3321                 if (r < 0)
3322                         goto out_free_1;
3323         }
3324
3325         r = register_cpu_notifier(&kvm_cpu_notifier);
3326         if (r)
3327                 goto out_free_2;
3328         register_reboot_notifier(&kvm_reboot_notifier);
3329
3330         /* A kmem cache lets us meet the alignment requirements of fx_save. */
3331         if (!vcpu_align)
3332                 vcpu_align = __alignof__(struct kvm_vcpu);
3333         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3334                                            0, NULL);
3335         if (!kvm_vcpu_cache) {
3336                 r = -ENOMEM;
3337                 goto out_free_3;
3338         }
3339
3340         r = kvm_async_pf_init();
3341         if (r)
3342                 goto out_free;
3343
3344         kvm_chardev_ops.owner = module;
3345         kvm_vm_fops.owner = module;
3346         kvm_vcpu_fops.owner = module;
3347
3348         r = misc_register(&kvm_dev);
3349         if (r) {
3350                 pr_err("kvm: misc device register failed\n");
3351                 goto out_unreg;
3352         }
3353
3354         register_syscore_ops(&kvm_syscore_ops);
3355
3356         kvm_preempt_ops.sched_in = kvm_sched_in;
3357         kvm_preempt_ops.sched_out = kvm_sched_out;
3358
3359         r = kvm_init_debug();
3360         if (r) {
3361                 pr_err("kvm: create debugfs files failed\n");
3362                 goto out_undebugfs;
3363         }
3364
3365         r = kvm_vfio_ops_init();
3366         WARN_ON(r);
3367
3368         return 0;
3369
3370 out_undebugfs:
3371         unregister_syscore_ops(&kvm_syscore_ops);
3372         misc_deregister(&kvm_dev);
3373 out_unreg:
3374         kvm_async_pf_deinit();
3375 out_free:
3376         kmem_cache_destroy(kvm_vcpu_cache);
3377 out_free_3:
3378         unregister_reboot_notifier(&kvm_reboot_notifier);
3379         unregister_cpu_notifier(&kvm_cpu_notifier);
3380 out_free_2:
3381 out_free_1:
3382         kvm_arch_hardware_unsetup();
3383 out_free_0a:
3384         free_cpumask_var(cpus_hardware_enabled);
3385 out_free_0:
3386         kvm_irqfd_exit();
3387 out_irqfd:
3388         kvm_arch_exit();
3389 out_fail:
3390         return r;
3391 }
3392 EXPORT_SYMBOL_GPL(kvm_init);
3393
3394 void kvm_exit(void)
3395 {
3396         kvm_exit_debug();
3397         misc_deregister(&kvm_dev);
3398         kmem_cache_destroy(kvm_vcpu_cache);
3399         kvm_async_pf_deinit();
3400         unregister_syscore_ops(&kvm_syscore_ops);
3401         unregister_reboot_notifier(&kvm_reboot_notifier);
3402         unregister_cpu_notifier(&kvm_cpu_notifier);
3403         on_each_cpu(hardware_disable_nolock, NULL, 1);
3404         kvm_arch_hardware_unsetup();
3405         kvm_arch_exit();
3406         kvm_irqfd_exit();
3407         free_cpumask_var(cpus_hardware_enabled);
3408         kvm_vfio_ops_exit();
3409 }
3410 EXPORT_SYMBOL_GPL(kvm_exit);