Merge tag 'signed-kvm-ppc-next' of git://github.com/agraf/linux-2.6 into kvm
[firefly-linux-kernel-4.4.55.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 /*
68  * Ordering of locks:
69  *
70  *              kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71  */
72
73 DEFINE_SPINLOCK(kvm_lock);
74 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
75 LIST_HEAD(vm_list);
76
77 static cpumask_var_t cpus_hardware_enabled;
78 static int kvm_usage_count = 0;
79 static atomic_t hardware_enable_failed;
80
81 struct kmem_cache *kvm_vcpu_cache;
82 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
83
84 static __read_mostly struct preempt_ops kvm_preempt_ops;
85
86 struct dentry *kvm_debugfs_dir;
87
88 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
89                            unsigned long arg);
90 #ifdef CONFIG_COMPAT
91 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
92                                   unsigned long arg);
93 #endif
94 static int hardware_enable_all(void);
95 static void hardware_disable_all(void);
96
97 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
98 static void update_memslots(struct kvm_memslots *slots,
99                             struct kvm_memory_slot *new, u64 last_generation);
100
101 static void kvm_release_pfn_dirty(pfn_t pfn);
102 static void mark_page_dirty_in_slot(struct kvm *kvm,
103                                     struct kvm_memory_slot *memslot, gfn_t gfn);
104
105 __visible bool kvm_rebooting;
106 EXPORT_SYMBOL_GPL(kvm_rebooting);
107
108 static bool largepages_enabled = true;
109
110 bool kvm_is_mmio_pfn(pfn_t pfn)
111 {
112         if (pfn_valid(pfn))
113                 return PageReserved(pfn_to_page(pfn));
114
115         return true;
116 }
117
118 /*
119  * Switches to specified vcpu, until a matching vcpu_put()
120  */
121 int vcpu_load(struct kvm_vcpu *vcpu)
122 {
123         int cpu;
124
125         if (mutex_lock_killable(&vcpu->mutex))
126                 return -EINTR;
127         if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
128                 /* The thread running this VCPU changed. */
129                 struct pid *oldpid = vcpu->pid;
130                 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
131                 rcu_assign_pointer(vcpu->pid, newpid);
132                 synchronize_rcu();
133                 put_pid(oldpid);
134         }
135         cpu = get_cpu();
136         preempt_notifier_register(&vcpu->preempt_notifier);
137         kvm_arch_vcpu_load(vcpu, cpu);
138         put_cpu();
139         return 0;
140 }
141
142 void vcpu_put(struct kvm_vcpu *vcpu)
143 {
144         preempt_disable();
145         kvm_arch_vcpu_put(vcpu);
146         preempt_notifier_unregister(&vcpu->preempt_notifier);
147         preempt_enable();
148         mutex_unlock(&vcpu->mutex);
149 }
150
151 static void ack_flush(void *_completed)
152 {
153 }
154
155 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
156 {
157         int i, cpu, me;
158         cpumask_var_t cpus;
159         bool called = true;
160         struct kvm_vcpu *vcpu;
161
162         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
163
164         me = get_cpu();
165         kvm_for_each_vcpu(i, vcpu, kvm) {
166                 kvm_make_request(req, vcpu);
167                 cpu = vcpu->cpu;
168
169                 /* Set ->requests bit before we read ->mode */
170                 smp_mb();
171
172                 if (cpus != NULL && cpu != -1 && cpu != me &&
173                       kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
174                         cpumask_set_cpu(cpu, cpus);
175         }
176         if (unlikely(cpus == NULL))
177                 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
178         else if (!cpumask_empty(cpus))
179                 smp_call_function_many(cpus, ack_flush, NULL, 1);
180         else
181                 called = false;
182         put_cpu();
183         free_cpumask_var(cpus);
184         return called;
185 }
186
187 void kvm_flush_remote_tlbs(struct kvm *kvm)
188 {
189         long dirty_count = kvm->tlbs_dirty;
190
191         smp_mb();
192         if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
193                 ++kvm->stat.remote_tlb_flush;
194         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
195 }
196 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
197
198 void kvm_reload_remote_mmus(struct kvm *kvm)
199 {
200         make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
201 }
202
203 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
204 {
205         make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
206 }
207
208 void kvm_make_scan_ioapic_request(struct kvm *kvm)
209 {
210         make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
211 }
212
213 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
214 {
215         struct page *page;
216         int r;
217
218         mutex_init(&vcpu->mutex);
219         vcpu->cpu = -1;
220         vcpu->kvm = kvm;
221         vcpu->vcpu_id = id;
222         vcpu->pid = NULL;
223         init_waitqueue_head(&vcpu->wq);
224         kvm_async_pf_vcpu_init(vcpu);
225
226         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
227         if (!page) {
228                 r = -ENOMEM;
229                 goto fail;
230         }
231         vcpu->run = page_address(page);
232
233         kvm_vcpu_set_in_spin_loop(vcpu, false);
234         kvm_vcpu_set_dy_eligible(vcpu, false);
235         vcpu->preempted = false;
236
237         r = kvm_arch_vcpu_init(vcpu);
238         if (r < 0)
239                 goto fail_free_run;
240         return 0;
241
242 fail_free_run:
243         free_page((unsigned long)vcpu->run);
244 fail:
245         return r;
246 }
247 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
248
249 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
250 {
251         put_pid(vcpu->pid);
252         kvm_arch_vcpu_uninit(vcpu);
253         free_page((unsigned long)vcpu->run);
254 }
255 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
256
257 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
258 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
259 {
260         return container_of(mn, struct kvm, mmu_notifier);
261 }
262
263 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
264                                              struct mm_struct *mm,
265                                              unsigned long address)
266 {
267         struct kvm *kvm = mmu_notifier_to_kvm(mn);
268         int need_tlb_flush, idx;
269
270         /*
271          * When ->invalidate_page runs, the linux pte has been zapped
272          * already but the page is still allocated until
273          * ->invalidate_page returns. So if we increase the sequence
274          * here the kvm page fault will notice if the spte can't be
275          * established because the page is going to be freed. If
276          * instead the kvm page fault establishes the spte before
277          * ->invalidate_page runs, kvm_unmap_hva will release it
278          * before returning.
279          *
280          * The sequence increase only need to be seen at spin_unlock
281          * time, and not at spin_lock time.
282          *
283          * Increasing the sequence after the spin_unlock would be
284          * unsafe because the kvm page fault could then establish the
285          * pte after kvm_unmap_hva returned, without noticing the page
286          * is going to be freed.
287          */
288         idx = srcu_read_lock(&kvm->srcu);
289         spin_lock(&kvm->mmu_lock);
290
291         kvm->mmu_notifier_seq++;
292         need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
293         /* we've to flush the tlb before the pages can be freed */
294         if (need_tlb_flush)
295                 kvm_flush_remote_tlbs(kvm);
296
297         spin_unlock(&kvm->mmu_lock);
298         srcu_read_unlock(&kvm->srcu, idx);
299 }
300
301 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
302                                         struct mm_struct *mm,
303                                         unsigned long address,
304                                         pte_t pte)
305 {
306         struct kvm *kvm = mmu_notifier_to_kvm(mn);
307         int idx;
308
309         idx = srcu_read_lock(&kvm->srcu);
310         spin_lock(&kvm->mmu_lock);
311         kvm->mmu_notifier_seq++;
312         kvm_set_spte_hva(kvm, address, pte);
313         spin_unlock(&kvm->mmu_lock);
314         srcu_read_unlock(&kvm->srcu, idx);
315 }
316
317 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
318                                                     struct mm_struct *mm,
319                                                     unsigned long start,
320                                                     unsigned long end)
321 {
322         struct kvm *kvm = mmu_notifier_to_kvm(mn);
323         int need_tlb_flush = 0, idx;
324
325         idx = srcu_read_lock(&kvm->srcu);
326         spin_lock(&kvm->mmu_lock);
327         /*
328          * The count increase must become visible at unlock time as no
329          * spte can be established without taking the mmu_lock and
330          * count is also read inside the mmu_lock critical section.
331          */
332         kvm->mmu_notifier_count++;
333         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
334         need_tlb_flush |= kvm->tlbs_dirty;
335         /* we've to flush the tlb before the pages can be freed */
336         if (need_tlb_flush)
337                 kvm_flush_remote_tlbs(kvm);
338
339         spin_unlock(&kvm->mmu_lock);
340         srcu_read_unlock(&kvm->srcu, idx);
341 }
342
343 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
344                                                   struct mm_struct *mm,
345                                                   unsigned long start,
346                                                   unsigned long end)
347 {
348         struct kvm *kvm = mmu_notifier_to_kvm(mn);
349
350         spin_lock(&kvm->mmu_lock);
351         /*
352          * This sequence increase will notify the kvm page fault that
353          * the page that is going to be mapped in the spte could have
354          * been freed.
355          */
356         kvm->mmu_notifier_seq++;
357         smp_wmb();
358         /*
359          * The above sequence increase must be visible before the
360          * below count decrease, which is ensured by the smp_wmb above
361          * in conjunction with the smp_rmb in mmu_notifier_retry().
362          */
363         kvm->mmu_notifier_count--;
364         spin_unlock(&kvm->mmu_lock);
365
366         BUG_ON(kvm->mmu_notifier_count < 0);
367 }
368
369 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
370                                               struct mm_struct *mm,
371                                               unsigned long address)
372 {
373         struct kvm *kvm = mmu_notifier_to_kvm(mn);
374         int young, idx;
375
376         idx = srcu_read_lock(&kvm->srcu);
377         spin_lock(&kvm->mmu_lock);
378
379         young = kvm_age_hva(kvm, address);
380         if (young)
381                 kvm_flush_remote_tlbs(kvm);
382
383         spin_unlock(&kvm->mmu_lock);
384         srcu_read_unlock(&kvm->srcu, idx);
385
386         return young;
387 }
388
389 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
390                                        struct mm_struct *mm,
391                                        unsigned long address)
392 {
393         struct kvm *kvm = mmu_notifier_to_kvm(mn);
394         int young, idx;
395
396         idx = srcu_read_lock(&kvm->srcu);
397         spin_lock(&kvm->mmu_lock);
398         young = kvm_test_age_hva(kvm, address);
399         spin_unlock(&kvm->mmu_lock);
400         srcu_read_unlock(&kvm->srcu, idx);
401
402         return young;
403 }
404
405 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
406                                      struct mm_struct *mm)
407 {
408         struct kvm *kvm = mmu_notifier_to_kvm(mn);
409         int idx;
410
411         idx = srcu_read_lock(&kvm->srcu);
412         kvm_arch_flush_shadow_all(kvm);
413         srcu_read_unlock(&kvm->srcu, idx);
414 }
415
416 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
417         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
418         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
419         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
420         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
421         .test_young             = kvm_mmu_notifier_test_young,
422         .change_pte             = kvm_mmu_notifier_change_pte,
423         .release                = kvm_mmu_notifier_release,
424 };
425
426 static int kvm_init_mmu_notifier(struct kvm *kvm)
427 {
428         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
429         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
430 }
431
432 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
433
434 static int kvm_init_mmu_notifier(struct kvm *kvm)
435 {
436         return 0;
437 }
438
439 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
440
441 static void kvm_init_memslots_id(struct kvm *kvm)
442 {
443         int i;
444         struct kvm_memslots *slots = kvm->memslots;
445
446         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
447                 slots->id_to_index[i] = slots->memslots[i].id = i;
448 }
449
450 static struct kvm *kvm_create_vm(unsigned long type)
451 {
452         int r, i;
453         struct kvm *kvm = kvm_arch_alloc_vm();
454
455         if (!kvm)
456                 return ERR_PTR(-ENOMEM);
457
458         r = kvm_arch_init_vm(kvm, type);
459         if (r)
460                 goto out_err_no_disable;
461
462         r = hardware_enable_all();
463         if (r)
464                 goto out_err_no_disable;
465
466 #ifdef CONFIG_HAVE_KVM_IRQCHIP
467         INIT_HLIST_HEAD(&kvm->mask_notifier_list);
468         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
469 #endif
470
471         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
472
473         r = -ENOMEM;
474         kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
475         if (!kvm->memslots)
476                 goto out_err_no_srcu;
477         kvm_init_memslots_id(kvm);
478         if (init_srcu_struct(&kvm->srcu))
479                 goto out_err_no_srcu;
480         if (init_srcu_struct(&kvm->irq_srcu))
481                 goto out_err_no_irq_srcu;
482         for (i = 0; i < KVM_NR_BUSES; i++) {
483                 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
484                                         GFP_KERNEL);
485                 if (!kvm->buses[i])
486                         goto out_err;
487         }
488
489         spin_lock_init(&kvm->mmu_lock);
490         kvm->mm = current->mm;
491         atomic_inc(&kvm->mm->mm_count);
492         kvm_eventfd_init(kvm);
493         mutex_init(&kvm->lock);
494         mutex_init(&kvm->irq_lock);
495         mutex_init(&kvm->slots_lock);
496         atomic_set(&kvm->users_count, 1);
497         INIT_LIST_HEAD(&kvm->devices);
498
499         r = kvm_init_mmu_notifier(kvm);
500         if (r)
501                 goto out_err;
502
503         spin_lock(&kvm_lock);
504         list_add(&kvm->vm_list, &vm_list);
505         spin_unlock(&kvm_lock);
506
507         return kvm;
508
509 out_err:
510         cleanup_srcu_struct(&kvm->irq_srcu);
511 out_err_no_irq_srcu:
512         cleanup_srcu_struct(&kvm->srcu);
513 out_err_no_srcu:
514         hardware_disable_all();
515 out_err_no_disable:
516         for (i = 0; i < KVM_NR_BUSES; i++)
517                 kfree(kvm->buses[i]);
518         kfree(kvm->memslots);
519         kvm_arch_free_vm(kvm);
520         return ERR_PTR(r);
521 }
522
523 /*
524  * Avoid using vmalloc for a small buffer.
525  * Should not be used when the size is statically known.
526  */
527 void *kvm_kvzalloc(unsigned long size)
528 {
529         if (size > PAGE_SIZE)
530                 return vzalloc(size);
531         else
532                 return kzalloc(size, GFP_KERNEL);
533 }
534
535 void kvm_kvfree(const void *addr)
536 {
537         if (is_vmalloc_addr(addr))
538                 vfree(addr);
539         else
540                 kfree(addr);
541 }
542
543 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
544 {
545         if (!memslot->dirty_bitmap)
546                 return;
547
548         kvm_kvfree(memslot->dirty_bitmap);
549         memslot->dirty_bitmap = NULL;
550 }
551
552 /*
553  * Free any memory in @free but not in @dont.
554  */
555 static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free,
556                                   struct kvm_memory_slot *dont)
557 {
558         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
559                 kvm_destroy_dirty_bitmap(free);
560
561         kvm_arch_free_memslot(kvm, free, dont);
562
563         free->npages = 0;
564 }
565
566 static void kvm_free_physmem(struct kvm *kvm)
567 {
568         struct kvm_memslots *slots = kvm->memslots;
569         struct kvm_memory_slot *memslot;
570
571         kvm_for_each_memslot(memslot, slots)
572                 kvm_free_physmem_slot(kvm, memslot, NULL);
573
574         kfree(kvm->memslots);
575 }
576
577 static void kvm_destroy_devices(struct kvm *kvm)
578 {
579         struct list_head *node, *tmp;
580
581         list_for_each_safe(node, tmp, &kvm->devices) {
582                 struct kvm_device *dev =
583                         list_entry(node, struct kvm_device, vm_node);
584
585                 list_del(node);
586                 dev->ops->destroy(dev);
587         }
588 }
589
590 static void kvm_destroy_vm(struct kvm *kvm)
591 {
592         int i;
593         struct mm_struct *mm = kvm->mm;
594
595         kvm_arch_sync_events(kvm);
596         spin_lock(&kvm_lock);
597         list_del(&kvm->vm_list);
598         spin_unlock(&kvm_lock);
599         kvm_free_irq_routing(kvm);
600         for (i = 0; i < KVM_NR_BUSES; i++)
601                 kvm_io_bus_destroy(kvm->buses[i]);
602         kvm_coalesced_mmio_free(kvm);
603 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
604         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
605 #else
606         kvm_arch_flush_shadow_all(kvm);
607 #endif
608         kvm_arch_destroy_vm(kvm);
609         kvm_destroy_devices(kvm);
610         kvm_free_physmem(kvm);
611         cleanup_srcu_struct(&kvm->irq_srcu);
612         cleanup_srcu_struct(&kvm->srcu);
613         kvm_arch_free_vm(kvm);
614         hardware_disable_all();
615         mmdrop(mm);
616 }
617
618 void kvm_get_kvm(struct kvm *kvm)
619 {
620         atomic_inc(&kvm->users_count);
621 }
622 EXPORT_SYMBOL_GPL(kvm_get_kvm);
623
624 void kvm_put_kvm(struct kvm *kvm)
625 {
626         if (atomic_dec_and_test(&kvm->users_count))
627                 kvm_destroy_vm(kvm);
628 }
629 EXPORT_SYMBOL_GPL(kvm_put_kvm);
630
631
632 static int kvm_vm_release(struct inode *inode, struct file *filp)
633 {
634         struct kvm *kvm = filp->private_data;
635
636         kvm_irqfd_release(kvm);
637
638         kvm_put_kvm(kvm);
639         return 0;
640 }
641
642 /*
643  * Allocation size is twice as large as the actual dirty bitmap size.
644  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
645  */
646 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
647 {
648         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
649
650         memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
651         if (!memslot->dirty_bitmap)
652                 return -ENOMEM;
653
654         return 0;
655 }
656
657 static int cmp_memslot(const void *slot1, const void *slot2)
658 {
659         struct kvm_memory_slot *s1, *s2;
660
661         s1 = (struct kvm_memory_slot *)slot1;
662         s2 = (struct kvm_memory_slot *)slot2;
663
664         if (s1->npages < s2->npages)
665                 return 1;
666         if (s1->npages > s2->npages)
667                 return -1;
668
669         return 0;
670 }
671
672 /*
673  * Sort the memslots base on its size, so the larger slots
674  * will get better fit.
675  */
676 static void sort_memslots(struct kvm_memslots *slots)
677 {
678         int i;
679
680         sort(slots->memslots, KVM_MEM_SLOTS_NUM,
681               sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
682
683         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
684                 slots->id_to_index[slots->memslots[i].id] = i;
685 }
686
687 static void update_memslots(struct kvm_memslots *slots,
688                             struct kvm_memory_slot *new,
689                             u64 last_generation)
690 {
691         if (new) {
692                 int id = new->id;
693                 struct kvm_memory_slot *old = id_to_memslot(slots, id);
694                 unsigned long npages = old->npages;
695
696                 *old = *new;
697                 if (new->npages != npages)
698                         sort_memslots(slots);
699         }
700
701         slots->generation = last_generation + 1;
702 }
703
704 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
705 {
706         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
707
708 #ifdef KVM_CAP_READONLY_MEM
709         valid_flags |= KVM_MEM_READONLY;
710 #endif
711
712         if (mem->flags & ~valid_flags)
713                 return -EINVAL;
714
715         return 0;
716 }
717
718 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
719                 struct kvm_memslots *slots, struct kvm_memory_slot *new)
720 {
721         struct kvm_memslots *old_memslots = kvm->memslots;
722
723         update_memslots(slots, new, kvm->memslots->generation);
724         rcu_assign_pointer(kvm->memslots, slots);
725         synchronize_srcu_expedited(&kvm->srcu);
726
727         kvm_arch_memslots_updated(kvm);
728
729         return old_memslots;
730 }
731
732 /*
733  * Allocate some memory and give it an address in the guest physical address
734  * space.
735  *
736  * Discontiguous memory is allowed, mostly for framebuffers.
737  *
738  * Must be called holding mmap_sem for write.
739  */
740 int __kvm_set_memory_region(struct kvm *kvm,
741                             struct kvm_userspace_memory_region *mem)
742 {
743         int r;
744         gfn_t base_gfn;
745         unsigned long npages;
746         struct kvm_memory_slot *slot;
747         struct kvm_memory_slot old, new;
748         struct kvm_memslots *slots = NULL, *old_memslots;
749         enum kvm_mr_change change;
750
751         r = check_memory_region_flags(mem);
752         if (r)
753                 goto out;
754
755         r = -EINVAL;
756         /* General sanity checks */
757         if (mem->memory_size & (PAGE_SIZE - 1))
758                 goto out;
759         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
760                 goto out;
761         /* We can read the guest memory with __xxx_user() later on. */
762         if ((mem->slot < KVM_USER_MEM_SLOTS) &&
763             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
764              !access_ok(VERIFY_WRITE,
765                         (void __user *)(unsigned long)mem->userspace_addr,
766                         mem->memory_size)))
767                 goto out;
768         if (mem->slot >= KVM_MEM_SLOTS_NUM)
769                 goto out;
770         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
771                 goto out;
772
773         slot = id_to_memslot(kvm->memslots, mem->slot);
774         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
775         npages = mem->memory_size >> PAGE_SHIFT;
776
777         r = -EINVAL;
778         if (npages > KVM_MEM_MAX_NR_PAGES)
779                 goto out;
780
781         if (!npages)
782                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
783
784         new = old = *slot;
785
786         new.id = mem->slot;
787         new.base_gfn = base_gfn;
788         new.npages = npages;
789         new.flags = mem->flags;
790
791         r = -EINVAL;
792         if (npages) {
793                 if (!old.npages)
794                         change = KVM_MR_CREATE;
795                 else { /* Modify an existing slot. */
796                         if ((mem->userspace_addr != old.userspace_addr) ||
797                             (npages != old.npages) ||
798                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
799                                 goto out;
800
801                         if (base_gfn != old.base_gfn)
802                                 change = KVM_MR_MOVE;
803                         else if (new.flags != old.flags)
804                                 change = KVM_MR_FLAGS_ONLY;
805                         else { /* Nothing to change. */
806                                 r = 0;
807                                 goto out;
808                         }
809                 }
810         } else if (old.npages) {
811                 change = KVM_MR_DELETE;
812         } else /* Modify a non-existent slot: disallowed. */
813                 goto out;
814
815         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
816                 /* Check for overlaps */
817                 r = -EEXIST;
818                 kvm_for_each_memslot(slot, kvm->memslots) {
819                         if ((slot->id >= KVM_USER_MEM_SLOTS) ||
820                             (slot->id == mem->slot))
821                                 continue;
822                         if (!((base_gfn + npages <= slot->base_gfn) ||
823                               (base_gfn >= slot->base_gfn + slot->npages)))
824                                 goto out;
825                 }
826         }
827
828         /* Free page dirty bitmap if unneeded */
829         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
830                 new.dirty_bitmap = NULL;
831
832         r = -ENOMEM;
833         if (change == KVM_MR_CREATE) {
834                 new.userspace_addr = mem->userspace_addr;
835
836                 if (kvm_arch_create_memslot(kvm, &new, npages))
837                         goto out_free;
838         }
839
840         /* Allocate page dirty bitmap if needed */
841         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
842                 if (kvm_create_dirty_bitmap(&new) < 0)
843                         goto out_free;
844         }
845
846         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
847                 r = -ENOMEM;
848                 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
849                                 GFP_KERNEL);
850                 if (!slots)
851                         goto out_free;
852                 slot = id_to_memslot(slots, mem->slot);
853                 slot->flags |= KVM_MEMSLOT_INVALID;
854
855                 old_memslots = install_new_memslots(kvm, slots, NULL);
856
857                 /* slot was deleted or moved, clear iommu mapping */
858                 kvm_iommu_unmap_pages(kvm, &old);
859                 /* From this point no new shadow pages pointing to a deleted,
860                  * or moved, memslot will be created.
861                  *
862                  * validation of sp->gfn happens in:
863                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
864                  *      - kvm_is_visible_gfn (mmu_check_roots)
865                  */
866                 kvm_arch_flush_shadow_memslot(kvm, slot);
867                 slots = old_memslots;
868         }
869
870         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
871         if (r)
872                 goto out_slots;
873
874         r = -ENOMEM;
875         /*
876          * We can re-use the old_memslots from above, the only difference
877          * from the currently installed memslots is the invalid flag.  This
878          * will get overwritten by update_memslots anyway.
879          */
880         if (!slots) {
881                 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
882                                 GFP_KERNEL);
883                 if (!slots)
884                         goto out_free;
885         }
886
887         /* actual memory is freed via old in kvm_free_physmem_slot below */
888         if (change == KVM_MR_DELETE) {
889                 new.dirty_bitmap = NULL;
890                 memset(&new.arch, 0, sizeof(new.arch));
891         }
892
893         old_memslots = install_new_memslots(kvm, slots, &new);
894
895         kvm_arch_commit_memory_region(kvm, mem, &old, change);
896
897         kvm_free_physmem_slot(kvm, &old, &new);
898         kfree(old_memslots);
899
900         /*
901          * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
902          * un-mapped and re-mapped if their base changes.  Since base change
903          * unmapping is handled above with slot deletion, mapping alone is
904          * needed here.  Anything else the iommu might care about for existing
905          * slots (size changes, userspace addr changes and read-only flag
906          * changes) is disallowed above, so any other attribute changes getting
907          * here can be skipped.
908          */
909         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
910                 r = kvm_iommu_map_pages(kvm, &new);
911                 return r;
912         }
913
914         return 0;
915
916 out_slots:
917         kfree(slots);
918 out_free:
919         kvm_free_physmem_slot(kvm, &new, &old);
920 out:
921         return r;
922 }
923 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
924
925 int kvm_set_memory_region(struct kvm *kvm,
926                           struct kvm_userspace_memory_region *mem)
927 {
928         int r;
929
930         mutex_lock(&kvm->slots_lock);
931         r = __kvm_set_memory_region(kvm, mem);
932         mutex_unlock(&kvm->slots_lock);
933         return r;
934 }
935 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
936
937 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
938                                           struct kvm_userspace_memory_region *mem)
939 {
940         if (mem->slot >= KVM_USER_MEM_SLOTS)
941                 return -EINVAL;
942         return kvm_set_memory_region(kvm, mem);
943 }
944
945 int kvm_get_dirty_log(struct kvm *kvm,
946                         struct kvm_dirty_log *log, int *is_dirty)
947 {
948         struct kvm_memory_slot *memslot;
949         int r, i;
950         unsigned long n;
951         unsigned long any = 0;
952
953         r = -EINVAL;
954         if (log->slot >= KVM_USER_MEM_SLOTS)
955                 goto out;
956
957         memslot = id_to_memslot(kvm->memslots, log->slot);
958         r = -ENOENT;
959         if (!memslot->dirty_bitmap)
960                 goto out;
961
962         n = kvm_dirty_bitmap_bytes(memslot);
963
964         for (i = 0; !any && i < n/sizeof(long); ++i)
965                 any = memslot->dirty_bitmap[i];
966
967         r = -EFAULT;
968         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
969                 goto out;
970
971         if (any)
972                 *is_dirty = 1;
973
974         r = 0;
975 out:
976         return r;
977 }
978 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
979
980 bool kvm_largepages_enabled(void)
981 {
982         return largepages_enabled;
983 }
984
985 void kvm_disable_largepages(void)
986 {
987         largepages_enabled = false;
988 }
989 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
990
991 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
992 {
993         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
994 }
995 EXPORT_SYMBOL_GPL(gfn_to_memslot);
996
997 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
998 {
999         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1000
1001         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1002               memslot->flags & KVM_MEMSLOT_INVALID)
1003                 return 0;
1004
1005         return 1;
1006 }
1007 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1008
1009 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1010 {
1011         struct vm_area_struct *vma;
1012         unsigned long addr, size;
1013
1014         size = PAGE_SIZE;
1015
1016         addr = gfn_to_hva(kvm, gfn);
1017         if (kvm_is_error_hva(addr))
1018                 return PAGE_SIZE;
1019
1020         down_read(&current->mm->mmap_sem);
1021         vma = find_vma(current->mm, addr);
1022         if (!vma)
1023                 goto out;
1024
1025         size = vma_kernel_pagesize(vma);
1026
1027 out:
1028         up_read(&current->mm->mmap_sem);
1029
1030         return size;
1031 }
1032
1033 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1034 {
1035         return slot->flags & KVM_MEM_READONLY;
1036 }
1037
1038 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1039                                        gfn_t *nr_pages, bool write)
1040 {
1041         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1042                 return KVM_HVA_ERR_BAD;
1043
1044         if (memslot_is_readonly(slot) && write)
1045                 return KVM_HVA_ERR_RO_BAD;
1046
1047         if (nr_pages)
1048                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1049
1050         return __gfn_to_hva_memslot(slot, gfn);
1051 }
1052
1053 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1054                                      gfn_t *nr_pages)
1055 {
1056         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1057 }
1058
1059 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1060                                         gfn_t gfn)
1061 {
1062         return gfn_to_hva_many(slot, gfn, NULL);
1063 }
1064 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1065
1066 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1067 {
1068         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1069 }
1070 EXPORT_SYMBOL_GPL(gfn_to_hva);
1071
1072 /*
1073  * If writable is set to false, the hva returned by this function is only
1074  * allowed to be read.
1075  */
1076 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1077 {
1078         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1079         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1080
1081         if (!kvm_is_error_hva(hva) && writable)
1082                 *writable = !memslot_is_readonly(slot);
1083
1084         return hva;
1085 }
1086
1087 static int kvm_read_hva(void *data, void __user *hva, int len)
1088 {
1089         return __copy_from_user(data, hva, len);
1090 }
1091
1092 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1093 {
1094         return __copy_from_user_inatomic(data, hva, len);
1095 }
1096
1097 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1098         unsigned long start, int write, struct page **page)
1099 {
1100         int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1101
1102         if (write)
1103                 flags |= FOLL_WRITE;
1104
1105         return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1106 }
1107
1108 static inline int check_user_page_hwpoison(unsigned long addr)
1109 {
1110         int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1111
1112         rc = __get_user_pages(current, current->mm, addr, 1,
1113                               flags, NULL, NULL, NULL);
1114         return rc == -EHWPOISON;
1115 }
1116
1117 /*
1118  * The atomic path to get the writable pfn which will be stored in @pfn,
1119  * true indicates success, otherwise false is returned.
1120  */
1121 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1122                             bool write_fault, bool *writable, pfn_t *pfn)
1123 {
1124         struct page *page[1];
1125         int npages;
1126
1127         if (!(async || atomic))
1128                 return false;
1129
1130         /*
1131          * Fast pin a writable pfn only if it is a write fault request
1132          * or the caller allows to map a writable pfn for a read fault
1133          * request.
1134          */
1135         if (!(write_fault || writable))
1136                 return false;
1137
1138         npages = __get_user_pages_fast(addr, 1, 1, page);
1139         if (npages == 1) {
1140                 *pfn = page_to_pfn(page[0]);
1141
1142                 if (writable)
1143                         *writable = true;
1144                 return true;
1145         }
1146
1147         return false;
1148 }
1149
1150 /*
1151  * The slow path to get the pfn of the specified host virtual address,
1152  * 1 indicates success, -errno is returned if error is detected.
1153  */
1154 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1155                            bool *writable, pfn_t *pfn)
1156 {
1157         struct page *page[1];
1158         int npages = 0;
1159
1160         might_sleep();
1161
1162         if (writable)
1163                 *writable = write_fault;
1164
1165         if (async) {
1166                 down_read(&current->mm->mmap_sem);
1167                 npages = get_user_page_nowait(current, current->mm,
1168                                               addr, write_fault, page);
1169                 up_read(&current->mm->mmap_sem);
1170         } else
1171                 npages = get_user_pages_fast(addr, 1, write_fault,
1172                                              page);
1173         if (npages != 1)
1174                 return npages;
1175
1176         /* map read fault as writable if possible */
1177         if (unlikely(!write_fault) && writable) {
1178                 struct page *wpage[1];
1179
1180                 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1181                 if (npages == 1) {
1182                         *writable = true;
1183                         put_page(page[0]);
1184                         page[0] = wpage[0];
1185                 }
1186
1187                 npages = 1;
1188         }
1189         *pfn = page_to_pfn(page[0]);
1190         return npages;
1191 }
1192
1193 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1194 {
1195         if (unlikely(!(vma->vm_flags & VM_READ)))
1196                 return false;
1197
1198         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1199                 return false;
1200
1201         return true;
1202 }
1203
1204 /*
1205  * Pin guest page in memory and return its pfn.
1206  * @addr: host virtual address which maps memory to the guest
1207  * @atomic: whether this function can sleep
1208  * @async: whether this function need to wait IO complete if the
1209  *         host page is not in the memory
1210  * @write_fault: whether we should get a writable host page
1211  * @writable: whether it allows to map a writable host page for !@write_fault
1212  *
1213  * The function will map a writable host page for these two cases:
1214  * 1): @write_fault = true
1215  * 2): @write_fault = false && @writable, @writable will tell the caller
1216  *     whether the mapping is writable.
1217  */
1218 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1219                         bool write_fault, bool *writable)
1220 {
1221         struct vm_area_struct *vma;
1222         pfn_t pfn = 0;
1223         int npages;
1224
1225         /* we can do it either atomically or asynchronously, not both */
1226         BUG_ON(atomic && async);
1227
1228         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1229                 return pfn;
1230
1231         if (atomic)
1232                 return KVM_PFN_ERR_FAULT;
1233
1234         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1235         if (npages == 1)
1236                 return pfn;
1237
1238         down_read(&current->mm->mmap_sem);
1239         if (npages == -EHWPOISON ||
1240               (!async && check_user_page_hwpoison(addr))) {
1241                 pfn = KVM_PFN_ERR_HWPOISON;
1242                 goto exit;
1243         }
1244
1245         vma = find_vma_intersection(current->mm, addr, addr + 1);
1246
1247         if (vma == NULL)
1248                 pfn = KVM_PFN_ERR_FAULT;
1249         else if ((vma->vm_flags & VM_PFNMAP)) {
1250                 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1251                         vma->vm_pgoff;
1252                 BUG_ON(!kvm_is_mmio_pfn(pfn));
1253         } else {
1254                 if (async && vma_is_valid(vma, write_fault))
1255                         *async = true;
1256                 pfn = KVM_PFN_ERR_FAULT;
1257         }
1258 exit:
1259         up_read(&current->mm->mmap_sem);
1260         return pfn;
1261 }
1262
1263 static pfn_t
1264 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1265                      bool *async, bool write_fault, bool *writable)
1266 {
1267         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1268
1269         if (addr == KVM_HVA_ERR_RO_BAD)
1270                 return KVM_PFN_ERR_RO_FAULT;
1271
1272         if (kvm_is_error_hva(addr))
1273                 return KVM_PFN_NOSLOT;
1274
1275         /* Do not map writable pfn in the readonly memslot. */
1276         if (writable && memslot_is_readonly(slot)) {
1277                 *writable = false;
1278                 writable = NULL;
1279         }
1280
1281         return hva_to_pfn(addr, atomic, async, write_fault,
1282                           writable);
1283 }
1284
1285 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1286                           bool write_fault, bool *writable)
1287 {
1288         struct kvm_memory_slot *slot;
1289
1290         if (async)
1291                 *async = false;
1292
1293         slot = gfn_to_memslot(kvm, gfn);
1294
1295         return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1296                                     writable);
1297 }
1298
1299 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1300 {
1301         return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1302 }
1303 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1304
1305 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1306                        bool write_fault, bool *writable)
1307 {
1308         return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1309 }
1310 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1311
1312 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1313 {
1314         return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1315 }
1316 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1317
1318 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1319                       bool *writable)
1320 {
1321         return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1322 }
1323 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1324
1325 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1326 {
1327         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1328 }
1329
1330 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1331 {
1332         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1333 }
1334 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1335
1336 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1337                                                                   int nr_pages)
1338 {
1339         unsigned long addr;
1340         gfn_t entry;
1341
1342         addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1343         if (kvm_is_error_hva(addr))
1344                 return -1;
1345
1346         if (entry < nr_pages)
1347                 return 0;
1348
1349         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1350 }
1351 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1352
1353 static struct page *kvm_pfn_to_page(pfn_t pfn)
1354 {
1355         if (is_error_noslot_pfn(pfn))
1356                 return KVM_ERR_PTR_BAD_PAGE;
1357
1358         if (kvm_is_mmio_pfn(pfn)) {
1359                 WARN_ON(1);
1360                 return KVM_ERR_PTR_BAD_PAGE;
1361         }
1362
1363         return pfn_to_page(pfn);
1364 }
1365
1366 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1367 {
1368         pfn_t pfn;
1369
1370         pfn = gfn_to_pfn(kvm, gfn);
1371
1372         return kvm_pfn_to_page(pfn);
1373 }
1374
1375 EXPORT_SYMBOL_GPL(gfn_to_page);
1376
1377 void kvm_release_page_clean(struct page *page)
1378 {
1379         WARN_ON(is_error_page(page));
1380
1381         kvm_release_pfn_clean(page_to_pfn(page));
1382 }
1383 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1384
1385 void kvm_release_pfn_clean(pfn_t pfn)
1386 {
1387         if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1388                 put_page(pfn_to_page(pfn));
1389 }
1390 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1391
1392 void kvm_release_page_dirty(struct page *page)
1393 {
1394         WARN_ON(is_error_page(page));
1395
1396         kvm_release_pfn_dirty(page_to_pfn(page));
1397 }
1398 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1399
1400 static void kvm_release_pfn_dirty(pfn_t pfn)
1401 {
1402         kvm_set_pfn_dirty(pfn);
1403         kvm_release_pfn_clean(pfn);
1404 }
1405
1406 void kvm_set_pfn_dirty(pfn_t pfn)
1407 {
1408         if (!kvm_is_mmio_pfn(pfn)) {
1409                 struct page *page = pfn_to_page(pfn);
1410                 if (!PageReserved(page))
1411                         SetPageDirty(page);
1412         }
1413 }
1414 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1415
1416 void kvm_set_pfn_accessed(pfn_t pfn)
1417 {
1418         if (!kvm_is_mmio_pfn(pfn))
1419                 mark_page_accessed(pfn_to_page(pfn));
1420 }
1421 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1422
1423 void kvm_get_pfn(pfn_t pfn)
1424 {
1425         if (!kvm_is_mmio_pfn(pfn))
1426                 get_page(pfn_to_page(pfn));
1427 }
1428 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1429
1430 static int next_segment(unsigned long len, int offset)
1431 {
1432         if (len > PAGE_SIZE - offset)
1433                 return PAGE_SIZE - offset;
1434         else
1435                 return len;
1436 }
1437
1438 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1439                         int len)
1440 {
1441         int r;
1442         unsigned long addr;
1443
1444         addr = gfn_to_hva_prot(kvm, gfn, NULL);
1445         if (kvm_is_error_hva(addr))
1446                 return -EFAULT;
1447         r = kvm_read_hva(data, (void __user *)addr + offset, len);
1448         if (r)
1449                 return -EFAULT;
1450         return 0;
1451 }
1452 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1453
1454 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1455 {
1456         gfn_t gfn = gpa >> PAGE_SHIFT;
1457         int seg;
1458         int offset = offset_in_page(gpa);
1459         int ret;
1460
1461         while ((seg = next_segment(len, offset)) != 0) {
1462                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1463                 if (ret < 0)
1464                         return ret;
1465                 offset = 0;
1466                 len -= seg;
1467                 data += seg;
1468                 ++gfn;
1469         }
1470         return 0;
1471 }
1472 EXPORT_SYMBOL_GPL(kvm_read_guest);
1473
1474 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1475                           unsigned long len)
1476 {
1477         int r;
1478         unsigned long addr;
1479         gfn_t gfn = gpa >> PAGE_SHIFT;
1480         int offset = offset_in_page(gpa);
1481
1482         addr = gfn_to_hva_prot(kvm, gfn, NULL);
1483         if (kvm_is_error_hva(addr))
1484                 return -EFAULT;
1485         pagefault_disable();
1486         r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1487         pagefault_enable();
1488         if (r)
1489                 return -EFAULT;
1490         return 0;
1491 }
1492 EXPORT_SYMBOL(kvm_read_guest_atomic);
1493
1494 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1495                          int offset, int len)
1496 {
1497         int r;
1498         unsigned long addr;
1499
1500         addr = gfn_to_hva(kvm, gfn);
1501         if (kvm_is_error_hva(addr))
1502                 return -EFAULT;
1503         r = __copy_to_user((void __user *)addr + offset, data, len);
1504         if (r)
1505                 return -EFAULT;
1506         mark_page_dirty(kvm, gfn);
1507         return 0;
1508 }
1509 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1510
1511 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1512                     unsigned long len)
1513 {
1514         gfn_t gfn = gpa >> PAGE_SHIFT;
1515         int seg;
1516         int offset = offset_in_page(gpa);
1517         int ret;
1518
1519         while ((seg = next_segment(len, offset)) != 0) {
1520                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1521                 if (ret < 0)
1522                         return ret;
1523                 offset = 0;
1524                 len -= seg;
1525                 data += seg;
1526                 ++gfn;
1527         }
1528         return 0;
1529 }
1530
1531 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1532                               gpa_t gpa, unsigned long len)
1533 {
1534         struct kvm_memslots *slots = kvm_memslots(kvm);
1535         int offset = offset_in_page(gpa);
1536         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1537         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1538         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1539         gfn_t nr_pages_avail;
1540
1541         ghc->gpa = gpa;
1542         ghc->generation = slots->generation;
1543         ghc->len = len;
1544         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1545         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
1546         if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
1547                 ghc->hva += offset;
1548         } else {
1549                 /*
1550                  * If the requested region crosses two memslots, we still
1551                  * verify that the entire region is valid here.
1552                  */
1553                 while (start_gfn <= end_gfn) {
1554                         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1555                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1556                                                    &nr_pages_avail);
1557                         if (kvm_is_error_hva(ghc->hva))
1558                                 return -EFAULT;
1559                         start_gfn += nr_pages_avail;
1560                 }
1561                 /* Use the slow path for cross page reads and writes. */
1562                 ghc->memslot = NULL;
1563         }
1564         return 0;
1565 }
1566 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1567
1568 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1569                            void *data, unsigned long len)
1570 {
1571         struct kvm_memslots *slots = kvm_memslots(kvm);
1572         int r;
1573
1574         BUG_ON(len > ghc->len);
1575
1576         if (slots->generation != ghc->generation)
1577                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1578
1579         if (unlikely(!ghc->memslot))
1580                 return kvm_write_guest(kvm, ghc->gpa, data, len);
1581
1582         if (kvm_is_error_hva(ghc->hva))
1583                 return -EFAULT;
1584
1585         r = __copy_to_user((void __user *)ghc->hva, data, len);
1586         if (r)
1587                 return -EFAULT;
1588         mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1589
1590         return 0;
1591 }
1592 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1593
1594 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1595                            void *data, unsigned long len)
1596 {
1597         struct kvm_memslots *slots = kvm_memslots(kvm);
1598         int r;
1599
1600         BUG_ON(len > ghc->len);
1601
1602         if (slots->generation != ghc->generation)
1603                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1604
1605         if (unlikely(!ghc->memslot))
1606                 return kvm_read_guest(kvm, ghc->gpa, data, len);
1607
1608         if (kvm_is_error_hva(ghc->hva))
1609                 return -EFAULT;
1610
1611         r = __copy_from_user(data, (void __user *)ghc->hva, len);
1612         if (r)
1613                 return -EFAULT;
1614
1615         return 0;
1616 }
1617 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1618
1619 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1620 {
1621         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1622
1623         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1624 }
1625 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1626
1627 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1628 {
1629         gfn_t gfn = gpa >> PAGE_SHIFT;
1630         int seg;
1631         int offset = offset_in_page(gpa);
1632         int ret;
1633
1634         while ((seg = next_segment(len, offset)) != 0) {
1635                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1636                 if (ret < 0)
1637                         return ret;
1638                 offset = 0;
1639                 len -= seg;
1640                 ++gfn;
1641         }
1642         return 0;
1643 }
1644 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1645
1646 static void mark_page_dirty_in_slot(struct kvm *kvm,
1647                                     struct kvm_memory_slot *memslot,
1648                                     gfn_t gfn)
1649 {
1650         if (memslot && memslot->dirty_bitmap) {
1651                 unsigned long rel_gfn = gfn - memslot->base_gfn;
1652
1653                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1654         }
1655 }
1656
1657 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1658 {
1659         struct kvm_memory_slot *memslot;
1660
1661         memslot = gfn_to_memslot(kvm, gfn);
1662         mark_page_dirty_in_slot(kvm, memslot, gfn);
1663 }
1664 EXPORT_SYMBOL_GPL(mark_page_dirty);
1665
1666 /*
1667  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1668  */
1669 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1670 {
1671         DEFINE_WAIT(wait);
1672
1673         for (;;) {
1674                 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1675
1676                 if (kvm_arch_vcpu_runnable(vcpu)) {
1677                         kvm_make_request(KVM_REQ_UNHALT, vcpu);
1678                         break;
1679                 }
1680                 if (kvm_cpu_has_pending_timer(vcpu))
1681                         break;
1682                 if (signal_pending(current))
1683                         break;
1684
1685                 schedule();
1686         }
1687
1688         finish_wait(&vcpu->wq, &wait);
1689 }
1690 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
1691
1692 #ifndef CONFIG_S390
1693 /*
1694  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1695  */
1696 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1697 {
1698         int me;
1699         int cpu = vcpu->cpu;
1700         wait_queue_head_t *wqp;
1701
1702         wqp = kvm_arch_vcpu_wq(vcpu);
1703         if (waitqueue_active(wqp)) {
1704                 wake_up_interruptible(wqp);
1705                 ++vcpu->stat.halt_wakeup;
1706         }
1707
1708         me = get_cpu();
1709         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1710                 if (kvm_arch_vcpu_should_kick(vcpu))
1711                         smp_send_reschedule(cpu);
1712         put_cpu();
1713 }
1714 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1715 #endif /* !CONFIG_S390 */
1716
1717 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
1718 {
1719         struct pid *pid;
1720         struct task_struct *task = NULL;
1721         int ret = 0;
1722
1723         rcu_read_lock();
1724         pid = rcu_dereference(target->pid);
1725         if (pid)
1726                 task = get_pid_task(target->pid, PIDTYPE_PID);
1727         rcu_read_unlock();
1728         if (!task)
1729                 return ret;
1730         if (task->flags & PF_VCPU) {
1731                 put_task_struct(task);
1732                 return ret;
1733         }
1734         ret = yield_to(task, 1);
1735         put_task_struct(task);
1736
1737         return ret;
1738 }
1739 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1740
1741 /*
1742  * Helper that checks whether a VCPU is eligible for directed yield.
1743  * Most eligible candidate to yield is decided by following heuristics:
1744  *
1745  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1746  *  (preempted lock holder), indicated by @in_spin_loop.
1747  *  Set at the beiginning and cleared at the end of interception/PLE handler.
1748  *
1749  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1750  *  chance last time (mostly it has become eligible now since we have probably
1751  *  yielded to lockholder in last iteration. This is done by toggling
1752  *  @dy_eligible each time a VCPU checked for eligibility.)
1753  *
1754  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1755  *  to preempted lock-holder could result in wrong VCPU selection and CPU
1756  *  burning. Giving priority for a potential lock-holder increases lock
1757  *  progress.
1758  *
1759  *  Since algorithm is based on heuristics, accessing another VCPU data without
1760  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
1761  *  and continue with next VCPU and so on.
1762  */
1763 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1764 {
1765 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1766         bool eligible;
1767
1768         eligible = !vcpu->spin_loop.in_spin_loop ||
1769                         (vcpu->spin_loop.in_spin_loop &&
1770                          vcpu->spin_loop.dy_eligible);
1771
1772         if (vcpu->spin_loop.in_spin_loop)
1773                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1774
1775         return eligible;
1776 #else
1777         return true;
1778 #endif
1779 }
1780
1781 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1782 {
1783         struct kvm *kvm = me->kvm;
1784         struct kvm_vcpu *vcpu;
1785         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1786         int yielded = 0;
1787         int try = 3;
1788         int pass;
1789         int i;
1790
1791         kvm_vcpu_set_in_spin_loop(me, true);
1792         /*
1793          * We boost the priority of a VCPU that is runnable but not
1794          * currently running, because it got preempted by something
1795          * else and called schedule in __vcpu_run.  Hopefully that
1796          * VCPU is holding the lock that we need and will release it.
1797          * We approximate round-robin by starting at the last boosted VCPU.
1798          */
1799         for (pass = 0; pass < 2 && !yielded && try; pass++) {
1800                 kvm_for_each_vcpu(i, vcpu, kvm) {
1801                         if (!pass && i <= last_boosted_vcpu) {
1802                                 i = last_boosted_vcpu;
1803                                 continue;
1804                         } else if (pass && i > last_boosted_vcpu)
1805                                 break;
1806                         if (!ACCESS_ONCE(vcpu->preempted))
1807                                 continue;
1808                         if (vcpu == me)
1809                                 continue;
1810                         if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
1811                                 continue;
1812                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1813                                 continue;
1814
1815                         yielded = kvm_vcpu_yield_to(vcpu);
1816                         if (yielded > 0) {
1817                                 kvm->last_boosted_vcpu = i;
1818                                 break;
1819                         } else if (yielded < 0) {
1820                                 try--;
1821                                 if (!try)
1822                                         break;
1823                         }
1824                 }
1825         }
1826         kvm_vcpu_set_in_spin_loop(me, false);
1827
1828         /* Ensure vcpu is not eligible during next spinloop */
1829         kvm_vcpu_set_dy_eligible(me, false);
1830 }
1831 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1832
1833 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1834 {
1835         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1836         struct page *page;
1837
1838         if (vmf->pgoff == 0)
1839                 page = virt_to_page(vcpu->run);
1840 #ifdef CONFIG_X86
1841         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1842                 page = virt_to_page(vcpu->arch.pio_data);
1843 #endif
1844 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1845         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1846                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1847 #endif
1848         else
1849                 return kvm_arch_vcpu_fault(vcpu, vmf);
1850         get_page(page);
1851         vmf->page = page;
1852         return 0;
1853 }
1854
1855 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1856         .fault = kvm_vcpu_fault,
1857 };
1858
1859 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1860 {
1861         vma->vm_ops = &kvm_vcpu_vm_ops;
1862         return 0;
1863 }
1864
1865 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1866 {
1867         struct kvm_vcpu *vcpu = filp->private_data;
1868
1869         kvm_put_kvm(vcpu->kvm);
1870         return 0;
1871 }
1872
1873 static struct file_operations kvm_vcpu_fops = {
1874         .release        = kvm_vcpu_release,
1875         .unlocked_ioctl = kvm_vcpu_ioctl,
1876 #ifdef CONFIG_COMPAT
1877         .compat_ioctl   = kvm_vcpu_compat_ioctl,
1878 #endif
1879         .mmap           = kvm_vcpu_mmap,
1880         .llseek         = noop_llseek,
1881 };
1882
1883 /*
1884  * Allocates an inode for the vcpu.
1885  */
1886 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1887 {
1888         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
1889 }
1890
1891 /*
1892  * Creates some virtual cpus.  Good luck creating more than one.
1893  */
1894 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1895 {
1896         int r;
1897         struct kvm_vcpu *vcpu, *v;
1898
1899         if (id >= KVM_MAX_VCPUS)
1900                 return -EINVAL;
1901
1902         vcpu = kvm_arch_vcpu_create(kvm, id);
1903         if (IS_ERR(vcpu))
1904                 return PTR_ERR(vcpu);
1905
1906         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1907
1908         r = kvm_arch_vcpu_setup(vcpu);
1909         if (r)
1910                 goto vcpu_destroy;
1911
1912         mutex_lock(&kvm->lock);
1913         if (!kvm_vcpu_compatible(vcpu)) {
1914                 r = -EINVAL;
1915                 goto unlock_vcpu_destroy;
1916         }
1917         if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1918                 r = -EINVAL;
1919                 goto unlock_vcpu_destroy;
1920         }
1921
1922         kvm_for_each_vcpu(r, v, kvm)
1923                 if (v->vcpu_id == id) {
1924                         r = -EEXIST;
1925                         goto unlock_vcpu_destroy;
1926                 }
1927
1928         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1929
1930         /* Now it's all set up, let userspace reach it */
1931         kvm_get_kvm(kvm);
1932         r = create_vcpu_fd(vcpu);
1933         if (r < 0) {
1934                 kvm_put_kvm(kvm);
1935                 goto unlock_vcpu_destroy;
1936         }
1937
1938         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1939         smp_wmb();
1940         atomic_inc(&kvm->online_vcpus);
1941
1942         mutex_unlock(&kvm->lock);
1943         kvm_arch_vcpu_postcreate(vcpu);
1944         return r;
1945
1946 unlock_vcpu_destroy:
1947         mutex_unlock(&kvm->lock);
1948 vcpu_destroy:
1949         kvm_arch_vcpu_destroy(vcpu);
1950         return r;
1951 }
1952
1953 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1954 {
1955         if (sigset) {
1956                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1957                 vcpu->sigset_active = 1;
1958                 vcpu->sigset = *sigset;
1959         } else
1960                 vcpu->sigset_active = 0;
1961         return 0;
1962 }
1963
1964 static long kvm_vcpu_ioctl(struct file *filp,
1965                            unsigned int ioctl, unsigned long arg)
1966 {
1967         struct kvm_vcpu *vcpu = filp->private_data;
1968         void __user *argp = (void __user *)arg;
1969         int r;
1970         struct kvm_fpu *fpu = NULL;
1971         struct kvm_sregs *kvm_sregs = NULL;
1972
1973         if (vcpu->kvm->mm != current->mm)
1974                 return -EIO;
1975
1976 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
1977         /*
1978          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1979          * so vcpu_load() would break it.
1980          */
1981         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1982                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1983 #endif
1984
1985
1986         r = vcpu_load(vcpu);
1987         if (r)
1988                 return r;
1989         switch (ioctl) {
1990         case KVM_RUN:
1991                 r = -EINVAL;
1992                 if (arg)
1993                         goto out;
1994                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1995                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1996                 break;
1997         case KVM_GET_REGS: {
1998                 struct kvm_regs *kvm_regs;
1999
2000                 r = -ENOMEM;
2001                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2002                 if (!kvm_regs)
2003                         goto out;
2004                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2005                 if (r)
2006                         goto out_free1;
2007                 r = -EFAULT;
2008                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2009                         goto out_free1;
2010                 r = 0;
2011 out_free1:
2012                 kfree(kvm_regs);
2013                 break;
2014         }
2015         case KVM_SET_REGS: {
2016                 struct kvm_regs *kvm_regs;
2017
2018                 r = -ENOMEM;
2019                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2020                 if (IS_ERR(kvm_regs)) {
2021                         r = PTR_ERR(kvm_regs);
2022                         goto out;
2023                 }
2024                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2025                 kfree(kvm_regs);
2026                 break;
2027         }
2028         case KVM_GET_SREGS: {
2029                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2030                 r = -ENOMEM;
2031                 if (!kvm_sregs)
2032                         goto out;
2033                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2034                 if (r)
2035                         goto out;
2036                 r = -EFAULT;
2037                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2038                         goto out;
2039                 r = 0;
2040                 break;
2041         }
2042         case KVM_SET_SREGS: {
2043                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2044                 if (IS_ERR(kvm_sregs)) {
2045                         r = PTR_ERR(kvm_sregs);
2046                         kvm_sregs = NULL;
2047                         goto out;
2048                 }
2049                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2050                 break;
2051         }
2052         case KVM_GET_MP_STATE: {
2053                 struct kvm_mp_state mp_state;
2054
2055                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2056                 if (r)
2057                         goto out;
2058                 r = -EFAULT;
2059                 if (copy_to_user(argp, &mp_state, sizeof mp_state))
2060                         goto out;
2061                 r = 0;
2062                 break;
2063         }
2064         case KVM_SET_MP_STATE: {
2065                 struct kvm_mp_state mp_state;
2066
2067                 r = -EFAULT;
2068                 if (copy_from_user(&mp_state, argp, sizeof mp_state))
2069                         goto out;
2070                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2071                 break;
2072         }
2073         case KVM_TRANSLATE: {
2074                 struct kvm_translation tr;
2075
2076                 r = -EFAULT;
2077                 if (copy_from_user(&tr, argp, sizeof tr))
2078                         goto out;
2079                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2080                 if (r)
2081                         goto out;
2082                 r = -EFAULT;
2083                 if (copy_to_user(argp, &tr, sizeof tr))
2084                         goto out;
2085                 r = 0;
2086                 break;
2087         }
2088         case KVM_SET_GUEST_DEBUG: {
2089                 struct kvm_guest_debug dbg;
2090
2091                 r = -EFAULT;
2092                 if (copy_from_user(&dbg, argp, sizeof dbg))
2093                         goto out;
2094                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2095                 break;
2096         }
2097         case KVM_SET_SIGNAL_MASK: {
2098                 struct kvm_signal_mask __user *sigmask_arg = argp;
2099                 struct kvm_signal_mask kvm_sigmask;
2100                 sigset_t sigset, *p;
2101
2102                 p = NULL;
2103                 if (argp) {
2104                         r = -EFAULT;
2105                         if (copy_from_user(&kvm_sigmask, argp,
2106                                            sizeof kvm_sigmask))
2107                                 goto out;
2108                         r = -EINVAL;
2109                         if (kvm_sigmask.len != sizeof sigset)
2110                                 goto out;
2111                         r = -EFAULT;
2112                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2113                                            sizeof sigset))
2114                                 goto out;
2115                         p = &sigset;
2116                 }
2117                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2118                 break;
2119         }
2120         case KVM_GET_FPU: {
2121                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2122                 r = -ENOMEM;
2123                 if (!fpu)
2124                         goto out;
2125                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2126                 if (r)
2127                         goto out;
2128                 r = -EFAULT;
2129                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2130                         goto out;
2131                 r = 0;
2132                 break;
2133         }
2134         case KVM_SET_FPU: {
2135                 fpu = memdup_user(argp, sizeof(*fpu));
2136                 if (IS_ERR(fpu)) {
2137                         r = PTR_ERR(fpu);
2138                         fpu = NULL;
2139                         goto out;
2140                 }
2141                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2142                 break;
2143         }
2144         default:
2145                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2146         }
2147 out:
2148         vcpu_put(vcpu);
2149         kfree(fpu);
2150         kfree(kvm_sregs);
2151         return r;
2152 }
2153
2154 #ifdef CONFIG_COMPAT
2155 static long kvm_vcpu_compat_ioctl(struct file *filp,
2156                                   unsigned int ioctl, unsigned long arg)
2157 {
2158         struct kvm_vcpu *vcpu = filp->private_data;
2159         void __user *argp = compat_ptr(arg);
2160         int r;
2161
2162         if (vcpu->kvm->mm != current->mm)
2163                 return -EIO;
2164
2165         switch (ioctl) {
2166         case KVM_SET_SIGNAL_MASK: {
2167                 struct kvm_signal_mask __user *sigmask_arg = argp;
2168                 struct kvm_signal_mask kvm_sigmask;
2169                 compat_sigset_t csigset;
2170                 sigset_t sigset;
2171
2172                 if (argp) {
2173                         r = -EFAULT;
2174                         if (copy_from_user(&kvm_sigmask, argp,
2175                                            sizeof kvm_sigmask))
2176                                 goto out;
2177                         r = -EINVAL;
2178                         if (kvm_sigmask.len != sizeof csigset)
2179                                 goto out;
2180                         r = -EFAULT;
2181                         if (copy_from_user(&csigset, sigmask_arg->sigset,
2182                                            sizeof csigset))
2183                                 goto out;
2184                         sigset_from_compat(&sigset, &csigset);
2185                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2186                 } else
2187                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2188                 break;
2189         }
2190         default:
2191                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2192         }
2193
2194 out:
2195         return r;
2196 }
2197 #endif
2198
2199 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2200                                  int (*accessor)(struct kvm_device *dev,
2201                                                  struct kvm_device_attr *attr),
2202                                  unsigned long arg)
2203 {
2204         struct kvm_device_attr attr;
2205
2206         if (!accessor)
2207                 return -EPERM;
2208
2209         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2210                 return -EFAULT;
2211
2212         return accessor(dev, &attr);
2213 }
2214
2215 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2216                              unsigned long arg)
2217 {
2218         struct kvm_device *dev = filp->private_data;
2219
2220         switch (ioctl) {
2221         case KVM_SET_DEVICE_ATTR:
2222                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2223         case KVM_GET_DEVICE_ATTR:
2224                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2225         case KVM_HAS_DEVICE_ATTR:
2226                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2227         default:
2228                 if (dev->ops->ioctl)
2229                         return dev->ops->ioctl(dev, ioctl, arg);
2230
2231                 return -ENOTTY;
2232         }
2233 }
2234
2235 static int kvm_device_release(struct inode *inode, struct file *filp)
2236 {
2237         struct kvm_device *dev = filp->private_data;
2238         struct kvm *kvm = dev->kvm;
2239
2240         kvm_put_kvm(kvm);
2241         return 0;
2242 }
2243
2244 static const struct file_operations kvm_device_fops = {
2245         .unlocked_ioctl = kvm_device_ioctl,
2246 #ifdef CONFIG_COMPAT
2247         .compat_ioctl = kvm_device_ioctl,
2248 #endif
2249         .release = kvm_device_release,
2250 };
2251
2252 struct kvm_device *kvm_device_from_filp(struct file *filp)
2253 {
2254         if (filp->f_op != &kvm_device_fops)
2255                 return NULL;
2256
2257         return filp->private_data;
2258 }
2259
2260 static int kvm_ioctl_create_device(struct kvm *kvm,
2261                                    struct kvm_create_device *cd)
2262 {
2263         struct kvm_device_ops *ops = NULL;
2264         struct kvm_device *dev;
2265         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2266         int ret;
2267
2268         switch (cd->type) {
2269 #ifdef CONFIG_KVM_MPIC
2270         case KVM_DEV_TYPE_FSL_MPIC_20:
2271         case KVM_DEV_TYPE_FSL_MPIC_42:
2272                 ops = &kvm_mpic_ops;
2273                 break;
2274 #endif
2275 #ifdef CONFIG_KVM_XICS
2276         case KVM_DEV_TYPE_XICS:
2277                 ops = &kvm_xics_ops;
2278                 break;
2279 #endif
2280 #ifdef CONFIG_KVM_VFIO
2281         case KVM_DEV_TYPE_VFIO:
2282                 ops = &kvm_vfio_ops;
2283                 break;
2284 #endif
2285 #ifdef CONFIG_KVM_ARM_VGIC
2286         case KVM_DEV_TYPE_ARM_VGIC_V2:
2287                 ops = &kvm_arm_vgic_v2_ops;
2288                 break;
2289 #endif
2290 #ifdef CONFIG_S390
2291         case KVM_DEV_TYPE_FLIC:
2292                 ops = &kvm_flic_ops;
2293                 break;
2294 #endif
2295         default:
2296                 return -ENODEV;
2297         }
2298
2299         if (test)
2300                 return 0;
2301
2302         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2303         if (!dev)
2304                 return -ENOMEM;
2305
2306         dev->ops = ops;
2307         dev->kvm = kvm;
2308
2309         ret = ops->create(dev, cd->type);
2310         if (ret < 0) {
2311                 kfree(dev);
2312                 return ret;
2313         }
2314
2315         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2316         if (ret < 0) {
2317                 ops->destroy(dev);
2318                 return ret;
2319         }
2320
2321         list_add(&dev->vm_node, &kvm->devices);
2322         kvm_get_kvm(kvm);
2323         cd->fd = ret;
2324         return 0;
2325 }
2326
2327 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2328 {
2329         switch (arg) {
2330         case KVM_CAP_USER_MEMORY:
2331         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2332         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2333 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2334         case KVM_CAP_SET_BOOT_CPU_ID:
2335 #endif
2336         case KVM_CAP_INTERNAL_ERROR_DATA:
2337 #ifdef CONFIG_HAVE_KVM_MSI
2338         case KVM_CAP_SIGNAL_MSI:
2339 #endif
2340 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2341         case KVM_CAP_IRQFD_RESAMPLE:
2342 #endif
2343         case KVM_CAP_CHECK_EXTENSION_VM:
2344                 return 1;
2345 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2346         case KVM_CAP_IRQ_ROUTING:
2347                 return KVM_MAX_IRQ_ROUTES;
2348 #endif
2349         default:
2350                 break;
2351         }
2352         return kvm_vm_ioctl_check_extension(kvm, arg);
2353 }
2354
2355 static long kvm_vm_ioctl(struct file *filp,
2356                            unsigned int ioctl, unsigned long arg)
2357 {
2358         struct kvm *kvm = filp->private_data;
2359         void __user *argp = (void __user *)arg;
2360         int r;
2361
2362         if (kvm->mm != current->mm)
2363                 return -EIO;
2364         switch (ioctl) {
2365         case KVM_CREATE_VCPU:
2366                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2367                 break;
2368         case KVM_SET_USER_MEMORY_REGION: {
2369                 struct kvm_userspace_memory_region kvm_userspace_mem;
2370
2371                 r = -EFAULT;
2372                 if (copy_from_user(&kvm_userspace_mem, argp,
2373                                                 sizeof kvm_userspace_mem))
2374                         goto out;
2375
2376                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2377                 break;
2378         }
2379         case KVM_GET_DIRTY_LOG: {
2380                 struct kvm_dirty_log log;
2381
2382                 r = -EFAULT;
2383                 if (copy_from_user(&log, argp, sizeof log))
2384                         goto out;
2385                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2386                 break;
2387         }
2388 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2389         case KVM_REGISTER_COALESCED_MMIO: {
2390                 struct kvm_coalesced_mmio_zone zone;
2391                 r = -EFAULT;
2392                 if (copy_from_user(&zone, argp, sizeof zone))
2393                         goto out;
2394                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2395                 break;
2396         }
2397         case KVM_UNREGISTER_COALESCED_MMIO: {
2398                 struct kvm_coalesced_mmio_zone zone;
2399                 r = -EFAULT;
2400                 if (copy_from_user(&zone, argp, sizeof zone))
2401                         goto out;
2402                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2403                 break;
2404         }
2405 #endif
2406         case KVM_IRQFD: {
2407                 struct kvm_irqfd data;
2408
2409                 r = -EFAULT;
2410                 if (copy_from_user(&data, argp, sizeof data))
2411                         goto out;
2412                 r = kvm_irqfd(kvm, &data);
2413                 break;
2414         }
2415         case KVM_IOEVENTFD: {
2416                 struct kvm_ioeventfd data;
2417
2418                 r = -EFAULT;
2419                 if (copy_from_user(&data, argp, sizeof data))
2420                         goto out;
2421                 r = kvm_ioeventfd(kvm, &data);
2422                 break;
2423         }
2424 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2425         case KVM_SET_BOOT_CPU_ID:
2426                 r = 0;
2427                 mutex_lock(&kvm->lock);
2428                 if (atomic_read(&kvm->online_vcpus) != 0)
2429                         r = -EBUSY;
2430                 else
2431                         kvm->bsp_vcpu_id = arg;
2432                 mutex_unlock(&kvm->lock);
2433                 break;
2434 #endif
2435 #ifdef CONFIG_HAVE_KVM_MSI
2436         case KVM_SIGNAL_MSI: {
2437                 struct kvm_msi msi;
2438
2439                 r = -EFAULT;
2440                 if (copy_from_user(&msi, argp, sizeof msi))
2441                         goto out;
2442                 r = kvm_send_userspace_msi(kvm, &msi);
2443                 break;
2444         }
2445 #endif
2446 #ifdef __KVM_HAVE_IRQ_LINE
2447         case KVM_IRQ_LINE_STATUS:
2448         case KVM_IRQ_LINE: {
2449                 struct kvm_irq_level irq_event;
2450
2451                 r = -EFAULT;
2452                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2453                         goto out;
2454
2455                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2456                                         ioctl == KVM_IRQ_LINE_STATUS);
2457                 if (r)
2458                         goto out;
2459
2460                 r = -EFAULT;
2461                 if (ioctl == KVM_IRQ_LINE_STATUS) {
2462                         if (copy_to_user(argp, &irq_event, sizeof irq_event))
2463                                 goto out;
2464                 }
2465
2466                 r = 0;
2467                 break;
2468         }
2469 #endif
2470 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2471         case KVM_SET_GSI_ROUTING: {
2472                 struct kvm_irq_routing routing;
2473                 struct kvm_irq_routing __user *urouting;
2474                 struct kvm_irq_routing_entry *entries;
2475
2476                 r = -EFAULT;
2477                 if (copy_from_user(&routing, argp, sizeof(routing)))
2478                         goto out;
2479                 r = -EINVAL;
2480                 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2481                         goto out;
2482                 if (routing.flags)
2483                         goto out;
2484                 r = -ENOMEM;
2485                 entries = vmalloc(routing.nr * sizeof(*entries));
2486                 if (!entries)
2487                         goto out;
2488                 r = -EFAULT;
2489                 urouting = argp;
2490                 if (copy_from_user(entries, urouting->entries,
2491                                    routing.nr * sizeof(*entries)))
2492                         goto out_free_irq_routing;
2493                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2494                                         routing.flags);
2495         out_free_irq_routing:
2496                 vfree(entries);
2497                 break;
2498         }
2499 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2500         case KVM_CREATE_DEVICE: {
2501                 struct kvm_create_device cd;
2502
2503                 r = -EFAULT;
2504                 if (copy_from_user(&cd, argp, sizeof(cd)))
2505                         goto out;
2506
2507                 r = kvm_ioctl_create_device(kvm, &cd);
2508                 if (r)
2509                         goto out;
2510
2511                 r = -EFAULT;
2512                 if (copy_to_user(argp, &cd, sizeof(cd)))
2513                         goto out;
2514
2515                 r = 0;
2516                 break;
2517         }
2518         case KVM_CHECK_EXTENSION:
2519                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2520                 break;
2521         default:
2522                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2523                 if (r == -ENOTTY)
2524                         r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2525         }
2526 out:
2527         return r;
2528 }
2529
2530 #ifdef CONFIG_COMPAT
2531 struct compat_kvm_dirty_log {
2532         __u32 slot;
2533         __u32 padding1;
2534         union {
2535                 compat_uptr_t dirty_bitmap; /* one bit per page */
2536                 __u64 padding2;
2537         };
2538 };
2539
2540 static long kvm_vm_compat_ioctl(struct file *filp,
2541                            unsigned int ioctl, unsigned long arg)
2542 {
2543         struct kvm *kvm = filp->private_data;
2544         int r;
2545
2546         if (kvm->mm != current->mm)
2547                 return -EIO;
2548         switch (ioctl) {
2549         case KVM_GET_DIRTY_LOG: {
2550                 struct compat_kvm_dirty_log compat_log;
2551                 struct kvm_dirty_log log;
2552
2553                 r = -EFAULT;
2554                 if (copy_from_user(&compat_log, (void __user *)arg,
2555                                    sizeof(compat_log)))
2556                         goto out;
2557                 log.slot         = compat_log.slot;
2558                 log.padding1     = compat_log.padding1;
2559                 log.padding2     = compat_log.padding2;
2560                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2561
2562                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2563                 break;
2564         }
2565         default:
2566                 r = kvm_vm_ioctl(filp, ioctl, arg);
2567         }
2568
2569 out:
2570         return r;
2571 }
2572 #endif
2573
2574 static struct file_operations kvm_vm_fops = {
2575         .release        = kvm_vm_release,
2576         .unlocked_ioctl = kvm_vm_ioctl,
2577 #ifdef CONFIG_COMPAT
2578         .compat_ioctl   = kvm_vm_compat_ioctl,
2579 #endif
2580         .llseek         = noop_llseek,
2581 };
2582
2583 static int kvm_dev_ioctl_create_vm(unsigned long type)
2584 {
2585         int r;
2586         struct kvm *kvm;
2587
2588         kvm = kvm_create_vm(type);
2589         if (IS_ERR(kvm))
2590                 return PTR_ERR(kvm);
2591 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2592         r = kvm_coalesced_mmio_init(kvm);
2593         if (r < 0) {
2594                 kvm_put_kvm(kvm);
2595                 return r;
2596         }
2597 #endif
2598         r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2599         if (r < 0)
2600                 kvm_put_kvm(kvm);
2601
2602         return r;
2603 }
2604
2605 static long kvm_dev_ioctl(struct file *filp,
2606                           unsigned int ioctl, unsigned long arg)
2607 {
2608         long r = -EINVAL;
2609
2610         switch (ioctl) {
2611         case KVM_GET_API_VERSION:
2612                 r = -EINVAL;
2613                 if (arg)
2614                         goto out;
2615                 r = KVM_API_VERSION;
2616                 break;
2617         case KVM_CREATE_VM:
2618                 r = kvm_dev_ioctl_create_vm(arg);
2619                 break;
2620         case KVM_CHECK_EXTENSION:
2621                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2622                 break;
2623         case KVM_GET_VCPU_MMAP_SIZE:
2624                 r = -EINVAL;
2625                 if (arg)
2626                         goto out;
2627                 r = PAGE_SIZE;     /* struct kvm_run */
2628 #ifdef CONFIG_X86
2629                 r += PAGE_SIZE;    /* pio data page */
2630 #endif
2631 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2632                 r += PAGE_SIZE;    /* coalesced mmio ring page */
2633 #endif
2634                 break;
2635         case KVM_TRACE_ENABLE:
2636         case KVM_TRACE_PAUSE:
2637         case KVM_TRACE_DISABLE:
2638                 r = -EOPNOTSUPP;
2639                 break;
2640         default:
2641                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2642         }
2643 out:
2644         return r;
2645 }
2646
2647 static struct file_operations kvm_chardev_ops = {
2648         .unlocked_ioctl = kvm_dev_ioctl,
2649         .compat_ioctl   = kvm_dev_ioctl,
2650         .llseek         = noop_llseek,
2651 };
2652
2653 static struct miscdevice kvm_dev = {
2654         KVM_MINOR,
2655         "kvm",
2656         &kvm_chardev_ops,
2657 };
2658
2659 static void hardware_enable_nolock(void *junk)
2660 {
2661         int cpu = raw_smp_processor_id();
2662         int r;
2663
2664         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2665                 return;
2666
2667         cpumask_set_cpu(cpu, cpus_hardware_enabled);
2668
2669         r = kvm_arch_hardware_enable(NULL);
2670
2671         if (r) {
2672                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2673                 atomic_inc(&hardware_enable_failed);
2674                 printk(KERN_INFO "kvm: enabling virtualization on "
2675                                  "CPU%d failed\n", cpu);
2676         }
2677 }
2678
2679 static void hardware_enable(void)
2680 {
2681         raw_spin_lock(&kvm_count_lock);
2682         if (kvm_usage_count)
2683                 hardware_enable_nolock(NULL);
2684         raw_spin_unlock(&kvm_count_lock);
2685 }
2686
2687 static void hardware_disable_nolock(void *junk)
2688 {
2689         int cpu = raw_smp_processor_id();
2690
2691         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2692                 return;
2693         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2694         kvm_arch_hardware_disable(NULL);
2695 }
2696
2697 static void hardware_disable(void)
2698 {
2699         raw_spin_lock(&kvm_count_lock);
2700         if (kvm_usage_count)
2701                 hardware_disable_nolock(NULL);
2702         raw_spin_unlock(&kvm_count_lock);
2703 }
2704
2705 static void hardware_disable_all_nolock(void)
2706 {
2707         BUG_ON(!kvm_usage_count);
2708
2709         kvm_usage_count--;
2710         if (!kvm_usage_count)
2711                 on_each_cpu(hardware_disable_nolock, NULL, 1);
2712 }
2713
2714 static void hardware_disable_all(void)
2715 {
2716         raw_spin_lock(&kvm_count_lock);
2717         hardware_disable_all_nolock();
2718         raw_spin_unlock(&kvm_count_lock);
2719 }
2720
2721 static int hardware_enable_all(void)
2722 {
2723         int r = 0;
2724
2725         raw_spin_lock(&kvm_count_lock);
2726
2727         kvm_usage_count++;
2728         if (kvm_usage_count == 1) {
2729                 atomic_set(&hardware_enable_failed, 0);
2730                 on_each_cpu(hardware_enable_nolock, NULL, 1);
2731
2732                 if (atomic_read(&hardware_enable_failed)) {
2733                         hardware_disable_all_nolock();
2734                         r = -EBUSY;
2735                 }
2736         }
2737
2738         raw_spin_unlock(&kvm_count_lock);
2739
2740         return r;
2741 }
2742
2743 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2744                            void *v)
2745 {
2746         int cpu = (long)v;
2747
2748         val &= ~CPU_TASKS_FROZEN;
2749         switch (val) {
2750         case CPU_DYING:
2751                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2752                        cpu);
2753                 hardware_disable();
2754                 break;
2755         case CPU_STARTING:
2756                 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2757                        cpu);
2758                 hardware_enable();
2759                 break;
2760         }
2761         return NOTIFY_OK;
2762 }
2763
2764 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2765                       void *v)
2766 {
2767         /*
2768          * Some (well, at least mine) BIOSes hang on reboot if
2769          * in vmx root mode.
2770          *
2771          * And Intel TXT required VMX off for all cpu when system shutdown.
2772          */
2773         printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2774         kvm_rebooting = true;
2775         on_each_cpu(hardware_disable_nolock, NULL, 1);
2776         return NOTIFY_OK;
2777 }
2778
2779 static struct notifier_block kvm_reboot_notifier = {
2780         .notifier_call = kvm_reboot,
2781         .priority = 0,
2782 };
2783
2784 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2785 {
2786         int i;
2787
2788         for (i = 0; i < bus->dev_count; i++) {
2789                 struct kvm_io_device *pos = bus->range[i].dev;
2790
2791                 kvm_iodevice_destructor(pos);
2792         }
2793         kfree(bus);
2794 }
2795
2796 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2797                                  const struct kvm_io_range *r2)
2798 {
2799         if (r1->addr < r2->addr)
2800                 return -1;
2801         if (r1->addr + r1->len > r2->addr + r2->len)
2802                 return 1;
2803         return 0;
2804 }
2805
2806 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2807 {
2808         return kvm_io_bus_cmp(p1, p2);
2809 }
2810
2811 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2812                           gpa_t addr, int len)
2813 {
2814         bus->range[bus->dev_count++] = (struct kvm_io_range) {
2815                 .addr = addr,
2816                 .len = len,
2817                 .dev = dev,
2818         };
2819
2820         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2821                 kvm_io_bus_sort_cmp, NULL);
2822
2823         return 0;
2824 }
2825
2826 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2827                              gpa_t addr, int len)
2828 {
2829         struct kvm_io_range *range, key;
2830         int off;
2831
2832         key = (struct kvm_io_range) {
2833                 .addr = addr,
2834                 .len = len,
2835         };
2836
2837         range = bsearch(&key, bus->range, bus->dev_count,
2838                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2839         if (range == NULL)
2840                 return -ENOENT;
2841
2842         off = range - bus->range;
2843
2844         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
2845                 off--;
2846
2847         return off;
2848 }
2849
2850 static int __kvm_io_bus_write(struct kvm_io_bus *bus,
2851                               struct kvm_io_range *range, const void *val)
2852 {
2853         int idx;
2854
2855         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2856         if (idx < 0)
2857                 return -EOPNOTSUPP;
2858
2859         while (idx < bus->dev_count &&
2860                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2861                 if (!kvm_iodevice_write(bus->range[idx].dev, range->addr,
2862                                         range->len, val))
2863                         return idx;
2864                 idx++;
2865         }
2866
2867         return -EOPNOTSUPP;
2868 }
2869
2870 /* kvm_io_bus_write - called under kvm->slots_lock */
2871 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2872                      int len, const void *val)
2873 {
2874         struct kvm_io_bus *bus;
2875         struct kvm_io_range range;
2876         int r;
2877
2878         range = (struct kvm_io_range) {
2879                 .addr = addr,
2880                 .len = len,
2881         };
2882
2883         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2884         r = __kvm_io_bus_write(bus, &range, val);
2885         return r < 0 ? r : 0;
2886 }
2887
2888 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
2889 int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2890                             int len, const void *val, long cookie)
2891 {
2892         struct kvm_io_bus *bus;
2893         struct kvm_io_range range;
2894
2895         range = (struct kvm_io_range) {
2896                 .addr = addr,
2897                 .len = len,
2898         };
2899
2900         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2901
2902         /* First try the device referenced by cookie. */
2903         if ((cookie >= 0) && (cookie < bus->dev_count) &&
2904             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2905                 if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len,
2906                                         val))
2907                         return cookie;
2908
2909         /*
2910          * cookie contained garbage; fall back to search and return the
2911          * correct cookie value.
2912          */
2913         return __kvm_io_bus_write(bus, &range, val);
2914 }
2915
2916 static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range,
2917                              void *val)
2918 {
2919         int idx;
2920
2921         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2922         if (idx < 0)
2923                 return -EOPNOTSUPP;
2924
2925         while (idx < bus->dev_count &&
2926                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2927                 if (!kvm_iodevice_read(bus->range[idx].dev, range->addr,
2928                                        range->len, val))
2929                         return idx;
2930                 idx++;
2931         }
2932
2933         return -EOPNOTSUPP;
2934 }
2935 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
2936
2937 /* kvm_io_bus_read - called under kvm->slots_lock */
2938 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2939                     int len, void *val)
2940 {
2941         struct kvm_io_bus *bus;
2942         struct kvm_io_range range;
2943         int r;
2944
2945         range = (struct kvm_io_range) {
2946                 .addr = addr,
2947                 .len = len,
2948         };
2949
2950         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2951         r = __kvm_io_bus_read(bus, &range, val);
2952         return r < 0 ? r : 0;
2953 }
2954
2955
2956 /* Caller must hold slots_lock. */
2957 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2958                             int len, struct kvm_io_device *dev)
2959 {
2960         struct kvm_io_bus *new_bus, *bus;
2961
2962         bus = kvm->buses[bus_idx];
2963         /* exclude ioeventfd which is limited by maximum fd */
2964         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
2965                 return -ENOSPC;
2966
2967         new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2968                           sizeof(struct kvm_io_range)), GFP_KERNEL);
2969         if (!new_bus)
2970                 return -ENOMEM;
2971         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2972                sizeof(struct kvm_io_range)));
2973         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2974         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2975         synchronize_srcu_expedited(&kvm->srcu);
2976         kfree(bus);
2977
2978         return 0;
2979 }
2980
2981 /* Caller must hold slots_lock. */
2982 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2983                               struct kvm_io_device *dev)
2984 {
2985         int i, r;
2986         struct kvm_io_bus *new_bus, *bus;
2987
2988         bus = kvm->buses[bus_idx];
2989         r = -ENOENT;
2990         for (i = 0; i < bus->dev_count; i++)
2991                 if (bus->range[i].dev == dev) {
2992                         r = 0;
2993                         break;
2994                 }
2995
2996         if (r)
2997                 return r;
2998
2999         new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3000                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3001         if (!new_bus)
3002                 return -ENOMEM;
3003
3004         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3005         new_bus->dev_count--;
3006         memcpy(new_bus->range + i, bus->range + i + 1,
3007                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3008
3009         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3010         synchronize_srcu_expedited(&kvm->srcu);
3011         kfree(bus);
3012         return r;
3013 }
3014
3015 static struct notifier_block kvm_cpu_notifier = {
3016         .notifier_call = kvm_cpu_hotplug,
3017 };
3018
3019 static int vm_stat_get(void *_offset, u64 *val)
3020 {
3021         unsigned offset = (long)_offset;
3022         struct kvm *kvm;
3023
3024         *val = 0;
3025         spin_lock(&kvm_lock);
3026         list_for_each_entry(kvm, &vm_list, vm_list)
3027                 *val += *(u32 *)((void *)kvm + offset);
3028         spin_unlock(&kvm_lock);
3029         return 0;
3030 }
3031
3032 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3033
3034 static int vcpu_stat_get(void *_offset, u64 *val)
3035 {
3036         unsigned offset = (long)_offset;
3037         struct kvm *kvm;
3038         struct kvm_vcpu *vcpu;
3039         int i;
3040
3041         *val = 0;
3042         spin_lock(&kvm_lock);
3043         list_for_each_entry(kvm, &vm_list, vm_list)
3044                 kvm_for_each_vcpu(i, vcpu, kvm)
3045                         *val += *(u32 *)((void *)vcpu + offset);
3046
3047         spin_unlock(&kvm_lock);
3048         return 0;
3049 }
3050
3051 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3052
3053 static const struct file_operations *stat_fops[] = {
3054         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3055         [KVM_STAT_VM]   = &vm_stat_fops,
3056 };
3057
3058 static int kvm_init_debug(void)
3059 {
3060         int r = -EEXIST;
3061         struct kvm_stats_debugfs_item *p;
3062
3063         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3064         if (kvm_debugfs_dir == NULL)
3065                 goto out;
3066
3067         for (p = debugfs_entries; p->name; ++p) {
3068                 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3069                                                 (void *)(long)p->offset,
3070                                                 stat_fops[p->kind]);
3071                 if (p->dentry == NULL)
3072                         goto out_dir;
3073         }
3074
3075         return 0;
3076
3077 out_dir:
3078         debugfs_remove_recursive(kvm_debugfs_dir);
3079 out:
3080         return r;
3081 }
3082
3083 static void kvm_exit_debug(void)
3084 {
3085         struct kvm_stats_debugfs_item *p;
3086
3087         for (p = debugfs_entries; p->name; ++p)
3088                 debugfs_remove(p->dentry);
3089         debugfs_remove(kvm_debugfs_dir);
3090 }
3091
3092 static int kvm_suspend(void)
3093 {
3094         if (kvm_usage_count)
3095                 hardware_disable_nolock(NULL);
3096         return 0;
3097 }
3098
3099 static void kvm_resume(void)
3100 {
3101         if (kvm_usage_count) {
3102                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3103                 hardware_enable_nolock(NULL);
3104         }
3105 }
3106
3107 static struct syscore_ops kvm_syscore_ops = {
3108         .suspend = kvm_suspend,
3109         .resume = kvm_resume,
3110 };
3111
3112 static inline
3113 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3114 {
3115         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3116 }
3117
3118 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3119 {
3120         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3121         if (vcpu->preempted)
3122                 vcpu->preempted = false;
3123
3124         kvm_arch_vcpu_load(vcpu, cpu);
3125 }
3126
3127 static void kvm_sched_out(struct preempt_notifier *pn,
3128                           struct task_struct *next)
3129 {
3130         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3131
3132         if (current->state == TASK_RUNNING)
3133                 vcpu->preempted = true;
3134         kvm_arch_vcpu_put(vcpu);
3135 }
3136
3137 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3138                   struct module *module)
3139 {
3140         int r;
3141         int cpu;
3142
3143         r = kvm_arch_init(opaque);
3144         if (r)
3145                 goto out_fail;
3146
3147         /*
3148          * kvm_arch_init makes sure there's at most one caller
3149          * for architectures that support multiple implementations,
3150          * like intel and amd on x86.
3151          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3152          * conflicts in case kvm is already setup for another implementation.
3153          */
3154         r = kvm_irqfd_init();
3155         if (r)
3156                 goto out_irqfd;
3157
3158         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3159                 r = -ENOMEM;
3160                 goto out_free_0;
3161         }
3162
3163         r = kvm_arch_hardware_setup();
3164         if (r < 0)
3165                 goto out_free_0a;
3166
3167         for_each_online_cpu(cpu) {
3168                 smp_call_function_single(cpu,
3169                                 kvm_arch_check_processor_compat,
3170                                 &r, 1);
3171                 if (r < 0)
3172                         goto out_free_1;
3173         }
3174
3175         r = register_cpu_notifier(&kvm_cpu_notifier);
3176         if (r)
3177                 goto out_free_2;
3178         register_reboot_notifier(&kvm_reboot_notifier);
3179
3180         /* A kmem cache lets us meet the alignment requirements of fx_save. */
3181         if (!vcpu_align)
3182                 vcpu_align = __alignof__(struct kvm_vcpu);
3183         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3184                                            0, NULL);
3185         if (!kvm_vcpu_cache) {
3186                 r = -ENOMEM;
3187                 goto out_free_3;
3188         }
3189
3190         r = kvm_async_pf_init();
3191         if (r)
3192                 goto out_free;
3193
3194         kvm_chardev_ops.owner = module;
3195         kvm_vm_fops.owner = module;
3196         kvm_vcpu_fops.owner = module;
3197
3198         r = misc_register(&kvm_dev);
3199         if (r) {
3200                 printk(KERN_ERR "kvm: misc device register failed\n");
3201                 goto out_unreg;
3202         }
3203
3204         register_syscore_ops(&kvm_syscore_ops);
3205
3206         kvm_preempt_ops.sched_in = kvm_sched_in;
3207         kvm_preempt_ops.sched_out = kvm_sched_out;
3208
3209         r = kvm_init_debug();
3210         if (r) {
3211                 printk(KERN_ERR "kvm: create debugfs files failed\n");
3212                 goto out_undebugfs;
3213         }
3214
3215         return 0;
3216
3217 out_undebugfs:
3218         unregister_syscore_ops(&kvm_syscore_ops);
3219         misc_deregister(&kvm_dev);
3220 out_unreg:
3221         kvm_async_pf_deinit();
3222 out_free:
3223         kmem_cache_destroy(kvm_vcpu_cache);
3224 out_free_3:
3225         unregister_reboot_notifier(&kvm_reboot_notifier);
3226         unregister_cpu_notifier(&kvm_cpu_notifier);
3227 out_free_2:
3228 out_free_1:
3229         kvm_arch_hardware_unsetup();
3230 out_free_0a:
3231         free_cpumask_var(cpus_hardware_enabled);
3232 out_free_0:
3233         kvm_irqfd_exit();
3234 out_irqfd:
3235         kvm_arch_exit();
3236 out_fail:
3237         return r;
3238 }
3239 EXPORT_SYMBOL_GPL(kvm_init);
3240
3241 void kvm_exit(void)
3242 {
3243         kvm_exit_debug();
3244         misc_deregister(&kvm_dev);
3245         kmem_cache_destroy(kvm_vcpu_cache);
3246         kvm_async_pf_deinit();
3247         unregister_syscore_ops(&kvm_syscore_ops);
3248         unregister_reboot_notifier(&kvm_reboot_notifier);
3249         unregister_cpu_notifier(&kvm_cpu_notifier);
3250         on_each_cpu(hardware_disable_nolock, NULL, 1);
3251         kvm_arch_hardware_unsetup();
3252         kvm_arch_exit();
3253         kvm_irqfd_exit();
3254         free_cpumask_var(cpus_hardware_enabled);
3255 }
3256 EXPORT_SYMBOL_GPL(kvm_exit);