KVM: introduce kvm_read_guest_cached
[firefly-linux-kernel-4.4.55.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50
51 #include <asm/processor.h>
52 #include <asm/io.h>
53 #include <asm/uaccess.h>
54 #include <asm/pgtable.h>
55
56 #include "coalesced_mmio.h"
57 #include "async_pf.h"
58
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/kvm.h>
61
62 MODULE_AUTHOR("Qumranet");
63 MODULE_LICENSE("GPL");
64
65 /*
66  * Ordering of locks:
67  *
68  *              kvm->lock --> kvm->slots_lock --> kvm->irq_lock
69  */
70
71 DEFINE_RAW_SPINLOCK(kvm_lock);
72 LIST_HEAD(vm_list);
73
74 static cpumask_var_t cpus_hardware_enabled;
75 static int kvm_usage_count = 0;
76 static atomic_t hardware_enable_failed;
77
78 struct kmem_cache *kvm_vcpu_cache;
79 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
80
81 static __read_mostly struct preempt_ops kvm_preempt_ops;
82
83 struct dentry *kvm_debugfs_dir;
84
85 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
86                            unsigned long arg);
87 #ifdef CONFIG_COMPAT
88 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
89                                   unsigned long arg);
90 #endif
91 static int hardware_enable_all(void);
92 static void hardware_disable_all(void);
93
94 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
95
96 bool kvm_rebooting;
97 EXPORT_SYMBOL_GPL(kvm_rebooting);
98
99 static bool largepages_enabled = true;
100
101 static struct page *hwpoison_page;
102 static pfn_t hwpoison_pfn;
103
104 static struct page *fault_page;
105 static pfn_t fault_pfn;
106
107 inline int kvm_is_mmio_pfn(pfn_t pfn)
108 {
109         if (pfn_valid(pfn)) {
110                 int reserved;
111                 struct page *tail = pfn_to_page(pfn);
112                 struct page *head = compound_trans_head(tail);
113                 reserved = PageReserved(head);
114                 if (head != tail) {
115                         /*
116                          * "head" is not a dangling pointer
117                          * (compound_trans_head takes care of that)
118                          * but the hugepage may have been splitted
119                          * from under us (and we may not hold a
120                          * reference count on the head page so it can
121                          * be reused before we run PageReferenced), so
122                          * we've to check PageTail before returning
123                          * what we just read.
124                          */
125                         smp_rmb();
126                         if (PageTail(tail))
127                                 return reserved;
128                 }
129                 return PageReserved(tail);
130         }
131
132         return true;
133 }
134
135 /*
136  * Switches to specified vcpu, until a matching vcpu_put()
137  */
138 void vcpu_load(struct kvm_vcpu *vcpu)
139 {
140         int cpu;
141
142         mutex_lock(&vcpu->mutex);
143         if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
144                 /* The thread running this VCPU changed. */
145                 struct pid *oldpid = vcpu->pid;
146                 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
147                 rcu_assign_pointer(vcpu->pid, newpid);
148                 synchronize_rcu();
149                 put_pid(oldpid);
150         }
151         cpu = get_cpu();
152         preempt_notifier_register(&vcpu->preempt_notifier);
153         kvm_arch_vcpu_load(vcpu, cpu);
154         put_cpu();
155 }
156
157 void vcpu_put(struct kvm_vcpu *vcpu)
158 {
159         preempt_disable();
160         kvm_arch_vcpu_put(vcpu);
161         preempt_notifier_unregister(&vcpu->preempt_notifier);
162         preempt_enable();
163         mutex_unlock(&vcpu->mutex);
164 }
165
166 static void ack_flush(void *_completed)
167 {
168 }
169
170 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
171 {
172         int i, cpu, me;
173         cpumask_var_t cpus;
174         bool called = true;
175         struct kvm_vcpu *vcpu;
176
177         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
178
179         me = get_cpu();
180         kvm_for_each_vcpu(i, vcpu, kvm) {
181                 kvm_make_request(req, vcpu);
182                 cpu = vcpu->cpu;
183
184                 /* Set ->requests bit before we read ->mode */
185                 smp_mb();
186
187                 if (cpus != NULL && cpu != -1 && cpu != me &&
188                       kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
189                         cpumask_set_cpu(cpu, cpus);
190         }
191         if (unlikely(cpus == NULL))
192                 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
193         else if (!cpumask_empty(cpus))
194                 smp_call_function_many(cpus, ack_flush, NULL, 1);
195         else
196                 called = false;
197         put_cpu();
198         free_cpumask_var(cpus);
199         return called;
200 }
201
202 void kvm_flush_remote_tlbs(struct kvm *kvm)
203 {
204         int dirty_count = kvm->tlbs_dirty;
205
206         smp_mb();
207         if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
208                 ++kvm->stat.remote_tlb_flush;
209         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
210 }
211
212 void kvm_reload_remote_mmus(struct kvm *kvm)
213 {
214         make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
215 }
216
217 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
218 {
219         struct page *page;
220         int r;
221
222         mutex_init(&vcpu->mutex);
223         vcpu->cpu = -1;
224         vcpu->kvm = kvm;
225         vcpu->vcpu_id = id;
226         vcpu->pid = NULL;
227         init_waitqueue_head(&vcpu->wq);
228         kvm_async_pf_vcpu_init(vcpu);
229
230         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
231         if (!page) {
232                 r = -ENOMEM;
233                 goto fail;
234         }
235         vcpu->run = page_address(page);
236
237         r = kvm_arch_vcpu_init(vcpu);
238         if (r < 0)
239                 goto fail_free_run;
240         return 0;
241
242 fail_free_run:
243         free_page((unsigned long)vcpu->run);
244 fail:
245         return r;
246 }
247 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
248
249 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
250 {
251         put_pid(vcpu->pid);
252         kvm_arch_vcpu_uninit(vcpu);
253         free_page((unsigned long)vcpu->run);
254 }
255 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
256
257 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
258 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
259 {
260         return container_of(mn, struct kvm, mmu_notifier);
261 }
262
263 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
264                                              struct mm_struct *mm,
265                                              unsigned long address)
266 {
267         struct kvm *kvm = mmu_notifier_to_kvm(mn);
268         int need_tlb_flush, idx;
269
270         /*
271          * When ->invalidate_page runs, the linux pte has been zapped
272          * already but the page is still allocated until
273          * ->invalidate_page returns. So if we increase the sequence
274          * here the kvm page fault will notice if the spte can't be
275          * established because the page is going to be freed. If
276          * instead the kvm page fault establishes the spte before
277          * ->invalidate_page runs, kvm_unmap_hva will release it
278          * before returning.
279          *
280          * The sequence increase only need to be seen at spin_unlock
281          * time, and not at spin_lock time.
282          *
283          * Increasing the sequence after the spin_unlock would be
284          * unsafe because the kvm page fault could then establish the
285          * pte after kvm_unmap_hva returned, without noticing the page
286          * is going to be freed.
287          */
288         idx = srcu_read_lock(&kvm->srcu);
289         spin_lock(&kvm->mmu_lock);
290         kvm->mmu_notifier_seq++;
291         need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
292         spin_unlock(&kvm->mmu_lock);
293         srcu_read_unlock(&kvm->srcu, idx);
294
295         /* we've to flush the tlb before the pages can be freed */
296         if (need_tlb_flush)
297                 kvm_flush_remote_tlbs(kvm);
298
299 }
300
301 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
302                                         struct mm_struct *mm,
303                                         unsigned long address,
304                                         pte_t pte)
305 {
306         struct kvm *kvm = mmu_notifier_to_kvm(mn);
307         int idx;
308
309         idx = srcu_read_lock(&kvm->srcu);
310         spin_lock(&kvm->mmu_lock);
311         kvm->mmu_notifier_seq++;
312         kvm_set_spte_hva(kvm, address, pte);
313         spin_unlock(&kvm->mmu_lock);
314         srcu_read_unlock(&kvm->srcu, idx);
315 }
316
317 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
318                                                     struct mm_struct *mm,
319                                                     unsigned long start,
320                                                     unsigned long end)
321 {
322         struct kvm *kvm = mmu_notifier_to_kvm(mn);
323         int need_tlb_flush = 0, idx;
324
325         idx = srcu_read_lock(&kvm->srcu);
326         spin_lock(&kvm->mmu_lock);
327         /*
328          * The count increase must become visible at unlock time as no
329          * spte can be established without taking the mmu_lock and
330          * count is also read inside the mmu_lock critical section.
331          */
332         kvm->mmu_notifier_count++;
333         for (; start < end; start += PAGE_SIZE)
334                 need_tlb_flush |= kvm_unmap_hva(kvm, start);
335         need_tlb_flush |= kvm->tlbs_dirty;
336         spin_unlock(&kvm->mmu_lock);
337         srcu_read_unlock(&kvm->srcu, idx);
338
339         /* we've to flush the tlb before the pages can be freed */
340         if (need_tlb_flush)
341                 kvm_flush_remote_tlbs(kvm);
342 }
343
344 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
345                                                   struct mm_struct *mm,
346                                                   unsigned long start,
347                                                   unsigned long end)
348 {
349         struct kvm *kvm = mmu_notifier_to_kvm(mn);
350
351         spin_lock(&kvm->mmu_lock);
352         /*
353          * This sequence increase will notify the kvm page fault that
354          * the page that is going to be mapped in the spte could have
355          * been freed.
356          */
357         kvm->mmu_notifier_seq++;
358         /*
359          * The above sequence increase must be visible before the
360          * below count decrease but both values are read by the kvm
361          * page fault under mmu_lock spinlock so we don't need to add
362          * a smb_wmb() here in between the two.
363          */
364         kvm->mmu_notifier_count--;
365         spin_unlock(&kvm->mmu_lock);
366
367         BUG_ON(kvm->mmu_notifier_count < 0);
368 }
369
370 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
371                                               struct mm_struct *mm,
372                                               unsigned long address)
373 {
374         struct kvm *kvm = mmu_notifier_to_kvm(mn);
375         int young, idx;
376
377         idx = srcu_read_lock(&kvm->srcu);
378         spin_lock(&kvm->mmu_lock);
379         young = kvm_age_hva(kvm, address);
380         spin_unlock(&kvm->mmu_lock);
381         srcu_read_unlock(&kvm->srcu, idx);
382
383         if (young)
384                 kvm_flush_remote_tlbs(kvm);
385
386         return young;
387 }
388
389 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
390                                        struct mm_struct *mm,
391                                        unsigned long address)
392 {
393         struct kvm *kvm = mmu_notifier_to_kvm(mn);
394         int young, idx;
395
396         idx = srcu_read_lock(&kvm->srcu);
397         spin_lock(&kvm->mmu_lock);
398         young = kvm_test_age_hva(kvm, address);
399         spin_unlock(&kvm->mmu_lock);
400         srcu_read_unlock(&kvm->srcu, idx);
401
402         return young;
403 }
404
405 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
406                                      struct mm_struct *mm)
407 {
408         struct kvm *kvm = mmu_notifier_to_kvm(mn);
409         int idx;
410
411         idx = srcu_read_lock(&kvm->srcu);
412         kvm_arch_flush_shadow(kvm);
413         srcu_read_unlock(&kvm->srcu, idx);
414 }
415
416 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
417         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
418         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
419         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
420         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
421         .test_young             = kvm_mmu_notifier_test_young,
422         .change_pte             = kvm_mmu_notifier_change_pte,
423         .release                = kvm_mmu_notifier_release,
424 };
425
426 static int kvm_init_mmu_notifier(struct kvm *kvm)
427 {
428         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
429         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
430 }
431
432 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
433
434 static int kvm_init_mmu_notifier(struct kvm *kvm)
435 {
436         return 0;
437 }
438
439 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
440
441 static struct kvm *kvm_create_vm(void)
442 {
443         int r, i;
444         struct kvm *kvm = kvm_arch_alloc_vm();
445
446         if (!kvm)
447                 return ERR_PTR(-ENOMEM);
448
449         r = kvm_arch_init_vm(kvm);
450         if (r)
451                 goto out_err_nodisable;
452
453         r = hardware_enable_all();
454         if (r)
455                 goto out_err_nodisable;
456
457 #ifdef CONFIG_HAVE_KVM_IRQCHIP
458         INIT_HLIST_HEAD(&kvm->mask_notifier_list);
459         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
460 #endif
461
462         r = -ENOMEM;
463         kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
464         if (!kvm->memslots)
465                 goto out_err_nosrcu;
466         if (init_srcu_struct(&kvm->srcu))
467                 goto out_err_nosrcu;
468         for (i = 0; i < KVM_NR_BUSES; i++) {
469                 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
470                                         GFP_KERNEL);
471                 if (!kvm->buses[i])
472                         goto out_err;
473         }
474
475         spin_lock_init(&kvm->mmu_lock);
476         kvm->mm = current->mm;
477         atomic_inc(&kvm->mm->mm_count);
478         kvm_eventfd_init(kvm);
479         mutex_init(&kvm->lock);
480         mutex_init(&kvm->irq_lock);
481         mutex_init(&kvm->slots_lock);
482         atomic_set(&kvm->users_count, 1);
483
484         r = kvm_init_mmu_notifier(kvm);
485         if (r)
486                 goto out_err;
487
488         raw_spin_lock(&kvm_lock);
489         list_add(&kvm->vm_list, &vm_list);
490         raw_spin_unlock(&kvm_lock);
491
492         return kvm;
493
494 out_err:
495         cleanup_srcu_struct(&kvm->srcu);
496 out_err_nosrcu:
497         hardware_disable_all();
498 out_err_nodisable:
499         for (i = 0; i < KVM_NR_BUSES; i++)
500                 kfree(kvm->buses[i]);
501         kfree(kvm->memslots);
502         kvm_arch_free_vm(kvm);
503         return ERR_PTR(r);
504 }
505
506 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
507 {
508         if (!memslot->dirty_bitmap)
509                 return;
510
511         if (2 * kvm_dirty_bitmap_bytes(memslot) > PAGE_SIZE)
512                 vfree(memslot->dirty_bitmap_head);
513         else
514                 kfree(memslot->dirty_bitmap_head);
515
516         memslot->dirty_bitmap = NULL;
517         memslot->dirty_bitmap_head = NULL;
518 }
519
520 /*
521  * Free any memory in @free but not in @dont.
522  */
523 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
524                                   struct kvm_memory_slot *dont)
525 {
526         int i;
527
528         if (!dont || free->rmap != dont->rmap)
529                 vfree(free->rmap);
530
531         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
532                 kvm_destroy_dirty_bitmap(free);
533
534
535         for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
536                 if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
537                         vfree(free->lpage_info[i]);
538                         free->lpage_info[i] = NULL;
539                 }
540         }
541
542         free->npages = 0;
543         free->rmap = NULL;
544 }
545
546 void kvm_free_physmem(struct kvm *kvm)
547 {
548         int i;
549         struct kvm_memslots *slots = kvm->memslots;
550
551         for (i = 0; i < slots->nmemslots; ++i)
552                 kvm_free_physmem_slot(&slots->memslots[i], NULL);
553
554         kfree(kvm->memslots);
555 }
556
557 static void kvm_destroy_vm(struct kvm *kvm)
558 {
559         int i;
560         struct mm_struct *mm = kvm->mm;
561
562         kvm_arch_sync_events(kvm);
563         raw_spin_lock(&kvm_lock);
564         list_del(&kvm->vm_list);
565         raw_spin_unlock(&kvm_lock);
566         kvm_free_irq_routing(kvm);
567         for (i = 0; i < KVM_NR_BUSES; i++)
568                 kvm_io_bus_destroy(kvm->buses[i]);
569         kvm_coalesced_mmio_free(kvm);
570 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
571         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
572 #else
573         kvm_arch_flush_shadow(kvm);
574 #endif
575         kvm_arch_destroy_vm(kvm);
576         kvm_free_physmem(kvm);
577         cleanup_srcu_struct(&kvm->srcu);
578         kvm_arch_free_vm(kvm);
579         hardware_disable_all();
580         mmdrop(mm);
581 }
582
583 void kvm_get_kvm(struct kvm *kvm)
584 {
585         atomic_inc(&kvm->users_count);
586 }
587 EXPORT_SYMBOL_GPL(kvm_get_kvm);
588
589 void kvm_put_kvm(struct kvm *kvm)
590 {
591         if (atomic_dec_and_test(&kvm->users_count))
592                 kvm_destroy_vm(kvm);
593 }
594 EXPORT_SYMBOL_GPL(kvm_put_kvm);
595
596
597 static int kvm_vm_release(struct inode *inode, struct file *filp)
598 {
599         struct kvm *kvm = filp->private_data;
600
601         kvm_irqfd_release(kvm);
602
603         kvm_put_kvm(kvm);
604         return 0;
605 }
606
607 #ifndef CONFIG_S390
608 /*
609  * Allocation size is twice as large as the actual dirty bitmap size.
610  * This makes it possible to do double buffering: see x86's
611  * kvm_vm_ioctl_get_dirty_log().
612  */
613 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
614 {
615         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
616
617         if (dirty_bytes > PAGE_SIZE)
618                 memslot->dirty_bitmap = vzalloc(dirty_bytes);
619         else
620                 memslot->dirty_bitmap = kzalloc(dirty_bytes, GFP_KERNEL);
621
622         if (!memslot->dirty_bitmap)
623                 return -ENOMEM;
624
625         memslot->dirty_bitmap_head = memslot->dirty_bitmap;
626         return 0;
627 }
628 #endif /* !CONFIG_S390 */
629
630 /*
631  * Allocate some memory and give it an address in the guest physical address
632  * space.
633  *
634  * Discontiguous memory is allowed, mostly for framebuffers.
635  *
636  * Must be called holding mmap_sem for write.
637  */
638 int __kvm_set_memory_region(struct kvm *kvm,
639                             struct kvm_userspace_memory_region *mem,
640                             int user_alloc)
641 {
642         int r;
643         gfn_t base_gfn;
644         unsigned long npages;
645         unsigned long i;
646         struct kvm_memory_slot *memslot;
647         struct kvm_memory_slot old, new;
648         struct kvm_memslots *slots, *old_memslots;
649
650         r = -EINVAL;
651         /* General sanity checks */
652         if (mem->memory_size & (PAGE_SIZE - 1))
653                 goto out;
654         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
655                 goto out;
656         /* We can read the guest memory with __xxx_user() later on. */
657         if (user_alloc &&
658             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
659              !access_ok(VERIFY_WRITE,
660                         (void __user *)(unsigned long)mem->userspace_addr,
661                         mem->memory_size)))
662                 goto out;
663         if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
664                 goto out;
665         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
666                 goto out;
667
668         memslot = &kvm->memslots->memslots[mem->slot];
669         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
670         npages = mem->memory_size >> PAGE_SHIFT;
671
672         r = -EINVAL;
673         if (npages > KVM_MEM_MAX_NR_PAGES)
674                 goto out;
675
676         if (!npages)
677                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
678
679         new = old = *memslot;
680
681         new.id = mem->slot;
682         new.base_gfn = base_gfn;
683         new.npages = npages;
684         new.flags = mem->flags;
685
686         /* Disallow changing a memory slot's size. */
687         r = -EINVAL;
688         if (npages && old.npages && npages != old.npages)
689                 goto out_free;
690
691         /* Check for overlaps */
692         r = -EEXIST;
693         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
694                 struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
695
696                 if (s == memslot || !s->npages)
697                         continue;
698                 if (!((base_gfn + npages <= s->base_gfn) ||
699                       (base_gfn >= s->base_gfn + s->npages)))
700                         goto out_free;
701         }
702
703         /* Free page dirty bitmap if unneeded */
704         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
705                 new.dirty_bitmap = NULL;
706
707         r = -ENOMEM;
708
709         /* Allocate if a slot is being created */
710 #ifndef CONFIG_S390
711         if (npages && !new.rmap) {
712                 new.rmap = vzalloc(npages * sizeof(*new.rmap));
713
714                 if (!new.rmap)
715                         goto out_free;
716
717                 new.user_alloc = user_alloc;
718                 new.userspace_addr = mem->userspace_addr;
719         }
720         if (!npages)
721                 goto skip_lpage;
722
723         for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
724                 unsigned long ugfn;
725                 unsigned long j;
726                 int lpages;
727                 int level = i + 2;
728
729                 /* Avoid unused variable warning if no large pages */
730                 (void)level;
731
732                 if (new.lpage_info[i])
733                         continue;
734
735                 lpages = 1 + ((base_gfn + npages - 1)
736                              >> KVM_HPAGE_GFN_SHIFT(level));
737                 lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level);
738
739                 new.lpage_info[i] = vzalloc(lpages * sizeof(*new.lpage_info[i]));
740
741                 if (!new.lpage_info[i])
742                         goto out_free;
743
744                 if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
745                         new.lpage_info[i][0].write_count = 1;
746                 if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
747                         new.lpage_info[i][lpages - 1].write_count = 1;
748                 ugfn = new.userspace_addr >> PAGE_SHIFT;
749                 /*
750                  * If the gfn and userspace address are not aligned wrt each
751                  * other, or if explicitly asked to, disable large page
752                  * support for this slot
753                  */
754                 if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
755                     !largepages_enabled)
756                         for (j = 0; j < lpages; ++j)
757                                 new.lpage_info[i][j].write_count = 1;
758         }
759
760 skip_lpage:
761
762         /* Allocate page dirty bitmap if needed */
763         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
764                 if (kvm_create_dirty_bitmap(&new) < 0)
765                         goto out_free;
766                 /* destroy any largepage mappings for dirty tracking */
767         }
768 #else  /* not defined CONFIG_S390 */
769         new.user_alloc = user_alloc;
770         if (user_alloc)
771                 new.userspace_addr = mem->userspace_addr;
772 #endif /* not defined CONFIG_S390 */
773
774         if (!npages) {
775                 r = -ENOMEM;
776                 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
777                 if (!slots)
778                         goto out_free;
779                 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
780                 if (mem->slot >= slots->nmemslots)
781                         slots->nmemslots = mem->slot + 1;
782                 slots->generation++;
783                 slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
784
785                 old_memslots = kvm->memslots;
786                 rcu_assign_pointer(kvm->memslots, slots);
787                 synchronize_srcu_expedited(&kvm->srcu);
788                 /* From this point no new shadow pages pointing to a deleted
789                  * memslot will be created.
790                  *
791                  * validation of sp->gfn happens in:
792                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
793                  *      - kvm_is_visible_gfn (mmu_check_roots)
794                  */
795                 kvm_arch_flush_shadow(kvm);
796                 kfree(old_memslots);
797         }
798
799         r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
800         if (r)
801                 goto out_free;
802
803         /* map the pages in iommu page table */
804         if (npages) {
805                 r = kvm_iommu_map_pages(kvm, &new);
806                 if (r)
807                         goto out_free;
808         }
809
810         r = -ENOMEM;
811         slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
812         if (!slots)
813                 goto out_free;
814         memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
815         if (mem->slot >= slots->nmemslots)
816                 slots->nmemslots = mem->slot + 1;
817         slots->generation++;
818
819         /* actual memory is freed via old in kvm_free_physmem_slot below */
820         if (!npages) {
821                 new.rmap = NULL;
822                 new.dirty_bitmap = NULL;
823                 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
824                         new.lpage_info[i] = NULL;
825         }
826
827         slots->memslots[mem->slot] = new;
828         old_memslots = kvm->memslots;
829         rcu_assign_pointer(kvm->memslots, slots);
830         synchronize_srcu_expedited(&kvm->srcu);
831
832         kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
833
834         kvm_free_physmem_slot(&old, &new);
835         kfree(old_memslots);
836
837         return 0;
838
839 out_free:
840         kvm_free_physmem_slot(&new, &old);
841 out:
842         return r;
843
844 }
845 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
846
847 int kvm_set_memory_region(struct kvm *kvm,
848                           struct kvm_userspace_memory_region *mem,
849                           int user_alloc)
850 {
851         int r;
852
853         mutex_lock(&kvm->slots_lock);
854         r = __kvm_set_memory_region(kvm, mem, user_alloc);
855         mutex_unlock(&kvm->slots_lock);
856         return r;
857 }
858 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
859
860 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
861                                    struct
862                                    kvm_userspace_memory_region *mem,
863                                    int user_alloc)
864 {
865         if (mem->slot >= KVM_MEMORY_SLOTS)
866                 return -EINVAL;
867         return kvm_set_memory_region(kvm, mem, user_alloc);
868 }
869
870 int kvm_get_dirty_log(struct kvm *kvm,
871                         struct kvm_dirty_log *log, int *is_dirty)
872 {
873         struct kvm_memory_slot *memslot;
874         int r, i;
875         unsigned long n;
876         unsigned long any = 0;
877
878         r = -EINVAL;
879         if (log->slot >= KVM_MEMORY_SLOTS)
880                 goto out;
881
882         memslot = &kvm->memslots->memslots[log->slot];
883         r = -ENOENT;
884         if (!memslot->dirty_bitmap)
885                 goto out;
886
887         n = kvm_dirty_bitmap_bytes(memslot);
888
889         for (i = 0; !any && i < n/sizeof(long); ++i)
890                 any = memslot->dirty_bitmap[i];
891
892         r = -EFAULT;
893         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
894                 goto out;
895
896         if (any)
897                 *is_dirty = 1;
898
899         r = 0;
900 out:
901         return r;
902 }
903
904 void kvm_disable_largepages(void)
905 {
906         largepages_enabled = false;
907 }
908 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
909
910 int is_error_page(struct page *page)
911 {
912         return page == bad_page || page == hwpoison_page || page == fault_page;
913 }
914 EXPORT_SYMBOL_GPL(is_error_page);
915
916 int is_error_pfn(pfn_t pfn)
917 {
918         return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
919 }
920 EXPORT_SYMBOL_GPL(is_error_pfn);
921
922 int is_hwpoison_pfn(pfn_t pfn)
923 {
924         return pfn == hwpoison_pfn;
925 }
926 EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
927
928 int is_fault_pfn(pfn_t pfn)
929 {
930         return pfn == fault_pfn;
931 }
932 EXPORT_SYMBOL_GPL(is_fault_pfn);
933
934 static inline unsigned long bad_hva(void)
935 {
936         return PAGE_OFFSET;
937 }
938
939 int kvm_is_error_hva(unsigned long addr)
940 {
941         return addr == bad_hva();
942 }
943 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
944
945 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm_memslots *slots,
946                                                 gfn_t gfn)
947 {
948         int i;
949
950         for (i = 0; i < slots->nmemslots; ++i) {
951                 struct kvm_memory_slot *memslot = &slots->memslots[i];
952
953                 if (gfn >= memslot->base_gfn
954                     && gfn < memslot->base_gfn + memslot->npages)
955                         return memslot;
956         }
957         return NULL;
958 }
959
960 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
961 {
962         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
963 }
964 EXPORT_SYMBOL_GPL(gfn_to_memslot);
965
966 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
967 {
968         int i;
969         struct kvm_memslots *slots = kvm_memslots(kvm);
970
971         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
972                 struct kvm_memory_slot *memslot = &slots->memslots[i];
973
974                 if (memslot->flags & KVM_MEMSLOT_INVALID)
975                         continue;
976
977                 if (gfn >= memslot->base_gfn
978                     && gfn < memslot->base_gfn + memslot->npages)
979                         return 1;
980         }
981         return 0;
982 }
983 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
984
985 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
986 {
987         struct vm_area_struct *vma;
988         unsigned long addr, size;
989
990         size = PAGE_SIZE;
991
992         addr = gfn_to_hva(kvm, gfn);
993         if (kvm_is_error_hva(addr))
994                 return PAGE_SIZE;
995
996         down_read(&current->mm->mmap_sem);
997         vma = find_vma(current->mm, addr);
998         if (!vma)
999                 goto out;
1000
1001         size = vma_kernel_pagesize(vma);
1002
1003 out:
1004         up_read(&current->mm->mmap_sem);
1005
1006         return size;
1007 }
1008
1009 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1010                                      gfn_t *nr_pages)
1011 {
1012         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1013                 return bad_hva();
1014
1015         if (nr_pages)
1016                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1017
1018         return gfn_to_hva_memslot(slot, gfn);
1019 }
1020
1021 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1022 {
1023         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1024 }
1025 EXPORT_SYMBOL_GPL(gfn_to_hva);
1026
1027 static pfn_t get_fault_pfn(void)
1028 {
1029         get_page(fault_page);
1030         return fault_pfn;
1031 }
1032
1033 int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1034         unsigned long start, int write, struct page **page)
1035 {
1036         int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1037
1038         if (write)
1039                 flags |= FOLL_WRITE;
1040
1041         return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1042 }
1043
1044 static inline int check_user_page_hwpoison(unsigned long addr)
1045 {
1046         int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1047
1048         rc = __get_user_pages(current, current->mm, addr, 1,
1049                               flags, NULL, NULL, NULL);
1050         return rc == -EHWPOISON;
1051 }
1052
1053 static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
1054                         bool *async, bool write_fault, bool *writable)
1055 {
1056         struct page *page[1];
1057         int npages = 0;
1058         pfn_t pfn;
1059
1060         /* we can do it either atomically or asynchronously, not both */
1061         BUG_ON(atomic && async);
1062
1063         BUG_ON(!write_fault && !writable);
1064
1065         if (writable)
1066                 *writable = true;
1067
1068         if (atomic || async)
1069                 npages = __get_user_pages_fast(addr, 1, 1, page);
1070
1071         if (unlikely(npages != 1) && !atomic) {
1072                 might_sleep();
1073
1074                 if (writable)
1075                         *writable = write_fault;
1076
1077                 if (async) {
1078                         down_read(&current->mm->mmap_sem);
1079                         npages = get_user_page_nowait(current, current->mm,
1080                                                      addr, write_fault, page);
1081                         up_read(&current->mm->mmap_sem);
1082                 } else
1083                         npages = get_user_pages_fast(addr, 1, write_fault,
1084                                                      page);
1085
1086                 /* map read fault as writable if possible */
1087                 if (unlikely(!write_fault) && npages == 1) {
1088                         struct page *wpage[1];
1089
1090                         npages = __get_user_pages_fast(addr, 1, 1, wpage);
1091                         if (npages == 1) {
1092                                 *writable = true;
1093                                 put_page(page[0]);
1094                                 page[0] = wpage[0];
1095                         }
1096                         npages = 1;
1097                 }
1098         }
1099
1100         if (unlikely(npages != 1)) {
1101                 struct vm_area_struct *vma;
1102
1103                 if (atomic)
1104                         return get_fault_pfn();
1105
1106                 down_read(&current->mm->mmap_sem);
1107                 if (npages == -EHWPOISON ||
1108                         (!async && check_user_page_hwpoison(addr))) {
1109                         up_read(&current->mm->mmap_sem);
1110                         get_page(hwpoison_page);
1111                         return page_to_pfn(hwpoison_page);
1112                 }
1113
1114                 vma = find_vma_intersection(current->mm, addr, addr+1);
1115
1116                 if (vma == NULL)
1117                         pfn = get_fault_pfn();
1118                 else if ((vma->vm_flags & VM_PFNMAP)) {
1119                         pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1120                                 vma->vm_pgoff;
1121                         BUG_ON(!kvm_is_mmio_pfn(pfn));
1122                 } else {
1123                         if (async && (vma->vm_flags & VM_WRITE))
1124                                 *async = true;
1125                         pfn = get_fault_pfn();
1126                 }
1127                 up_read(&current->mm->mmap_sem);
1128         } else
1129                 pfn = page_to_pfn(page[0]);
1130
1131         return pfn;
1132 }
1133
1134 pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
1135 {
1136         return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
1137 }
1138 EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
1139
1140 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1141                           bool write_fault, bool *writable)
1142 {
1143         unsigned long addr;
1144
1145         if (async)
1146                 *async = false;
1147
1148         addr = gfn_to_hva(kvm, gfn);
1149         if (kvm_is_error_hva(addr)) {
1150                 get_page(bad_page);
1151                 return page_to_pfn(bad_page);
1152         }
1153
1154         return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
1155 }
1156
1157 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1158 {
1159         return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1160 }
1161 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1162
1163 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1164                        bool write_fault, bool *writable)
1165 {
1166         return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1167 }
1168 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1169
1170 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1171 {
1172         return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1173 }
1174 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1175
1176 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1177                       bool *writable)
1178 {
1179         return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1180 }
1181 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1182
1183 pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
1184                          struct kvm_memory_slot *slot, gfn_t gfn)
1185 {
1186         unsigned long addr = gfn_to_hva_memslot(slot, gfn);
1187         return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
1188 }
1189
1190 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1191                                                                   int nr_pages)
1192 {
1193         unsigned long addr;
1194         gfn_t entry;
1195
1196         addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1197         if (kvm_is_error_hva(addr))
1198                 return -1;
1199
1200         if (entry < nr_pages)
1201                 return 0;
1202
1203         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1204 }
1205 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1206
1207 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1208 {
1209         pfn_t pfn;
1210
1211         pfn = gfn_to_pfn(kvm, gfn);
1212         if (!kvm_is_mmio_pfn(pfn))
1213                 return pfn_to_page(pfn);
1214
1215         WARN_ON(kvm_is_mmio_pfn(pfn));
1216
1217         get_page(bad_page);
1218         return bad_page;
1219 }
1220
1221 EXPORT_SYMBOL_GPL(gfn_to_page);
1222
1223 void kvm_release_page_clean(struct page *page)
1224 {
1225         kvm_release_pfn_clean(page_to_pfn(page));
1226 }
1227 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1228
1229 void kvm_release_pfn_clean(pfn_t pfn)
1230 {
1231         if (!kvm_is_mmio_pfn(pfn))
1232                 put_page(pfn_to_page(pfn));
1233 }
1234 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1235
1236 void kvm_release_page_dirty(struct page *page)
1237 {
1238         kvm_release_pfn_dirty(page_to_pfn(page));
1239 }
1240 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1241
1242 void kvm_release_pfn_dirty(pfn_t pfn)
1243 {
1244         kvm_set_pfn_dirty(pfn);
1245         kvm_release_pfn_clean(pfn);
1246 }
1247 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1248
1249 void kvm_set_page_dirty(struct page *page)
1250 {
1251         kvm_set_pfn_dirty(page_to_pfn(page));
1252 }
1253 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1254
1255 void kvm_set_pfn_dirty(pfn_t pfn)
1256 {
1257         if (!kvm_is_mmio_pfn(pfn)) {
1258                 struct page *page = pfn_to_page(pfn);
1259                 if (!PageReserved(page))
1260                         SetPageDirty(page);
1261         }
1262 }
1263 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1264
1265 void kvm_set_pfn_accessed(pfn_t pfn)
1266 {
1267         if (!kvm_is_mmio_pfn(pfn))
1268                 mark_page_accessed(pfn_to_page(pfn));
1269 }
1270 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1271
1272 void kvm_get_pfn(pfn_t pfn)
1273 {
1274         if (!kvm_is_mmio_pfn(pfn))
1275                 get_page(pfn_to_page(pfn));
1276 }
1277 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1278
1279 static int next_segment(unsigned long len, int offset)
1280 {
1281         if (len > PAGE_SIZE - offset)
1282                 return PAGE_SIZE - offset;
1283         else
1284                 return len;
1285 }
1286
1287 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1288                         int len)
1289 {
1290         int r;
1291         unsigned long addr;
1292
1293         addr = gfn_to_hva(kvm, gfn);
1294         if (kvm_is_error_hva(addr))
1295                 return -EFAULT;
1296         r = __copy_from_user(data, (void __user *)addr + offset, len);
1297         if (r)
1298                 return -EFAULT;
1299         return 0;
1300 }
1301 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1302
1303 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1304 {
1305         gfn_t gfn = gpa >> PAGE_SHIFT;
1306         int seg;
1307         int offset = offset_in_page(gpa);
1308         int ret;
1309
1310         while ((seg = next_segment(len, offset)) != 0) {
1311                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1312                 if (ret < 0)
1313                         return ret;
1314                 offset = 0;
1315                 len -= seg;
1316                 data += seg;
1317                 ++gfn;
1318         }
1319         return 0;
1320 }
1321 EXPORT_SYMBOL_GPL(kvm_read_guest);
1322
1323 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1324                           unsigned long len)
1325 {
1326         int r;
1327         unsigned long addr;
1328         gfn_t gfn = gpa >> PAGE_SHIFT;
1329         int offset = offset_in_page(gpa);
1330
1331         addr = gfn_to_hva(kvm, gfn);
1332         if (kvm_is_error_hva(addr))
1333                 return -EFAULT;
1334         pagefault_disable();
1335         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1336         pagefault_enable();
1337         if (r)
1338                 return -EFAULT;
1339         return 0;
1340 }
1341 EXPORT_SYMBOL(kvm_read_guest_atomic);
1342
1343 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1344                          int offset, int len)
1345 {
1346         int r;
1347         unsigned long addr;
1348
1349         addr = gfn_to_hva(kvm, gfn);
1350         if (kvm_is_error_hva(addr))
1351                 return -EFAULT;
1352         r = __copy_to_user((void __user *)addr + offset, data, len);
1353         if (r)
1354                 return -EFAULT;
1355         mark_page_dirty(kvm, gfn);
1356         return 0;
1357 }
1358 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1359
1360 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1361                     unsigned long len)
1362 {
1363         gfn_t gfn = gpa >> PAGE_SHIFT;
1364         int seg;
1365         int offset = offset_in_page(gpa);
1366         int ret;
1367
1368         while ((seg = next_segment(len, offset)) != 0) {
1369                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1370                 if (ret < 0)
1371                         return ret;
1372                 offset = 0;
1373                 len -= seg;
1374                 data += seg;
1375                 ++gfn;
1376         }
1377         return 0;
1378 }
1379
1380 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1381                               gpa_t gpa)
1382 {
1383         struct kvm_memslots *slots = kvm_memslots(kvm);
1384         int offset = offset_in_page(gpa);
1385         gfn_t gfn = gpa >> PAGE_SHIFT;
1386
1387         ghc->gpa = gpa;
1388         ghc->generation = slots->generation;
1389         ghc->memslot = __gfn_to_memslot(slots, gfn);
1390         ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1391         if (!kvm_is_error_hva(ghc->hva))
1392                 ghc->hva += offset;
1393         else
1394                 return -EFAULT;
1395
1396         return 0;
1397 }
1398 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1399
1400 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1401                            void *data, unsigned long len)
1402 {
1403         struct kvm_memslots *slots = kvm_memslots(kvm);
1404         int r;
1405
1406         if (slots->generation != ghc->generation)
1407                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1408
1409         if (kvm_is_error_hva(ghc->hva))
1410                 return -EFAULT;
1411
1412         r = __copy_to_user((void __user *)ghc->hva, data, len);
1413         if (r)
1414                 return -EFAULT;
1415         mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1416
1417         return 0;
1418 }
1419 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1420
1421 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1422                            void *data, unsigned long len)
1423 {
1424         struct kvm_memslots *slots = kvm_memslots(kvm);
1425         int r;
1426
1427         if (slots->generation != ghc->generation)
1428                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1429
1430         if (kvm_is_error_hva(ghc->hva))
1431                 return -EFAULT;
1432
1433         r = __copy_from_user(data, (void __user *)ghc->hva, len);
1434         if (r)
1435                 return -EFAULT;
1436
1437         return 0;
1438 }
1439 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1440
1441 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1442 {
1443         return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1444                                     offset, len);
1445 }
1446 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1447
1448 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1449 {
1450         gfn_t gfn = gpa >> PAGE_SHIFT;
1451         int seg;
1452         int offset = offset_in_page(gpa);
1453         int ret;
1454
1455         while ((seg = next_segment(len, offset)) != 0) {
1456                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1457                 if (ret < 0)
1458                         return ret;
1459                 offset = 0;
1460                 len -= seg;
1461                 ++gfn;
1462         }
1463         return 0;
1464 }
1465 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1466
1467 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1468                              gfn_t gfn)
1469 {
1470         if (memslot && memslot->dirty_bitmap) {
1471                 unsigned long rel_gfn = gfn - memslot->base_gfn;
1472
1473                 __set_bit_le(rel_gfn, memslot->dirty_bitmap);
1474         }
1475 }
1476
1477 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1478 {
1479         struct kvm_memory_slot *memslot;
1480
1481         memslot = gfn_to_memslot(kvm, gfn);
1482         mark_page_dirty_in_slot(kvm, memslot, gfn);
1483 }
1484
1485 /*
1486  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1487  */
1488 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1489 {
1490         DEFINE_WAIT(wait);
1491
1492         for (;;) {
1493                 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1494
1495                 if (kvm_arch_vcpu_runnable(vcpu)) {
1496                         kvm_make_request(KVM_REQ_UNHALT, vcpu);
1497                         break;
1498                 }
1499                 if (kvm_cpu_has_pending_timer(vcpu))
1500                         break;
1501                 if (signal_pending(current))
1502                         break;
1503
1504                 schedule();
1505         }
1506
1507         finish_wait(&vcpu->wq, &wait);
1508 }
1509
1510 void kvm_resched(struct kvm_vcpu *vcpu)
1511 {
1512         if (!need_resched())
1513                 return;
1514         cond_resched();
1515 }
1516 EXPORT_SYMBOL_GPL(kvm_resched);
1517
1518 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1519 {
1520         struct kvm *kvm = me->kvm;
1521         struct kvm_vcpu *vcpu;
1522         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1523         int yielded = 0;
1524         int pass;
1525         int i;
1526
1527         /*
1528          * We boost the priority of a VCPU that is runnable but not
1529          * currently running, because it got preempted by something
1530          * else and called schedule in __vcpu_run.  Hopefully that
1531          * VCPU is holding the lock that we need and will release it.
1532          * We approximate round-robin by starting at the last boosted VCPU.
1533          */
1534         for (pass = 0; pass < 2 && !yielded; pass++) {
1535                 kvm_for_each_vcpu(i, vcpu, kvm) {
1536                         struct task_struct *task = NULL;
1537                         struct pid *pid;
1538                         if (!pass && i < last_boosted_vcpu) {
1539                                 i = last_boosted_vcpu;
1540                                 continue;
1541                         } else if (pass && i > last_boosted_vcpu)
1542                                 break;
1543                         if (vcpu == me)
1544                                 continue;
1545                         if (waitqueue_active(&vcpu->wq))
1546                                 continue;
1547                         rcu_read_lock();
1548                         pid = rcu_dereference(vcpu->pid);
1549                         if (pid)
1550                                 task = get_pid_task(vcpu->pid, PIDTYPE_PID);
1551                         rcu_read_unlock();
1552                         if (!task)
1553                                 continue;
1554                         if (task->flags & PF_VCPU) {
1555                                 put_task_struct(task);
1556                                 continue;
1557                         }
1558                         if (yield_to(task, 1)) {
1559                                 put_task_struct(task);
1560                                 kvm->last_boosted_vcpu = i;
1561                                 yielded = 1;
1562                                 break;
1563                         }
1564                         put_task_struct(task);
1565                 }
1566         }
1567 }
1568 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1569
1570 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1571 {
1572         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1573         struct page *page;
1574
1575         if (vmf->pgoff == 0)
1576                 page = virt_to_page(vcpu->run);
1577 #ifdef CONFIG_X86
1578         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1579                 page = virt_to_page(vcpu->arch.pio_data);
1580 #endif
1581 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1582         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1583                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1584 #endif
1585         else
1586                 return VM_FAULT_SIGBUS;
1587         get_page(page);
1588         vmf->page = page;
1589         return 0;
1590 }
1591
1592 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1593         .fault = kvm_vcpu_fault,
1594 };
1595
1596 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1597 {
1598         vma->vm_ops = &kvm_vcpu_vm_ops;
1599         return 0;
1600 }
1601
1602 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1603 {
1604         struct kvm_vcpu *vcpu = filp->private_data;
1605
1606         kvm_put_kvm(vcpu->kvm);
1607         return 0;
1608 }
1609
1610 static struct file_operations kvm_vcpu_fops = {
1611         .release        = kvm_vcpu_release,
1612         .unlocked_ioctl = kvm_vcpu_ioctl,
1613 #ifdef CONFIG_COMPAT
1614         .compat_ioctl   = kvm_vcpu_compat_ioctl,
1615 #endif
1616         .mmap           = kvm_vcpu_mmap,
1617         .llseek         = noop_llseek,
1618 };
1619
1620 /*
1621  * Allocates an inode for the vcpu.
1622  */
1623 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1624 {
1625         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1626 }
1627
1628 /*
1629  * Creates some virtual cpus.  Good luck creating more than one.
1630  */
1631 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1632 {
1633         int r;
1634         struct kvm_vcpu *vcpu, *v;
1635
1636         vcpu = kvm_arch_vcpu_create(kvm, id);
1637         if (IS_ERR(vcpu))
1638                 return PTR_ERR(vcpu);
1639
1640         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1641
1642         r = kvm_arch_vcpu_setup(vcpu);
1643         if (r)
1644                 goto vcpu_destroy;
1645
1646         mutex_lock(&kvm->lock);
1647         if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1648                 r = -EINVAL;
1649                 goto unlock_vcpu_destroy;
1650         }
1651
1652         kvm_for_each_vcpu(r, v, kvm)
1653                 if (v->vcpu_id == id) {
1654                         r = -EEXIST;
1655                         goto unlock_vcpu_destroy;
1656                 }
1657
1658         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1659
1660         /* Now it's all set up, let userspace reach it */
1661         kvm_get_kvm(kvm);
1662         r = create_vcpu_fd(vcpu);
1663         if (r < 0) {
1664                 kvm_put_kvm(kvm);
1665                 goto unlock_vcpu_destroy;
1666         }
1667
1668         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1669         smp_wmb();
1670         atomic_inc(&kvm->online_vcpus);
1671
1672 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1673         if (kvm->bsp_vcpu_id == id)
1674                 kvm->bsp_vcpu = vcpu;
1675 #endif
1676         mutex_unlock(&kvm->lock);
1677         return r;
1678
1679 unlock_vcpu_destroy:
1680         mutex_unlock(&kvm->lock);
1681 vcpu_destroy:
1682         kvm_arch_vcpu_destroy(vcpu);
1683         return r;
1684 }
1685
1686 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1687 {
1688         if (sigset) {
1689                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1690                 vcpu->sigset_active = 1;
1691                 vcpu->sigset = *sigset;
1692         } else
1693                 vcpu->sigset_active = 0;
1694         return 0;
1695 }
1696
1697 static long kvm_vcpu_ioctl(struct file *filp,
1698                            unsigned int ioctl, unsigned long arg)
1699 {
1700         struct kvm_vcpu *vcpu = filp->private_data;
1701         void __user *argp = (void __user *)arg;
1702         int r;
1703         struct kvm_fpu *fpu = NULL;
1704         struct kvm_sregs *kvm_sregs = NULL;
1705
1706         if (vcpu->kvm->mm != current->mm)
1707                 return -EIO;
1708
1709 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1710         /*
1711          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1712          * so vcpu_load() would break it.
1713          */
1714         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1715                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1716 #endif
1717
1718
1719         vcpu_load(vcpu);
1720         switch (ioctl) {
1721         case KVM_RUN:
1722                 r = -EINVAL;
1723                 if (arg)
1724                         goto out;
1725                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1726                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1727                 break;
1728         case KVM_GET_REGS: {
1729                 struct kvm_regs *kvm_regs;
1730
1731                 r = -ENOMEM;
1732                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1733                 if (!kvm_regs)
1734                         goto out;
1735                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1736                 if (r)
1737                         goto out_free1;
1738                 r = -EFAULT;
1739                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1740                         goto out_free1;
1741                 r = 0;
1742 out_free1:
1743                 kfree(kvm_regs);
1744                 break;
1745         }
1746         case KVM_SET_REGS: {
1747                 struct kvm_regs *kvm_regs;
1748
1749                 r = -ENOMEM;
1750                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1751                 if (!kvm_regs)
1752                         goto out;
1753                 r = -EFAULT;
1754                 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1755                         goto out_free2;
1756                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1757                 if (r)
1758                         goto out_free2;
1759                 r = 0;
1760 out_free2:
1761                 kfree(kvm_regs);
1762                 break;
1763         }
1764         case KVM_GET_SREGS: {
1765                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1766                 r = -ENOMEM;
1767                 if (!kvm_sregs)
1768                         goto out;
1769                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1770                 if (r)
1771                         goto out;
1772                 r = -EFAULT;
1773                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1774                         goto out;
1775                 r = 0;
1776                 break;
1777         }
1778         case KVM_SET_SREGS: {
1779                 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1780                 r = -ENOMEM;
1781                 if (!kvm_sregs)
1782                         goto out;
1783                 r = -EFAULT;
1784                 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1785                         goto out;
1786                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1787                 if (r)
1788                         goto out;
1789                 r = 0;
1790                 break;
1791         }
1792         case KVM_GET_MP_STATE: {
1793                 struct kvm_mp_state mp_state;
1794
1795                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1796                 if (r)
1797                         goto out;
1798                 r = -EFAULT;
1799                 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1800                         goto out;
1801                 r = 0;
1802                 break;
1803         }
1804         case KVM_SET_MP_STATE: {
1805                 struct kvm_mp_state mp_state;
1806
1807                 r = -EFAULT;
1808                 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1809                         goto out;
1810                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1811                 if (r)
1812                         goto out;
1813                 r = 0;
1814                 break;
1815         }
1816         case KVM_TRANSLATE: {
1817                 struct kvm_translation tr;
1818
1819                 r = -EFAULT;
1820                 if (copy_from_user(&tr, argp, sizeof tr))
1821                         goto out;
1822                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1823                 if (r)
1824                         goto out;
1825                 r = -EFAULT;
1826                 if (copy_to_user(argp, &tr, sizeof tr))
1827                         goto out;
1828                 r = 0;
1829                 break;
1830         }
1831         case KVM_SET_GUEST_DEBUG: {
1832                 struct kvm_guest_debug dbg;
1833
1834                 r = -EFAULT;
1835                 if (copy_from_user(&dbg, argp, sizeof dbg))
1836                         goto out;
1837                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1838                 if (r)
1839                         goto out;
1840                 r = 0;
1841                 break;
1842         }
1843         case KVM_SET_SIGNAL_MASK: {
1844                 struct kvm_signal_mask __user *sigmask_arg = argp;
1845                 struct kvm_signal_mask kvm_sigmask;
1846                 sigset_t sigset, *p;
1847
1848                 p = NULL;
1849                 if (argp) {
1850                         r = -EFAULT;
1851                         if (copy_from_user(&kvm_sigmask, argp,
1852                                            sizeof kvm_sigmask))
1853                                 goto out;
1854                         r = -EINVAL;
1855                         if (kvm_sigmask.len != sizeof sigset)
1856                                 goto out;
1857                         r = -EFAULT;
1858                         if (copy_from_user(&sigset, sigmask_arg->sigset,
1859                                            sizeof sigset))
1860                                 goto out;
1861                         p = &sigset;
1862                 }
1863                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1864                 break;
1865         }
1866         case KVM_GET_FPU: {
1867                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1868                 r = -ENOMEM;
1869                 if (!fpu)
1870                         goto out;
1871                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1872                 if (r)
1873                         goto out;
1874                 r = -EFAULT;
1875                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1876                         goto out;
1877                 r = 0;
1878                 break;
1879         }
1880         case KVM_SET_FPU: {
1881                 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1882                 r = -ENOMEM;
1883                 if (!fpu)
1884                         goto out;
1885                 r = -EFAULT;
1886                 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1887                         goto out;
1888                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1889                 if (r)
1890                         goto out;
1891                 r = 0;
1892                 break;
1893         }
1894         default:
1895                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1896         }
1897 out:
1898         vcpu_put(vcpu);
1899         kfree(fpu);
1900         kfree(kvm_sregs);
1901         return r;
1902 }
1903
1904 #ifdef CONFIG_COMPAT
1905 static long kvm_vcpu_compat_ioctl(struct file *filp,
1906                                   unsigned int ioctl, unsigned long arg)
1907 {
1908         struct kvm_vcpu *vcpu = filp->private_data;
1909         void __user *argp = compat_ptr(arg);
1910         int r;
1911
1912         if (vcpu->kvm->mm != current->mm)
1913                 return -EIO;
1914
1915         switch (ioctl) {
1916         case KVM_SET_SIGNAL_MASK: {
1917                 struct kvm_signal_mask __user *sigmask_arg = argp;
1918                 struct kvm_signal_mask kvm_sigmask;
1919                 compat_sigset_t csigset;
1920                 sigset_t sigset;
1921
1922                 if (argp) {
1923                         r = -EFAULT;
1924                         if (copy_from_user(&kvm_sigmask, argp,
1925                                            sizeof kvm_sigmask))
1926                                 goto out;
1927                         r = -EINVAL;
1928                         if (kvm_sigmask.len != sizeof csigset)
1929                                 goto out;
1930                         r = -EFAULT;
1931                         if (copy_from_user(&csigset, sigmask_arg->sigset,
1932                                            sizeof csigset))
1933                                 goto out;
1934                 }
1935                 sigset_from_compat(&sigset, &csigset);
1936                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1937                 break;
1938         }
1939         default:
1940                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
1941         }
1942
1943 out:
1944         return r;
1945 }
1946 #endif
1947
1948 static long kvm_vm_ioctl(struct file *filp,
1949                            unsigned int ioctl, unsigned long arg)
1950 {
1951         struct kvm *kvm = filp->private_data;
1952         void __user *argp = (void __user *)arg;
1953         int r;
1954
1955         if (kvm->mm != current->mm)
1956                 return -EIO;
1957         switch (ioctl) {
1958         case KVM_CREATE_VCPU:
1959                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1960                 if (r < 0)
1961                         goto out;
1962                 break;
1963         case KVM_SET_USER_MEMORY_REGION: {
1964                 struct kvm_userspace_memory_region kvm_userspace_mem;
1965
1966                 r = -EFAULT;
1967                 if (copy_from_user(&kvm_userspace_mem, argp,
1968                                                 sizeof kvm_userspace_mem))
1969                         goto out;
1970
1971                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1972                 if (r)
1973                         goto out;
1974                 break;
1975         }
1976         case KVM_GET_DIRTY_LOG: {
1977                 struct kvm_dirty_log log;
1978
1979                 r = -EFAULT;
1980                 if (copy_from_user(&log, argp, sizeof log))
1981                         goto out;
1982                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1983                 if (r)
1984                         goto out;
1985                 break;
1986         }
1987 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1988         case KVM_REGISTER_COALESCED_MMIO: {
1989                 struct kvm_coalesced_mmio_zone zone;
1990                 r = -EFAULT;
1991                 if (copy_from_user(&zone, argp, sizeof zone))
1992                         goto out;
1993                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1994                 if (r)
1995                         goto out;
1996                 r = 0;
1997                 break;
1998         }
1999         case KVM_UNREGISTER_COALESCED_MMIO: {
2000                 struct kvm_coalesced_mmio_zone zone;
2001                 r = -EFAULT;
2002                 if (copy_from_user(&zone, argp, sizeof zone))
2003                         goto out;
2004                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2005                 if (r)
2006                         goto out;
2007                 r = 0;
2008                 break;
2009         }
2010 #endif
2011         case KVM_IRQFD: {
2012                 struct kvm_irqfd data;
2013
2014                 r = -EFAULT;
2015                 if (copy_from_user(&data, argp, sizeof data))
2016                         goto out;
2017                 r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
2018                 break;
2019         }
2020         case KVM_IOEVENTFD: {
2021                 struct kvm_ioeventfd data;
2022
2023                 r = -EFAULT;
2024                 if (copy_from_user(&data, argp, sizeof data))
2025                         goto out;
2026                 r = kvm_ioeventfd(kvm, &data);
2027                 break;
2028         }
2029 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2030         case KVM_SET_BOOT_CPU_ID:
2031                 r = 0;
2032                 mutex_lock(&kvm->lock);
2033                 if (atomic_read(&kvm->online_vcpus) != 0)
2034                         r = -EBUSY;
2035                 else
2036                         kvm->bsp_vcpu_id = arg;
2037                 mutex_unlock(&kvm->lock);
2038                 break;
2039 #endif
2040         default:
2041                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2042                 if (r == -ENOTTY)
2043                         r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2044         }
2045 out:
2046         return r;
2047 }
2048
2049 #ifdef CONFIG_COMPAT
2050 struct compat_kvm_dirty_log {
2051         __u32 slot;
2052         __u32 padding1;
2053         union {
2054                 compat_uptr_t dirty_bitmap; /* one bit per page */
2055                 __u64 padding2;
2056         };
2057 };
2058
2059 static long kvm_vm_compat_ioctl(struct file *filp,
2060                            unsigned int ioctl, unsigned long arg)
2061 {
2062         struct kvm *kvm = filp->private_data;
2063         int r;
2064
2065         if (kvm->mm != current->mm)
2066                 return -EIO;
2067         switch (ioctl) {
2068         case KVM_GET_DIRTY_LOG: {
2069                 struct compat_kvm_dirty_log compat_log;
2070                 struct kvm_dirty_log log;
2071
2072                 r = -EFAULT;
2073                 if (copy_from_user(&compat_log, (void __user *)arg,
2074                                    sizeof(compat_log)))
2075                         goto out;
2076                 log.slot         = compat_log.slot;
2077                 log.padding1     = compat_log.padding1;
2078                 log.padding2     = compat_log.padding2;
2079                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2080
2081                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2082                 if (r)
2083                         goto out;
2084                 break;
2085         }
2086         default:
2087                 r = kvm_vm_ioctl(filp, ioctl, arg);
2088         }
2089
2090 out:
2091         return r;
2092 }
2093 #endif
2094
2095 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2096 {
2097         struct page *page[1];
2098         unsigned long addr;
2099         int npages;
2100         gfn_t gfn = vmf->pgoff;
2101         struct kvm *kvm = vma->vm_file->private_data;
2102
2103         addr = gfn_to_hva(kvm, gfn);
2104         if (kvm_is_error_hva(addr))
2105                 return VM_FAULT_SIGBUS;
2106
2107         npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2108                                 NULL);
2109         if (unlikely(npages != 1))
2110                 return VM_FAULT_SIGBUS;
2111
2112         vmf->page = page[0];
2113         return 0;
2114 }
2115
2116 static const struct vm_operations_struct kvm_vm_vm_ops = {
2117         .fault = kvm_vm_fault,
2118 };
2119
2120 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2121 {
2122         vma->vm_ops = &kvm_vm_vm_ops;
2123         return 0;
2124 }
2125
2126 static struct file_operations kvm_vm_fops = {
2127         .release        = kvm_vm_release,
2128         .unlocked_ioctl = kvm_vm_ioctl,
2129 #ifdef CONFIG_COMPAT
2130         .compat_ioctl   = kvm_vm_compat_ioctl,
2131 #endif
2132         .mmap           = kvm_vm_mmap,
2133         .llseek         = noop_llseek,
2134 };
2135
2136 static int kvm_dev_ioctl_create_vm(void)
2137 {
2138         int r;
2139         struct kvm *kvm;
2140
2141         kvm = kvm_create_vm();
2142         if (IS_ERR(kvm))
2143                 return PTR_ERR(kvm);
2144 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2145         r = kvm_coalesced_mmio_init(kvm);
2146         if (r < 0) {
2147                 kvm_put_kvm(kvm);
2148                 return r;
2149         }
2150 #endif
2151         r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2152         if (r < 0)
2153                 kvm_put_kvm(kvm);
2154
2155         return r;
2156 }
2157
2158 static long kvm_dev_ioctl_check_extension_generic(long arg)
2159 {
2160         switch (arg) {
2161         case KVM_CAP_USER_MEMORY:
2162         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2163         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2164 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2165         case KVM_CAP_SET_BOOT_CPU_ID:
2166 #endif
2167         case KVM_CAP_INTERNAL_ERROR_DATA:
2168                 return 1;
2169 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2170         case KVM_CAP_IRQ_ROUTING:
2171                 return KVM_MAX_IRQ_ROUTES;
2172 #endif
2173         default:
2174                 break;
2175         }
2176         return kvm_dev_ioctl_check_extension(arg);
2177 }
2178
2179 static long kvm_dev_ioctl(struct file *filp,
2180                           unsigned int ioctl, unsigned long arg)
2181 {
2182         long r = -EINVAL;
2183
2184         switch (ioctl) {
2185         case KVM_GET_API_VERSION:
2186                 r = -EINVAL;
2187                 if (arg)
2188                         goto out;
2189                 r = KVM_API_VERSION;
2190                 break;
2191         case KVM_CREATE_VM:
2192                 r = -EINVAL;
2193                 if (arg)
2194                         goto out;
2195                 r = kvm_dev_ioctl_create_vm();
2196                 break;
2197         case KVM_CHECK_EXTENSION:
2198                 r = kvm_dev_ioctl_check_extension_generic(arg);
2199                 break;
2200         case KVM_GET_VCPU_MMAP_SIZE:
2201                 r = -EINVAL;
2202                 if (arg)
2203                         goto out;
2204                 r = PAGE_SIZE;     /* struct kvm_run */
2205 #ifdef CONFIG_X86
2206                 r += PAGE_SIZE;    /* pio data page */
2207 #endif
2208 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2209                 r += PAGE_SIZE;    /* coalesced mmio ring page */
2210 #endif
2211                 break;
2212         case KVM_TRACE_ENABLE:
2213         case KVM_TRACE_PAUSE:
2214         case KVM_TRACE_DISABLE:
2215                 r = -EOPNOTSUPP;
2216                 break;
2217         default:
2218                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2219         }
2220 out:
2221         return r;
2222 }
2223
2224 static struct file_operations kvm_chardev_ops = {
2225         .unlocked_ioctl = kvm_dev_ioctl,
2226         .compat_ioctl   = kvm_dev_ioctl,
2227         .llseek         = noop_llseek,
2228 };
2229
2230 static struct miscdevice kvm_dev = {
2231         KVM_MINOR,
2232         "kvm",
2233         &kvm_chardev_ops,
2234 };
2235
2236 static void hardware_enable_nolock(void *junk)
2237 {
2238         int cpu = raw_smp_processor_id();
2239         int r;
2240
2241         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2242                 return;
2243
2244         cpumask_set_cpu(cpu, cpus_hardware_enabled);
2245
2246         r = kvm_arch_hardware_enable(NULL);
2247
2248         if (r) {
2249                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2250                 atomic_inc(&hardware_enable_failed);
2251                 printk(KERN_INFO "kvm: enabling virtualization on "
2252                                  "CPU%d failed\n", cpu);
2253         }
2254 }
2255
2256 static void hardware_enable(void *junk)
2257 {
2258         raw_spin_lock(&kvm_lock);
2259         hardware_enable_nolock(junk);
2260         raw_spin_unlock(&kvm_lock);
2261 }
2262
2263 static void hardware_disable_nolock(void *junk)
2264 {
2265         int cpu = raw_smp_processor_id();
2266
2267         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2268                 return;
2269         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2270         kvm_arch_hardware_disable(NULL);
2271 }
2272
2273 static void hardware_disable(void *junk)
2274 {
2275         raw_spin_lock(&kvm_lock);
2276         hardware_disable_nolock(junk);
2277         raw_spin_unlock(&kvm_lock);
2278 }
2279
2280 static void hardware_disable_all_nolock(void)
2281 {
2282         BUG_ON(!kvm_usage_count);
2283
2284         kvm_usage_count--;
2285         if (!kvm_usage_count)
2286                 on_each_cpu(hardware_disable_nolock, NULL, 1);
2287 }
2288
2289 static void hardware_disable_all(void)
2290 {
2291         raw_spin_lock(&kvm_lock);
2292         hardware_disable_all_nolock();
2293         raw_spin_unlock(&kvm_lock);
2294 }
2295
2296 static int hardware_enable_all(void)
2297 {
2298         int r = 0;
2299
2300         raw_spin_lock(&kvm_lock);
2301
2302         kvm_usage_count++;
2303         if (kvm_usage_count == 1) {
2304                 atomic_set(&hardware_enable_failed, 0);
2305                 on_each_cpu(hardware_enable_nolock, NULL, 1);
2306
2307                 if (atomic_read(&hardware_enable_failed)) {
2308                         hardware_disable_all_nolock();
2309                         r = -EBUSY;
2310                 }
2311         }
2312
2313         raw_spin_unlock(&kvm_lock);
2314
2315         return r;
2316 }
2317
2318 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2319                            void *v)
2320 {
2321         int cpu = (long)v;
2322
2323         if (!kvm_usage_count)
2324                 return NOTIFY_OK;
2325
2326         val &= ~CPU_TASKS_FROZEN;
2327         switch (val) {
2328         case CPU_DYING:
2329                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2330                        cpu);
2331                 hardware_disable(NULL);
2332                 break;
2333         case CPU_STARTING:
2334                 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2335                        cpu);
2336                 hardware_enable(NULL);
2337                 break;
2338         }
2339         return NOTIFY_OK;
2340 }
2341
2342
2343 asmlinkage void kvm_spurious_fault(void)
2344 {
2345         /* Fault while not rebooting.  We want the trace. */
2346         BUG();
2347 }
2348 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
2349
2350 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2351                       void *v)
2352 {
2353         /*
2354          * Some (well, at least mine) BIOSes hang on reboot if
2355          * in vmx root mode.
2356          *
2357          * And Intel TXT required VMX off for all cpu when system shutdown.
2358          */
2359         printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2360         kvm_rebooting = true;
2361         on_each_cpu(hardware_disable_nolock, NULL, 1);
2362         return NOTIFY_OK;
2363 }
2364
2365 static struct notifier_block kvm_reboot_notifier = {
2366         .notifier_call = kvm_reboot,
2367         .priority = 0,
2368 };
2369
2370 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2371 {
2372         int i;
2373
2374         for (i = 0; i < bus->dev_count; i++) {
2375                 struct kvm_io_device *pos = bus->devs[i];
2376
2377                 kvm_iodevice_destructor(pos);
2378         }
2379         kfree(bus);
2380 }
2381
2382 /* kvm_io_bus_write - called under kvm->slots_lock */
2383 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2384                      int len, const void *val)
2385 {
2386         int i;
2387         struct kvm_io_bus *bus;
2388
2389         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2390         for (i = 0; i < bus->dev_count; i++)
2391                 if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
2392                         return 0;
2393         return -EOPNOTSUPP;
2394 }
2395
2396 /* kvm_io_bus_read - called under kvm->slots_lock */
2397 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2398                     int len, void *val)
2399 {
2400         int i;
2401         struct kvm_io_bus *bus;
2402
2403         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2404         for (i = 0; i < bus->dev_count; i++)
2405                 if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
2406                         return 0;
2407         return -EOPNOTSUPP;
2408 }
2409
2410 /* Caller must hold slots_lock. */
2411 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2412                             struct kvm_io_device *dev)
2413 {
2414         struct kvm_io_bus *new_bus, *bus;
2415
2416         bus = kvm->buses[bus_idx];
2417         if (bus->dev_count > NR_IOBUS_DEVS-1)
2418                 return -ENOSPC;
2419
2420         new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2421         if (!new_bus)
2422                 return -ENOMEM;
2423         memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2424         new_bus->devs[new_bus->dev_count++] = dev;
2425         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2426         synchronize_srcu_expedited(&kvm->srcu);
2427         kfree(bus);
2428
2429         return 0;
2430 }
2431
2432 /* Caller must hold slots_lock. */
2433 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2434                               struct kvm_io_device *dev)
2435 {
2436         int i, r;
2437         struct kvm_io_bus *new_bus, *bus;
2438
2439         new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2440         if (!new_bus)
2441                 return -ENOMEM;
2442
2443         bus = kvm->buses[bus_idx];
2444         memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2445
2446         r = -ENOENT;
2447         for (i = 0; i < new_bus->dev_count; i++)
2448                 if (new_bus->devs[i] == dev) {
2449                         r = 0;
2450                         new_bus->devs[i] = new_bus->devs[--new_bus->dev_count];
2451                         break;
2452                 }
2453
2454         if (r) {
2455                 kfree(new_bus);
2456                 return r;
2457         }
2458
2459         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2460         synchronize_srcu_expedited(&kvm->srcu);
2461         kfree(bus);
2462         return r;
2463 }
2464
2465 static struct notifier_block kvm_cpu_notifier = {
2466         .notifier_call = kvm_cpu_hotplug,
2467 };
2468
2469 static int vm_stat_get(void *_offset, u64 *val)
2470 {
2471         unsigned offset = (long)_offset;
2472         struct kvm *kvm;
2473
2474         *val = 0;
2475         raw_spin_lock(&kvm_lock);
2476         list_for_each_entry(kvm, &vm_list, vm_list)
2477                 *val += *(u32 *)((void *)kvm + offset);
2478         raw_spin_unlock(&kvm_lock);
2479         return 0;
2480 }
2481
2482 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2483
2484 static int vcpu_stat_get(void *_offset, u64 *val)
2485 {
2486         unsigned offset = (long)_offset;
2487         struct kvm *kvm;
2488         struct kvm_vcpu *vcpu;
2489         int i;
2490
2491         *val = 0;
2492         raw_spin_lock(&kvm_lock);
2493         list_for_each_entry(kvm, &vm_list, vm_list)
2494                 kvm_for_each_vcpu(i, vcpu, kvm)
2495                         *val += *(u32 *)((void *)vcpu + offset);
2496
2497         raw_spin_unlock(&kvm_lock);
2498         return 0;
2499 }
2500
2501 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2502
2503 static const struct file_operations *stat_fops[] = {
2504         [KVM_STAT_VCPU] = &vcpu_stat_fops,
2505         [KVM_STAT_VM]   = &vm_stat_fops,
2506 };
2507
2508 static void kvm_init_debug(void)
2509 {
2510         struct kvm_stats_debugfs_item *p;
2511
2512         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2513         for (p = debugfs_entries; p->name; ++p)
2514                 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2515                                                 (void *)(long)p->offset,
2516                                                 stat_fops[p->kind]);
2517 }
2518
2519 static void kvm_exit_debug(void)
2520 {
2521         struct kvm_stats_debugfs_item *p;
2522
2523         for (p = debugfs_entries; p->name; ++p)
2524                 debugfs_remove(p->dentry);
2525         debugfs_remove(kvm_debugfs_dir);
2526 }
2527
2528 static int kvm_suspend(void)
2529 {
2530         if (kvm_usage_count)
2531                 hardware_disable_nolock(NULL);
2532         return 0;
2533 }
2534
2535 static void kvm_resume(void)
2536 {
2537         if (kvm_usage_count) {
2538                 WARN_ON(raw_spin_is_locked(&kvm_lock));
2539                 hardware_enable_nolock(NULL);
2540         }
2541 }
2542
2543 static struct syscore_ops kvm_syscore_ops = {
2544         .suspend = kvm_suspend,
2545         .resume = kvm_resume,
2546 };
2547
2548 struct page *bad_page;
2549 pfn_t bad_pfn;
2550
2551 static inline
2552 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2553 {
2554         return container_of(pn, struct kvm_vcpu, preempt_notifier);
2555 }
2556
2557 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2558 {
2559         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2560
2561         kvm_arch_vcpu_load(vcpu, cpu);
2562 }
2563
2564 static void kvm_sched_out(struct preempt_notifier *pn,
2565                           struct task_struct *next)
2566 {
2567         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2568
2569         kvm_arch_vcpu_put(vcpu);
2570 }
2571
2572 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2573                   struct module *module)
2574 {
2575         int r;
2576         int cpu;
2577
2578         r = kvm_arch_init(opaque);
2579         if (r)
2580                 goto out_fail;
2581
2582         bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2583
2584         if (bad_page == NULL) {
2585                 r = -ENOMEM;
2586                 goto out;
2587         }
2588
2589         bad_pfn = page_to_pfn(bad_page);
2590
2591         hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2592
2593         if (hwpoison_page == NULL) {
2594                 r = -ENOMEM;
2595                 goto out_free_0;
2596         }
2597
2598         hwpoison_pfn = page_to_pfn(hwpoison_page);
2599
2600         fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2601
2602         if (fault_page == NULL) {
2603                 r = -ENOMEM;
2604                 goto out_free_0;
2605         }
2606
2607         fault_pfn = page_to_pfn(fault_page);
2608
2609         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2610                 r = -ENOMEM;
2611                 goto out_free_0;
2612         }
2613
2614         r = kvm_arch_hardware_setup();
2615         if (r < 0)
2616                 goto out_free_0a;
2617
2618         for_each_online_cpu(cpu) {
2619                 smp_call_function_single(cpu,
2620                                 kvm_arch_check_processor_compat,
2621                                 &r, 1);
2622                 if (r < 0)
2623                         goto out_free_1;
2624         }
2625
2626         r = register_cpu_notifier(&kvm_cpu_notifier);
2627         if (r)
2628                 goto out_free_2;
2629         register_reboot_notifier(&kvm_reboot_notifier);
2630
2631         /* A kmem cache lets us meet the alignment requirements of fx_save. */
2632         if (!vcpu_align)
2633                 vcpu_align = __alignof__(struct kvm_vcpu);
2634         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2635                                            0, NULL);
2636         if (!kvm_vcpu_cache) {
2637                 r = -ENOMEM;
2638                 goto out_free_3;
2639         }
2640
2641         r = kvm_async_pf_init();
2642         if (r)
2643                 goto out_free;
2644
2645         kvm_chardev_ops.owner = module;
2646         kvm_vm_fops.owner = module;
2647         kvm_vcpu_fops.owner = module;
2648
2649         r = misc_register(&kvm_dev);
2650         if (r) {
2651                 printk(KERN_ERR "kvm: misc device register failed\n");
2652                 goto out_unreg;
2653         }
2654
2655         register_syscore_ops(&kvm_syscore_ops);
2656
2657         kvm_preempt_ops.sched_in = kvm_sched_in;
2658         kvm_preempt_ops.sched_out = kvm_sched_out;
2659
2660         kvm_init_debug();
2661
2662         return 0;
2663
2664 out_unreg:
2665         kvm_async_pf_deinit();
2666 out_free:
2667         kmem_cache_destroy(kvm_vcpu_cache);
2668 out_free_3:
2669         unregister_reboot_notifier(&kvm_reboot_notifier);
2670         unregister_cpu_notifier(&kvm_cpu_notifier);
2671 out_free_2:
2672 out_free_1:
2673         kvm_arch_hardware_unsetup();
2674 out_free_0a:
2675         free_cpumask_var(cpus_hardware_enabled);
2676 out_free_0:
2677         if (fault_page)
2678                 __free_page(fault_page);
2679         if (hwpoison_page)
2680                 __free_page(hwpoison_page);
2681         __free_page(bad_page);
2682 out:
2683         kvm_arch_exit();
2684 out_fail:
2685         return r;
2686 }
2687 EXPORT_SYMBOL_GPL(kvm_init);
2688
2689 void kvm_exit(void)
2690 {
2691         kvm_exit_debug();
2692         misc_deregister(&kvm_dev);
2693         kmem_cache_destroy(kvm_vcpu_cache);
2694         kvm_async_pf_deinit();
2695         unregister_syscore_ops(&kvm_syscore_ops);
2696         unregister_reboot_notifier(&kvm_reboot_notifier);
2697         unregister_cpu_notifier(&kvm_cpu_notifier);
2698         on_each_cpu(hardware_disable_nolock, NULL, 1);
2699         kvm_arch_hardware_unsetup();
2700         kvm_arch_exit();
2701         free_cpumask_var(cpus_hardware_enabled);
2702         __free_page(hwpoison_page);
2703         __free_page(bad_page);
2704 }
2705 EXPORT_SYMBOL_GPL(kvm_exit);