kvm: fix potentially corrupt mmio cache
[firefly-linux-kernel-4.4.55.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 /*
68  * Ordering of locks:
69  *
70  *              kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71  */
72
73 DEFINE_SPINLOCK(kvm_lock);
74 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
75 LIST_HEAD(vm_list);
76
77 static cpumask_var_t cpus_hardware_enabled;
78 static int kvm_usage_count = 0;
79 static atomic_t hardware_enable_failed;
80
81 struct kmem_cache *kvm_vcpu_cache;
82 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
83
84 static __read_mostly struct preempt_ops kvm_preempt_ops;
85
86 struct dentry *kvm_debugfs_dir;
87
88 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
89                            unsigned long arg);
90 #ifdef CONFIG_COMPAT
91 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
92                                   unsigned long arg);
93 #endif
94 static int hardware_enable_all(void);
95 static void hardware_disable_all(void);
96
97 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
98
99 static void kvm_release_pfn_dirty(pfn_t pfn);
100 static void mark_page_dirty_in_slot(struct kvm *kvm,
101                                     struct kvm_memory_slot *memslot, gfn_t gfn);
102
103 __visible bool kvm_rebooting;
104 EXPORT_SYMBOL_GPL(kvm_rebooting);
105
106 static bool largepages_enabled = true;
107
108 bool kvm_is_mmio_pfn(pfn_t pfn)
109 {
110         if (pfn_valid(pfn))
111                 return PageReserved(pfn_to_page(pfn));
112
113         return true;
114 }
115
116 /*
117  * Switches to specified vcpu, until a matching vcpu_put()
118  */
119 int vcpu_load(struct kvm_vcpu *vcpu)
120 {
121         int cpu;
122
123         if (mutex_lock_killable(&vcpu->mutex))
124                 return -EINTR;
125         if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
126                 /* The thread running this VCPU changed. */
127                 struct pid *oldpid = vcpu->pid;
128                 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
129                 rcu_assign_pointer(vcpu->pid, newpid);
130                 if (oldpid)
131                         synchronize_rcu();
132                 put_pid(oldpid);
133         }
134         cpu = get_cpu();
135         preempt_notifier_register(&vcpu->preempt_notifier);
136         kvm_arch_vcpu_load(vcpu, cpu);
137         put_cpu();
138         return 0;
139 }
140
141 void vcpu_put(struct kvm_vcpu *vcpu)
142 {
143         preempt_disable();
144         kvm_arch_vcpu_put(vcpu);
145         preempt_notifier_unregister(&vcpu->preempt_notifier);
146         preempt_enable();
147         mutex_unlock(&vcpu->mutex);
148 }
149
150 static void ack_flush(void *_completed)
151 {
152 }
153
154 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
155 {
156         int i, cpu, me;
157         cpumask_var_t cpus;
158         bool called = true;
159         struct kvm_vcpu *vcpu;
160
161         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
162
163         me = get_cpu();
164         kvm_for_each_vcpu(i, vcpu, kvm) {
165                 kvm_make_request(req, vcpu);
166                 cpu = vcpu->cpu;
167
168                 /* Set ->requests bit before we read ->mode */
169                 smp_mb();
170
171                 if (cpus != NULL && cpu != -1 && cpu != me &&
172                       kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
173                         cpumask_set_cpu(cpu, cpus);
174         }
175         if (unlikely(cpus == NULL))
176                 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
177         else if (!cpumask_empty(cpus))
178                 smp_call_function_many(cpus, ack_flush, NULL, 1);
179         else
180                 called = false;
181         put_cpu();
182         free_cpumask_var(cpus);
183         return called;
184 }
185
186 void kvm_flush_remote_tlbs(struct kvm *kvm)
187 {
188         long dirty_count = kvm->tlbs_dirty;
189
190         smp_mb();
191         if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
192                 ++kvm->stat.remote_tlb_flush;
193         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
194 }
195 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
196
197 void kvm_reload_remote_mmus(struct kvm *kvm)
198 {
199         make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
200 }
201
202 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
203 {
204         make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
205 }
206
207 void kvm_make_scan_ioapic_request(struct kvm *kvm)
208 {
209         make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
210 }
211
212 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
213 {
214         struct page *page;
215         int r;
216
217         mutex_init(&vcpu->mutex);
218         vcpu->cpu = -1;
219         vcpu->kvm = kvm;
220         vcpu->vcpu_id = id;
221         vcpu->pid = NULL;
222         init_waitqueue_head(&vcpu->wq);
223         kvm_async_pf_vcpu_init(vcpu);
224
225         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
226         if (!page) {
227                 r = -ENOMEM;
228                 goto fail;
229         }
230         vcpu->run = page_address(page);
231
232         kvm_vcpu_set_in_spin_loop(vcpu, false);
233         kvm_vcpu_set_dy_eligible(vcpu, false);
234         vcpu->preempted = false;
235
236         r = kvm_arch_vcpu_init(vcpu);
237         if (r < 0)
238                 goto fail_free_run;
239         return 0;
240
241 fail_free_run:
242         free_page((unsigned long)vcpu->run);
243 fail:
244         return r;
245 }
246 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
247
248 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
249 {
250         put_pid(vcpu->pid);
251         kvm_arch_vcpu_uninit(vcpu);
252         free_page((unsigned long)vcpu->run);
253 }
254 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
255
256 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
257 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
258 {
259         return container_of(mn, struct kvm, mmu_notifier);
260 }
261
262 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
263                                              struct mm_struct *mm,
264                                              unsigned long address)
265 {
266         struct kvm *kvm = mmu_notifier_to_kvm(mn);
267         int need_tlb_flush, idx;
268
269         /*
270          * When ->invalidate_page runs, the linux pte has been zapped
271          * already but the page is still allocated until
272          * ->invalidate_page returns. So if we increase the sequence
273          * here the kvm page fault will notice if the spte can't be
274          * established because the page is going to be freed. If
275          * instead the kvm page fault establishes the spte before
276          * ->invalidate_page runs, kvm_unmap_hva will release it
277          * before returning.
278          *
279          * The sequence increase only need to be seen at spin_unlock
280          * time, and not at spin_lock time.
281          *
282          * Increasing the sequence after the spin_unlock would be
283          * unsafe because the kvm page fault could then establish the
284          * pte after kvm_unmap_hva returned, without noticing the page
285          * is going to be freed.
286          */
287         idx = srcu_read_lock(&kvm->srcu);
288         spin_lock(&kvm->mmu_lock);
289
290         kvm->mmu_notifier_seq++;
291         need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
292         /* we've to flush the tlb before the pages can be freed */
293         if (need_tlb_flush)
294                 kvm_flush_remote_tlbs(kvm);
295
296         spin_unlock(&kvm->mmu_lock);
297         srcu_read_unlock(&kvm->srcu, idx);
298 }
299
300 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
301                                         struct mm_struct *mm,
302                                         unsigned long address,
303                                         pte_t pte)
304 {
305         struct kvm *kvm = mmu_notifier_to_kvm(mn);
306         int idx;
307
308         idx = srcu_read_lock(&kvm->srcu);
309         spin_lock(&kvm->mmu_lock);
310         kvm->mmu_notifier_seq++;
311         kvm_set_spte_hva(kvm, address, pte);
312         spin_unlock(&kvm->mmu_lock);
313         srcu_read_unlock(&kvm->srcu, idx);
314 }
315
316 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
317                                                     struct mm_struct *mm,
318                                                     unsigned long start,
319                                                     unsigned long end)
320 {
321         struct kvm *kvm = mmu_notifier_to_kvm(mn);
322         int need_tlb_flush = 0, idx;
323
324         idx = srcu_read_lock(&kvm->srcu);
325         spin_lock(&kvm->mmu_lock);
326         /*
327          * The count increase must become visible at unlock time as no
328          * spte can be established without taking the mmu_lock and
329          * count is also read inside the mmu_lock critical section.
330          */
331         kvm->mmu_notifier_count++;
332         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
333         need_tlb_flush |= kvm->tlbs_dirty;
334         /* we've to flush the tlb before the pages can be freed */
335         if (need_tlb_flush)
336                 kvm_flush_remote_tlbs(kvm);
337
338         spin_unlock(&kvm->mmu_lock);
339         srcu_read_unlock(&kvm->srcu, idx);
340 }
341
342 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
343                                                   struct mm_struct *mm,
344                                                   unsigned long start,
345                                                   unsigned long end)
346 {
347         struct kvm *kvm = mmu_notifier_to_kvm(mn);
348
349         spin_lock(&kvm->mmu_lock);
350         /*
351          * This sequence increase will notify the kvm page fault that
352          * the page that is going to be mapped in the spte could have
353          * been freed.
354          */
355         kvm->mmu_notifier_seq++;
356         smp_wmb();
357         /*
358          * The above sequence increase must be visible before the
359          * below count decrease, which is ensured by the smp_wmb above
360          * in conjunction with the smp_rmb in mmu_notifier_retry().
361          */
362         kvm->mmu_notifier_count--;
363         spin_unlock(&kvm->mmu_lock);
364
365         BUG_ON(kvm->mmu_notifier_count < 0);
366 }
367
368 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
369                                               struct mm_struct *mm,
370                                               unsigned long address)
371 {
372         struct kvm *kvm = mmu_notifier_to_kvm(mn);
373         int young, idx;
374
375         idx = srcu_read_lock(&kvm->srcu);
376         spin_lock(&kvm->mmu_lock);
377
378         young = kvm_age_hva(kvm, address);
379         if (young)
380                 kvm_flush_remote_tlbs(kvm);
381
382         spin_unlock(&kvm->mmu_lock);
383         srcu_read_unlock(&kvm->srcu, idx);
384
385         return young;
386 }
387
388 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
389                                        struct mm_struct *mm,
390                                        unsigned long address)
391 {
392         struct kvm *kvm = mmu_notifier_to_kvm(mn);
393         int young, idx;
394
395         idx = srcu_read_lock(&kvm->srcu);
396         spin_lock(&kvm->mmu_lock);
397         young = kvm_test_age_hva(kvm, address);
398         spin_unlock(&kvm->mmu_lock);
399         srcu_read_unlock(&kvm->srcu, idx);
400
401         return young;
402 }
403
404 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
405                                      struct mm_struct *mm)
406 {
407         struct kvm *kvm = mmu_notifier_to_kvm(mn);
408         int idx;
409
410         idx = srcu_read_lock(&kvm->srcu);
411         kvm_arch_flush_shadow_all(kvm);
412         srcu_read_unlock(&kvm->srcu, idx);
413 }
414
415 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
416         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
417         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
418         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
419         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
420         .test_young             = kvm_mmu_notifier_test_young,
421         .change_pte             = kvm_mmu_notifier_change_pte,
422         .release                = kvm_mmu_notifier_release,
423 };
424
425 static int kvm_init_mmu_notifier(struct kvm *kvm)
426 {
427         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
428         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
429 }
430
431 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
432
433 static int kvm_init_mmu_notifier(struct kvm *kvm)
434 {
435         return 0;
436 }
437
438 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
439
440 static void kvm_init_memslots_id(struct kvm *kvm)
441 {
442         int i;
443         struct kvm_memslots *slots = kvm->memslots;
444
445         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
446                 slots->id_to_index[i] = slots->memslots[i].id = i;
447 }
448
449 static struct kvm *kvm_create_vm(unsigned long type)
450 {
451         int r, i;
452         struct kvm *kvm = kvm_arch_alloc_vm();
453
454         if (!kvm)
455                 return ERR_PTR(-ENOMEM);
456
457         r = kvm_arch_init_vm(kvm, type);
458         if (r)
459                 goto out_err_no_disable;
460
461         r = hardware_enable_all();
462         if (r)
463                 goto out_err_no_disable;
464
465 #ifdef CONFIG_HAVE_KVM_IRQCHIP
466         INIT_HLIST_HEAD(&kvm->mask_notifier_list);
467 #endif
468 #ifdef CONFIG_HAVE_KVM_IRQFD
469         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
470 #endif
471
472         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
473
474         r = -ENOMEM;
475         kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
476         if (!kvm->memslots)
477                 goto out_err_no_srcu;
478
479         /*
480          * Init kvm generation close to the maximum to easily test the
481          * code of handling generation number wrap-around.
482          */
483         kvm->memslots->generation = -150;
484
485         kvm_init_memslots_id(kvm);
486         if (init_srcu_struct(&kvm->srcu))
487                 goto out_err_no_srcu;
488         if (init_srcu_struct(&kvm->irq_srcu))
489                 goto out_err_no_irq_srcu;
490         for (i = 0; i < KVM_NR_BUSES; i++) {
491                 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
492                                         GFP_KERNEL);
493                 if (!kvm->buses[i])
494                         goto out_err;
495         }
496
497         spin_lock_init(&kvm->mmu_lock);
498         kvm->mm = current->mm;
499         atomic_inc(&kvm->mm->mm_count);
500         kvm_eventfd_init(kvm);
501         mutex_init(&kvm->lock);
502         mutex_init(&kvm->irq_lock);
503         mutex_init(&kvm->slots_lock);
504         atomic_set(&kvm->users_count, 1);
505         INIT_LIST_HEAD(&kvm->devices);
506
507         r = kvm_init_mmu_notifier(kvm);
508         if (r)
509                 goto out_err;
510
511         spin_lock(&kvm_lock);
512         list_add(&kvm->vm_list, &vm_list);
513         spin_unlock(&kvm_lock);
514
515         return kvm;
516
517 out_err:
518         cleanup_srcu_struct(&kvm->irq_srcu);
519 out_err_no_irq_srcu:
520         cleanup_srcu_struct(&kvm->srcu);
521 out_err_no_srcu:
522         hardware_disable_all();
523 out_err_no_disable:
524         for (i = 0; i < KVM_NR_BUSES; i++)
525                 kfree(kvm->buses[i]);
526         kfree(kvm->memslots);
527         kvm_arch_free_vm(kvm);
528         return ERR_PTR(r);
529 }
530
531 /*
532  * Avoid using vmalloc for a small buffer.
533  * Should not be used when the size is statically known.
534  */
535 void *kvm_kvzalloc(unsigned long size)
536 {
537         if (size > PAGE_SIZE)
538                 return vzalloc(size);
539         else
540                 return kzalloc(size, GFP_KERNEL);
541 }
542
543 void kvm_kvfree(const void *addr)
544 {
545         if (is_vmalloc_addr(addr))
546                 vfree(addr);
547         else
548                 kfree(addr);
549 }
550
551 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
552 {
553         if (!memslot->dirty_bitmap)
554                 return;
555
556         kvm_kvfree(memslot->dirty_bitmap);
557         memslot->dirty_bitmap = NULL;
558 }
559
560 /*
561  * Free any memory in @free but not in @dont.
562  */
563 static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free,
564                                   struct kvm_memory_slot *dont)
565 {
566         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
567                 kvm_destroy_dirty_bitmap(free);
568
569         kvm_arch_free_memslot(kvm, free, dont);
570
571         free->npages = 0;
572 }
573
574 static void kvm_free_physmem(struct kvm *kvm)
575 {
576         struct kvm_memslots *slots = kvm->memslots;
577         struct kvm_memory_slot *memslot;
578
579         kvm_for_each_memslot(memslot, slots)
580                 kvm_free_physmem_slot(kvm, memslot, NULL);
581
582         kfree(kvm->memslots);
583 }
584
585 static void kvm_destroy_devices(struct kvm *kvm)
586 {
587         struct list_head *node, *tmp;
588
589         list_for_each_safe(node, tmp, &kvm->devices) {
590                 struct kvm_device *dev =
591                         list_entry(node, struct kvm_device, vm_node);
592
593                 list_del(node);
594                 dev->ops->destroy(dev);
595         }
596 }
597
598 static void kvm_destroy_vm(struct kvm *kvm)
599 {
600         int i;
601         struct mm_struct *mm = kvm->mm;
602
603         kvm_arch_sync_events(kvm);
604         spin_lock(&kvm_lock);
605         list_del(&kvm->vm_list);
606         spin_unlock(&kvm_lock);
607         kvm_free_irq_routing(kvm);
608         for (i = 0; i < KVM_NR_BUSES; i++)
609                 kvm_io_bus_destroy(kvm->buses[i]);
610         kvm_coalesced_mmio_free(kvm);
611 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
612         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
613 #else
614         kvm_arch_flush_shadow_all(kvm);
615 #endif
616         kvm_arch_destroy_vm(kvm);
617         kvm_destroy_devices(kvm);
618         kvm_free_physmem(kvm);
619         cleanup_srcu_struct(&kvm->irq_srcu);
620         cleanup_srcu_struct(&kvm->srcu);
621         kvm_arch_free_vm(kvm);
622         hardware_disable_all();
623         mmdrop(mm);
624 }
625
626 void kvm_get_kvm(struct kvm *kvm)
627 {
628         atomic_inc(&kvm->users_count);
629 }
630 EXPORT_SYMBOL_GPL(kvm_get_kvm);
631
632 void kvm_put_kvm(struct kvm *kvm)
633 {
634         if (atomic_dec_and_test(&kvm->users_count))
635                 kvm_destroy_vm(kvm);
636 }
637 EXPORT_SYMBOL_GPL(kvm_put_kvm);
638
639
640 static int kvm_vm_release(struct inode *inode, struct file *filp)
641 {
642         struct kvm *kvm = filp->private_data;
643
644         kvm_irqfd_release(kvm);
645
646         kvm_put_kvm(kvm);
647         return 0;
648 }
649
650 /*
651  * Allocation size is twice as large as the actual dirty bitmap size.
652  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
653  */
654 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
655 {
656         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
657
658         memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
659         if (!memslot->dirty_bitmap)
660                 return -ENOMEM;
661
662         return 0;
663 }
664
665 static int cmp_memslot(const void *slot1, const void *slot2)
666 {
667         struct kvm_memory_slot *s1, *s2;
668
669         s1 = (struct kvm_memory_slot *)slot1;
670         s2 = (struct kvm_memory_slot *)slot2;
671
672         if (s1->npages < s2->npages)
673                 return 1;
674         if (s1->npages > s2->npages)
675                 return -1;
676
677         return 0;
678 }
679
680 /*
681  * Sort the memslots base on its size, so the larger slots
682  * will get better fit.
683  */
684 static void sort_memslots(struct kvm_memslots *slots)
685 {
686         int i;
687
688         sort(slots->memslots, KVM_MEM_SLOTS_NUM,
689               sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
690
691         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
692                 slots->id_to_index[slots->memslots[i].id] = i;
693 }
694
695 static void update_memslots(struct kvm_memslots *slots,
696                             struct kvm_memory_slot *new)
697 {
698         if (new) {
699                 int id = new->id;
700                 struct kvm_memory_slot *old = id_to_memslot(slots, id);
701                 unsigned long npages = old->npages;
702
703                 *old = *new;
704                 if (new->npages != npages)
705                         sort_memslots(slots);
706         }
707 }
708
709 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
710 {
711         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
712
713 #ifdef __KVM_HAVE_READONLY_MEM
714         valid_flags |= KVM_MEM_READONLY;
715 #endif
716
717         if (mem->flags & ~valid_flags)
718                 return -EINVAL;
719
720         return 0;
721 }
722
723 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
724                 struct kvm_memslots *slots, struct kvm_memory_slot *new)
725 {
726         struct kvm_memslots *old_memslots = kvm->memslots;
727
728         /*
729          * Set the low bit in the generation, which disables SPTE caching
730          * until the end of synchronize_srcu_expedited.
731          */
732         WARN_ON(old_memslots->generation & 1);
733         slots->generation = old_memslots->generation + 1;
734
735         update_memslots(slots, new);
736         rcu_assign_pointer(kvm->memslots, slots);
737         synchronize_srcu_expedited(&kvm->srcu);
738
739         /*
740          * Increment the new memslot generation a second time. This prevents
741          * vm exits that race with memslot updates from caching a memslot
742          * generation that will (potentially) be valid forever.
743          */
744         slots->generation++;
745
746         kvm_arch_memslots_updated(kvm);
747
748         return old_memslots;
749 }
750
751 /*
752  * Allocate some memory and give it an address in the guest physical address
753  * space.
754  *
755  * Discontiguous memory is allowed, mostly for framebuffers.
756  *
757  * Must be called holding mmap_sem for write.
758  */
759 int __kvm_set_memory_region(struct kvm *kvm,
760                             struct kvm_userspace_memory_region *mem)
761 {
762         int r;
763         gfn_t base_gfn;
764         unsigned long npages;
765         struct kvm_memory_slot *slot;
766         struct kvm_memory_slot old, new;
767         struct kvm_memslots *slots = NULL, *old_memslots;
768         enum kvm_mr_change change;
769
770         r = check_memory_region_flags(mem);
771         if (r)
772                 goto out;
773
774         r = -EINVAL;
775         /* General sanity checks */
776         if (mem->memory_size & (PAGE_SIZE - 1))
777                 goto out;
778         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
779                 goto out;
780         /* We can read the guest memory with __xxx_user() later on. */
781         if ((mem->slot < KVM_USER_MEM_SLOTS) &&
782             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
783              !access_ok(VERIFY_WRITE,
784                         (void __user *)(unsigned long)mem->userspace_addr,
785                         mem->memory_size)))
786                 goto out;
787         if (mem->slot >= KVM_MEM_SLOTS_NUM)
788                 goto out;
789         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
790                 goto out;
791
792         slot = id_to_memslot(kvm->memslots, mem->slot);
793         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
794         npages = mem->memory_size >> PAGE_SHIFT;
795
796         r = -EINVAL;
797         if (npages > KVM_MEM_MAX_NR_PAGES)
798                 goto out;
799
800         if (!npages)
801                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
802
803         new = old = *slot;
804
805         new.id = mem->slot;
806         new.base_gfn = base_gfn;
807         new.npages = npages;
808         new.flags = mem->flags;
809
810         r = -EINVAL;
811         if (npages) {
812                 if (!old.npages)
813                         change = KVM_MR_CREATE;
814                 else { /* Modify an existing slot. */
815                         if ((mem->userspace_addr != old.userspace_addr) ||
816                             (npages != old.npages) ||
817                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
818                                 goto out;
819
820                         if (base_gfn != old.base_gfn)
821                                 change = KVM_MR_MOVE;
822                         else if (new.flags != old.flags)
823                                 change = KVM_MR_FLAGS_ONLY;
824                         else { /* Nothing to change. */
825                                 r = 0;
826                                 goto out;
827                         }
828                 }
829         } else if (old.npages) {
830                 change = KVM_MR_DELETE;
831         } else /* Modify a non-existent slot: disallowed. */
832                 goto out;
833
834         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
835                 /* Check for overlaps */
836                 r = -EEXIST;
837                 kvm_for_each_memslot(slot, kvm->memslots) {
838                         if ((slot->id >= KVM_USER_MEM_SLOTS) ||
839                             (slot->id == mem->slot))
840                                 continue;
841                         if (!((base_gfn + npages <= slot->base_gfn) ||
842                               (base_gfn >= slot->base_gfn + slot->npages)))
843                                 goto out;
844                 }
845         }
846
847         /* Free page dirty bitmap if unneeded */
848         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
849                 new.dirty_bitmap = NULL;
850
851         r = -ENOMEM;
852         if (change == KVM_MR_CREATE) {
853                 new.userspace_addr = mem->userspace_addr;
854
855                 if (kvm_arch_create_memslot(kvm, &new, npages))
856                         goto out_free;
857         }
858
859         /* Allocate page dirty bitmap if needed */
860         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
861                 if (kvm_create_dirty_bitmap(&new) < 0)
862                         goto out_free;
863         }
864
865         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
866                 r = -ENOMEM;
867                 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
868                                 GFP_KERNEL);
869                 if (!slots)
870                         goto out_free;
871                 slot = id_to_memslot(slots, mem->slot);
872                 slot->flags |= KVM_MEMSLOT_INVALID;
873
874                 old_memslots = install_new_memslots(kvm, slots, NULL);
875
876                 /* slot was deleted or moved, clear iommu mapping */
877                 kvm_iommu_unmap_pages(kvm, &old);
878                 /* From this point no new shadow pages pointing to a deleted,
879                  * or moved, memslot will be created.
880                  *
881                  * validation of sp->gfn happens in:
882                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
883                  *      - kvm_is_visible_gfn (mmu_check_roots)
884                  */
885                 kvm_arch_flush_shadow_memslot(kvm, slot);
886                 slots = old_memslots;
887         }
888
889         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
890         if (r)
891                 goto out_slots;
892
893         r = -ENOMEM;
894         /*
895          * We can re-use the old_memslots from above, the only difference
896          * from the currently installed memslots is the invalid flag.  This
897          * will get overwritten by update_memslots anyway.
898          */
899         if (!slots) {
900                 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
901                                 GFP_KERNEL);
902                 if (!slots)
903                         goto out_free;
904         }
905
906         /* actual memory is freed via old in kvm_free_physmem_slot below */
907         if (change == KVM_MR_DELETE) {
908                 new.dirty_bitmap = NULL;
909                 memset(&new.arch, 0, sizeof(new.arch));
910         }
911
912         old_memslots = install_new_memslots(kvm, slots, &new);
913
914         kvm_arch_commit_memory_region(kvm, mem, &old, change);
915
916         kvm_free_physmem_slot(kvm, &old, &new);
917         kfree(old_memslots);
918
919         /*
920          * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
921          * un-mapped and re-mapped if their base changes.  Since base change
922          * unmapping is handled above with slot deletion, mapping alone is
923          * needed here.  Anything else the iommu might care about for existing
924          * slots (size changes, userspace addr changes and read-only flag
925          * changes) is disallowed above, so any other attribute changes getting
926          * here can be skipped.
927          */
928         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
929                 r = kvm_iommu_map_pages(kvm, &new);
930                 return r;
931         }
932
933         return 0;
934
935 out_slots:
936         kfree(slots);
937 out_free:
938         kvm_free_physmem_slot(kvm, &new, &old);
939 out:
940         return r;
941 }
942 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
943
944 int kvm_set_memory_region(struct kvm *kvm,
945                           struct kvm_userspace_memory_region *mem)
946 {
947         int r;
948
949         mutex_lock(&kvm->slots_lock);
950         r = __kvm_set_memory_region(kvm, mem);
951         mutex_unlock(&kvm->slots_lock);
952         return r;
953 }
954 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
955
956 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
957                                           struct kvm_userspace_memory_region *mem)
958 {
959         if (mem->slot >= KVM_USER_MEM_SLOTS)
960                 return -EINVAL;
961         return kvm_set_memory_region(kvm, mem);
962 }
963
964 int kvm_get_dirty_log(struct kvm *kvm,
965                         struct kvm_dirty_log *log, int *is_dirty)
966 {
967         struct kvm_memory_slot *memslot;
968         int r, i;
969         unsigned long n;
970         unsigned long any = 0;
971
972         r = -EINVAL;
973         if (log->slot >= KVM_USER_MEM_SLOTS)
974                 goto out;
975
976         memslot = id_to_memslot(kvm->memslots, log->slot);
977         r = -ENOENT;
978         if (!memslot->dirty_bitmap)
979                 goto out;
980
981         n = kvm_dirty_bitmap_bytes(memslot);
982
983         for (i = 0; !any && i < n/sizeof(long); ++i)
984                 any = memslot->dirty_bitmap[i];
985
986         r = -EFAULT;
987         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
988                 goto out;
989
990         if (any)
991                 *is_dirty = 1;
992
993         r = 0;
994 out:
995         return r;
996 }
997 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
998
999 bool kvm_largepages_enabled(void)
1000 {
1001         return largepages_enabled;
1002 }
1003
1004 void kvm_disable_largepages(void)
1005 {
1006         largepages_enabled = false;
1007 }
1008 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1009
1010 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1011 {
1012         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1013 }
1014 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1015
1016 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1017 {
1018         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1019
1020         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1021               memslot->flags & KVM_MEMSLOT_INVALID)
1022                 return 0;
1023
1024         return 1;
1025 }
1026 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1027
1028 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1029 {
1030         struct vm_area_struct *vma;
1031         unsigned long addr, size;
1032
1033         size = PAGE_SIZE;
1034
1035         addr = gfn_to_hva(kvm, gfn);
1036         if (kvm_is_error_hva(addr))
1037                 return PAGE_SIZE;
1038
1039         down_read(&current->mm->mmap_sem);
1040         vma = find_vma(current->mm, addr);
1041         if (!vma)
1042                 goto out;
1043
1044         size = vma_kernel_pagesize(vma);
1045
1046 out:
1047         up_read(&current->mm->mmap_sem);
1048
1049         return size;
1050 }
1051
1052 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1053 {
1054         return slot->flags & KVM_MEM_READONLY;
1055 }
1056
1057 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1058                                        gfn_t *nr_pages, bool write)
1059 {
1060         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1061                 return KVM_HVA_ERR_BAD;
1062
1063         if (memslot_is_readonly(slot) && write)
1064                 return KVM_HVA_ERR_RO_BAD;
1065
1066         if (nr_pages)
1067                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1068
1069         return __gfn_to_hva_memslot(slot, gfn);
1070 }
1071
1072 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1073                                      gfn_t *nr_pages)
1074 {
1075         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1076 }
1077
1078 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1079                                         gfn_t gfn)
1080 {
1081         return gfn_to_hva_many(slot, gfn, NULL);
1082 }
1083 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1084
1085 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1086 {
1087         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1088 }
1089 EXPORT_SYMBOL_GPL(gfn_to_hva);
1090
1091 /*
1092  * If writable is set to false, the hva returned by this function is only
1093  * allowed to be read.
1094  */
1095 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1096 {
1097         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1098         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1099
1100         if (!kvm_is_error_hva(hva) && writable)
1101                 *writable = !memslot_is_readonly(slot);
1102
1103         return hva;
1104 }
1105
1106 static int kvm_read_hva(void *data, void __user *hva, int len)
1107 {
1108         return __copy_from_user(data, hva, len);
1109 }
1110
1111 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1112 {
1113         return __copy_from_user_inatomic(data, hva, len);
1114 }
1115
1116 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1117         unsigned long start, int write, struct page **page)
1118 {
1119         int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1120
1121         if (write)
1122                 flags |= FOLL_WRITE;
1123
1124         return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1125 }
1126
1127 static inline int check_user_page_hwpoison(unsigned long addr)
1128 {
1129         int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1130
1131         rc = __get_user_pages(current, current->mm, addr, 1,
1132                               flags, NULL, NULL, NULL);
1133         return rc == -EHWPOISON;
1134 }
1135
1136 /*
1137  * The atomic path to get the writable pfn which will be stored in @pfn,
1138  * true indicates success, otherwise false is returned.
1139  */
1140 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1141                             bool write_fault, bool *writable, pfn_t *pfn)
1142 {
1143         struct page *page[1];
1144         int npages;
1145
1146         if (!(async || atomic))
1147                 return false;
1148
1149         /*
1150          * Fast pin a writable pfn only if it is a write fault request
1151          * or the caller allows to map a writable pfn for a read fault
1152          * request.
1153          */
1154         if (!(write_fault || writable))
1155                 return false;
1156
1157         npages = __get_user_pages_fast(addr, 1, 1, page);
1158         if (npages == 1) {
1159                 *pfn = page_to_pfn(page[0]);
1160
1161                 if (writable)
1162                         *writable = true;
1163                 return true;
1164         }
1165
1166         return false;
1167 }
1168
1169 /*
1170  * The slow path to get the pfn of the specified host virtual address,
1171  * 1 indicates success, -errno is returned if error is detected.
1172  */
1173 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1174                            bool *writable, pfn_t *pfn)
1175 {
1176         struct page *page[1];
1177         int npages = 0;
1178
1179         might_sleep();
1180
1181         if (writable)
1182                 *writable = write_fault;
1183
1184         if (async) {
1185                 down_read(&current->mm->mmap_sem);
1186                 npages = get_user_page_nowait(current, current->mm,
1187                                               addr, write_fault, page);
1188                 up_read(&current->mm->mmap_sem);
1189         } else
1190                 npages = get_user_pages_fast(addr, 1, write_fault,
1191                                              page);
1192         if (npages != 1)
1193                 return npages;
1194
1195         /* map read fault as writable if possible */
1196         if (unlikely(!write_fault) && writable) {
1197                 struct page *wpage[1];
1198
1199                 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1200                 if (npages == 1) {
1201                         *writable = true;
1202                         put_page(page[0]);
1203                         page[0] = wpage[0];
1204                 }
1205
1206                 npages = 1;
1207         }
1208         *pfn = page_to_pfn(page[0]);
1209         return npages;
1210 }
1211
1212 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1213 {
1214         if (unlikely(!(vma->vm_flags & VM_READ)))
1215                 return false;
1216
1217         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1218                 return false;
1219
1220         return true;
1221 }
1222
1223 /*
1224  * Pin guest page in memory and return its pfn.
1225  * @addr: host virtual address which maps memory to the guest
1226  * @atomic: whether this function can sleep
1227  * @async: whether this function need to wait IO complete if the
1228  *         host page is not in the memory
1229  * @write_fault: whether we should get a writable host page
1230  * @writable: whether it allows to map a writable host page for !@write_fault
1231  *
1232  * The function will map a writable host page for these two cases:
1233  * 1): @write_fault = true
1234  * 2): @write_fault = false && @writable, @writable will tell the caller
1235  *     whether the mapping is writable.
1236  */
1237 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1238                         bool write_fault, bool *writable)
1239 {
1240         struct vm_area_struct *vma;
1241         pfn_t pfn = 0;
1242         int npages;
1243
1244         /* we can do it either atomically or asynchronously, not both */
1245         BUG_ON(atomic && async);
1246
1247         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1248                 return pfn;
1249
1250         if (atomic)
1251                 return KVM_PFN_ERR_FAULT;
1252
1253         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1254         if (npages == 1)
1255                 return pfn;
1256
1257         down_read(&current->mm->mmap_sem);
1258         if (npages == -EHWPOISON ||
1259               (!async && check_user_page_hwpoison(addr))) {
1260                 pfn = KVM_PFN_ERR_HWPOISON;
1261                 goto exit;
1262         }
1263
1264         vma = find_vma_intersection(current->mm, addr, addr + 1);
1265
1266         if (vma == NULL)
1267                 pfn = KVM_PFN_ERR_FAULT;
1268         else if ((vma->vm_flags & VM_PFNMAP)) {
1269                 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1270                         vma->vm_pgoff;
1271                 BUG_ON(!kvm_is_mmio_pfn(pfn));
1272         } else {
1273                 if (async && vma_is_valid(vma, write_fault))
1274                         *async = true;
1275                 pfn = KVM_PFN_ERR_FAULT;
1276         }
1277 exit:
1278         up_read(&current->mm->mmap_sem);
1279         return pfn;
1280 }
1281
1282 static pfn_t
1283 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1284                      bool *async, bool write_fault, bool *writable)
1285 {
1286         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1287
1288         if (addr == KVM_HVA_ERR_RO_BAD)
1289                 return KVM_PFN_ERR_RO_FAULT;
1290
1291         if (kvm_is_error_hva(addr))
1292                 return KVM_PFN_NOSLOT;
1293
1294         /* Do not map writable pfn in the readonly memslot. */
1295         if (writable && memslot_is_readonly(slot)) {
1296                 *writable = false;
1297                 writable = NULL;
1298         }
1299
1300         return hva_to_pfn(addr, atomic, async, write_fault,
1301                           writable);
1302 }
1303
1304 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1305                           bool write_fault, bool *writable)
1306 {
1307         struct kvm_memory_slot *slot;
1308
1309         if (async)
1310                 *async = false;
1311
1312         slot = gfn_to_memslot(kvm, gfn);
1313
1314         return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1315                                     writable);
1316 }
1317
1318 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1319 {
1320         return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1321 }
1322 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1323
1324 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1325                        bool write_fault, bool *writable)
1326 {
1327         return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1328 }
1329 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1330
1331 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1332 {
1333         return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1334 }
1335 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1336
1337 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1338                       bool *writable)
1339 {
1340         return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1341 }
1342 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1343
1344 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1345 {
1346         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1347 }
1348
1349 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1350 {
1351         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1352 }
1353 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1354
1355 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1356                                                                   int nr_pages)
1357 {
1358         unsigned long addr;
1359         gfn_t entry;
1360
1361         addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1362         if (kvm_is_error_hva(addr))
1363                 return -1;
1364
1365         if (entry < nr_pages)
1366                 return 0;
1367
1368         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1369 }
1370 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1371
1372 static struct page *kvm_pfn_to_page(pfn_t pfn)
1373 {
1374         if (is_error_noslot_pfn(pfn))
1375                 return KVM_ERR_PTR_BAD_PAGE;
1376
1377         if (kvm_is_mmio_pfn(pfn)) {
1378                 WARN_ON(1);
1379                 return KVM_ERR_PTR_BAD_PAGE;
1380         }
1381
1382         return pfn_to_page(pfn);
1383 }
1384
1385 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1386 {
1387         pfn_t pfn;
1388
1389         pfn = gfn_to_pfn(kvm, gfn);
1390
1391         return kvm_pfn_to_page(pfn);
1392 }
1393
1394 EXPORT_SYMBOL_GPL(gfn_to_page);
1395
1396 void kvm_release_page_clean(struct page *page)
1397 {
1398         WARN_ON(is_error_page(page));
1399
1400         kvm_release_pfn_clean(page_to_pfn(page));
1401 }
1402 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1403
1404 void kvm_release_pfn_clean(pfn_t pfn)
1405 {
1406         if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1407                 put_page(pfn_to_page(pfn));
1408 }
1409 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1410
1411 void kvm_release_page_dirty(struct page *page)
1412 {
1413         WARN_ON(is_error_page(page));
1414
1415         kvm_release_pfn_dirty(page_to_pfn(page));
1416 }
1417 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1418
1419 static void kvm_release_pfn_dirty(pfn_t pfn)
1420 {
1421         kvm_set_pfn_dirty(pfn);
1422         kvm_release_pfn_clean(pfn);
1423 }
1424
1425 void kvm_set_pfn_dirty(pfn_t pfn)
1426 {
1427         if (!kvm_is_mmio_pfn(pfn)) {
1428                 struct page *page = pfn_to_page(pfn);
1429                 if (!PageReserved(page))
1430                         SetPageDirty(page);
1431         }
1432 }
1433 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1434
1435 void kvm_set_pfn_accessed(pfn_t pfn)
1436 {
1437         if (!kvm_is_mmio_pfn(pfn))
1438                 mark_page_accessed(pfn_to_page(pfn));
1439 }
1440 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1441
1442 void kvm_get_pfn(pfn_t pfn)
1443 {
1444         if (!kvm_is_mmio_pfn(pfn))
1445                 get_page(pfn_to_page(pfn));
1446 }
1447 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1448
1449 static int next_segment(unsigned long len, int offset)
1450 {
1451         if (len > PAGE_SIZE - offset)
1452                 return PAGE_SIZE - offset;
1453         else
1454                 return len;
1455 }
1456
1457 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1458                         int len)
1459 {
1460         int r;
1461         unsigned long addr;
1462
1463         addr = gfn_to_hva_prot(kvm, gfn, NULL);
1464         if (kvm_is_error_hva(addr))
1465                 return -EFAULT;
1466         r = kvm_read_hva(data, (void __user *)addr + offset, len);
1467         if (r)
1468                 return -EFAULT;
1469         return 0;
1470 }
1471 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1472
1473 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1474 {
1475         gfn_t gfn = gpa >> PAGE_SHIFT;
1476         int seg;
1477         int offset = offset_in_page(gpa);
1478         int ret;
1479
1480         while ((seg = next_segment(len, offset)) != 0) {
1481                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1482                 if (ret < 0)
1483                         return ret;
1484                 offset = 0;
1485                 len -= seg;
1486                 data += seg;
1487                 ++gfn;
1488         }
1489         return 0;
1490 }
1491 EXPORT_SYMBOL_GPL(kvm_read_guest);
1492
1493 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1494                           unsigned long len)
1495 {
1496         int r;
1497         unsigned long addr;
1498         gfn_t gfn = gpa >> PAGE_SHIFT;
1499         int offset = offset_in_page(gpa);
1500
1501         addr = gfn_to_hva_prot(kvm, gfn, NULL);
1502         if (kvm_is_error_hva(addr))
1503                 return -EFAULT;
1504         pagefault_disable();
1505         r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1506         pagefault_enable();
1507         if (r)
1508                 return -EFAULT;
1509         return 0;
1510 }
1511 EXPORT_SYMBOL(kvm_read_guest_atomic);
1512
1513 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1514                          int offset, int len)
1515 {
1516         int r;
1517         unsigned long addr;
1518
1519         addr = gfn_to_hva(kvm, gfn);
1520         if (kvm_is_error_hva(addr))
1521                 return -EFAULT;
1522         r = __copy_to_user((void __user *)addr + offset, data, len);
1523         if (r)
1524                 return -EFAULT;
1525         mark_page_dirty(kvm, gfn);
1526         return 0;
1527 }
1528 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1529
1530 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1531                     unsigned long len)
1532 {
1533         gfn_t gfn = gpa >> PAGE_SHIFT;
1534         int seg;
1535         int offset = offset_in_page(gpa);
1536         int ret;
1537
1538         while ((seg = next_segment(len, offset)) != 0) {
1539                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1540                 if (ret < 0)
1541                         return ret;
1542                 offset = 0;
1543                 len -= seg;
1544                 data += seg;
1545                 ++gfn;
1546         }
1547         return 0;
1548 }
1549
1550 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1551                               gpa_t gpa, unsigned long len)
1552 {
1553         struct kvm_memslots *slots = kvm_memslots(kvm);
1554         int offset = offset_in_page(gpa);
1555         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1556         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1557         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1558         gfn_t nr_pages_avail;
1559
1560         ghc->gpa = gpa;
1561         ghc->generation = slots->generation;
1562         ghc->len = len;
1563         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1564         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
1565         if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
1566                 ghc->hva += offset;
1567         } else {
1568                 /*
1569                  * If the requested region crosses two memslots, we still
1570                  * verify that the entire region is valid here.
1571                  */
1572                 while (start_gfn <= end_gfn) {
1573                         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1574                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1575                                                    &nr_pages_avail);
1576                         if (kvm_is_error_hva(ghc->hva))
1577                                 return -EFAULT;
1578                         start_gfn += nr_pages_avail;
1579                 }
1580                 /* Use the slow path for cross page reads and writes. */
1581                 ghc->memslot = NULL;
1582         }
1583         return 0;
1584 }
1585 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1586
1587 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1588                            void *data, unsigned long len)
1589 {
1590         struct kvm_memslots *slots = kvm_memslots(kvm);
1591         int r;
1592
1593         BUG_ON(len > ghc->len);
1594
1595         if (slots->generation != ghc->generation)
1596                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1597
1598         if (unlikely(!ghc->memslot))
1599                 return kvm_write_guest(kvm, ghc->gpa, data, len);
1600
1601         if (kvm_is_error_hva(ghc->hva))
1602                 return -EFAULT;
1603
1604         r = __copy_to_user((void __user *)ghc->hva, data, len);
1605         if (r)
1606                 return -EFAULT;
1607         mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1608
1609         return 0;
1610 }
1611 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1612
1613 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1614                            void *data, unsigned long len)
1615 {
1616         struct kvm_memslots *slots = kvm_memslots(kvm);
1617         int r;
1618
1619         BUG_ON(len > ghc->len);
1620
1621         if (slots->generation != ghc->generation)
1622                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1623
1624         if (unlikely(!ghc->memslot))
1625                 return kvm_read_guest(kvm, ghc->gpa, data, len);
1626
1627         if (kvm_is_error_hva(ghc->hva))
1628                 return -EFAULT;
1629
1630         r = __copy_from_user(data, (void __user *)ghc->hva, len);
1631         if (r)
1632                 return -EFAULT;
1633
1634         return 0;
1635 }
1636 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1637
1638 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1639 {
1640         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1641
1642         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1643 }
1644 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1645
1646 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1647 {
1648         gfn_t gfn = gpa >> PAGE_SHIFT;
1649         int seg;
1650         int offset = offset_in_page(gpa);
1651         int ret;
1652
1653         while ((seg = next_segment(len, offset)) != 0) {
1654                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1655                 if (ret < 0)
1656                         return ret;
1657                 offset = 0;
1658                 len -= seg;
1659                 ++gfn;
1660         }
1661         return 0;
1662 }
1663 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1664
1665 static void mark_page_dirty_in_slot(struct kvm *kvm,
1666                                     struct kvm_memory_slot *memslot,
1667                                     gfn_t gfn)
1668 {
1669         if (memslot && memslot->dirty_bitmap) {
1670                 unsigned long rel_gfn = gfn - memslot->base_gfn;
1671
1672                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1673         }
1674 }
1675
1676 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1677 {
1678         struct kvm_memory_slot *memslot;
1679
1680         memslot = gfn_to_memslot(kvm, gfn);
1681         mark_page_dirty_in_slot(kvm, memslot, gfn);
1682 }
1683 EXPORT_SYMBOL_GPL(mark_page_dirty);
1684
1685 /*
1686  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1687  */
1688 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1689 {
1690         DEFINE_WAIT(wait);
1691
1692         for (;;) {
1693                 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1694
1695                 if (kvm_arch_vcpu_runnable(vcpu)) {
1696                         kvm_make_request(KVM_REQ_UNHALT, vcpu);
1697                         break;
1698                 }
1699                 if (kvm_cpu_has_pending_timer(vcpu))
1700                         break;
1701                 if (signal_pending(current))
1702                         break;
1703
1704                 schedule();
1705         }
1706
1707         finish_wait(&vcpu->wq, &wait);
1708 }
1709 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
1710
1711 #ifndef CONFIG_S390
1712 /*
1713  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1714  */
1715 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1716 {
1717         int me;
1718         int cpu = vcpu->cpu;
1719         wait_queue_head_t *wqp;
1720
1721         wqp = kvm_arch_vcpu_wq(vcpu);
1722         if (waitqueue_active(wqp)) {
1723                 wake_up_interruptible(wqp);
1724                 ++vcpu->stat.halt_wakeup;
1725         }
1726
1727         me = get_cpu();
1728         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1729                 if (kvm_arch_vcpu_should_kick(vcpu))
1730                         smp_send_reschedule(cpu);
1731         put_cpu();
1732 }
1733 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1734 #endif /* !CONFIG_S390 */
1735
1736 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
1737 {
1738         struct pid *pid;
1739         struct task_struct *task = NULL;
1740         int ret = 0;
1741
1742         rcu_read_lock();
1743         pid = rcu_dereference(target->pid);
1744         if (pid)
1745                 task = get_pid_task(target->pid, PIDTYPE_PID);
1746         rcu_read_unlock();
1747         if (!task)
1748                 return ret;
1749         if (task->flags & PF_VCPU) {
1750                 put_task_struct(task);
1751                 return ret;
1752         }
1753         ret = yield_to(task, 1);
1754         put_task_struct(task);
1755
1756         return ret;
1757 }
1758 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1759
1760 /*
1761  * Helper that checks whether a VCPU is eligible for directed yield.
1762  * Most eligible candidate to yield is decided by following heuristics:
1763  *
1764  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1765  *  (preempted lock holder), indicated by @in_spin_loop.
1766  *  Set at the beiginning and cleared at the end of interception/PLE handler.
1767  *
1768  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1769  *  chance last time (mostly it has become eligible now since we have probably
1770  *  yielded to lockholder in last iteration. This is done by toggling
1771  *  @dy_eligible each time a VCPU checked for eligibility.)
1772  *
1773  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1774  *  to preempted lock-holder could result in wrong VCPU selection and CPU
1775  *  burning. Giving priority for a potential lock-holder increases lock
1776  *  progress.
1777  *
1778  *  Since algorithm is based on heuristics, accessing another VCPU data without
1779  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
1780  *  and continue with next VCPU and so on.
1781  */
1782 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1783 {
1784 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1785         bool eligible;
1786
1787         eligible = !vcpu->spin_loop.in_spin_loop ||
1788                         (vcpu->spin_loop.in_spin_loop &&
1789                          vcpu->spin_loop.dy_eligible);
1790
1791         if (vcpu->spin_loop.in_spin_loop)
1792                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1793
1794         return eligible;
1795 #else
1796         return true;
1797 #endif
1798 }
1799
1800 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1801 {
1802         struct kvm *kvm = me->kvm;
1803         struct kvm_vcpu *vcpu;
1804         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1805         int yielded = 0;
1806         int try = 3;
1807         int pass;
1808         int i;
1809
1810         kvm_vcpu_set_in_spin_loop(me, true);
1811         /*
1812          * We boost the priority of a VCPU that is runnable but not
1813          * currently running, because it got preempted by something
1814          * else and called schedule in __vcpu_run.  Hopefully that
1815          * VCPU is holding the lock that we need and will release it.
1816          * We approximate round-robin by starting at the last boosted VCPU.
1817          */
1818         for (pass = 0; pass < 2 && !yielded && try; pass++) {
1819                 kvm_for_each_vcpu(i, vcpu, kvm) {
1820                         if (!pass && i <= last_boosted_vcpu) {
1821                                 i = last_boosted_vcpu;
1822                                 continue;
1823                         } else if (pass && i > last_boosted_vcpu)
1824                                 break;
1825                         if (!ACCESS_ONCE(vcpu->preempted))
1826                                 continue;
1827                         if (vcpu == me)
1828                                 continue;
1829                         if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
1830                                 continue;
1831                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1832                                 continue;
1833
1834                         yielded = kvm_vcpu_yield_to(vcpu);
1835                         if (yielded > 0) {
1836                                 kvm->last_boosted_vcpu = i;
1837                                 break;
1838                         } else if (yielded < 0) {
1839                                 try--;
1840                                 if (!try)
1841                                         break;
1842                         }
1843                 }
1844         }
1845         kvm_vcpu_set_in_spin_loop(me, false);
1846
1847         /* Ensure vcpu is not eligible during next spinloop */
1848         kvm_vcpu_set_dy_eligible(me, false);
1849 }
1850 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1851
1852 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1853 {
1854         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1855         struct page *page;
1856
1857         if (vmf->pgoff == 0)
1858                 page = virt_to_page(vcpu->run);
1859 #ifdef CONFIG_X86
1860         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1861                 page = virt_to_page(vcpu->arch.pio_data);
1862 #endif
1863 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1864         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1865                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1866 #endif
1867         else
1868                 return kvm_arch_vcpu_fault(vcpu, vmf);
1869         get_page(page);
1870         vmf->page = page;
1871         return 0;
1872 }
1873
1874 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1875         .fault = kvm_vcpu_fault,
1876 };
1877
1878 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1879 {
1880         vma->vm_ops = &kvm_vcpu_vm_ops;
1881         return 0;
1882 }
1883
1884 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1885 {
1886         struct kvm_vcpu *vcpu = filp->private_data;
1887
1888         kvm_put_kvm(vcpu->kvm);
1889         return 0;
1890 }
1891
1892 static struct file_operations kvm_vcpu_fops = {
1893         .release        = kvm_vcpu_release,
1894         .unlocked_ioctl = kvm_vcpu_ioctl,
1895 #ifdef CONFIG_COMPAT
1896         .compat_ioctl   = kvm_vcpu_compat_ioctl,
1897 #endif
1898         .mmap           = kvm_vcpu_mmap,
1899         .llseek         = noop_llseek,
1900 };
1901
1902 /*
1903  * Allocates an inode for the vcpu.
1904  */
1905 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1906 {
1907         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
1908 }
1909
1910 /*
1911  * Creates some virtual cpus.  Good luck creating more than one.
1912  */
1913 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1914 {
1915         int r;
1916         struct kvm_vcpu *vcpu, *v;
1917
1918         if (id >= KVM_MAX_VCPUS)
1919                 return -EINVAL;
1920
1921         vcpu = kvm_arch_vcpu_create(kvm, id);
1922         if (IS_ERR(vcpu))
1923                 return PTR_ERR(vcpu);
1924
1925         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1926
1927         r = kvm_arch_vcpu_setup(vcpu);
1928         if (r)
1929                 goto vcpu_destroy;
1930
1931         mutex_lock(&kvm->lock);
1932         if (!kvm_vcpu_compatible(vcpu)) {
1933                 r = -EINVAL;
1934                 goto unlock_vcpu_destroy;
1935         }
1936         if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1937                 r = -EINVAL;
1938                 goto unlock_vcpu_destroy;
1939         }
1940
1941         kvm_for_each_vcpu(r, v, kvm)
1942                 if (v->vcpu_id == id) {
1943                         r = -EEXIST;
1944                         goto unlock_vcpu_destroy;
1945                 }
1946
1947         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1948
1949         /* Now it's all set up, let userspace reach it */
1950         kvm_get_kvm(kvm);
1951         r = create_vcpu_fd(vcpu);
1952         if (r < 0) {
1953                 kvm_put_kvm(kvm);
1954                 goto unlock_vcpu_destroy;
1955         }
1956
1957         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1958         smp_wmb();
1959         atomic_inc(&kvm->online_vcpus);
1960
1961         mutex_unlock(&kvm->lock);
1962         kvm_arch_vcpu_postcreate(vcpu);
1963         return r;
1964
1965 unlock_vcpu_destroy:
1966         mutex_unlock(&kvm->lock);
1967 vcpu_destroy:
1968         kvm_arch_vcpu_destroy(vcpu);
1969         return r;
1970 }
1971
1972 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1973 {
1974         if (sigset) {
1975                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1976                 vcpu->sigset_active = 1;
1977                 vcpu->sigset = *sigset;
1978         } else
1979                 vcpu->sigset_active = 0;
1980         return 0;
1981 }
1982
1983 static long kvm_vcpu_ioctl(struct file *filp,
1984                            unsigned int ioctl, unsigned long arg)
1985 {
1986         struct kvm_vcpu *vcpu = filp->private_data;
1987         void __user *argp = (void __user *)arg;
1988         int r;
1989         struct kvm_fpu *fpu = NULL;
1990         struct kvm_sregs *kvm_sregs = NULL;
1991
1992         if (vcpu->kvm->mm != current->mm)
1993                 return -EIO;
1994
1995 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
1996         /*
1997          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1998          * so vcpu_load() would break it.
1999          */
2000         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
2001                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2002 #endif
2003
2004
2005         r = vcpu_load(vcpu);
2006         if (r)
2007                 return r;
2008         switch (ioctl) {
2009         case KVM_RUN:
2010                 r = -EINVAL;
2011                 if (arg)
2012                         goto out;
2013                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2014                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2015                 break;
2016         case KVM_GET_REGS: {
2017                 struct kvm_regs *kvm_regs;
2018
2019                 r = -ENOMEM;
2020                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2021                 if (!kvm_regs)
2022                         goto out;
2023                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2024                 if (r)
2025                         goto out_free1;
2026                 r = -EFAULT;
2027                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2028                         goto out_free1;
2029                 r = 0;
2030 out_free1:
2031                 kfree(kvm_regs);
2032                 break;
2033         }
2034         case KVM_SET_REGS: {
2035                 struct kvm_regs *kvm_regs;
2036
2037                 r = -ENOMEM;
2038                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2039                 if (IS_ERR(kvm_regs)) {
2040                         r = PTR_ERR(kvm_regs);
2041                         goto out;
2042                 }
2043                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2044                 kfree(kvm_regs);
2045                 break;
2046         }
2047         case KVM_GET_SREGS: {
2048                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2049                 r = -ENOMEM;
2050                 if (!kvm_sregs)
2051                         goto out;
2052                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2053                 if (r)
2054                         goto out;
2055                 r = -EFAULT;
2056                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2057                         goto out;
2058                 r = 0;
2059                 break;
2060         }
2061         case KVM_SET_SREGS: {
2062                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2063                 if (IS_ERR(kvm_sregs)) {
2064                         r = PTR_ERR(kvm_sregs);
2065                         kvm_sregs = NULL;
2066                         goto out;
2067                 }
2068                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2069                 break;
2070         }
2071         case KVM_GET_MP_STATE: {
2072                 struct kvm_mp_state mp_state;
2073
2074                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2075                 if (r)
2076                         goto out;
2077                 r = -EFAULT;
2078                 if (copy_to_user(argp, &mp_state, sizeof mp_state))
2079                         goto out;
2080                 r = 0;
2081                 break;
2082         }
2083         case KVM_SET_MP_STATE: {
2084                 struct kvm_mp_state mp_state;
2085
2086                 r = -EFAULT;
2087                 if (copy_from_user(&mp_state, argp, sizeof mp_state))
2088                         goto out;
2089                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2090                 break;
2091         }
2092         case KVM_TRANSLATE: {
2093                 struct kvm_translation tr;
2094
2095                 r = -EFAULT;
2096                 if (copy_from_user(&tr, argp, sizeof tr))
2097                         goto out;
2098                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2099                 if (r)
2100                         goto out;
2101                 r = -EFAULT;
2102                 if (copy_to_user(argp, &tr, sizeof tr))
2103                         goto out;
2104                 r = 0;
2105                 break;
2106         }
2107         case KVM_SET_GUEST_DEBUG: {
2108                 struct kvm_guest_debug dbg;
2109
2110                 r = -EFAULT;
2111                 if (copy_from_user(&dbg, argp, sizeof dbg))
2112                         goto out;
2113                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2114                 break;
2115         }
2116         case KVM_SET_SIGNAL_MASK: {
2117                 struct kvm_signal_mask __user *sigmask_arg = argp;
2118                 struct kvm_signal_mask kvm_sigmask;
2119                 sigset_t sigset, *p;
2120
2121                 p = NULL;
2122                 if (argp) {
2123                         r = -EFAULT;
2124                         if (copy_from_user(&kvm_sigmask, argp,
2125                                            sizeof kvm_sigmask))
2126                                 goto out;
2127                         r = -EINVAL;
2128                         if (kvm_sigmask.len != sizeof sigset)
2129                                 goto out;
2130                         r = -EFAULT;
2131                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2132                                            sizeof sigset))
2133                                 goto out;
2134                         p = &sigset;
2135                 }
2136                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2137                 break;
2138         }
2139         case KVM_GET_FPU: {
2140                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2141                 r = -ENOMEM;
2142                 if (!fpu)
2143                         goto out;
2144                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2145                 if (r)
2146                         goto out;
2147                 r = -EFAULT;
2148                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2149                         goto out;
2150                 r = 0;
2151                 break;
2152         }
2153         case KVM_SET_FPU: {
2154                 fpu = memdup_user(argp, sizeof(*fpu));
2155                 if (IS_ERR(fpu)) {
2156                         r = PTR_ERR(fpu);
2157                         fpu = NULL;
2158                         goto out;
2159                 }
2160                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2161                 break;
2162         }
2163         default:
2164                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2165         }
2166 out:
2167         vcpu_put(vcpu);
2168         kfree(fpu);
2169         kfree(kvm_sregs);
2170         return r;
2171 }
2172
2173 #ifdef CONFIG_COMPAT
2174 static long kvm_vcpu_compat_ioctl(struct file *filp,
2175                                   unsigned int ioctl, unsigned long arg)
2176 {
2177         struct kvm_vcpu *vcpu = filp->private_data;
2178         void __user *argp = compat_ptr(arg);
2179         int r;
2180
2181         if (vcpu->kvm->mm != current->mm)
2182                 return -EIO;
2183
2184         switch (ioctl) {
2185         case KVM_SET_SIGNAL_MASK: {
2186                 struct kvm_signal_mask __user *sigmask_arg = argp;
2187                 struct kvm_signal_mask kvm_sigmask;
2188                 compat_sigset_t csigset;
2189                 sigset_t sigset;
2190
2191                 if (argp) {
2192                         r = -EFAULT;
2193                         if (copy_from_user(&kvm_sigmask, argp,
2194                                            sizeof kvm_sigmask))
2195                                 goto out;
2196                         r = -EINVAL;
2197                         if (kvm_sigmask.len != sizeof csigset)
2198                                 goto out;
2199                         r = -EFAULT;
2200                         if (copy_from_user(&csigset, sigmask_arg->sigset,
2201                                            sizeof csigset))
2202                                 goto out;
2203                         sigset_from_compat(&sigset, &csigset);
2204                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2205                 } else
2206                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2207                 break;
2208         }
2209         default:
2210                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2211         }
2212
2213 out:
2214         return r;
2215 }
2216 #endif
2217
2218 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2219                                  int (*accessor)(struct kvm_device *dev,
2220                                                  struct kvm_device_attr *attr),
2221                                  unsigned long arg)
2222 {
2223         struct kvm_device_attr attr;
2224
2225         if (!accessor)
2226                 return -EPERM;
2227
2228         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2229                 return -EFAULT;
2230
2231         return accessor(dev, &attr);
2232 }
2233
2234 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2235                              unsigned long arg)
2236 {
2237         struct kvm_device *dev = filp->private_data;
2238
2239         switch (ioctl) {
2240         case KVM_SET_DEVICE_ATTR:
2241                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2242         case KVM_GET_DEVICE_ATTR:
2243                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2244         case KVM_HAS_DEVICE_ATTR:
2245                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2246         default:
2247                 if (dev->ops->ioctl)
2248                         return dev->ops->ioctl(dev, ioctl, arg);
2249
2250                 return -ENOTTY;
2251         }
2252 }
2253
2254 static int kvm_device_release(struct inode *inode, struct file *filp)
2255 {
2256         struct kvm_device *dev = filp->private_data;
2257         struct kvm *kvm = dev->kvm;
2258
2259         kvm_put_kvm(kvm);
2260         return 0;
2261 }
2262
2263 static const struct file_operations kvm_device_fops = {
2264         .unlocked_ioctl = kvm_device_ioctl,
2265 #ifdef CONFIG_COMPAT
2266         .compat_ioctl = kvm_device_ioctl,
2267 #endif
2268         .release = kvm_device_release,
2269 };
2270
2271 struct kvm_device *kvm_device_from_filp(struct file *filp)
2272 {
2273         if (filp->f_op != &kvm_device_fops)
2274                 return NULL;
2275
2276         return filp->private_data;
2277 }
2278
2279 static int kvm_ioctl_create_device(struct kvm *kvm,
2280                                    struct kvm_create_device *cd)
2281 {
2282         struct kvm_device_ops *ops = NULL;
2283         struct kvm_device *dev;
2284         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2285         int ret;
2286
2287         switch (cd->type) {
2288 #ifdef CONFIG_KVM_MPIC
2289         case KVM_DEV_TYPE_FSL_MPIC_20:
2290         case KVM_DEV_TYPE_FSL_MPIC_42:
2291                 ops = &kvm_mpic_ops;
2292                 break;
2293 #endif
2294 #ifdef CONFIG_KVM_XICS
2295         case KVM_DEV_TYPE_XICS:
2296                 ops = &kvm_xics_ops;
2297                 break;
2298 #endif
2299 #ifdef CONFIG_KVM_VFIO
2300         case KVM_DEV_TYPE_VFIO:
2301                 ops = &kvm_vfio_ops;
2302                 break;
2303 #endif
2304 #ifdef CONFIG_KVM_ARM_VGIC
2305         case KVM_DEV_TYPE_ARM_VGIC_V2:
2306                 ops = &kvm_arm_vgic_v2_ops;
2307                 break;
2308 #endif
2309 #ifdef CONFIG_S390
2310         case KVM_DEV_TYPE_FLIC:
2311                 ops = &kvm_flic_ops;
2312                 break;
2313 #endif
2314         default:
2315                 return -ENODEV;
2316         }
2317
2318         if (test)
2319                 return 0;
2320
2321         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2322         if (!dev)
2323                 return -ENOMEM;
2324
2325         dev->ops = ops;
2326         dev->kvm = kvm;
2327
2328         ret = ops->create(dev, cd->type);
2329         if (ret < 0) {
2330                 kfree(dev);
2331                 return ret;
2332         }
2333
2334         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2335         if (ret < 0) {
2336                 ops->destroy(dev);
2337                 return ret;
2338         }
2339
2340         list_add(&dev->vm_node, &kvm->devices);
2341         kvm_get_kvm(kvm);
2342         cd->fd = ret;
2343         return 0;
2344 }
2345
2346 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2347 {
2348         switch (arg) {
2349         case KVM_CAP_USER_MEMORY:
2350         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2351         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2352 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2353         case KVM_CAP_SET_BOOT_CPU_ID:
2354 #endif
2355         case KVM_CAP_INTERNAL_ERROR_DATA:
2356 #ifdef CONFIG_HAVE_KVM_MSI
2357         case KVM_CAP_SIGNAL_MSI:
2358 #endif
2359 #ifdef CONFIG_HAVE_KVM_IRQFD
2360         case KVM_CAP_IRQFD_RESAMPLE:
2361 #endif
2362         case KVM_CAP_CHECK_EXTENSION_VM:
2363                 return 1;
2364 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2365         case KVM_CAP_IRQ_ROUTING:
2366                 return KVM_MAX_IRQ_ROUTES;
2367 #endif
2368         default:
2369                 break;
2370         }
2371         return kvm_vm_ioctl_check_extension(kvm, arg);
2372 }
2373
2374 static long kvm_vm_ioctl(struct file *filp,
2375                            unsigned int ioctl, unsigned long arg)
2376 {
2377         struct kvm *kvm = filp->private_data;
2378         void __user *argp = (void __user *)arg;
2379         int r;
2380
2381         if (kvm->mm != current->mm)
2382                 return -EIO;
2383         switch (ioctl) {
2384         case KVM_CREATE_VCPU:
2385                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2386                 break;
2387         case KVM_SET_USER_MEMORY_REGION: {
2388                 struct kvm_userspace_memory_region kvm_userspace_mem;
2389
2390                 r = -EFAULT;
2391                 if (copy_from_user(&kvm_userspace_mem, argp,
2392                                                 sizeof kvm_userspace_mem))
2393                         goto out;
2394
2395                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2396                 break;
2397         }
2398         case KVM_GET_DIRTY_LOG: {
2399                 struct kvm_dirty_log log;
2400
2401                 r = -EFAULT;
2402                 if (copy_from_user(&log, argp, sizeof log))
2403                         goto out;
2404                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2405                 break;
2406         }
2407 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2408         case KVM_REGISTER_COALESCED_MMIO: {
2409                 struct kvm_coalesced_mmio_zone zone;
2410                 r = -EFAULT;
2411                 if (copy_from_user(&zone, argp, sizeof zone))
2412                         goto out;
2413                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2414                 break;
2415         }
2416         case KVM_UNREGISTER_COALESCED_MMIO: {
2417                 struct kvm_coalesced_mmio_zone zone;
2418                 r = -EFAULT;
2419                 if (copy_from_user(&zone, argp, sizeof zone))
2420                         goto out;
2421                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2422                 break;
2423         }
2424 #endif
2425         case KVM_IRQFD: {
2426                 struct kvm_irqfd data;
2427
2428                 r = -EFAULT;
2429                 if (copy_from_user(&data, argp, sizeof data))
2430                         goto out;
2431                 r = kvm_irqfd(kvm, &data);
2432                 break;
2433         }
2434         case KVM_IOEVENTFD: {
2435                 struct kvm_ioeventfd data;
2436
2437                 r = -EFAULT;
2438                 if (copy_from_user(&data, argp, sizeof data))
2439                         goto out;
2440                 r = kvm_ioeventfd(kvm, &data);
2441                 break;
2442         }
2443 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2444         case KVM_SET_BOOT_CPU_ID:
2445                 r = 0;
2446                 mutex_lock(&kvm->lock);
2447                 if (atomic_read(&kvm->online_vcpus) != 0)
2448                         r = -EBUSY;
2449                 else
2450                         kvm->bsp_vcpu_id = arg;
2451                 mutex_unlock(&kvm->lock);
2452                 break;
2453 #endif
2454 #ifdef CONFIG_HAVE_KVM_MSI
2455         case KVM_SIGNAL_MSI: {
2456                 struct kvm_msi msi;
2457
2458                 r = -EFAULT;
2459                 if (copy_from_user(&msi, argp, sizeof msi))
2460                         goto out;
2461                 r = kvm_send_userspace_msi(kvm, &msi);
2462                 break;
2463         }
2464 #endif
2465 #ifdef __KVM_HAVE_IRQ_LINE
2466         case KVM_IRQ_LINE_STATUS:
2467         case KVM_IRQ_LINE: {
2468                 struct kvm_irq_level irq_event;
2469
2470                 r = -EFAULT;
2471                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2472                         goto out;
2473
2474                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2475                                         ioctl == KVM_IRQ_LINE_STATUS);
2476                 if (r)
2477                         goto out;
2478
2479                 r = -EFAULT;
2480                 if (ioctl == KVM_IRQ_LINE_STATUS) {
2481                         if (copy_to_user(argp, &irq_event, sizeof irq_event))
2482                                 goto out;
2483                 }
2484
2485                 r = 0;
2486                 break;
2487         }
2488 #endif
2489 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2490         case KVM_SET_GSI_ROUTING: {
2491                 struct kvm_irq_routing routing;
2492                 struct kvm_irq_routing __user *urouting;
2493                 struct kvm_irq_routing_entry *entries;
2494
2495                 r = -EFAULT;
2496                 if (copy_from_user(&routing, argp, sizeof(routing)))
2497                         goto out;
2498                 r = -EINVAL;
2499                 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2500                         goto out;
2501                 if (routing.flags)
2502                         goto out;
2503                 r = -ENOMEM;
2504                 entries = vmalloc(routing.nr * sizeof(*entries));
2505                 if (!entries)
2506                         goto out;
2507                 r = -EFAULT;
2508                 urouting = argp;
2509                 if (copy_from_user(entries, urouting->entries,
2510                                    routing.nr * sizeof(*entries)))
2511                         goto out_free_irq_routing;
2512                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2513                                         routing.flags);
2514         out_free_irq_routing:
2515                 vfree(entries);
2516                 break;
2517         }
2518 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2519         case KVM_CREATE_DEVICE: {
2520                 struct kvm_create_device cd;
2521
2522                 r = -EFAULT;
2523                 if (copy_from_user(&cd, argp, sizeof(cd)))
2524                         goto out;
2525
2526                 r = kvm_ioctl_create_device(kvm, &cd);
2527                 if (r)
2528                         goto out;
2529
2530                 r = -EFAULT;
2531                 if (copy_to_user(argp, &cd, sizeof(cd)))
2532                         goto out;
2533
2534                 r = 0;
2535                 break;
2536         }
2537         case KVM_CHECK_EXTENSION:
2538                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2539                 break;
2540         default:
2541                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2542                 if (r == -ENOTTY)
2543                         r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2544         }
2545 out:
2546         return r;
2547 }
2548
2549 #ifdef CONFIG_COMPAT
2550 struct compat_kvm_dirty_log {
2551         __u32 slot;
2552         __u32 padding1;
2553         union {
2554                 compat_uptr_t dirty_bitmap; /* one bit per page */
2555                 __u64 padding2;
2556         };
2557 };
2558
2559 static long kvm_vm_compat_ioctl(struct file *filp,
2560                            unsigned int ioctl, unsigned long arg)
2561 {
2562         struct kvm *kvm = filp->private_data;
2563         int r;
2564
2565         if (kvm->mm != current->mm)
2566                 return -EIO;
2567         switch (ioctl) {
2568         case KVM_GET_DIRTY_LOG: {
2569                 struct compat_kvm_dirty_log compat_log;
2570                 struct kvm_dirty_log log;
2571
2572                 r = -EFAULT;
2573                 if (copy_from_user(&compat_log, (void __user *)arg,
2574                                    sizeof(compat_log)))
2575                         goto out;
2576                 log.slot         = compat_log.slot;
2577                 log.padding1     = compat_log.padding1;
2578                 log.padding2     = compat_log.padding2;
2579                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2580
2581                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2582                 break;
2583         }
2584         default:
2585                 r = kvm_vm_ioctl(filp, ioctl, arg);
2586         }
2587
2588 out:
2589         return r;
2590 }
2591 #endif
2592
2593 static struct file_operations kvm_vm_fops = {
2594         .release        = kvm_vm_release,
2595         .unlocked_ioctl = kvm_vm_ioctl,
2596 #ifdef CONFIG_COMPAT
2597         .compat_ioctl   = kvm_vm_compat_ioctl,
2598 #endif
2599         .llseek         = noop_llseek,
2600 };
2601
2602 static int kvm_dev_ioctl_create_vm(unsigned long type)
2603 {
2604         int r;
2605         struct kvm *kvm;
2606
2607         kvm = kvm_create_vm(type);
2608         if (IS_ERR(kvm))
2609                 return PTR_ERR(kvm);
2610 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2611         r = kvm_coalesced_mmio_init(kvm);
2612         if (r < 0) {
2613                 kvm_put_kvm(kvm);
2614                 return r;
2615         }
2616 #endif
2617         r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2618         if (r < 0)
2619                 kvm_put_kvm(kvm);
2620
2621         return r;
2622 }
2623
2624 static long kvm_dev_ioctl(struct file *filp,
2625                           unsigned int ioctl, unsigned long arg)
2626 {
2627         long r = -EINVAL;
2628
2629         switch (ioctl) {
2630         case KVM_GET_API_VERSION:
2631                 r = -EINVAL;
2632                 if (arg)
2633                         goto out;
2634                 r = KVM_API_VERSION;
2635                 break;
2636         case KVM_CREATE_VM:
2637                 r = kvm_dev_ioctl_create_vm(arg);
2638                 break;
2639         case KVM_CHECK_EXTENSION:
2640                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2641                 break;
2642         case KVM_GET_VCPU_MMAP_SIZE:
2643                 r = -EINVAL;
2644                 if (arg)
2645                         goto out;
2646                 r = PAGE_SIZE;     /* struct kvm_run */
2647 #ifdef CONFIG_X86
2648                 r += PAGE_SIZE;    /* pio data page */
2649 #endif
2650 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2651                 r += PAGE_SIZE;    /* coalesced mmio ring page */
2652 #endif
2653                 break;
2654         case KVM_TRACE_ENABLE:
2655         case KVM_TRACE_PAUSE:
2656         case KVM_TRACE_DISABLE:
2657                 r = -EOPNOTSUPP;
2658                 break;
2659         default:
2660                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2661         }
2662 out:
2663         return r;
2664 }
2665
2666 static struct file_operations kvm_chardev_ops = {
2667         .unlocked_ioctl = kvm_dev_ioctl,
2668         .compat_ioctl   = kvm_dev_ioctl,
2669         .llseek         = noop_llseek,
2670 };
2671
2672 static struct miscdevice kvm_dev = {
2673         KVM_MINOR,
2674         "kvm",
2675         &kvm_chardev_ops,
2676 };
2677
2678 static void hardware_enable_nolock(void *junk)
2679 {
2680         int cpu = raw_smp_processor_id();
2681         int r;
2682
2683         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2684                 return;
2685
2686         cpumask_set_cpu(cpu, cpus_hardware_enabled);
2687
2688         r = kvm_arch_hardware_enable();
2689
2690         if (r) {
2691                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2692                 atomic_inc(&hardware_enable_failed);
2693                 printk(KERN_INFO "kvm: enabling virtualization on "
2694                                  "CPU%d failed\n", cpu);
2695         }
2696 }
2697
2698 static void hardware_enable(void)
2699 {
2700         raw_spin_lock(&kvm_count_lock);
2701         if (kvm_usage_count)
2702                 hardware_enable_nolock(NULL);
2703         raw_spin_unlock(&kvm_count_lock);
2704 }
2705
2706 static void hardware_disable_nolock(void *junk)
2707 {
2708         int cpu = raw_smp_processor_id();
2709
2710         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2711                 return;
2712         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2713         kvm_arch_hardware_disable();
2714 }
2715
2716 static void hardware_disable(void)
2717 {
2718         raw_spin_lock(&kvm_count_lock);
2719         if (kvm_usage_count)
2720                 hardware_disable_nolock(NULL);
2721         raw_spin_unlock(&kvm_count_lock);
2722 }
2723
2724 static void hardware_disable_all_nolock(void)
2725 {
2726         BUG_ON(!kvm_usage_count);
2727
2728         kvm_usage_count--;
2729         if (!kvm_usage_count)
2730                 on_each_cpu(hardware_disable_nolock, NULL, 1);
2731 }
2732
2733 static void hardware_disable_all(void)
2734 {
2735         raw_spin_lock(&kvm_count_lock);
2736         hardware_disable_all_nolock();
2737         raw_spin_unlock(&kvm_count_lock);
2738 }
2739
2740 static int hardware_enable_all(void)
2741 {
2742         int r = 0;
2743
2744         raw_spin_lock(&kvm_count_lock);
2745
2746         kvm_usage_count++;
2747         if (kvm_usage_count == 1) {
2748                 atomic_set(&hardware_enable_failed, 0);
2749                 on_each_cpu(hardware_enable_nolock, NULL, 1);
2750
2751                 if (atomic_read(&hardware_enable_failed)) {
2752                         hardware_disable_all_nolock();
2753                         r = -EBUSY;
2754                 }
2755         }
2756
2757         raw_spin_unlock(&kvm_count_lock);
2758
2759         return r;
2760 }
2761
2762 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2763                            void *v)
2764 {
2765         int cpu = (long)v;
2766
2767         val &= ~CPU_TASKS_FROZEN;
2768         switch (val) {
2769         case CPU_DYING:
2770                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2771                        cpu);
2772                 hardware_disable();
2773                 break;
2774         case CPU_STARTING:
2775                 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2776                        cpu);
2777                 hardware_enable();
2778                 break;
2779         }
2780         return NOTIFY_OK;
2781 }
2782
2783 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2784                       void *v)
2785 {
2786         /*
2787          * Some (well, at least mine) BIOSes hang on reboot if
2788          * in vmx root mode.
2789          *
2790          * And Intel TXT required VMX off for all cpu when system shutdown.
2791          */
2792         printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2793         kvm_rebooting = true;
2794         on_each_cpu(hardware_disable_nolock, NULL, 1);
2795         return NOTIFY_OK;
2796 }
2797
2798 static struct notifier_block kvm_reboot_notifier = {
2799         .notifier_call = kvm_reboot,
2800         .priority = 0,
2801 };
2802
2803 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2804 {
2805         int i;
2806
2807         for (i = 0; i < bus->dev_count; i++) {
2808                 struct kvm_io_device *pos = bus->range[i].dev;
2809
2810                 kvm_iodevice_destructor(pos);
2811         }
2812         kfree(bus);
2813 }
2814
2815 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2816                                  const struct kvm_io_range *r2)
2817 {
2818         if (r1->addr < r2->addr)
2819                 return -1;
2820         if (r1->addr + r1->len > r2->addr + r2->len)
2821                 return 1;
2822         return 0;
2823 }
2824
2825 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2826 {
2827         return kvm_io_bus_cmp(p1, p2);
2828 }
2829
2830 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2831                           gpa_t addr, int len)
2832 {
2833         bus->range[bus->dev_count++] = (struct kvm_io_range) {
2834                 .addr = addr,
2835                 .len = len,
2836                 .dev = dev,
2837         };
2838
2839         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2840                 kvm_io_bus_sort_cmp, NULL);
2841
2842         return 0;
2843 }
2844
2845 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2846                              gpa_t addr, int len)
2847 {
2848         struct kvm_io_range *range, key;
2849         int off;
2850
2851         key = (struct kvm_io_range) {
2852                 .addr = addr,
2853                 .len = len,
2854         };
2855
2856         range = bsearch(&key, bus->range, bus->dev_count,
2857                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2858         if (range == NULL)
2859                 return -ENOENT;
2860
2861         off = range - bus->range;
2862
2863         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
2864                 off--;
2865
2866         return off;
2867 }
2868
2869 static int __kvm_io_bus_write(struct kvm_io_bus *bus,
2870                               struct kvm_io_range *range, const void *val)
2871 {
2872         int idx;
2873
2874         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2875         if (idx < 0)
2876                 return -EOPNOTSUPP;
2877
2878         while (idx < bus->dev_count &&
2879                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2880                 if (!kvm_iodevice_write(bus->range[idx].dev, range->addr,
2881                                         range->len, val))
2882                         return idx;
2883                 idx++;
2884         }
2885
2886         return -EOPNOTSUPP;
2887 }
2888
2889 /* kvm_io_bus_write - called under kvm->slots_lock */
2890 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2891                      int len, const void *val)
2892 {
2893         struct kvm_io_bus *bus;
2894         struct kvm_io_range range;
2895         int r;
2896
2897         range = (struct kvm_io_range) {
2898                 .addr = addr,
2899                 .len = len,
2900         };
2901
2902         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2903         r = __kvm_io_bus_write(bus, &range, val);
2904         return r < 0 ? r : 0;
2905 }
2906
2907 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
2908 int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2909                             int len, const void *val, long cookie)
2910 {
2911         struct kvm_io_bus *bus;
2912         struct kvm_io_range range;
2913
2914         range = (struct kvm_io_range) {
2915                 .addr = addr,
2916                 .len = len,
2917         };
2918
2919         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2920
2921         /* First try the device referenced by cookie. */
2922         if ((cookie >= 0) && (cookie < bus->dev_count) &&
2923             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2924                 if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len,
2925                                         val))
2926                         return cookie;
2927
2928         /*
2929          * cookie contained garbage; fall back to search and return the
2930          * correct cookie value.
2931          */
2932         return __kvm_io_bus_write(bus, &range, val);
2933 }
2934
2935 static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range,
2936                              void *val)
2937 {
2938         int idx;
2939
2940         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2941         if (idx < 0)
2942                 return -EOPNOTSUPP;
2943
2944         while (idx < bus->dev_count &&
2945                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2946                 if (!kvm_iodevice_read(bus->range[idx].dev, range->addr,
2947                                        range->len, val))
2948                         return idx;
2949                 idx++;
2950         }
2951
2952         return -EOPNOTSUPP;
2953 }
2954 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
2955
2956 /* kvm_io_bus_read - called under kvm->slots_lock */
2957 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2958                     int len, void *val)
2959 {
2960         struct kvm_io_bus *bus;
2961         struct kvm_io_range range;
2962         int r;
2963
2964         range = (struct kvm_io_range) {
2965                 .addr = addr,
2966                 .len = len,
2967         };
2968
2969         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2970         r = __kvm_io_bus_read(bus, &range, val);
2971         return r < 0 ? r : 0;
2972 }
2973
2974
2975 /* Caller must hold slots_lock. */
2976 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2977                             int len, struct kvm_io_device *dev)
2978 {
2979         struct kvm_io_bus *new_bus, *bus;
2980
2981         bus = kvm->buses[bus_idx];
2982         /* exclude ioeventfd which is limited by maximum fd */
2983         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
2984                 return -ENOSPC;
2985
2986         new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2987                           sizeof(struct kvm_io_range)), GFP_KERNEL);
2988         if (!new_bus)
2989                 return -ENOMEM;
2990         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2991                sizeof(struct kvm_io_range)));
2992         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2993         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2994         synchronize_srcu_expedited(&kvm->srcu);
2995         kfree(bus);
2996
2997         return 0;
2998 }
2999
3000 /* Caller must hold slots_lock. */
3001 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3002                               struct kvm_io_device *dev)
3003 {
3004         int i, r;
3005         struct kvm_io_bus *new_bus, *bus;
3006
3007         bus = kvm->buses[bus_idx];
3008         r = -ENOENT;
3009         for (i = 0; i < bus->dev_count; i++)
3010                 if (bus->range[i].dev == dev) {
3011                         r = 0;
3012                         break;
3013                 }
3014
3015         if (r)
3016                 return r;
3017
3018         new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3019                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3020         if (!new_bus)
3021                 return -ENOMEM;
3022
3023         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3024         new_bus->dev_count--;
3025         memcpy(new_bus->range + i, bus->range + i + 1,
3026                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3027
3028         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3029         synchronize_srcu_expedited(&kvm->srcu);
3030         kfree(bus);
3031         return r;
3032 }
3033
3034 static struct notifier_block kvm_cpu_notifier = {
3035         .notifier_call = kvm_cpu_hotplug,
3036 };
3037
3038 static int vm_stat_get(void *_offset, u64 *val)
3039 {
3040         unsigned offset = (long)_offset;
3041         struct kvm *kvm;
3042
3043         *val = 0;
3044         spin_lock(&kvm_lock);
3045         list_for_each_entry(kvm, &vm_list, vm_list)
3046                 *val += *(u32 *)((void *)kvm + offset);
3047         spin_unlock(&kvm_lock);
3048         return 0;
3049 }
3050
3051 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3052
3053 static int vcpu_stat_get(void *_offset, u64 *val)
3054 {
3055         unsigned offset = (long)_offset;
3056         struct kvm *kvm;
3057         struct kvm_vcpu *vcpu;
3058         int i;
3059
3060         *val = 0;
3061         spin_lock(&kvm_lock);
3062         list_for_each_entry(kvm, &vm_list, vm_list)
3063                 kvm_for_each_vcpu(i, vcpu, kvm)
3064                         *val += *(u32 *)((void *)vcpu + offset);
3065
3066         spin_unlock(&kvm_lock);
3067         return 0;
3068 }
3069
3070 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3071
3072 static const struct file_operations *stat_fops[] = {
3073         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3074         [KVM_STAT_VM]   = &vm_stat_fops,
3075 };
3076
3077 static int kvm_init_debug(void)
3078 {
3079         int r = -EEXIST;
3080         struct kvm_stats_debugfs_item *p;
3081
3082         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3083         if (kvm_debugfs_dir == NULL)
3084                 goto out;
3085
3086         for (p = debugfs_entries; p->name; ++p) {
3087                 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3088                                                 (void *)(long)p->offset,
3089                                                 stat_fops[p->kind]);
3090                 if (p->dentry == NULL)
3091                         goto out_dir;
3092         }
3093
3094         return 0;
3095
3096 out_dir:
3097         debugfs_remove_recursive(kvm_debugfs_dir);
3098 out:
3099         return r;
3100 }
3101
3102 static void kvm_exit_debug(void)
3103 {
3104         struct kvm_stats_debugfs_item *p;
3105
3106         for (p = debugfs_entries; p->name; ++p)
3107                 debugfs_remove(p->dentry);
3108         debugfs_remove(kvm_debugfs_dir);
3109 }
3110
3111 static int kvm_suspend(void)
3112 {
3113         if (kvm_usage_count)
3114                 hardware_disable_nolock(NULL);
3115         return 0;
3116 }
3117
3118 static void kvm_resume(void)
3119 {
3120         if (kvm_usage_count) {
3121                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3122                 hardware_enable_nolock(NULL);
3123         }
3124 }
3125
3126 static struct syscore_ops kvm_syscore_ops = {
3127         .suspend = kvm_suspend,
3128         .resume = kvm_resume,
3129 };
3130
3131 static inline
3132 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3133 {
3134         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3135 }
3136
3137 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3138 {
3139         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3140         if (vcpu->preempted)
3141                 vcpu->preempted = false;
3142
3143         kvm_arch_sched_in(vcpu, cpu);
3144
3145         kvm_arch_vcpu_load(vcpu, cpu);
3146 }
3147
3148 static void kvm_sched_out(struct preempt_notifier *pn,
3149                           struct task_struct *next)
3150 {
3151         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3152
3153         if (current->state == TASK_RUNNING)
3154                 vcpu->preempted = true;
3155         kvm_arch_vcpu_put(vcpu);
3156 }
3157
3158 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3159                   struct module *module)
3160 {
3161         int r;
3162         int cpu;
3163
3164         r = kvm_arch_init(opaque);
3165         if (r)
3166                 goto out_fail;
3167
3168         /*
3169          * kvm_arch_init makes sure there's at most one caller
3170          * for architectures that support multiple implementations,
3171          * like intel and amd on x86.
3172          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3173          * conflicts in case kvm is already setup for another implementation.
3174          */
3175         r = kvm_irqfd_init();
3176         if (r)
3177                 goto out_irqfd;
3178
3179         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3180                 r = -ENOMEM;
3181                 goto out_free_0;
3182         }
3183
3184         r = kvm_arch_hardware_setup();
3185         if (r < 0)
3186                 goto out_free_0a;
3187
3188         for_each_online_cpu(cpu) {
3189                 smp_call_function_single(cpu,
3190                                 kvm_arch_check_processor_compat,
3191                                 &r, 1);
3192                 if (r < 0)
3193                         goto out_free_1;
3194         }
3195
3196         r = register_cpu_notifier(&kvm_cpu_notifier);
3197         if (r)
3198                 goto out_free_2;
3199         register_reboot_notifier(&kvm_reboot_notifier);
3200
3201         /* A kmem cache lets us meet the alignment requirements of fx_save. */
3202         if (!vcpu_align)
3203                 vcpu_align = __alignof__(struct kvm_vcpu);
3204         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3205                                            0, NULL);
3206         if (!kvm_vcpu_cache) {
3207                 r = -ENOMEM;
3208                 goto out_free_3;
3209         }
3210
3211         r = kvm_async_pf_init();
3212         if (r)
3213                 goto out_free;
3214
3215         kvm_chardev_ops.owner = module;
3216         kvm_vm_fops.owner = module;
3217         kvm_vcpu_fops.owner = module;
3218
3219         r = misc_register(&kvm_dev);
3220         if (r) {
3221                 printk(KERN_ERR "kvm: misc device register failed\n");
3222                 goto out_unreg;
3223         }
3224
3225         register_syscore_ops(&kvm_syscore_ops);
3226
3227         kvm_preempt_ops.sched_in = kvm_sched_in;
3228         kvm_preempt_ops.sched_out = kvm_sched_out;
3229
3230         r = kvm_init_debug();
3231         if (r) {
3232                 printk(KERN_ERR "kvm: create debugfs files failed\n");
3233                 goto out_undebugfs;
3234         }
3235
3236         return 0;
3237
3238 out_undebugfs:
3239         unregister_syscore_ops(&kvm_syscore_ops);
3240         misc_deregister(&kvm_dev);
3241 out_unreg:
3242         kvm_async_pf_deinit();
3243 out_free:
3244         kmem_cache_destroy(kvm_vcpu_cache);
3245 out_free_3:
3246         unregister_reboot_notifier(&kvm_reboot_notifier);
3247         unregister_cpu_notifier(&kvm_cpu_notifier);
3248 out_free_2:
3249 out_free_1:
3250         kvm_arch_hardware_unsetup();
3251 out_free_0a:
3252         free_cpumask_var(cpus_hardware_enabled);
3253 out_free_0:
3254         kvm_irqfd_exit();
3255 out_irqfd:
3256         kvm_arch_exit();
3257 out_fail:
3258         return r;
3259 }
3260 EXPORT_SYMBOL_GPL(kvm_init);
3261
3262 void kvm_exit(void)
3263 {
3264         kvm_exit_debug();
3265         misc_deregister(&kvm_dev);
3266         kmem_cache_destroy(kvm_vcpu_cache);
3267         kvm_async_pf_deinit();
3268         unregister_syscore_ops(&kvm_syscore_ops);
3269         unregister_reboot_notifier(&kvm_reboot_notifier);
3270         unregister_cpu_notifier(&kvm_cpu_notifier);
3271         on_each_cpu(hardware_disable_nolock, NULL, 1);
3272         kvm_arch_hardware_unsetup();
3273         kvm_arch_exit();
3274         kvm_irqfd_exit();
3275         free_cpumask_var(cpus_hardware_enabled);
3276 }
3277 EXPORT_SYMBOL_GPL(kvm_exit);