1 package edu.uci.iotproject.detection.layer2;
3 import edu.uci.iotproject.analysis.TriggerTrafficExtractor;
4 import edu.uci.iotproject.analysis.UserAction;
5 import edu.uci.iotproject.detection.AbstractClusterMatcher;
6 import edu.uci.iotproject.detection.ClusterMatcherObserver;
7 import edu.uci.iotproject.detection.SignatureDetectorObserver;
8 import edu.uci.iotproject.io.PcapHandleReader;
9 import edu.uci.iotproject.trafficreassembly.layer2.Layer2FlowReassembler;
10 import edu.uci.iotproject.util.PrintUtils;
11 import org.jgrapht.GraphPath;
12 import org.jgrapht.alg.shortestpath.DijkstraShortestPath;
13 import org.jgrapht.graph.DefaultWeightedEdge;
14 import org.jgrapht.graph.SimpleDirectedWeightedGraph;
15 import org.pcap4j.core.*;
17 import java.time.Duration;
21 * TODO add class documentation.
23 * @author Janus Varmarken
25 public class Layer2SignatureDetector implements PacketListener, ClusterMatcherObserver {
27 // Main method only intended for easier debugging.
28 public static void main(String[] args) throws PcapNativeException, NotOpenException {
29 String onSignatureFile = "/Users/varmarken/temp/UCI IoT Project/layer2/kwikset-doorlock-onSignature-phone-side.sig";
30 String offSignatureFile = "/Users/varmarken/temp/UCI IoT Project/layer2/kwikset-doorlock-offSignature-phone-side.sig";
32 // Create signature detectors and add observers that output their detected events.
33 Layer2SignatureDetector onDetector = new Layer2SignatureDetector(PrintUtils.deserializeSignatureFromFile(onSignatureFile));
34 Layer2SignatureDetector offDetector = new Layer2SignatureDetector(PrintUtils.deserializeSignatureFromFile(offSignatureFile));
35 onDetector.addObserver((signature, match) -> {
36 System.out.println(new UserAction(UserAction.Type.TOGGLE_ON, match.get(0).get(0).getTimestamp()));
38 offDetector.addObserver((signature, match) -> {
39 System.out.println(new UserAction(UserAction.Type.TOGGLE_OFF, match.get(0).get(0).getTimestamp()));
43 String pcapFile = "/Users/varmarken/temp/UCI IoT Project/layer2/kwikset-doorlock.wlan1.local.pcap";
46 handle = Pcaps.openOffline(pcapFile, PcapHandle.TimestampPrecision.NANO);
47 } catch (PcapNativeException pne) {
48 handle = Pcaps.openOffline(pcapFile);
50 PcapHandleReader reader = new PcapHandleReader(handle, p -> true, onDetector, offDetector);
52 reader.readFromHandle();
57 * The signature that this {@link Layer2SignatureDetector} is searching for.
59 private final List<List<List<PcapPacket>>> mSignature;
62 * The {@link Layer2ClusterMatcher}s in charge of detecting each individual sequence of packets that together make
63 * up the the signature.
65 private final List<Layer2ClusterMatcher> mClusterMatchers;
68 * For each {@code i} ({@code i >= 0 && i < mPendingMatches.length}), {@code mPendingMatches[i]} holds the matches
69 * found by the {@link Layer2ClusterMatcher} at {@code mClusterMatchers.get(i)} that have yet to be "consumed",
70 * i.e., have yet to be included in a signature detected by this {@link Layer2SignatureDetector} (a signature can
71 * be encompassed of multiple packet sequences occurring shortly after one another on multiple connections).
73 private final List<List<PcapPacket>>[] mPendingMatches;
76 * Maps a {@link Layer2ClusterMatcher} to its corresponding index in {@link #mPendingMatches}.
78 private final Map<Layer2ClusterMatcher, Integer> mClusterMatcherIds;
81 * In charge of reassembling layer 2 packet flows.
83 private final Layer2FlowReassembler mFlowReassembler = new Layer2FlowReassembler();
85 private final List<SignatureDetectorObserver> mObservers = new ArrayList<>();
87 public Layer2SignatureDetector(List<List<List<PcapPacket>>> searchedSignature) {
88 mSignature = Collections.unmodifiableList(searchedSignature);
89 List<Layer2ClusterMatcher> clusterMatchers = new ArrayList<>();
90 for (List<List<PcapPacket>> cluster : mSignature) {
91 Layer2ClusterMatcher clusterMatcher = new Layer2ClusterMatcher(cluster);
92 clusterMatcher.addObserver(this);
93 clusterMatchers.add(clusterMatcher);
95 mClusterMatchers = Collections.unmodifiableList(clusterMatchers);
96 mPendingMatches = new List[mClusterMatchers.size()];
97 for (int i = 0; i < mPendingMatches.length; i++) {
98 mPendingMatches[i] = new ArrayList<>();
100 Map<Layer2ClusterMatcher, Integer> clusterMatcherIds = new HashMap<>();
101 for (int i = 0; i < mClusterMatchers.size(); i++) {
102 clusterMatcherIds.put(mClusterMatchers.get(i), i);
104 mClusterMatcherIds = Collections.unmodifiableMap(clusterMatcherIds);
105 // Register all cluster matchers to receive a notification whenever a new flow is encountered.
106 mClusterMatchers.forEach(cm -> mFlowReassembler.addObserver(cm));
111 public void gotPacket(PcapPacket packet) {
112 // Forward packet processing to the flow reassembler that in turn notifies the cluster matchers as appropriate
113 mFlowReassembler.gotPacket(packet);
117 public void onMatch(AbstractClusterMatcher clusterMatcher, List<PcapPacket> match) {
118 // TODO: a cluster matcher found a match
119 if (clusterMatcher instanceof Layer2ClusterMatcher) {
120 // Add the match at the corresponding index
121 mPendingMatches[mClusterMatcherIds.get(clusterMatcher)].add(match);
122 checkSignatureMatch();
126 public void addObserver(SignatureDetectorObserver observer) {
127 mObservers.add(observer);
130 public boolean removeObserver(SignatureDetectorObserver observer) {
131 return mObservers.remove(observer);
135 @SuppressWarnings("Duplicates")
136 private void checkSignatureMatch() {
137 // << Graph-based approach using Balint's idea. >>
138 // This implementation assumes that the packets in the inner lists (the sequences) are ordered by asc timestamp.
140 // There cannot be a signature match until each Layer3ClusterMatcher has found a match of its respective sequence.
141 if (Arrays.stream(mPendingMatches).noneMatch(l -> l.isEmpty())) {
143 final SimpleDirectedWeightedGraph<Vertex, DefaultWeightedEdge> graph =
144 new SimpleDirectedWeightedGraph<>(DefaultWeightedEdge.class);
145 // Add a vertex for each match found by all cluster matchers.
146 // And maintain an array to keep track of what cluster matcher each vertex corresponds to
147 final List<Vertex>[] vertices = new List[mPendingMatches.length];
148 for (int i = 0; i < mPendingMatches.length; i++) {
149 vertices[i] = new ArrayList<>();
150 for (List<PcapPacket> sequence : mPendingMatches[i]) {
151 Vertex v = new Vertex(sequence);
152 vertices[i].add(v); // retain reference for later when we are to add edges
153 graph.addVertex(v); // add to vertex to graph
156 // Add dummy source and sink vertices to facilitate search.
157 final Vertex source = new Vertex(null);
158 final Vertex sink = new Vertex(null);
159 graph.addVertex(source);
160 graph.addVertex(sink);
161 // The source is connected to all vertices that wrap the sequences detected by cluster matcher at index 0.
162 // Note: zero cost edges as this is just a dummy link to facilitate search from a common start node.
163 for (Vertex v : vertices[0]) {
164 DefaultWeightedEdge edge = graph.addEdge(source, v);
165 graph.setEdgeWeight(edge, 0.0);
167 // Similarly, all vertices that wrap the sequences detected by the last cluster matcher of the signature
168 // are connected to the sink node.
169 for (Vertex v : vertices[vertices.length-1]) {
170 DefaultWeightedEdge edge = graph.addEdge(v, sink);
171 graph.setEdgeWeight(edge, 0.0);
173 // Now link sequences detected by the cluster matcher at index i to sequences detected by the cluster
174 // matcher at index i+1 if they obey the timestamp constraint (i.e., that the latter is later in time than
176 for (int i = 0; i < vertices.length; i++) {
178 if (j < vertices.length) {
179 for (Vertex iv : vertices[i]) {
180 PcapPacket ivLast = iv.sequence.get(iv.sequence.size()-1);
181 for (Vertex jv : vertices[j]) {
182 PcapPacket jvFirst = jv.sequence.get(jv.sequence.size()-1);
183 if (ivLast.getTimestamp().isBefore(jvFirst.getTimestamp())) {
184 DefaultWeightedEdge edge = graph.addEdge(iv, jv);
185 // The weight is the duration of the i'th sequence plus the duration between the i'th
186 // and i+1'th sequence.
187 Duration d = Duration.
188 between(iv.sequence.get(0).getTimestamp(), jvFirst.getTimestamp());
189 // Unfortunately weights are double values, so must convert from long to double.
190 // TODO: need nano second precision? If so, use d.toNanos().
191 // TODO: risk of overflow when converting from long to double..?
192 graph.setEdgeWeight(edge, Long.valueOf(d.toMillis()).doubleValue());
194 // Alternative version if we cannot assume that sequences are ordered by timestamp:
195 // if (iv.sequence.stream().max(Comparator.comparing(PcapPacket::getTimestamp)).get()
196 // .getTimestamp().isBefore(jv.sequence.stream().min(
197 // Comparator.comparing(PcapPacket::getTimestamp)).get().getTimestamp())) {
204 // Graph construction complete, run shortest-path to find a (potential) signature match.
205 DijkstraShortestPath<Vertex, DefaultWeightedEdge> dijkstra = new DijkstraShortestPath<>(graph);
206 GraphPath<Vertex, DefaultWeightedEdge> shortestPath = dijkstra.getPath(source, sink);
207 if (shortestPath != null) {
208 // The total weight is the duration between the first packet of the first sequence and the last packet
209 // of the last sequence, so we simply have to compare the weight against the timeframe that we allow
210 // the signature to span. For now we just use the inclusion window we defined for training purposes.
211 // Note however, that we must convert back from double to long as the weight is stored as a double in
213 if (((long)shortestPath.getWeight()) < TriggerTrafficExtractor.INCLUSION_WINDOW_MILLIS) {
214 // There's a signature match!
215 // Extract the match from the vertices
216 List<List<PcapPacket>> signatureMatch = new ArrayList<>();
217 for(Vertex v : shortestPath.getVertexList()) {
218 if (v == source || v == sink) {
219 // Skip the dummy source and sink nodes.
222 signatureMatch.add(v.sequence);
223 // As there is a one-to-one correspondence between vertices[] and pendingMatches[], we know that
224 // the sequence we've "consumed" for index i of the matched signature is also at index i in
225 // pendingMatches. We must remove it from pendingMatches so that we don't use it to construct
226 // another signature match in a later call.
227 mPendingMatches[signatureMatch.size()-1].remove(v.sequence);
229 // Declare success: notify observers
230 mObservers.forEach(obs -> obs.onSignatureDetected(mSignature,
231 Collections.unmodifiableList(signatureMatch)));
238 * Encapsulates a {@code List<PcapPacket>} so as to allow the list to be used as a vertex in a graph while avoiding
239 * the expensive {@link AbstractList#equals(Object)} calls when adding vertices to the graph.
240 * Using this wrapper makes the incurred {@code equals(Object)} calls delegate to {@link Object#equals(Object)}
241 * instead of {@link AbstractList#equals(Object)}. The net effect is a faster implementation, but the graph will not
242 * recognize two lists that contain the same items--from a value and not reference point of view--as the same
243 * vertex. However, this is fine for our purposes -- in fact restricting it to reference equality seems more
246 private static class Vertex {
247 private final List<PcapPacket> sequence;
248 private Vertex(List<PcapPacket> wrappedSequence) {
249 sequence = wrappedSequence;