SMDiagnostic: don't emit ranges if there are /any/ multibyte characters.
[oota-llvm.git] / lib / Support / APFloat.cpp
index 4c79ba61d253a90806f886e09fc3f1d2676693a8..0e3c619170dfe8668e01486424e118c19ac7f509 100644 (file)
 //===----------------------------------------------------------------------===//
 
 #include "llvm/ADT/APFloat.h"
 //===----------------------------------------------------------------------===//
 
 #include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/APSInt.h"
 #include "llvm/ADT/FoldingSet.h"
 #include "llvm/ADT/FoldingSet.h"
+#include "llvm/ADT/Hashing.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/Support/ErrorHandling.h"
 #include "llvm/Support/MathExtras.h"
 #include <cstring>
 #include "llvm/Support/MathExtras.h"
 #include <cstring>
+#include <limits.h>
 
 using namespace llvm;
 
 
 using namespace llvm;
 
@@ -41,27 +46,33 @@ namespace llvm {
     /* Number of bits in the significand.  This includes the integer
        bit.  */
     unsigned int precision;
     /* Number of bits in the significand.  This includes the integer
        bit.  */
     unsigned int precision;
-
-    /* True if arithmetic is supported.  */
-    unsigned int arithmeticOK;
   };
 
   };
 
-  const fltSemantics APFloat::IEEEsingle = { 127, -126, 24, true };
-  const fltSemantics APFloat::IEEEdouble = { 1023, -1022, 53, true };
-  const fltSemantics APFloat::IEEEquad = { 16383, -16382, 113, true };
-  const fltSemantics APFloat::x87DoubleExtended = { 16383, -16382, 64, true };
-  const fltSemantics APFloat::Bogus = { 0, 0, 0, true };
-
-  // The PowerPC format consists of two doubles.  It does not map cleanly
-  // onto the usual format above.  For now only storage of constants of
-  // this type is supported, no arithmetic.
-  const fltSemantics APFloat::PPCDoubleDouble = { 1023, -1022, 106, false };
+  const fltSemantics APFloat::IEEEhalf = { 15, -14, 11 };
+  const fltSemantics APFloat::IEEEsingle = { 127, -126, 24 };
+  const fltSemantics APFloat::IEEEdouble = { 1023, -1022, 53 };
+  const fltSemantics APFloat::IEEEquad = { 16383, -16382, 113 };
+  const fltSemantics APFloat::x87DoubleExtended = { 16383, -16382, 64 };
+  const fltSemantics APFloat::Bogus = { 0, 0, 0 };
+
+  /* The PowerPC format consists of two doubles.  It does not map cleanly
+     onto the usual format above.  It is approximated using twice the
+     mantissa bits.  Note that for exponents near the double minimum,
+     we no longer can represent the full 106 mantissa bits, so those
+     will be treated as denormal numbers.
+
+     FIXME: While this approximation is equivalent to what GCC uses for
+     compile-time arithmetic on PPC double-double numbers, it is not able
+     to represent all possible values held by a PPC double-double number,
+     for example: (long double) 1.0 + (long double) 0x1p-106
+     Should this be replaced by a full emulation of PPC double-double?  */
+  const fltSemantics APFloat::PPCDoubleDouble = { 1023, -1022 + 53, 53 + 53 };
 
   /* A tight upper bound on number of parts required to hold the value
      pow(5, power) is
 
        power * 815 / (351 * integerPartWidth) + 1
 
   /* A tight upper bound on number of parts required to hold the value
      pow(5, power) is
 
        power * 815 / (351 * integerPartWidth) + 1
-       
+
      However, whilst the result may require only this many parts,
      because we are multiplying two values to get it, the
      multiplication may require an extra part with the excess part
      However, whilst the result may require only this many parts,
      because we are multiplying two values to get it, the
      multiplication may require an extra part with the excess part
@@ -96,61 +107,61 @@ hexDigitValue(unsigned int c)
   unsigned int r;
 
   r = c - '0';
   unsigned int r;
 
   r = c - '0';
-  if(r <= 9)
+  if (r <= 9)
     return r;
 
   r = c - 'A';
     return r;
 
   r = c - 'A';
-  if(r <= 5)
+  if (r <= 5)
     return r + 10;
 
   r = c - 'a';
     return r + 10;
 
   r = c - 'a';
-  if(r <= 5)
+  if (r <= 5)
     return r + 10;
 
   return -1U;
 }
 
     return r + 10;
 
   return -1U;
 }
 
-static inline void
-assertArithmeticOK(const llvm::fltSemantics &semantics) {
-  assert(semantics.arithmeticOK
-         && "Compile-time arithmetic does not support these semantics");
-}
-
 /* Return the value of a decimal exponent of the form
    [+-]ddddddd.
 
    If the exponent overflows, returns a large exponent with the
    appropriate sign.  */
 static int
 /* Return the value of a decimal exponent of the form
    [+-]ddddddd.
 
    If the exponent overflows, returns a large exponent with the
    appropriate sign.  */
 static int
-readExponent(const char *p)
+readExponent(StringRef::iterator begin, StringRef::iterator end)
 {
   bool isNegative;
   unsigned int absExponent;
   const unsigned int overlargeExponent = 24000;  /* FIXME.  */
 {
   bool isNegative;
   unsigned int absExponent;
   const unsigned int overlargeExponent = 24000;  /* FIXME.  */
+  StringRef::iterator p = begin;
+
+  assert(p != end && "Exponent has no digits");
 
   isNegative = (*p == '-');
 
   isNegative = (*p == '-');
-  if (*p == '-' || *p == '+')
+  if (*p == '-' || *p == '+') {
     p++;
     p++;
+    assert(p != end && "Exponent has no digits");
+  }
 
   absExponent = decDigitValue(*p++);
 
   absExponent = decDigitValue(*p++);
-  assert (absExponent < 10U);
+  assert(absExponent < 10U && "Invalid character in exponent");
 
 
-  for (;;) {
+  for (; p != end; ++p) {
     unsigned int value;
 
     value = decDigitValue(*p);
     unsigned int value;
 
     value = decDigitValue(*p);
-    if (value >= 10U)
-      break;
+    assert(value < 10U && "Invalid character in exponent");
 
 
-    p++;
     value += absExponent * 10;
     if (absExponent >= overlargeExponent) {
       absExponent = overlargeExponent;
     value += absExponent * 10;
     if (absExponent >= overlargeExponent) {
       absExponent = overlargeExponent;
+      p = end;  /* outwit assert below */
       break;
     }
     absExponent = value;
   }
 
       break;
     }
     absExponent = value;
   }
 
+  assert(p == end && "Invalid exponent in exponent");
+
   if (isNegative)
     return -(int) absExponent;
   else
   if (isNegative)
     return -(int) absExponent;
   else
@@ -160,61 +171,69 @@ readExponent(const char *p)
 /* This is ugly and needs cleaning up, but I don't immediately see
    how whilst remaining safe.  */
 static int
 /* This is ugly and needs cleaning up, but I don't immediately see
    how whilst remaining safe.  */
 static int
-totalExponent(const char *p, int exponentAdjustment)
+totalExponent(StringRef::iterator p, StringRef::iterator end,
+              int exponentAdjustment)
 {
   int unsignedExponent;
   bool negative, overflow;
 {
   int unsignedExponent;
   bool negative, overflow;
-  int exponent;
+  int exponent = 0;
+
+  assert(p != end && "Exponent has no digits");
 
 
-  /* Move past the exponent letter and sign to the digits.  */
-  p++;
   negative = *p == '-';
   negative = *p == '-';
-  if(*p == '-' || *p == '+')
+  if (*p == '-' || *p == '+') {
     p++;
     p++;
+    assert(p != end && "Exponent has no digits");
+  }
 
   unsignedExponent = 0;
   overflow = false;
 
   unsignedExponent = 0;
   overflow = false;
-  for(;;) {
+  for (; p != end; ++p) {
     unsigned int value;
 
     value = decDigitValue(*p);
     unsigned int value;
 
     value = decDigitValue(*p);
-    if(value >= 10U)
-      break;
+    assert(value < 10U && "Invalid character in exponent");
 
 
-    p++;
     unsignedExponent = unsignedExponent * 10 + value;
     unsignedExponent = unsignedExponent * 10 + value;
-    if(unsignedExponent > 65535)
+    if (unsignedExponent > 32767) {
       overflow = true;
       overflow = true;
+      break;
+    }
   }
 
   }
 
-  if(exponentAdjustment > 65535 || exponentAdjustment < -65536)
+  if (exponentAdjustment > 32767 || exponentAdjustment < -32768)
     overflow = true;
 
     overflow = true;
 
-  if(!overflow) {
+  if (!overflow) {
     exponent = unsignedExponent;
     exponent = unsignedExponent;
-    if(negative)
+    if (negative)
       exponent = -exponent;
     exponent += exponentAdjustment;
       exponent = -exponent;
     exponent += exponentAdjustment;
-    if(exponent > 65535 || exponent < -65536)
+    if (exponent > 32767 || exponent < -32768)
       overflow = true;
   }
 
       overflow = true;
   }
 
-  if(overflow)
-    exponent = negative ? -65536: 65535;
+  if (overflow)
+    exponent = negative ? -32768: 32767;
 
   return exponent;
 }
 
 
   return exponent;
 }
 
-static const char *
-skipLeadingZeroesAndAnyDot(const char *p, const char **dot)
+static StringRef::iterator
+skipLeadingZeroesAndAnyDot(StringRef::iterator begin, StringRef::iterator end,
+                           StringRef::iterator *dot)
 {
 {
-  *dot = 0;
-  while(*p == '0')
+  StringRef::iterator p = begin;
+  *dot = end;
+  while (*p == '0' && p != end)
     p++;
 
     p++;
 
-  if(*p == '.') {
+  if (*p == '.') {
     *dot = p++;
     *dot = p++;
-    while(*p == '0')
+
+    assert(end - begin != 1 && "Significand has no digits");
+
+    while (*p == '0' && p != end)
       p++;
   }
 
       p++;
   }
 
@@ -242,41 +261,50 @@ struct decimalInfo {
 };
 
 static void
 };
 
 static void
-interpretDecimal(const char *p, decimalInfo *D)
+interpretDecimal(StringRef::iterator begin, StringRef::iterator end,
+                 decimalInfo *D)
 {
 {
-  const char *dot;
-
-  p = skipLeadingZeroesAndAnyDot (p, &dot);
+  StringRef::iterator dot = end;
+  StringRef::iterator p = skipLeadingZeroesAndAnyDot (begin, end, &dot);
 
   D->firstSigDigit = p;
   D->exponent = 0;
   D->normalizedExponent = 0;
 
 
   D->firstSigDigit = p;
   D->exponent = 0;
   D->normalizedExponent = 0;
 
-  for (;;) {
+  for (; p != end; ++p) {
     if (*p == '.') {
     if (*p == '.') {
-      assert(dot == 0);
+      assert(dot == end && "String contains multiple dots");
       dot = p++;
       dot = p++;
+      if (p == end)
+        break;
     }
     if (decDigitValue(*p) >= 10U)
       break;
     }
     if (decDigitValue(*p) >= 10U)
       break;
-    p++;
   }
 
   }
 
-  /* If number is all zerooes accept any exponent.  */
-  if (p != D->firstSigDigit) {
-    if (*p == 'e' || *p == 'E')
-      D->exponent = readExponent(p + 1);
+  if (p != end) {
+    assert((*p == 'e' || *p == 'E') && "Invalid character in significand");
+    assert(p != begin && "Significand has no digits");
+    assert((dot == end || p - begin != 1) && "Significand has no digits");
+
+    /* p points to the first non-digit in the string */
+    D->exponent = readExponent(p + 1, end);
 
     /* Implied decimal point?  */
 
     /* Implied decimal point?  */
-    if (!dot)
+    if (dot == end)
       dot = p;
       dot = p;
+  }
 
 
+  /* If number is all zeroes accept any exponent.  */
+  if (p != D->firstSigDigit) {
     /* Drop insignificant trailing zeroes.  */
     /* Drop insignificant trailing zeroes.  */
-    do
+    if (p != begin) {
       do
       do
-        p--;
-      while (*p == '0');
-    while (*p == '.');
+        do
+          p--;
+        while (p != begin && *p == '0');
+      while (p != begin && *p == '.');
+    }
 
     /* Adjust the exponents for any decimal point.  */
     D->exponent += static_cast<exponent_t>((dot - p) - (dot > p));
 
     /* Adjust the exponents for any decimal point.  */
     D->exponent += static_cast<exponent_t>((dot - p) - (dot > p));
@@ -292,26 +320,29 @@ interpretDecimal(const char *p, decimalInfo *D)
    DIGITVALUE is the first hex digit of the fraction, P points to
    the next digit.  */
 static lostFraction
    DIGITVALUE is the first hex digit of the fraction, P points to
    the next digit.  */
 static lostFraction
-trailingHexadecimalFraction(const char *p, unsigned int digitValue)
+trailingHexadecimalFraction(StringRef::iterator p, StringRef::iterator end,
+                            unsigned int digitValue)
 {
   unsigned int hexDigit;
 
   /* If the first trailing digit isn't 0 or 8 we can work out the
      fraction immediately.  */
 {
   unsigned int hexDigit;
 
   /* If the first trailing digit isn't 0 or 8 we can work out the
      fraction immediately.  */
-  if(digitValue > 8)
+  if (digitValue > 8)
     return lfMoreThanHalf;
     return lfMoreThanHalf;
-  else if(digitValue < 8 && digitValue > 0)
+  else if (digitValue < 8 && digitValue > 0)
     return lfLessThanHalf;
 
   /* Otherwise we need to find the first non-zero digit.  */
     return lfLessThanHalf;
 
   /* Otherwise we need to find the first non-zero digit.  */
-  while(*p == '0')
+  while (*p == '0')
     p++;
 
     p++;
 
+  assert(p != end && "Invalid trailing hexadecimal fraction!");
+
   hexDigit = hexDigitValue(*p);
 
   /* If we ran off the end it is exactly zero or one-half, otherwise
      a little more.  */
   hexDigit = hexDigitValue(*p);
 
   /* If we ran off the end it is exactly zero or one-half, otherwise
      a little more.  */
-  if(hexDigit == -1U)
+  if (hexDigit == -1U)
     return digitValue == 0 ? lfExactlyZero: lfExactlyHalf;
   else
     return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf;
     return digitValue == 0 ? lfExactlyZero: lfExactlyHalf;
   else
     return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf;
@@ -329,12 +360,12 @@ lostFractionThroughTruncation(const integerPart *parts,
   lsb = APInt::tcLSB(parts, partCount);
 
   /* Note this is guaranteed true if bits == 0, or LSB == -1U.  */
   lsb = APInt::tcLSB(parts, partCount);
 
   /* Note this is guaranteed true if bits == 0, or LSB == -1U.  */
-  if(bits <= lsb)
+  if (bits <= lsb)
     return lfExactlyZero;
     return lfExactlyZero;
-  if(bits == lsb + 1)
+  if (bits == lsb + 1)
     return lfExactlyHalf;
     return lfExactlyHalf;
-  if(bits <= partCount * integerPartWidth
-     && APInt::tcExtractBit(parts, bits - 1))
+  if (bits <= partCount * integerPartWidth &&
+      APInt::tcExtractBit(parts, bits - 1))
     return lfMoreThanHalf;
 
   return lfLessThanHalf;
     return lfMoreThanHalf;
 
   return lfLessThanHalf;
@@ -358,10 +389,10 @@ static lostFraction
 combineLostFractions(lostFraction moreSignificant,
                      lostFraction lessSignificant)
 {
 combineLostFractions(lostFraction moreSignificant,
                      lostFraction lessSignificant)
 {
-  if(lessSignificant != lfExactlyZero) {
-    if(moreSignificant == lfExactlyZero)
+  if (lessSignificant != lfExactlyZero) {
+    if (moreSignificant == lfExactlyZero)
       moreSignificant = lfLessThanHalf;
       moreSignificant = lfLessThanHalf;
-    else if(moreSignificant == lfExactlyHalf)
+    else if (moreSignificant == lfExactlyHalf)
       moreSignificant = lfMoreThanHalf;
   }
 
       moreSignificant = lfMoreThanHalf;
   }
 
@@ -395,7 +426,7 @@ ulpsFromBoundary(const integerPart *parts, unsigned int bits, bool isNearest)
   unsigned int count, partBits;
   integerPart part, boundary;
 
   unsigned int count, partBits;
   integerPart part, boundary;
 
-  assert (bits != 0);
+  assert(bits != 0);
 
   bits--;
   count = bits / integerPartWidth;
 
   bits--;
   count = bits / integerPartWidth;
@@ -441,7 +472,7 @@ powerOf5(integerPart *dst, unsigned int power)
                                                   15625, 78125 };
   integerPart pow5s[maxPowerOfFiveParts * 2 + 5];
   pow5s[0] = 78125 * 5;
                                                   15625, 78125 };
   integerPart pow5s[maxPowerOfFiveParts * 2 + 5];
   pow5s[0] = 78125 * 5;
-  
+
   unsigned int partsCount[16] = { 1 };
   integerPart scratch[maxPowerOfFiveParts], *p1, *p2, *pow5;
   unsigned int result;
   unsigned int partsCount[16] = { 1 };
   integerPart scratch[maxPowerOfFiveParts], *p1, *p2, *pow5;
   unsigned int result;
@@ -511,7 +542,7 @@ partAsHex (char *dst, integerPart part, unsigned int count,
 {
   unsigned int result = count;
 
 {
   unsigned int result = count;
 
-  assert (count != 0 && count <= integerPartWidth / 4);
+  assert(count != 0 && count <= integerPartWidth / 4);
 
   part >>= (integerPartWidth - 4 * count);
   while (count--) {
 
   part >>= (integerPartWidth - 4 * count);
   while (count--) {
@@ -561,14 +592,14 @@ APFloat::initialize(const fltSemantics *ourSemantics)
 
   semantics = ourSemantics;
   count = partCount();
 
   semantics = ourSemantics;
   count = partCount();
-  if(count > 1)
+  if (count > 1)
     significand.parts = new integerPart[count];
 }
 
 void
 APFloat::freeSignificand()
 {
     significand.parts = new integerPart[count];
 }
 
 void
 APFloat::freeSignificand()
 {
-  if(partCount() > 1)
+  if (partCount() > 1)
     delete [] significand.parts;
 }
 
     delete [] significand.parts;
 }
 
@@ -580,9 +611,7 @@ APFloat::assign(const APFloat &rhs)
   sign = rhs.sign;
   category = rhs.category;
   exponent = rhs.exponent;
   sign = rhs.sign;
   category = rhs.category;
   exponent = rhs.exponent;
-  sign2 = rhs.sign2;
-  exponent2 = rhs.exponent2;
-  if(category == fcNormal || category == fcNaN)
+  if (category == fcNormal || category == fcNaN)
     copySignificand(rhs);
 }
 
     copySignificand(rhs);
 }
 
@@ -598,19 +627,66 @@ APFloat::copySignificand(const APFloat &rhs)
 
 /* Make this number a NaN, with an arbitrary but deterministic value
    for the significand.  If double or longer, this is a signalling NaN,
 
 /* Make this number a NaN, with an arbitrary but deterministic value
    for the significand.  If double or longer, this is a signalling NaN,
-   which may not be ideal. */
-void
-APFloat::makeNaN(void)
+   which may not be ideal.  If float, this is QNaN(0).  */
+void APFloat::makeNaN(bool SNaN, bool Negative, const APInt *fill)
 {
   category = fcNaN;
 {
   category = fcNaN;
-  APInt::tcSet(significandParts(), ~0U, partCount());
+  sign = Negative;
+
+  integerPart *significand = significandParts();
+  unsigned numParts = partCount();
+
+  // Set the significand bits to the fill.
+  if (!fill || fill->getNumWords() < numParts)
+    APInt::tcSet(significand, 0, numParts);
+  if (fill) {
+    APInt::tcAssign(significand, fill->getRawData(),
+                    std::min(fill->getNumWords(), numParts));
+
+    // Zero out the excess bits of the significand.
+    unsigned bitsToPreserve = semantics->precision - 1;
+    unsigned part = bitsToPreserve / 64;
+    bitsToPreserve %= 64;
+    significand[part] &= ((1ULL << bitsToPreserve) - 1);
+    for (part++; part != numParts; ++part)
+      significand[part] = 0;
+  }
+
+  unsigned QNaNBit = semantics->precision - 2;
+
+  if (SNaN) {
+    // We always have to clear the QNaN bit to make it an SNaN.
+    APInt::tcClearBit(significand, QNaNBit);
+
+    // If there are no bits set in the payload, we have to set
+    // *something* to make it a NaN instead of an infinity;
+    // conventionally, this is the next bit down from the QNaN bit.
+    if (APInt::tcIsZero(significand, numParts))
+      APInt::tcSetBit(significand, QNaNBit - 1);
+  } else {
+    // We always have to set the QNaN bit to make it a QNaN.
+    APInt::tcSetBit(significand, QNaNBit);
+  }
+
+  // For x87 extended precision, we want to make a NaN, not a
+  // pseudo-NaN.  Maybe we should expose the ability to make
+  // pseudo-NaNs?
+  if (semantics == &APFloat::x87DoubleExtended)
+    APInt::tcSetBit(significand, QNaNBit + 1);
+}
+
+APFloat APFloat::makeNaN(const fltSemantics &Sem, bool SNaN, bool Negative,
+                         const APInt *fill) {
+  APFloat value(Sem, uninitialized);
+  value.makeNaN(SNaN, Negative, fill);
+  return value;
 }
 
 APFloat &
 APFloat::operator=(const APFloat &rhs)
 {
 }
 
 APFloat &
 APFloat::operator=(const APFloat &rhs)
 {
-  if(this != &rhs) {
-    if(semantics != rhs.semantics) {
+  if (this != &rhs) {
+    if (semantics != rhs.semantics) {
       freeSignificand();
       initialize(rhs.semantics);
     }
       freeSignificand();
       initialize(rhs.semantics);
     }
@@ -620,6 +696,13 @@ APFloat::operator=(const APFloat &rhs)
   return *this;
 }
 
   return *this;
 }
 
+bool
+APFloat::isDenormal() const {
+  return isNormal() && (exponent == semantics->minExponent) &&
+         (APInt::tcExtractBit(significandParts(), 
+                              semantics->precision - 1) == 0);
+}
+
 bool
 APFloat::bitwiseIsEqual(const APFloat &rhs) const {
   if (this == &rhs)
 bool
 APFloat::bitwiseIsEqual(const APFloat &rhs) const {
   if (this == &rhs)
@@ -628,16 +711,10 @@ APFloat::bitwiseIsEqual(const APFloat &rhs) const {
       category != rhs.category ||
       sign != rhs.sign)
     return false;
       category != rhs.category ||
       sign != rhs.sign)
     return false;
-  if (semantics==(const llvm::fltSemantics*)&PPCDoubleDouble &&
-      sign2 != rhs.sign2)
-    return false;
   if (category==fcZero || category==fcInfinity)
     return true;
   else if (category==fcNormal && exponent!=rhs.exponent)
     return false;
   if (category==fcZero || category==fcInfinity)
     return true;
   else if (category==fcNormal && exponent!=rhs.exponent)
     return false;
-  else if (semantics==(const llvm::fltSemantics*)&PPCDoubleDouble &&
-           exponent2!=rhs.exponent2)
-    return false;
   else {
     int i= partCount();
     const integerPart* p=significandParts();
   else {
     int i= partCount();
     const integerPart* p=significandParts();
@@ -650,9 +727,7 @@ APFloat::bitwiseIsEqual(const APFloat &rhs) const {
   }
 }
 
   }
 }
 
-APFloat::APFloat(const fltSemantics &ourSemantics, integerPart value)
-{
-  assertArithmeticOK(ourSemantics);
+APFloat::APFloat(const fltSemantics &ourSemantics, integerPart value) {
   initialize(&ourSemantics);
   sign = 0;
   zeroSignificand();
   initialize(&ourSemantics);
   sign = 0;
   zeroSignificand();
@@ -661,28 +736,34 @@ APFloat::APFloat(const fltSemantics &ourSemantics, integerPart value)
   normalize(rmNearestTiesToEven, lfExactlyZero);
 }
 
   normalize(rmNearestTiesToEven, lfExactlyZero);
 }
 
+APFloat::APFloat(const fltSemantics &ourSemantics) {
+  initialize(&ourSemantics);
+  category = fcZero;
+  sign = false;
+}
+
+APFloat::APFloat(const fltSemantics &ourSemantics, uninitializedTag tag) {
+  // Allocates storage if necessary but does not initialize it.
+  initialize(&ourSemantics);
+}
+
 APFloat::APFloat(const fltSemantics &ourSemantics,
 APFloat::APFloat(const fltSemantics &ourSemantics,
-                 fltCategory ourCategory, bool negative)
-{
-  assertArithmeticOK(ourSemantics);
+                 fltCategory ourCategory, bool negative) {
   initialize(&ourSemantics);
   category = ourCategory;
   sign = negative;
   initialize(&ourSemantics);
   category = ourCategory;
   sign = negative;
-  if(category == fcNormal)
+  if (category == fcNormal)
     category = fcZero;
   else if (ourCategory == fcNaN)
     makeNaN();
 }
 
     category = fcZero;
   else if (ourCategory == fcNaN)
     makeNaN();
 }
 
-APFloat::APFloat(const fltSemantics &ourSemantics, const char *text)
-{
-  assertArithmeticOK(ourSemantics);
+APFloat::APFloat(const fltSemantics &ourSemantics, StringRef text) {
   initialize(&ourSemantics);
   convertFromString(text, rmNearestTiesToEven);
 }
 
   initialize(&ourSemantics);
   convertFromString(text, rmNearestTiesToEven);
 }
 
-APFloat::APFloat(const APFloat &rhs)
-{
+APFloat::APFloat(const APFloat &rhs) {
   initialize(rhs.semantics);
   assign(rhs);
 }
   initialize(rhs.semantics);
   assign(rhs);
 }
@@ -720,7 +801,7 @@ APFloat::significandParts()
 {
   assert(category == fcNormal || category == fcNaN);
 
 {
   assert(category == fcNormal || category == fcNaN);
 
-  if(partCount() > 1)
+  if (partCount() > 1)
     return significand.parts;
   else
     return &significand.part;
     return significand.parts;
   else
     return &significand.part;
@@ -743,6 +824,7 @@ APFloat::incrementSignificand()
 
   /* Our callers should never cause us to overflow.  */
   assert(carry == 0);
 
   /* Our callers should never cause us to overflow.  */
   assert(carry == 0);
+  (void)carry;
 }
 
 /* Add the significand of the RHS.  Returns the carry flag.  */
 }
 
 /* Add the significand of the RHS.  Returns the carry flag.  */
@@ -794,7 +876,7 @@ APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend)
   precision = semantics->precision;
   newPartsCount = partCountForBits(precision * 2);
 
   precision = semantics->precision;
   newPartsCount = partCountForBits(precision * 2);
 
-  if(newPartsCount > 4)
+  if (newPartsCount > 4)
     fullSignificand = new integerPart[newPartsCount];
   else
     fullSignificand = scratch;
     fullSignificand = new integerPart[newPartsCount];
   else
     fullSignificand = scratch;
@@ -809,7 +891,7 @@ APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend)
   omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
   exponent += rhs.exponent;
 
   omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
   exponent += rhs.exponent;
 
-  if(addend) {
+  if (addend) {
     Significand savedSignificand = significand;
     const fltSemantics *savedSemantics = semantics;
     fltSemantics extendedSemantics;
     Significand savedSignificand = significand;
     const fltSemantics *savedSemantics = semantics;
     fltSemantics extendedSemantics;
@@ -818,18 +900,17 @@ APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend)
 
     /* Normalize our MSB.  */
     extendedPrecision = precision + precision - 1;
 
     /* Normalize our MSB.  */
     extendedPrecision = precision + precision - 1;
-    if(omsb != extendedPrecision)
-      {
-        APInt::tcShiftLeft(fullSignificand, newPartsCount,
-                           extendedPrecision - omsb);
-        exponent -= extendedPrecision - omsb;
-      }
+    if (omsb != extendedPrecision) {
+      APInt::tcShiftLeft(fullSignificand, newPartsCount,
+                         extendedPrecision - omsb);
+      exponent -= extendedPrecision - omsb;
+    }
 
     /* Create new semantics.  */
     extendedSemantics = *semantics;
     extendedSemantics.precision = extendedPrecision;
 
 
     /* Create new semantics.  */
     extendedSemantics = *semantics;
     extendedSemantics.precision = extendedPrecision;
 
-    if(newPartsCount == 1)
+    if (newPartsCount == 1)
       significand.part = fullSignificand[0];
     else
       significand.parts = fullSignificand;
       significand.part = fullSignificand[0];
     else
       significand.parts = fullSignificand;
@@ -838,10 +919,11 @@ APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend)
     APFloat extendedAddend(*addend);
     status = extendedAddend.convert(extendedSemantics, rmTowardZero, &ignored);
     assert(status == opOK);
     APFloat extendedAddend(*addend);
     status = extendedAddend.convert(extendedSemantics, rmTowardZero, &ignored);
     assert(status == opOK);
+    (void)status;
     lost_fraction = addOrSubtractSignificand(extendedAddend, false);
 
     /* Restore our state.  */
     lost_fraction = addOrSubtractSignificand(extendedAddend, false);
 
     /* Restore our state.  */
-    if(newPartsCount == 1)
+    if (newPartsCount == 1)
       fullSignificand[0] = significand.part;
     significand = savedSignificand;
     semantics = savedSemantics;
       fullSignificand[0] = significand.part;
     significand = savedSignificand;
     semantics = savedSemantics;
@@ -851,7 +933,7 @@ APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend)
 
   exponent -= (precision - 1);
 
 
   exponent -= (precision - 1);
 
-  if(omsb > precision) {
+  if (omsb > precision) {
     unsigned int bits, significantParts;
     lostFraction lf;
 
     unsigned int bits, significantParts;
     lostFraction lf;
 
@@ -864,7 +946,7 @@ APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend)
 
   APInt::tcAssign(lhsSignificand, fullSignificand, partsCount);
 
 
   APInt::tcAssign(lhsSignificand, fullSignificand, partsCount);
 
-  if(newPartsCount > 4)
+  if (newPartsCount > 4)
     delete [] fullSignificand;
 
   return lost_fraction;
     delete [] fullSignificand;
 
   return lost_fraction;
@@ -886,7 +968,7 @@ APFloat::divideSignificand(const APFloat &rhs)
   rhsSignificand = rhs.significandParts();
   partsCount = partCount();
 
   rhsSignificand = rhs.significandParts();
   partsCount = partCount();
 
-  if(partsCount > 2)
+  if (partsCount > 2)
     dividend = new integerPart[partsCount * 2];
   else
     dividend = scratch;
     dividend = new integerPart[partsCount * 2];
   else
     dividend = scratch;
@@ -894,7 +976,7 @@ APFloat::divideSignificand(const APFloat &rhs)
   divisor = dividend + partsCount;
 
   /* Copy the dividend and divisor as they will be modified in-place.  */
   divisor = dividend + partsCount;
 
   /* Copy the dividend and divisor as they will be modified in-place.  */
-  for(i = 0; i < partsCount; i++) {
+  for (i = 0; i < partsCount; i++) {
     dividend[i] = lhsSignificand[i];
     divisor[i] = rhsSignificand[i];
     lhsSignificand[i] = 0;
     dividend[i] = lhsSignificand[i];
     divisor[i] = rhsSignificand[i];
     lhsSignificand[i] = 0;
@@ -906,14 +988,14 @@ APFloat::divideSignificand(const APFloat &rhs)
 
   /* Normalize the divisor.  */
   bit = precision - APInt::tcMSB(divisor, partsCount) - 1;
 
   /* Normalize the divisor.  */
   bit = precision - APInt::tcMSB(divisor, partsCount) - 1;
-  if(bit) {
+  if (bit) {
     exponent += bit;
     APInt::tcShiftLeft(divisor, partsCount, bit);
   }
 
   /* Normalize the dividend.  */
   bit = precision - APInt::tcMSB(dividend, partsCount) - 1;
     exponent += bit;
     APInt::tcShiftLeft(divisor, partsCount, bit);
   }
 
   /* Normalize the dividend.  */
   bit = precision - APInt::tcMSB(dividend, partsCount) - 1;
-  if(bit) {
+  if (bit) {
     exponent -= bit;
     APInt::tcShiftLeft(dividend, partsCount, bit);
   }
     exponent -= bit;
     APInt::tcShiftLeft(dividend, partsCount, bit);
   }
@@ -921,15 +1003,15 @@ APFloat::divideSignificand(const APFloat &rhs)
   /* Ensure the dividend >= divisor initially for the loop below.
      Incidentally, this means that the division loop below is
      guaranteed to set the integer bit to one.  */
   /* Ensure the dividend >= divisor initially for the loop below.
      Incidentally, this means that the division loop below is
      guaranteed to set the integer bit to one.  */
-  if(APInt::tcCompare(dividend, divisor, partsCount) < 0) {
+  if (APInt::tcCompare(dividend, divisor, partsCount) < 0) {
     exponent--;
     APInt::tcShiftLeft(dividend, partsCount, 1);
     assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0);
   }
 
   /* Long division.  */
     exponent--;
     APInt::tcShiftLeft(dividend, partsCount, 1);
     assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0);
   }
 
   /* Long division.  */
-  for(bit = precision; bit; bit -= 1) {
-    if(APInt::tcCompare(dividend, divisor, partsCount) >= 0) {
+  for (bit = precision; bit; bit -= 1) {
+    if (APInt::tcCompare(dividend, divisor, partsCount) >= 0) {
       APInt::tcSubtract(dividend, divisor, 0, partsCount);
       APInt::tcSetBit(lhsSignificand, bit - 1);
     }
       APInt::tcSubtract(dividend, divisor, 0, partsCount);
       APInt::tcSetBit(lhsSignificand, bit - 1);
     }
@@ -940,16 +1022,16 @@ APFloat::divideSignificand(const APFloat &rhs)
   /* Figure out the lost fraction.  */
   int cmp = APInt::tcCompare(dividend, divisor, partsCount);
 
   /* Figure out the lost fraction.  */
   int cmp = APInt::tcCompare(dividend, divisor, partsCount);
 
-  if(cmp > 0)
+  if (cmp > 0)
     lost_fraction = lfMoreThanHalf;
     lost_fraction = lfMoreThanHalf;
-  else if(cmp == 0)
+  else if (cmp == 0)
     lost_fraction = lfExactlyHalf;
     lost_fraction = lfExactlyHalf;
-  else if(APInt::tcIsZero(dividend, partsCount))
+  else if (APInt::tcIsZero(dividend, partsCount))
     lost_fraction = lfExactlyZero;
   else
     lost_fraction = lfLessThanHalf;
 
     lost_fraction = lfExactlyZero;
   else
     lost_fraction = lfLessThanHalf;
 
-  if(partsCount > 2)
+  if (partsCount > 2)
     delete [] dividend;
 
   return lost_fraction;
     delete [] dividend;
 
   return lost_fraction;
@@ -985,7 +1067,7 @@ APFloat::shiftSignificandLeft(unsigned int bits)
 {
   assert(bits < semantics->precision);
 
 {
   assert(bits < semantics->precision);
 
-  if(bits) {
+  if (bits) {
     unsigned int partsCount = partCount();
 
     APInt::tcShiftLeft(significandParts(), partsCount, bits);
     unsigned int partsCount = partCount();
 
     APInt::tcShiftLeft(significandParts(), partsCount, bits);
@@ -1008,13 +1090,13 @@ APFloat::compareAbsoluteValue(const APFloat &rhs) const
 
   /* If exponents are equal, do an unsigned bignum comparison of the
      significands.  */
 
   /* If exponents are equal, do an unsigned bignum comparison of the
      significands.  */
-  if(compare == 0)
+  if (compare == 0)
     compare = APInt::tcCompare(significandParts(), rhs.significandParts(),
                                partCount());
 
     compare = APInt::tcCompare(significandParts(), rhs.significandParts(),
                                partCount());
 
-  if(compare > 0)
+  if (compare > 0)
     return cmpGreaterThan;
     return cmpGreaterThan;
-  else if(compare < 0)
+  else if (compare < 0)
     return cmpLessThan;
   else
     return cmpEqual;
     return cmpLessThan;
   else
     return cmpEqual;
@@ -1026,14 +1108,13 @@ APFloat::opStatus
 APFloat::handleOverflow(roundingMode rounding_mode)
 {
   /* Infinity?  */
 APFloat::handleOverflow(roundingMode rounding_mode)
 {
   /* Infinity?  */
-  if(rounding_mode == rmNearestTiesToEven
-     || rounding_mode == rmNearestTiesToAway
-     || (rounding_mode == rmTowardPositive && !sign)
-     || (rounding_mode == rmTowardNegative && sign))
-    {
-      category = fcInfinity;
-      return (opStatus) (opOverflow | opInexact);
-    }
+  if (rounding_mode == rmNearestTiesToEven ||
+      rounding_mode == rmNearestTiesToAway ||
+      (rounding_mode == rmTowardPositive && !sign) ||
+      (rounding_mode == rmTowardNegative && sign)) {
+    category = fcInfinity;
+    return (opStatus) (opOverflow | opInexact);
+  }
 
   /* Otherwise we become the largest finite number.  */
   category = fcNormal;
 
   /* Otherwise we become the largest finite number.  */
   category = fcNormal;
@@ -1061,18 +1142,15 @@ APFloat::roundAwayFromZero(roundingMode rounding_mode,
   assert(lost_fraction != lfExactlyZero);
 
   switch (rounding_mode) {
   assert(lost_fraction != lfExactlyZero);
 
   switch (rounding_mode) {
-  default:
-    assert(0);
-
   case rmNearestTiesToAway:
     return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf;
 
   case rmNearestTiesToEven:
   case rmNearestTiesToAway:
     return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf;
 
   case rmNearestTiesToEven:
-    if(lost_fraction == lfMoreThanHalf)
+    if (lost_fraction == lfMoreThanHalf)
       return true;
 
     /* Our zeroes don't have a significand to test.  */
       return true;
 
     /* Our zeroes don't have a significand to test.  */
-    if(lost_fraction == lfExactlyHalf && category != fcZero)
+    if (lost_fraction == lfExactlyHalf && category != fcZero)
       return APInt::tcExtractBit(significandParts(), bit);
 
     return false;
       return APInt::tcExtractBit(significandParts(), bit);
 
     return false;
@@ -1086,6 +1164,7 @@ APFloat::roundAwayFromZero(roundingMode rounding_mode,
   case rmTowardNegative:
     return sign == true;
   }
   case rmTowardNegative:
     return sign == true;
   }
+  llvm_unreachable("Invalid rounding mode found");
 }
 
 APFloat::opStatus
 }
 
 APFloat::opStatus
@@ -1095,30 +1174,30 @@ APFloat::normalize(roundingMode rounding_mode,
   unsigned int omsb;                /* One, not zero, based MSB.  */
   int exponentChange;
 
   unsigned int omsb;                /* One, not zero, based MSB.  */
   int exponentChange;
 
-  if(category != fcNormal)
+  if (category != fcNormal)
     return opOK;
 
   /* Before rounding normalize the exponent of fcNormal numbers.  */
   omsb = significandMSB() + 1;
 
     return opOK;
 
   /* Before rounding normalize the exponent of fcNormal numbers.  */
   omsb = significandMSB() + 1;
 
-  if(omsb) {
+  if (omsb) {
     /* OMSB is numbered from 1.  We want to place it in the integer
     /* OMSB is numbered from 1.  We want to place it in the integer
-       bit numbered PRECISON if possible, with a compensating change in
+       bit numbered PRECISION if possible, with a compensating change in
        the exponent.  */
     exponentChange = omsb - semantics->precision;
 
     /* If the resulting exponent is too high, overflow according to
        the rounding mode.  */
        the exponent.  */
     exponentChange = omsb - semantics->precision;
 
     /* If the resulting exponent is too high, overflow according to
        the rounding mode.  */
-    if(exponent + exponentChange > semantics->maxExponent)
+    if (exponent + exponentChange > semantics->maxExponent)
       return handleOverflow(rounding_mode);
 
     /* Subnormal numbers have exponent minExponent, and their MSB
        is forced based on that.  */
       return handleOverflow(rounding_mode);
 
     /* Subnormal numbers have exponent minExponent, and their MSB
        is forced based on that.  */
-    if(exponent + exponentChange < semantics->minExponent)
+    if (exponent + exponentChange < semantics->minExponent)
       exponentChange = semantics->minExponent - exponent;
 
     /* Shifting left is easy as we don't lose precision.  */
       exponentChange = semantics->minExponent - exponent;
 
     /* Shifting left is easy as we don't lose precision.  */
-    if(exponentChange < 0) {
+    if (exponentChange < 0) {
       assert(lost_fraction == lfExactlyZero);
 
       shiftSignificandLeft(-exponentChange);
       assert(lost_fraction == lfExactlyZero);
 
       shiftSignificandLeft(-exponentChange);
@@ -1126,7 +1205,7 @@ APFloat::normalize(roundingMode rounding_mode,
       return opOK;
     }
 
       return opOK;
     }
 
-    if(exponentChange > 0) {
+    if (exponentChange > 0) {
       lostFraction lf;
 
       /* Shift right and capture any new lost fraction.  */
       lostFraction lf;
 
       /* Shift right and capture any new lost fraction.  */
@@ -1135,7 +1214,7 @@ APFloat::normalize(roundingMode rounding_mode,
       lost_fraction = combineLostFractions(lf, lost_fraction);
 
       /* Keep OMSB up-to-date.  */
       lost_fraction = combineLostFractions(lf, lost_fraction);
 
       /* Keep OMSB up-to-date.  */
-      if(omsb > (unsigned) exponentChange)
+      if (omsb > (unsigned) exponentChange)
         omsb -= exponentChange;
       else
         omsb = 0;
         omsb -= exponentChange;
       else
         omsb = 0;
@@ -1147,28 +1226,28 @@ APFloat::normalize(roundingMode rounding_mode,
 
   /* As specified in IEEE 754, since we do not trap we do not report
      underflow for exact results.  */
 
   /* As specified in IEEE 754, since we do not trap we do not report
      underflow for exact results.  */
-  if(lost_fraction == lfExactlyZero) {
+  if (lost_fraction == lfExactlyZero) {
     /* Canonicalize zeroes.  */
     /* Canonicalize zeroes.  */
-    if(omsb == 0)
+    if (omsb == 0)
       category = fcZero;
 
     return opOK;
   }
 
   /* Increment the significand if we're rounding away from zero.  */
       category = fcZero;
 
     return opOK;
   }
 
   /* Increment the significand if we're rounding away from zero.  */
-  if(roundAwayFromZero(rounding_mode, lost_fraction, 0)) {
-    if(omsb == 0)
+  if (roundAwayFromZero(rounding_mode, lost_fraction, 0)) {
+    if (omsb == 0)
       exponent = semantics->minExponent;
 
     incrementSignificand();
     omsb = significandMSB() + 1;
 
     /* Did the significand increment overflow?  */
       exponent = semantics->minExponent;
 
     incrementSignificand();
     omsb = significandMSB() + 1;
 
     /* Did the significand increment overflow?  */
-    if(omsb == (unsigned) semantics->precision + 1) {
+    if (omsb == (unsigned) semantics->precision + 1) {
       /* Renormalize by incrementing the exponent and shifting our
          significand right one.  However if we already have the
          maximum exponent we overflow to infinity.  */
       /* Renormalize by incrementing the exponent and shifting our
          significand right one.  However if we already have the
          maximum exponent we overflow to infinity.  */
-      if(exponent == semantics->maxExponent) {
+      if (exponent == semantics->maxExponent) {
         category = fcInfinity;
 
         return (opStatus) (opOverflow | opInexact);
         category = fcInfinity;
 
         return (opStatus) (opOverflow | opInexact);
@@ -1182,14 +1261,14 @@ APFloat::normalize(roundingMode rounding_mode,
 
   /* The normal case - we were and are not denormal, and any
      significand increment above didn't overflow.  */
 
   /* The normal case - we were and are not denormal, and any
      significand increment above didn't overflow.  */
-  if(omsb == semantics->precision)
+  if (omsb == semantics->precision)
     return opInexact;
 
   /* We have a non-zero denormal.  */
   assert(omsb < semantics->precision);
 
   /* Canonicalize zeroes.  */
     return opInexact;
 
   /* We have a non-zero denormal.  */
   assert(omsb < semantics->precision);
 
   /* Canonicalize zeroes.  */
-  if(omsb == 0)
+  if (omsb == 0)
     category = fcZero;
 
   /* The fcZero case is a denormal that underflowed to zero.  */
     category = fcZero;
 
   /* The fcZero case is a denormal that underflowed to zero.  */
@@ -1201,7 +1280,7 @@ APFloat::addOrSubtractSpecials(const APFloat &rhs, bool subtract)
 {
   switch (convolve(category, rhs.category)) {
   default:
 {
   switch (convolve(category, rhs.category)) {
   default:
-    assert(0);
+    llvm_unreachable(0);
 
   case convolve(fcNaN, fcZero):
   case convolve(fcNaN, fcNormal):
 
   case convolve(fcNaN, fcZero):
   case convolve(fcNaN, fcNormal):
@@ -1237,7 +1316,7 @@ APFloat::addOrSubtractSpecials(const APFloat &rhs, bool subtract)
   case convolve(fcInfinity, fcInfinity):
     /* Differently signed infinities can only be validly
        subtracted.  */
   case convolve(fcInfinity, fcInfinity):
     /* Differently signed infinities can only be validly
        subtracted.  */
-    if(((sign ^ rhs.sign)!=0) != subtract) {
+    if (((sign ^ rhs.sign)!=0) != subtract) {
       makeNaN();
       return opInvalidOp;
     }
       makeNaN();
       return opInvalidOp;
     }
@@ -1265,7 +1344,7 @@ APFloat::addOrSubtractSignificand(const APFloat &rhs, bool subtract)
   bits = exponent - rhs.exponent;
 
   /* Subtraction is more subtle than one might naively expect.  */
   bits = exponent - rhs.exponent;
 
   /* Subtraction is more subtle than one might naively expect.  */
-  if(subtract) {
+  if (subtract) {
     APFloat temp_rhs(rhs);
     bool reverse;
 
     APFloat temp_rhs(rhs);
     bool reverse;
 
@@ -1294,16 +1373,17 @@ APFloat::addOrSubtractSignificand(const APFloat &rhs, bool subtract)
 
     /* Invert the lost fraction - it was on the RHS and
        subtracted.  */
 
     /* Invert the lost fraction - it was on the RHS and
        subtracted.  */
-    if(lost_fraction == lfLessThanHalf)
+    if (lost_fraction == lfLessThanHalf)
       lost_fraction = lfMoreThanHalf;
       lost_fraction = lfMoreThanHalf;
-    else if(lost_fraction == lfMoreThanHalf)
+    else if (lost_fraction == lfMoreThanHalf)
       lost_fraction = lfLessThanHalf;
 
     /* The code above is intended to ensure that no borrow is
        necessary.  */
     assert(!carry);
       lost_fraction = lfLessThanHalf;
 
     /* The code above is intended to ensure that no borrow is
        necessary.  */
     assert(!carry);
+    (void)carry;
   } else {
   } else {
-    if(bits > 0) {
+    if (bits > 0) {
       APFloat temp_rhs(rhs);
 
       lost_fraction = temp_rhs.shiftSignificandRight(bits);
       APFloat temp_rhs(rhs);
 
       lost_fraction = temp_rhs.shiftSignificandRight(bits);
@@ -1315,6 +1395,7 @@ APFloat::addOrSubtractSignificand(const APFloat &rhs, bool subtract)
 
     /* We have a guard bit; generating a carry cannot happen.  */
     assert(!carry);
 
     /* We have a guard bit; generating a carry cannot happen.  */
     assert(!carry);
+    (void)carry;
   }
 
   return lost_fraction;
   }
 
   return lost_fraction;
@@ -1325,7 +1406,7 @@ APFloat::multiplySpecials(const APFloat &rhs)
 {
   switch (convolve(category, rhs.category)) {
   default:
 {
   switch (convolve(category, rhs.category)) {
   default:
-    assert(0);
+    llvm_unreachable(0);
 
   case convolve(fcNaN, fcZero):
   case convolve(fcNaN, fcNormal):
 
   case convolve(fcNaN, fcZero):
   case convolve(fcNaN, fcNormal):
@@ -1367,7 +1448,7 @@ APFloat::divideSpecials(const APFloat &rhs)
 {
   switch (convolve(category, rhs.category)) {
   default:
 {
   switch (convolve(category, rhs.category)) {
   default:
-    assert(0);
+    llvm_unreachable(0);
 
   case convolve(fcNaN, fcZero):
   case convolve(fcNaN, fcNormal):
 
   case convolve(fcNaN, fcZero):
   case convolve(fcNaN, fcNormal):
@@ -1409,7 +1490,7 @@ APFloat::modSpecials(const APFloat &rhs)
 {
   switch (convolve(category, rhs.category)) {
   default:
 {
   switch (convolve(category, rhs.category)) {
   default:
-    assert(0);
+    llvm_unreachable(0);
 
   case convolve(fcNaN, fcZero):
   case convolve(fcNaN, fcNormal):
 
   case convolve(fcNaN, fcZero):
   case convolve(fcNaN, fcNormal):
@@ -1469,12 +1550,10 @@ APFloat::addOrSubtract(const APFloat &rhs, roundingMode rounding_mode,
 {
   opStatus fs;
 
 {
   opStatus fs;
 
-  assertArithmeticOK(*semantics);
-
   fs = addOrSubtractSpecials(rhs, subtract);
 
   /* This return code means it was not a simple case.  */
   fs = addOrSubtractSpecials(rhs, subtract);
 
   /* This return code means it was not a simple case.  */
-  if(fs == opDivByZero) {
+  if (fs == opDivByZero) {
     lostFraction lost_fraction;
 
     lost_fraction = addOrSubtractSignificand(rhs, subtract);
     lostFraction lost_fraction;
 
     lost_fraction = addOrSubtractSignificand(rhs, subtract);
@@ -1487,8 +1566,8 @@ APFloat::addOrSubtract(const APFloat &rhs, roundingMode rounding_mode,
   /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
      positive zero unless rounding to minus infinity, except that
      adding two like-signed zeroes gives that zero.  */
   /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
      positive zero unless rounding to minus infinity, except that
      adding two like-signed zeroes gives that zero.  */
-  if(category == fcZero) {
-    if(rhs.category != fcZero || (sign == rhs.sign) == subtract)
+  if (category == fcZero) {
+    if (rhs.category != fcZero || (sign == rhs.sign) == subtract)
       sign = (rounding_mode == rmTowardNegative);
   }
 
       sign = (rounding_mode == rmTowardNegative);
   }
 
@@ -1515,14 +1594,13 @@ APFloat::multiply(const APFloat &rhs, roundingMode rounding_mode)
 {
   opStatus fs;
 
 {
   opStatus fs;
 
-  assertArithmeticOK(*semantics);
   sign ^= rhs.sign;
   fs = multiplySpecials(rhs);
 
   sign ^= rhs.sign;
   fs = multiplySpecials(rhs);
 
-  if(category == fcNormal) {
+  if (category == fcNormal) {
     lostFraction lost_fraction = multiplySignificand(rhs, 0);
     fs = normalize(rounding_mode, lost_fraction);
     lostFraction lost_fraction = multiplySignificand(rhs, 0);
     fs = normalize(rounding_mode, lost_fraction);
-    if(lost_fraction != lfExactlyZero)
+    if (lost_fraction != lfExactlyZero)
       fs = (opStatus) (fs | opInexact);
   }
 
       fs = (opStatus) (fs | opInexact);
   }
 
@@ -1535,14 +1613,13 @@ APFloat::divide(const APFloat &rhs, roundingMode rounding_mode)
 {
   opStatus fs;
 
 {
   opStatus fs;
 
-  assertArithmeticOK(*semantics);
   sign ^= rhs.sign;
   fs = divideSpecials(rhs);
 
   sign ^= rhs.sign;
   fs = divideSpecials(rhs);
 
-  if(category == fcNormal) {
+  if (category == fcNormal) {
     lostFraction lost_fraction = divideSignificand(rhs);
     fs = normalize(rounding_mode, lost_fraction);
     lostFraction lost_fraction = divideSignificand(rhs);
     fs = normalize(rounding_mode, lost_fraction);
-    if(lost_fraction != lfExactlyZero)
+    if (lost_fraction != lfExactlyZero)
       fs = (opStatus) (fs | opInexact);
   }
 
       fs = (opStatus) (fs | opInexact);
   }
 
@@ -1557,7 +1634,6 @@ APFloat::remainder(const APFloat &rhs)
   APFloat V = *this;
   unsigned int origSign = sign;
 
   APFloat V = *this;
   unsigned int origSign = sign;
 
-  assertArithmeticOK(*semantics);
   fs = V.divide(rhs, rmNearestTiesToEven);
   if (fs == opDivByZero)
     return fs;
   fs = V.divide(rhs, rmNearestTiesToEven);
   if (fs == opDivByZero)
     return fs;
@@ -1586,13 +1662,12 @@ APFloat::remainder(const APFloat &rhs)
   return fs;
 }
 
   return fs;
 }
 
-/* Normalized llvm frem (C fmod).  
+/* Normalized llvm frem (C fmod).
    This is not currently correct in all cases.  */
 APFloat::opStatus
 APFloat::mod(const APFloat &rhs, roundingMode rounding_mode)
 {
   opStatus fs;
    This is not currently correct in all cases.  */
 APFloat::opStatus
 APFloat::mod(const APFloat &rhs, roundingMode rounding_mode)
 {
   opStatus fs;
-  assertArithmeticOK(*semantics);
   fs = modSpecials(rhs);
 
   if (category == fcNormal && rhs.category == fcNormal) {
   fs = modSpecials(rhs);
 
   if (category == fcNormal && rhs.category == fcNormal) {
@@ -1636,27 +1711,25 @@ APFloat::fusedMultiplyAdd(const APFloat &multiplicand,
 {
   opStatus fs;
 
 {
   opStatus fs;
 
-  assertArithmeticOK(*semantics);
-
   /* Post-multiplication sign, before addition.  */
   sign ^= multiplicand.sign;
 
   /* If and only if all arguments are normal do we need to do an
      extended-precision calculation.  */
   /* Post-multiplication sign, before addition.  */
   sign ^= multiplicand.sign;
 
   /* If and only if all arguments are normal do we need to do an
      extended-precision calculation.  */
-  if(category == fcNormal
-     && multiplicand.category == fcNormal
-     && addend.category == fcNormal) {
+  if (category == fcNormal &&
+      multiplicand.category == fcNormal &&
+      addend.category == fcNormal) {
     lostFraction lost_fraction;
 
     lost_fraction = multiplySignificand(multiplicand, &addend);
     fs = normalize(rounding_mode, lost_fraction);
     lostFraction lost_fraction;
 
     lost_fraction = multiplySignificand(multiplicand, &addend);
     fs = normalize(rounding_mode, lost_fraction);
-    if(lost_fraction != lfExactlyZero)
+    if (lost_fraction != lfExactlyZero)
       fs = (opStatus) (fs | opInexact);
 
     /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
        positive zero unless rounding to minus infinity, except that
        adding two like-signed zeroes gives that zero.  */
       fs = (opStatus) (fs | opInexact);
 
     /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
        positive zero unless rounding to minus infinity, except that
        adding two like-signed zeroes gives that zero.  */
-    if(category == fcZero && sign != addend.sign)
+    if (category == fcZero && sign != addend.sign)
       sign = (rounding_mode == rmTowardNegative);
   } else {
     fs = multiplySpecials(multiplicand);
       sign = (rounding_mode == rmTowardNegative);
   } else {
     fs = multiplySpecials(multiplicand);
@@ -1668,25 +1741,67 @@ APFloat::fusedMultiplyAdd(const APFloat &multiplicand,
 
        If we need to do the addition we can do so with normal
        precision.  */
 
        If we need to do the addition we can do so with normal
        precision.  */
-    if(fs == opOK)
+    if (fs == opOK)
       fs = addOrSubtract(addend, rounding_mode, false);
   }
 
   return fs;
 }
 
       fs = addOrSubtract(addend, rounding_mode, false);
   }
 
   return fs;
 }
 
+/* Rounding-mode corrrect round to integral value.  */
+APFloat::opStatus APFloat::roundToIntegral(roundingMode rounding_mode) {
+  opStatus fs;
+
+  // If the exponent is large enough, we know that this value is already
+  // integral, and the arithmetic below would potentially cause it to saturate
+  // to +/-Inf.  Bail out early instead.
+  if (category == fcNormal && exponent+1 >= (int)semanticsPrecision(*semantics))
+    return opOK;
+
+  // The algorithm here is quite simple: we add 2^(p-1), where p is the
+  // precision of our format, and then subtract it back off again.  The choice
+  // of rounding modes for the addition/subtraction determines the rounding mode
+  // for our integral rounding as well.
+  // NOTE: When the input value is negative, we do subtraction followed by
+  // addition instead.
+  APInt IntegerConstant(NextPowerOf2(semanticsPrecision(*semantics)), 1);
+  IntegerConstant <<= semanticsPrecision(*semantics)-1;
+  APFloat MagicConstant(*semantics);
+  fs = MagicConstant.convertFromAPInt(IntegerConstant, false,
+                                      rmNearestTiesToEven);
+  MagicConstant.copySign(*this);
+
+  if (fs != opOK)
+    return fs;
+
+  // Preserve the input sign so that we can handle 0.0/-0.0 cases correctly.
+  bool inputSign = isNegative();
+
+  fs = add(MagicConstant, rounding_mode);
+  if (fs != opOK && fs != opInexact)
+    return fs;
+
+  fs = subtract(MagicConstant, rounding_mode);
+
+  // Restore the input sign.
+  if (inputSign != isNegative())
+    changeSign();
+
+  return fs;
+}
+
+
 /* Comparison requires normalized numbers.  */
 APFloat::cmpResult
 APFloat::compare(const APFloat &rhs) const
 {
   cmpResult result;
 
 /* Comparison requires normalized numbers.  */
 APFloat::cmpResult
 APFloat::compare(const APFloat &rhs) const
 {
   cmpResult result;
 
-  assertArithmeticOK(*semantics);
   assert(semantics == rhs.semantics);
 
   switch (convolve(category, rhs.category)) {
   default:
   assert(semantics == rhs.semantics);
 
   switch (convolve(category, rhs.category)) {
   default:
-    assert(0);
+    llvm_unreachable(0);
 
   case convolve(fcNaN, fcZero):
   case convolve(fcNaN, fcNormal):
 
   case convolve(fcNaN, fcZero):
   case convolve(fcNaN, fcNormal):
@@ -1700,7 +1815,7 @@ APFloat::compare(const APFloat &rhs) const
   case convolve(fcInfinity, fcNormal):
   case convolve(fcInfinity, fcZero):
   case convolve(fcNormal, fcZero):
   case convolve(fcInfinity, fcNormal):
   case convolve(fcInfinity, fcZero):
   case convolve(fcNormal, fcZero):
-    if(sign)
+    if (sign)
       return cmpLessThan;
     else
       return cmpGreaterThan;
       return cmpLessThan;
     else
       return cmpGreaterThan;
@@ -1708,15 +1823,15 @@ APFloat::compare(const APFloat &rhs) const
   case convolve(fcNormal, fcInfinity):
   case convolve(fcZero, fcInfinity):
   case convolve(fcZero, fcNormal):
   case convolve(fcNormal, fcInfinity):
   case convolve(fcZero, fcInfinity):
   case convolve(fcZero, fcNormal):
-    if(rhs.sign)
+    if (rhs.sign)
       return cmpGreaterThan;
     else
       return cmpLessThan;
 
   case convolve(fcInfinity, fcInfinity):
       return cmpGreaterThan;
     else
       return cmpLessThan;
 
   case convolve(fcInfinity, fcInfinity):
-    if(sign == rhs.sign)
+    if (sign == rhs.sign)
       return cmpEqual;
       return cmpEqual;
-    else if(sign)
+    else if (sign)
       return cmpLessThan;
     else
       return cmpGreaterThan;
       return cmpLessThan;
     else
       return cmpGreaterThan;
@@ -1729,8 +1844,8 @@ APFloat::compare(const APFloat &rhs) const
   }
 
   /* Two normal numbers.  Do they have the same sign?  */
   }
 
   /* Two normal numbers.  Do they have the same sign?  */
-  if(sign != rhs.sign) {
-    if(sign)
+  if (sign != rhs.sign) {
+    if (sign)
       result = cmpLessThan;
     else
       result = cmpGreaterThan;
       result = cmpLessThan;
     else
       result = cmpGreaterThan;
@@ -1738,10 +1853,10 @@ APFloat::compare(const APFloat &rhs) const
     /* Compare absolute values; invert result if negative.  */
     result = compareAbsoluteValue(rhs);
 
     /* Compare absolute values; invert result if negative.  */
     result = compareAbsoluteValue(rhs);
 
-    if(sign) {
-      if(result == cmpLessThan)
+    if (sign) {
+      if (result == cmpLessThan)
         result = cmpGreaterThan;
         result = cmpGreaterThan;
-      else if(result == cmpGreaterThan)
+      else if (result == cmpGreaterThan)
         result = cmpLessThan;
     }
   }
         result = cmpLessThan;
     }
   }
@@ -1763,20 +1878,31 @@ APFloat::convert(const fltSemantics &toSemantics,
   lostFraction lostFraction;
   unsigned int newPartCount, oldPartCount;
   opStatus fs;
   lostFraction lostFraction;
   unsigned int newPartCount, oldPartCount;
   opStatus fs;
+  int shift;
+  const fltSemantics &fromSemantics = *semantics;
 
 
-  assertArithmeticOK(*semantics);
-  assertArithmeticOK(toSemantics);
   lostFraction = lfExactlyZero;
   newPartCount = partCountForBits(toSemantics.precision + 1);
   oldPartCount = partCount();
   lostFraction = lfExactlyZero;
   newPartCount = partCountForBits(toSemantics.precision + 1);
   oldPartCount = partCount();
+  shift = toSemantics.precision - fromSemantics.precision;
 
 
-  /* Handle storage complications.  If our new form is wider,
-     re-allocate our bit pattern into wider storage.  If it is
-     narrower, we ignore the excess parts, but if narrowing to a
-     single part we need to free the old storage.
-     Be careful not to reference significandParts for zeroes
-     and infinities, since it aborts.  */
+  bool X86SpecialNan = false;
+  if (&fromSemantics == &APFloat::x87DoubleExtended &&
+      &toSemantics != &APFloat::x87DoubleExtended && category == fcNaN &&
+      (!(*significandParts() & 0x8000000000000000ULL) ||
+       !(*significandParts() & 0x4000000000000000ULL))) {
+    // x86 has some unusual NaNs which cannot be represented in any other
+    // format; note them here.
+    X86SpecialNan = true;
+  }
+
+  // If this is a truncation, perform the shift before we narrow the storage.
+  if (shift < 0 && (category==fcNormal || category==fcNaN))
+    lostFraction = shiftRight(significandParts(), oldPartCount, -shift);
+
+  // Fix the storage so it can hold to new value.
   if (newPartCount > oldPartCount) {
   if (newPartCount > oldPartCount) {
+    // The new type requires more storage; make it available.
     integerPart *newParts;
     newParts = new integerPart[newPartCount];
     APInt::tcSet(newParts, 0, newPartCount);
     integerPart *newParts;
     newParts = new integerPart[newPartCount];
     APInt::tcSet(newParts, 0, newPartCount);
@@ -1784,61 +1910,36 @@ APFloat::convert(const fltSemantics &toSemantics,
       APInt::tcAssign(newParts, significandParts(), oldPartCount);
     freeSignificand();
     significand.parts = newParts;
       APInt::tcAssign(newParts, significandParts(), oldPartCount);
     freeSignificand();
     significand.parts = newParts;
-  } else if (newPartCount < oldPartCount) {
-    /* Capture any lost fraction through truncation of parts so we get
-       correct rounding whilst normalizing.  */
-    if (category==fcNormal)
-      lostFraction = lostFractionThroughTruncation
-        (significandParts(), oldPartCount, toSemantics.precision);
-    if (newPartCount == 1) {
-        integerPart newPart = 0;
-        if (category==fcNormal || category==fcNaN)
-          newPart = significandParts()[0];
-        freeSignificand();
-        significand.part = newPart;
-    }
+  } else if (newPartCount == 1 && oldPartCount != 1) {
+    // Switch to built-in storage for a single part.
+    integerPart newPart = 0;
+    if (category==fcNormal || category==fcNaN)
+      newPart = significandParts()[0];
+    freeSignificand();
+    significand.part = newPart;
   }
 
   }
 
-  if(category == fcNormal) {
-    /* Re-interpret our bit-pattern.  */
-    exponent += toSemantics.precision - semantics->precision;
-    semantics = &toSemantics;
+  // Now that we have the right storage, switch the semantics.
+  semantics = &toSemantics;
+
+  // If this is an extension, perform the shift now that the storage is
+  // available.
+  if (shift > 0 && (category==fcNormal || category==fcNaN))
+    APInt::tcShiftLeft(significandParts(), newPartCount, shift);
+
+  if (category == fcNormal) {
     fs = normalize(rounding_mode, lostFraction);
     *losesInfo = (fs != opOK);
   } else if (category == fcNaN) {
     fs = normalize(rounding_mode, lostFraction);
     *losesInfo = (fs != opOK);
   } else if (category == fcNaN) {
-    int shift = toSemantics.precision - semantics->precision;
-    // Do this now so significandParts gets the right answer
-    const fltSemantics *oldSemantics = semantics;
-    semantics = &toSemantics;
-    *losesInfo = false;
-    // No normalization here, just truncate
-    if (shift>0)
-      APInt::tcShiftLeft(significandParts(), newPartCount, shift);
-    else if (shift < 0) {
-      unsigned ushift = -shift;
-      // Figure out if we are losing information.  This happens
-      // if are shifting out something other than 0s, or if the x87 long
-      // double input did not have its integer bit set (pseudo-NaN), or if the
-      // x87 long double input did not have its QNan bit set (because the x87
-      // hardware sets this bit when converting a lower-precision NaN to
-      // x87 long double).
-      if (APInt::tcLSB(significandParts(), newPartCount) < ushift)
-        *losesInfo = true;
-      if (oldSemantics == &APFloat::x87DoubleExtended && 
-          (!(*significandParts() & 0x8000000000000000ULL) ||
-           !(*significandParts() & 0x4000000000000000ULL)))
-        *losesInfo = true;
-      APInt::tcShiftRight(significandParts(), newPartCount, ushift);
-    }
+    *losesInfo = lostFraction != lfExactlyZero || X86SpecialNan;
     // gcc forces the Quiet bit on, which means (float)(double)(float_sNan)
     // does not give you back the same bits.  This is dubious, and we
     // don't currently do it.  You're really supposed to get
     // an invalid operation signal at runtime, but nobody does that.
     fs = opOK;
   } else {
     // gcc forces the Quiet bit on, which means (float)(double)(float_sNan)
     // does not give you back the same bits.  This is dubious, and we
     // don't currently do it.  You're really supposed to get
     // an invalid operation signal at runtime, but nobody does that.
     fs = opOK;
   } else {
-    semantics = &toSemantics;
-    fs = opOK;
     *losesInfo = false;
     *losesInfo = false;
+    fs = opOK;
   }
 
   return fs;
   }
 
   return fs;
@@ -1864,17 +1965,15 @@ APFloat::convertToSignExtendedInteger(integerPart *parts, unsigned int width,
   const integerPart *src;
   unsigned int dstPartsCount, truncatedBits;
 
   const integerPart *src;
   unsigned int dstPartsCount, truncatedBits;
 
-  assertArithmeticOK(*semantics);
-
   *isExact = false;
 
   /* Handle the three special cases first.  */
   *isExact = false;
 
   /* Handle the three special cases first.  */
-  if(category == fcInfinity || category == fcNaN)
+  if (category == fcInfinity || category == fcNaN)
     return opInvalidOp;
 
   dstPartsCount = partCountForBits(width);
 
     return opInvalidOp;
 
   dstPartsCount = partCountForBits(width);
 
-  if(category == fcZero) {
+  if (category == fcZero) {
     APInt::tcSet(parts, 0, dstPartsCount);
     // Negative zero can't be represented as an int.
     *isExact = !sign;
     APInt::tcSet(parts, 0, dstPartsCount);
     // Negative zero can't be represented as an int.
     *isExact = !sign;
@@ -1917,8 +2016,8 @@ APFloat::convertToSignExtendedInteger(integerPart *parts, unsigned int width,
   if (truncatedBits) {
     lost_fraction = lostFractionThroughTruncation(src, partCount(),
                                                   truncatedBits);
   if (truncatedBits) {
     lost_fraction = lostFractionThroughTruncation(src, partCount(),
                                                   truncatedBits);
-    if (lost_fraction != lfExactlyZero
-        && roundAwayFromZero(rounding_mode, lost_fraction, truncatedBits)) {
+    if (lost_fraction != lfExactlyZero &&
+        roundAwayFromZero(rounding_mode, lost_fraction, truncatedBits)) {
       if (APInt::tcIncrement(parts, dstPartsCount))
         return opInvalidOp;     /* Overflow.  */
     }
       if (APInt::tcIncrement(parts, dstPartsCount))
         return opInvalidOp;     /* Overflow.  */
     }
@@ -1975,7 +2074,7 @@ APFloat::convertToInteger(integerPart *parts, unsigned int width,
 {
   opStatus fs;
 
 {
   opStatus fs;
 
-  fs = convertToSignExtendedInteger(parts, width, isSigned, rounding_mode, 
+  fs = convertToSignExtendedInteger(parts, width, isSigned, rounding_mode,
                                     isExact);
 
   if (fs == opInvalidOp) {
                                     isExact);
 
   if (fs == opInvalidOp) {
@@ -1998,6 +2097,23 @@ APFloat::convertToInteger(integerPart *parts, unsigned int width,
   return fs;
 }
 
   return fs;
 }
 
+/* Same as convertToInteger(integerPart*, ...), except the result is returned in
+   an APSInt, whose initial bit-width and signed-ness are used to determine the
+   precision of the conversion.
+ */
+APFloat::opStatus
+APFloat::convertToInteger(APSInt &result,
+                          roundingMode rounding_mode, bool *isExact) const
+{
+  unsigned bitWidth = result.getBitWidth();
+  SmallVector<uint64_t, 4> parts(result.getNumWords());
+  opStatus status = convertToInteger(
+    parts.data(), bitWidth, result.isSigned(), rounding_mode, isExact);
+  // Keeps the original signed-ness.
+  result = APInt(bitWidth, parts);
+  return status;
+}
+
 /* Convert an unsigned integer SRC to a floating point number,
    rounding according to ROUNDING_MODE.  The sign of the floating
    point number is not modified.  */
 /* Convert an unsigned integer SRC to a floating point number,
    rounding according to ROUNDING_MODE.  The sign of the floating
    point number is not modified.  */
@@ -2010,14 +2126,13 @@ APFloat::convertFromUnsignedParts(const integerPart *src,
   integerPart *dst;
   lostFraction lost_fraction;
 
   integerPart *dst;
   lostFraction lost_fraction;
 
-  assertArithmeticOK(*semantics);
   category = fcNormal;
   omsb = APInt::tcMSB(src, srcCount) + 1;
   dst = significandParts();
   dstCount = partCount();
   precision = semantics->precision;
 
   category = fcNormal;
   omsb = APInt::tcMSB(src, srcCount) + 1;
   dst = significandParts();
   dstCount = partCount();
   precision = semantics->precision;
 
-  /* We want the most significant PRECISON bits of SRC.  There may not
+  /* We want the most significant PRECISION bits of SRC.  There may not
      be that many; extract what we can.  */
   if (precision <= omsb) {
     exponent = omsb - 1;
      be that many; extract what we can.  */
   if (precision <= omsb) {
     exponent = omsb - 1;
@@ -2061,9 +2176,8 @@ APFloat::convertFromSignExtendedInteger(const integerPart *src,
 {
   opStatus status;
 
 {
   opStatus status;
 
-  assertArithmeticOK(*semantics);
-  if (isSigned
-      && APInt::tcExtractBit(src, srcCount * integerPartWidth - 1)) {
+  if (isSigned &&
+      APInt::tcExtractBit(src, srcCount * integerPartWidth - 1)) {
     integerPart *copy;
 
     /* If we're signed and negative negate a copy.  */
     integerPart *copy;
 
     /* If we're signed and negative negate a copy.  */
@@ -2088,10 +2202,10 @@ APFloat::convertFromZeroExtendedInteger(const integerPart *parts,
                                         roundingMode rounding_mode)
 {
   unsigned int partCount = partCountForBits(width);
                                         roundingMode rounding_mode)
 {
   unsigned int partCount = partCountForBits(width);
-  APInt api = APInt(width, partCount, parts);
+  APInt api = APInt(width, makeArrayRef(parts, partCount));
 
   sign = false;
 
   sign = false;
-  if(isSigned && APInt::tcExtractBit(parts, width - 1)) {
+  if (isSigned && APInt::tcExtractBit(parts, width - 1)) {
     sign = true;
     api = -api;
   }
     sign = true;
     api = -api;
   }
@@ -2100,13 +2214,12 @@ APFloat::convertFromZeroExtendedInteger(const integerPart *parts,
 }
 
 APFloat::opStatus
 }
 
 APFloat::opStatus
-APFloat::convertFromHexadecimalString(const char *p,
-                                      roundingMode rounding_mode)
+APFloat::convertFromHexadecimalString(StringRef s, roundingMode rounding_mode)
 {
 {
-  lostFraction lost_fraction;
+  lostFraction lost_fraction = lfExactlyZero;
   integerPart *significand;
   unsigned int bitPos, partsCount;
   integerPart *significand;
   unsigned int bitPos, partsCount;
-  const char *dot, *firstSignificantDigit;
+  StringRef::iterator dot, firstSignificantDigit;
 
   zeroSignificand();
   exponent = 0;
 
   zeroSignificand();
   exponent = 0;
@@ -2117,53 +2230,64 @@ APFloat::convertFromHexadecimalString(const char *p,
   bitPos = partsCount * integerPartWidth;
 
   /* Skip leading zeroes and any (hexa)decimal point.  */
   bitPos = partsCount * integerPartWidth;
 
   /* Skip leading zeroes and any (hexa)decimal point.  */
-  p = skipLeadingZeroesAndAnyDot(p, &dot);
+  StringRef::iterator begin = s.begin();
+  StringRef::iterator end = s.end();
+  StringRef::iterator p = skipLeadingZeroesAndAnyDot(begin, end, &dot);
   firstSignificantDigit = p;
 
   firstSignificantDigit = p;
 
-  for(;;) {
+  for (; p != end;) {
     integerPart hex_value;
 
     integerPart hex_value;
 
-    if(*p == '.') {
-      assert(dot == 0);
+    if (*p == '.') {
+      assert(dot == end && "String contains multiple dots");
       dot = p++;
       dot = p++;
+      if (p == end) {
+        break;
+      }
     }
 
     hex_value = hexDigitValue(*p);
     }
 
     hex_value = hexDigitValue(*p);
-    if(hex_value == -1U) {
-      lost_fraction = lfExactlyZero;
+    if (hex_value == -1U) {
       break;
     }
 
     p++;
 
       break;
     }
 
     p++;
 
-    /* Store the number whilst 4-bit nibbles remain.  */
-    if(bitPos) {
-      bitPos -= 4;
-      hex_value <<= bitPos % integerPartWidth;
-      significand[bitPos / integerPartWidth] |= hex_value;
-    } else {
-      lost_fraction = trailingHexadecimalFraction(p, hex_value);
-      while(hexDigitValue(*p) != -1U)
-        p++;
+    if (p == end) {
       break;
       break;
+    } else {
+      /* Store the number whilst 4-bit nibbles remain.  */
+      if (bitPos) {
+        bitPos -= 4;
+        hex_value <<= bitPos % integerPartWidth;
+        significand[bitPos / integerPartWidth] |= hex_value;
+      } else {
+        lost_fraction = trailingHexadecimalFraction(p, end, hex_value);
+        while (p != end && hexDigitValue(*p) != -1U)
+          p++;
+        break;
+      }
     }
   }
 
   /* Hex floats require an exponent but not a hexadecimal point.  */
     }
   }
 
   /* Hex floats require an exponent but not a hexadecimal point.  */
-  assert(*p == 'p' || *p == 'P');
+  assert(p != end && "Hex strings require an exponent");
+  assert((*p == 'p' || *p == 'P') && "Invalid character in significand");
+  assert(p != begin && "Significand has no digits");
+  assert((dot == end || p - begin != 1) && "Significand has no digits");
 
   /* Ignore the exponent if we are zero.  */
 
   /* Ignore the exponent if we are zero.  */
-  if(p != firstSignificantDigit) {
+  if (p != firstSignificantDigit) {
     int expAdjustment;
 
     /* Implicit hexadecimal point?  */
     int expAdjustment;
 
     /* Implicit hexadecimal point?  */
-    if(!dot)
+    if (dot == end)
       dot = p;
 
     /* Calculate the exponent adjustment implicit in the number of
        significant digits.  */
     expAdjustment = static_cast<int>(dot - firstSignificantDigit);
       dot = p;
 
     /* Calculate the exponent adjustment implicit in the number of
        significant digits.  */
     expAdjustment = static_cast<int>(dot - firstSignificantDigit);
-    if(expAdjustment < 0)
+    if (expAdjustment < 0)
       expAdjustment++;
     expAdjustment = expAdjustment * 4 - 1;
 
       expAdjustment++;
     expAdjustment = expAdjustment * 4 - 1;
 
@@ -2173,7 +2297,7 @@ APFloat::convertFromHexadecimalString(const char *p,
     expAdjustment -= partsCount * integerPartWidth;
 
     /* Adjust for the given exponent.  */
     expAdjustment -= partsCount * integerPartWidth;
 
     /* Adjust for the given exponent.  */
-    exponent = totalExponent(p, expAdjustment);
+    exponent = totalExponent(p + 1, end, expAdjustment);
   }
 
   return normalize(rounding_mode, lost_fraction);
   }
 
   return normalize(rounding_mode, lost_fraction);
@@ -2185,12 +2309,12 @@ APFloat::roundSignificandWithExponent(const integerPart *decSigParts,
                                       roundingMode rounding_mode)
 {
   unsigned int parts, pow5PartCount;
                                       roundingMode rounding_mode)
 {
   unsigned int parts, pow5PartCount;
-  fltSemantics calcSemantics = { 32767, -32767, 0, true };
+  fltSemantics calcSemantics = { 32767, -32767, 0 };
   integerPart pow5Parts[maxPowerOfFiveParts];
   bool isNearest;
 
   integerPart pow5Parts[maxPowerOfFiveParts];
   bool isNearest;
 
-  isNearest = (rounding_mode == rmNearestTiesToEven
-               || rounding_mode == rmNearestTiesToAway);
+  isNearest = (rounding_mode == rmNearestTiesToEven ||
+               rounding_mode == rmNearestTiesToAway);
 
   parts = partCountForBits(semantics->precision + 11);
 
 
   parts = partCountForBits(semantics->precision + 11);
 
@@ -2238,8 +2362,8 @@ APFloat::roundSignificandWithExponent(const integerPart *decSigParts,
 
     /* Both multiplySignificand and divideSignificand return the
        result with the integer bit set.  */
 
     /* Both multiplySignificand and divideSignificand return the
        result with the integer bit set.  */
-    assert (APInt::tcExtractBit
-            (decSig.significandParts(), calcSemantics.precision - 1) == 1);
+    assert(APInt::tcExtractBit
+           (decSig.significandParts(), calcSemantics.precision - 1) == 1);
 
     HUerr = HUerrBound(calcLostFraction != lfExactlyZero, sigStatus != opOK,
                        powHUerr);
 
     HUerr = HUerrBound(calcLostFraction != lfExactlyZero, sigStatus != opOK,
                        powHUerr);
@@ -2265,13 +2389,14 @@ APFloat::roundSignificandWithExponent(const integerPart *decSigParts,
 }
 
 APFloat::opStatus
 }
 
 APFloat::opStatus
-APFloat::convertFromDecimalString(const char *p, roundingMode rounding_mode)
+APFloat::convertFromDecimalString(StringRef str, roundingMode rounding_mode)
 {
   decimalInfo D;
   opStatus fs;
 
   /* Scan the text.  */
 {
   decimalInfo D;
   opStatus fs;
 
   /* Scan the text.  */
-  interpretDecimal(p, &D);
+  StringRef::iterator p = str.begin();
+  interpretDecimal(p, str.end(), &D);
 
   /* Handle the quick cases.  First the case of no significant digits,
      i.e. zero, and then exponents that are obviously too large or too
 
   /* Handle the quick cases.  First the case of no significant digits,
      i.e. zero, and then exponents that are obviously too large or too
@@ -2293,11 +2418,24 @@ APFloat::convertFromDecimalString(const char *p, roundingMode rounding_mode)
   if (decDigitValue(*D.firstSigDigit) >= 10U) {
     category = fcZero;
     fs = opOK;
   if (decDigitValue(*D.firstSigDigit) >= 10U) {
     category = fcZero;
     fs = opOK;
-  } else if ((D.normalizedExponent + 1) * 28738
-             <= 8651 * (semantics->minExponent - (int) semantics->precision)) {
+
+  /* Check whether the normalized exponent is high enough to overflow
+     max during the log-rebasing in the max-exponent check below. */
+  } else if (D.normalizedExponent - 1 > INT_MAX / 42039) {
+    fs = handleOverflow(rounding_mode);
+
+  /* If it wasn't, then it also wasn't high enough to overflow max
+     during the log-rebasing in the min-exponent check.  Check that it
+     won't overflow min in either check, then perform the min-exponent
+     check. */
+  } else if (D.normalizedExponent - 1 < INT_MIN / 42039 ||
+             (D.normalizedExponent + 1) * 28738 <=
+               8651 * (semantics->minExponent - (int) semantics->precision)) {
     /* Underflow to zero and round.  */
     zeroSignificand();
     fs = normalize(rounding_mode, lfLessThanHalf);
     /* Underflow to zero and round.  */
     zeroSignificand();
     fs = normalize(rounding_mode, lfLessThanHalf);
+
+  /* We can finally safely perform the max-exponent check. */
   } else if ((D.normalizedExponent - 1) * 42039
              >= 12655 * semantics->maxExponent) {
     /* Overflow and round.  */
   } else if ((D.normalizedExponent - 1) * 42039
              >= 12655 * semantics->maxExponent) {
     /* Overflow and round.  */
@@ -2326,10 +2464,14 @@ APFloat::convertFromDecimalString(const char *p, roundingMode rounding_mode)
       multiplier = 1;
 
       do {
       multiplier = 1;
 
       do {
-        if (*p == '.')
+        if (*p == '.') {
           p++;
           p++;
-
+          if (p == str.end()) {
+            break;
+          }
+        }
         decValue = decDigitValue(*p++);
         decValue = decDigitValue(*p++);
+        assert(decValue < 10U && "Invalid character in significand");
         multiplier *= 10;
         val = val * 10 + decValue;
         /* The maximum number that can be multiplied by ten with any
         multiplier *= 10;
         val = val * 10 + decValue;
         /* The maximum number that can be multiplied by ten with any
@@ -2357,20 +2499,27 @@ APFloat::convertFromDecimalString(const char *p, roundingMode rounding_mode)
 }
 
 APFloat::opStatus
 }
 
 APFloat::opStatus
-APFloat::convertFromString(const char *p, roundingMode rounding_mode)
+APFloat::convertFromString(StringRef str, roundingMode rounding_mode)
 {
 {
-  assertArithmeticOK(*semantics);
+  assert(!str.empty() && "Invalid string length");
 
   /* Handle a leading minus sign.  */
 
   /* Handle a leading minus sign.  */
-  if(*p == '-')
-    sign = 1, p++;
-  else
-    sign = 0;
+  StringRef::iterator p = str.begin();
+  size_t slen = str.size();
+  sign = *p == '-' ? 1 : 0;
+  if (*p == '-' || *p == '+') {
+    p++;
+    slen--;
+    assert(slen && "String has no digits");
+  }
 
 
-  if(p[0] == '0' && (p[1] == 'x' || p[1] == 'X'))
-    return convertFromHexadecimalString(p + 2, rounding_mode);
+  if (slen >= 2 && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) {
+    assert(slen - 2 && "Invalid string");
+    return convertFromHexadecimalString(StringRef(p + 2, slen - 2),
+                                        rounding_mode);
+  }
 
 
-  return convertFromDecimalString(p, rounding_mode);
+  return convertFromDecimalString(StringRef(p, slen), rounding_mode);
 }
 
 /* Write out a hexadecimal representation of the floating point value
 }
 
 /* Write out a hexadecimal representation of the floating point value
@@ -2403,8 +2552,6 @@ APFloat::convertToHexString(char *dst, unsigned int hexDigits,
 {
   char *p;
 
 {
   char *p;
 
-  assertArithmeticOK(*semantics);
-
   p = dst;
   if (sign)
     *dst++ = '-';
   p = dst;
   if (sign)
     *dst++ = '-';
@@ -2529,7 +2676,7 @@ APFloat::convertNormalToHexString(char *dst, unsigned int hexDigits,
       q--;
       *q = hexDigitChars[hexDigitValue (*q) + 1];
     } while (*q == '0');
       q--;
       *q = hexDigitChars[hexDigitValue (*q) + 1];
     } while (*q == '0');
-    assert (q >= p);
+    assert(q >= p);
   } else {
     /* Add trailing zeroes.  */
     memset (dst, '0', outputDigits);
   } else {
     /* Add trailing zeroes.  */
     memset (dst, '0', outputDigits);
@@ -2551,21 +2698,19 @@ APFloat::convertNormalToHexString(char *dst, unsigned int hexDigits,
   return writeSignedDecimal (dst, exponent);
 }
 
   return writeSignedDecimal (dst, exponent);
 }
 
-// For good performance it is desirable for different APFloats
-// to produce different integers.
-uint32_t
-APFloat::getHashValue() const
-{
-  if (category==fcZero) return sign<<8 | semantics->precision ;
-  else if (category==fcInfinity) return sign<<9 | semantics->precision;
-  else if (category==fcNaN) return 1<<10 | semantics->precision;
-  else {
-    uint32_t hash = sign<<11 | semantics->precision | exponent<<12;
-    const integerPart* p = significandParts();
-    for (int i=partCount(); i>0; i--, p++)
-      hash ^= ((uint32_t)*p) ^ (uint32_t)((*p)>>32);
-    return hash;
-  }
+hash_code llvm::hash_value(const APFloat &Arg) {
+  if (Arg.category != APFloat::fcNormal)
+    return hash_combine((uint8_t)Arg.category,
+                        // NaN has no sign, fix it at zero.
+                        Arg.isNaN() ? (uint8_t)0 : (uint8_t)Arg.sign,
+                        Arg.semantics->precision);
+
+  // Normal floats need their exponent and significand hashed.
+  return hash_combine((uint8_t)Arg.category, (uint8_t)Arg.sign,
+                      Arg.semantics->precision, Arg.exponent,
+                      hash_combine_range(
+                        Arg.significandParts(),
+                        Arg.significandParts() + Arg.partCount()));
 }
 
 // Conversion from APFloat to/from host float/double.  It may eventually be
 }
 
 // Conversion from APFloat to/from host float/double.  It may eventually be
@@ -2581,7 +2726,7 @@ APInt
 APFloat::convertF80LongDoubleAPFloatToAPInt() const
 {
   assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended);
 APFloat::convertF80LongDoubleAPFloatToAPInt() const
 {
   assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended);
-  assert (partCount()==2);
+  assert(partCount()==2);
 
   uint64_t myexponent, mysignificand;
 
 
   uint64_t myexponent, mysignificand;
 
@@ -2606,59 +2751,101 @@ APFloat::convertF80LongDoubleAPFloatToAPInt() const
   words[0] = mysignificand;
   words[1] =  ((uint64_t)(sign & 1) << 15) |
               (myexponent & 0x7fffLL);
   words[0] = mysignificand;
   words[1] =  ((uint64_t)(sign & 1) << 15) |
               (myexponent & 0x7fffLL);
-  return APInt(80, 2, words);
+  return APInt(80, words);
 }
 
 APInt
 APFloat::convertPPCDoubleDoubleAPFloatToAPInt() const
 {
   assert(semantics == (const llvm::fltSemantics*)&PPCDoubleDouble);
 }
 
 APInt
 APFloat::convertPPCDoubleDoubleAPFloatToAPInt() const
 {
   assert(semantics == (const llvm::fltSemantics*)&PPCDoubleDouble);
-  assert (partCount()==2);
+  assert(partCount()==2);
 
 
-  uint64_t myexponent, mysignificand, myexponent2, mysignificand2;
+  uint64_t words[2];
+  opStatus fs;
+  bool losesInfo;
+
+  // Convert number to double.  To avoid spurious underflows, we re-
+  // normalize against the "double" minExponent first, and only *then*
+  // truncate the mantissa.  The result of that second conversion
+  // may be inexact, but should never underflow.
+  // Declare fltSemantics before APFloat that uses it (and
+  // saves pointer to it) to ensure correct destruction order.
+  fltSemantics extendedSemantics = *semantics;
+  extendedSemantics.minExponent = IEEEdouble.minExponent;
+  APFloat extended(*this);
+  fs = extended.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo);
+  assert(fs == opOK && !losesInfo);
+  (void)fs;
+
+  APFloat u(extended);
+  fs = u.convert(IEEEdouble, rmNearestTiesToEven, &losesInfo);
+  assert(fs == opOK || fs == opInexact);
+  (void)fs;
+  words[0] = *u.convertDoubleAPFloatToAPInt().getRawData();
+
+  // If conversion was exact or resulted in a special case, we're done;
+  // just set the second double to zero.  Otherwise, re-convert back to
+  // the extended format and compute the difference.  This now should
+  // convert exactly to double.
+  if (u.category == fcNormal && losesInfo) {
+    fs = u.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo);
+    assert(fs == opOK && !losesInfo);
+    (void)fs;
+
+    APFloat v(extended);
+    v.subtract(u, rmNearestTiesToEven);
+    fs = v.convert(IEEEdouble, rmNearestTiesToEven, &losesInfo);
+    assert(fs == opOK && !losesInfo);
+    (void)fs;
+    words[1] = *v.convertDoubleAPFloatToAPInt().getRawData();
+  } else {
+    words[1] = 0;
+  }
+
+  return APInt(128, words);
+}
+
+APInt
+APFloat::convertQuadrupleAPFloatToAPInt() const
+{
+  assert(semantics == (const llvm::fltSemantics*)&IEEEquad);
+  assert(partCount()==2);
+
+  uint64_t myexponent, mysignificand, mysignificand2;
 
   if (category==fcNormal) {
 
   if (category==fcNormal) {
-    myexponent = exponent + 1023; //bias
-    myexponent2 = exponent2 + 1023;
+    myexponent = exponent+16383; //bias
     mysignificand = significandParts()[0];
     mysignificand2 = significandParts()[1];
     mysignificand = significandParts()[0];
     mysignificand2 = significandParts()[1];
-    if (myexponent==1 && !(mysignificand & 0x10000000000000LL))
+    if (myexponent==1 && !(mysignificand2 & 0x1000000000000LL))
       myexponent = 0;   // denormal
       myexponent = 0;   // denormal
-    if (myexponent2==1 && !(mysignificand2 & 0x10000000000000LL))
-      myexponent2 = 0;   // denormal
   } else if (category==fcZero) {
     myexponent = 0;
   } else if (category==fcZero) {
     myexponent = 0;
-    mysignificand = 0;
-    myexponent2 = 0;
-    mysignificand2 = 0;
+    mysignificand = mysignificand2 = 0;
   } else if (category==fcInfinity) {
   } else if (category==fcInfinity) {
-    myexponent = 0x7ff;
-    myexponent2 = 0;
-    mysignificand = 0;
-    mysignificand2 = 0;
+    myexponent = 0x7fff;
+    mysignificand = mysignificand2 = 0;
   } else {
   } else {
-    assert(category == fcNaN && "Unknown category");
-    myexponent = 0x7ff;
+    assert(category == fcNaN && "Unknown category!");
+    myexponent = 0x7fff;
     mysignificand = significandParts()[0];
     mysignificand = significandParts()[0];
-    myexponent2 = exponent2;
     mysignificand2 = significandParts()[1];
   }
 
   uint64_t words[2];
     mysignificand2 = significandParts()[1];
   }
 
   uint64_t words[2];
-  words[0] =  ((uint64_t)(sign & 1) << 63) |
-              ((myexponent & 0x7ff) <<  52) |
-              (mysignificand & 0xfffffffffffffLL);
-  words[1] =  ((uint64_t)(sign2 & 1) << 63) |
-              ((myexponent2 & 0x7ff) <<  52) |
-              (mysignificand2 & 0xfffffffffffffLL);
-  return APInt(128, 2, words);
+  words[0] = mysignificand;
+  words[1] = ((uint64_t)(sign & 1) << 63) |
+             ((myexponent & 0x7fff) << 48) |
+             (mysignificand2 & 0xffffffffffffLL);
+
+  return APInt(128, words);
 }
 
 APInt
 APFloat::convertDoubleAPFloatToAPInt() const
 {
   assert(semantics == (const llvm::fltSemantics*)&IEEEdouble);
 }
 
 APInt
 APFloat::convertDoubleAPFloatToAPInt() const
 {
   assert(semantics == (const llvm::fltSemantics*)&IEEEdouble);
-  assert (partCount()==1);
+  assert(partCount()==1);
 
   uint64_t myexponent, mysignificand;
 
 
   uint64_t myexponent, mysignificand;
 
@@ -2688,7 +2875,7 @@ APInt
 APFloat::convertFloatAPFloatToAPInt() const
 {
   assert(semantics == (const llvm::fltSemantics*)&IEEEsingle);
 APFloat::convertFloatAPFloatToAPInt() const
 {
   assert(semantics == (const llvm::fltSemantics*)&IEEEsingle);
-  assert (partCount()==1);
+  assert(partCount()==1);
 
   uint32_t myexponent, mysignificand;
 
 
   uint32_t myexponent, mysignificand;
 
@@ -2713,6 +2900,35 @@ APFloat::convertFloatAPFloatToAPInt() const
                     (mysignificand & 0x7fffff)));
 }
 
                     (mysignificand & 0x7fffff)));
 }
 
+APInt
+APFloat::convertHalfAPFloatToAPInt() const
+{
+  assert(semantics == (const llvm::fltSemantics*)&IEEEhalf);
+  assert(partCount()==1);
+
+  uint32_t myexponent, mysignificand;
+
+  if (category==fcNormal) {
+    myexponent = exponent+15; //bias
+    mysignificand = (uint32_t)*significandParts();
+    if (myexponent == 1 && !(mysignificand & 0x400))
+      myexponent = 0;   // denormal
+  } else if (category==fcZero) {
+    myexponent = 0;
+    mysignificand = 0;
+  } else if (category==fcInfinity) {
+    myexponent = 0x1f;
+    mysignificand = 0;
+  } else {
+    assert(category == fcNaN && "Unknown category!");
+    myexponent = 0x1f;
+    mysignificand = (uint32_t)*significandParts();
+  }
+
+  return APInt(16, (((sign&1) << 15) | ((myexponent&0x1f) << 10) |
+                    (mysignificand & 0x3ff)));
+}
+
 // This function creates an APInt that is just a bit map of the floating
 // point constant as it would appear in memory.  It is not a conversion,
 // and treating the result as a normal integer is unlikely to be useful.
 // This function creates an APInt that is just a bit map of the floating
 // point constant as it would appear in memory.  It is not a conversion,
 // and treating the result as a normal integer is unlikely to be useful.
@@ -2720,12 +2936,18 @@ APFloat::convertFloatAPFloatToAPInt() const
 APInt
 APFloat::bitcastToAPInt() const
 {
 APInt
 APFloat::bitcastToAPInt() const
 {
+  if (semantics == (const llvm::fltSemantics*)&IEEEhalf)
+    return convertHalfAPFloatToAPInt();
+
   if (semantics == (const llvm::fltSemantics*)&IEEEsingle)
     return convertFloatAPFloatToAPInt();
   if (semantics == (const llvm::fltSemantics*)&IEEEsingle)
     return convertFloatAPFloatToAPInt();
-  
+
   if (semantics == (const llvm::fltSemantics*)&IEEEdouble)
     return convertDoubleAPFloatToAPInt();
 
   if (semantics == (const llvm::fltSemantics*)&IEEEdouble)
     return convertDoubleAPFloatToAPInt();
 
+  if (semantics == (const llvm::fltSemantics*)&IEEEquad)
+    return convertQuadrupleAPFloatToAPInt();
+
   if (semantics == (const llvm::fltSemantics*)&PPCDoubleDouble)
     return convertPPCDoubleDoubleAPFloatToAPInt();
 
   if (semantics == (const llvm::fltSemantics*)&PPCDoubleDouble)
     return convertPPCDoubleDoubleAPFloatToAPInt();
 
@@ -2737,7 +2959,8 @@ APFloat::bitcastToAPInt() const
 float
 APFloat::convertToFloat() const
 {
 float
 APFloat::convertToFloat() const
 {
-  assert(semantics == (const llvm::fltSemantics*)&IEEEsingle);
+  assert(semantics == (const llvm::fltSemantics*)&IEEEsingle &&
+         "Float semantics are not IEEEsingle");
   APInt api = bitcastToAPInt();
   return api.bitsToFloat();
 }
   APInt api = bitcastToAPInt();
   return api.bitsToFloat();
 }
@@ -2745,7 +2968,8 @@ APFloat::convertToFloat() const
 double
 APFloat::convertToDouble() const
 {
 double
 APFloat::convertToDouble() const
 {
-  assert(semantics == (const llvm::fltSemantics*)&IEEEdouble);
+  assert(semantics == (const llvm::fltSemantics*)&IEEEdouble &&
+         "Float semantics are not IEEEdouble");
   APInt api = bitcastToAPInt();
   return api.bitsToDouble();
 }
   APInt api = bitcastToAPInt();
   return api.bitsToDouble();
 }
@@ -2797,47 +3021,63 @@ APFloat::initFromPPCDoubleDoubleAPInt(const APInt &api)
   assert(api.getBitWidth()==128);
   uint64_t i1 = api.getRawData()[0];
   uint64_t i2 = api.getRawData()[1];
   assert(api.getBitWidth()==128);
   uint64_t i1 = api.getRawData()[0];
   uint64_t i2 = api.getRawData()[1];
-  uint64_t myexponent = (i1 >> 52) & 0x7ff;
-  uint64_t mysignificand = i1 & 0xfffffffffffffLL;
-  uint64_t myexponent2 = (i2 >> 52) & 0x7ff;
-  uint64_t mysignificand2 = i2 & 0xfffffffffffffLL;
+  opStatus fs;
+  bool losesInfo;
+
+  // Get the first double and convert to our format.
+  initFromDoubleAPInt(APInt(64, i1));
+  fs = convert(PPCDoubleDouble, rmNearestTiesToEven, &losesInfo);
+  assert(fs == opOK && !losesInfo);
+  (void)fs;
+
+  // Unless we have a special case, add in second double.
+  if (category == fcNormal) {
+    APFloat v(APInt(64, i2));
+    fs = v.convert(PPCDoubleDouble, rmNearestTiesToEven, &losesInfo);
+    assert(fs == opOK && !losesInfo);
+    (void)fs;
+
+    add(v, rmNearestTiesToEven);
+  }
+}
+
+void
+APFloat::initFromQuadrupleAPInt(const APInt &api)
+{
+  assert(api.getBitWidth()==128);
+  uint64_t i1 = api.getRawData()[0];
+  uint64_t i2 = api.getRawData()[1];
+  uint64_t myexponent = (i2 >> 48) & 0x7fff;
+  uint64_t mysignificand  = i1;
+  uint64_t mysignificand2 = i2 & 0xffffffffffffLL;
 
 
-  initialize(&APFloat::PPCDoubleDouble);
+  initialize(&APFloat::IEEEquad);
   assert(partCount()==2);
 
   assert(partCount()==2);
 
-  sign = static_cast<unsigned int>(i1>>63);
-  sign2 = static_cast<unsigned int>(i2>>63);
-  if (myexponent==0 && mysignificand==0) {
+  sign = static_cast<unsigned int>(i2>>63);
+  if (myexponent==0 &&
+      (mysignificand==0 && mysignificand2==0)) {
     // exponent, significand meaningless
     // exponent, significand meaningless
-    // exponent2 and significand2 are required to be 0; we don't check
     category = fcZero;
     category = fcZero;
-  } else if (myexponent==0x7ff && mysignificand==0) {
+  } else if (myexponent==0x7fff &&
+             (mysignificand==0 && mysignificand2==0)) {
     // exponent, significand meaningless
     // exponent, significand meaningless
-    // exponent2 and significand2 are required to be 0; we don't check
     category = fcInfinity;
     category = fcInfinity;
-  } else if (myexponent==0x7ff && mysignificand!=0) {
-    // exponent meaningless.  So is the whole second word, but keep it 
-    // for determinism.
+  } else if (myexponent==0x7fff &&
+             (mysignificand!=0 || mysignificand2 !=0)) {
+    // exponent meaningless
     category = fcNaN;
     category = fcNaN;
-    exponent2 = myexponent2;
     significandParts()[0] = mysignificand;
     significandParts()[1] = mysignificand2;
   } else {
     category = fcNormal;
     significandParts()[0] = mysignificand;
     significandParts()[1] = mysignificand2;
   } else {
     category = fcNormal;
-    // Note there is no category2; the second word is treated as if it is
-    // fcNormal, although it might be something else considered by itself.
-    exponent = myexponent - 1023;
-    exponent2 = myexponent2 - 1023;
+    exponent = myexponent - 16383;
     significandParts()[0] = mysignificand;
     significandParts()[1] = mysignificand2;
     if (myexponent==0)          // denormal
     significandParts()[0] = mysignificand;
     significandParts()[1] = mysignificand2;
     if (myexponent==0)          // denormal
-      exponent = -1022;
-    else
-      significandParts()[0] |= 0x10000000000000LL;  // integer bit
-    if (myexponent2==0) 
-      exponent2 = -1022;
+      exponent = -16382;
     else
     else
-      significandParts()[1] |= 0x10000000000000LL;  // integer bit
+      significandParts()[1] |= 0x1000000000000LL;  // integer bit
   }
 }
 
   }
 }
 
@@ -2907,6 +3147,39 @@ APFloat::initFromFloatAPInt(const APInt & api)
   }
 }
 
   }
 }
 
+void
+APFloat::initFromHalfAPInt(const APInt & api)
+{
+  assert(api.getBitWidth()==16);
+  uint32_t i = (uint32_t)*api.getRawData();
+  uint32_t myexponent = (i >> 10) & 0x1f;
+  uint32_t mysignificand = i & 0x3ff;
+
+  initialize(&APFloat::IEEEhalf);
+  assert(partCount()==1);
+
+  sign = i >> 15;
+  if (myexponent==0 && mysignificand==0) {
+    // exponent, significand meaningless
+    category = fcZero;
+  } else if (myexponent==0x1f && mysignificand==0) {
+    // exponent, significand meaningless
+    category = fcInfinity;
+  } else if (myexponent==0x1f && mysignificand!=0) {
+    // sign, exponent, significand meaningless
+    category = fcNaN;
+    *significandParts() = mysignificand;
+  } else {
+    category = fcNormal;
+    exponent = myexponent - 15;  //bias
+    *significandParts() = mysignificand;
+    if (myexponent==0)    // denormal
+      exponent = -14;
+    else
+      *significandParts() |= 0x400; // integer bit
+  }
+}
+
 /// Treat api as containing the bits of a floating point number.  Currently
 /// we infer the floating point type from the size of the APInt.  The
 /// isIEEE argument distinguishes between PPC128 and IEEE128 (not meaningful
 /// Treat api as containing the bits of a floating point number.  Currently
 /// we infer the floating point type from the size of the APInt.  The
 /// isIEEE argument distinguishes between PPC128 and IEEE128 (not meaningful
@@ -2914,31 +3187,405 @@ APFloat::initFromFloatAPInt(const APInt & api)
 void
 APFloat::initFromAPInt(const APInt& api, bool isIEEE)
 {
 void
 APFloat::initFromAPInt(const APInt& api, bool isIEEE)
 {
-  if (api.getBitWidth() == 32)
+  if (api.getBitWidth() == 16)
+    return initFromHalfAPInt(api);
+  else if (api.getBitWidth() == 32)
     return initFromFloatAPInt(api);
   else if (api.getBitWidth()==64)
     return initFromDoubleAPInt(api);
   else if (api.getBitWidth()==80)
     return initFromF80LongDoubleAPInt(api);
     return initFromFloatAPInt(api);
   else if (api.getBitWidth()==64)
     return initFromDoubleAPInt(api);
   else if (api.getBitWidth()==80)
     return initFromF80LongDoubleAPInt(api);
-  else if (api.getBitWidth()==128 && !isIEEE)
-    return initFromPPCDoubleDoubleAPInt(api);
+  else if (api.getBitWidth()==128)
+    return (isIEEE ?
+            initFromQuadrupleAPInt(api) : initFromPPCDoubleDoubleAPInt(api));
   else
   else
-    assert(0);
+    llvm_unreachable(0);
 }
 
 }
 
-APFloat::APFloat(const APInt& api, bool isIEEE)
+APFloat
+APFloat::getAllOnesValue(unsigned BitWidth, bool isIEEE)
 {
 {
+  return APFloat(APInt::getAllOnesValue(BitWidth), isIEEE);
+}
+
+APFloat APFloat::getLargest(const fltSemantics &Sem, bool Negative) {
+  APFloat Val(Sem, fcNormal, Negative);
+
+  // We want (in interchange format):
+  //   sign = {Negative}
+  //   exponent = 1..10
+  //   significand = 1..1
+
+  Val.exponent = Sem.maxExponent; // unbiased
+
+  // 1-initialize all bits....
+  Val.zeroSignificand();
+  integerPart *significand = Val.significandParts();
+  unsigned N = partCountForBits(Sem.precision);
+  for (unsigned i = 0; i != N; ++i)
+    significand[i] = ~((integerPart) 0);
+
+  // ...and then clear the top bits for internal consistency.
+  if (Sem.precision % integerPartWidth != 0)
+    significand[N-1] &=
+      (((integerPart) 1) << (Sem.precision % integerPartWidth)) - 1;
+
+  return Val;
+}
+
+APFloat APFloat::getSmallest(const fltSemantics &Sem, bool Negative) {
+  APFloat Val(Sem, fcNormal, Negative);
+
+  // We want (in interchange format):
+  //   sign = {Negative}
+  //   exponent = 0..0
+  //   significand = 0..01
+
+  Val.exponent = Sem.minExponent; // unbiased
+  Val.zeroSignificand();
+  Val.significandParts()[0] = 1;
+  return Val;
+}
+
+APFloat APFloat::getSmallestNormalized(const fltSemantics &Sem, bool Negative) {
+  APFloat Val(Sem, fcNormal, Negative);
+
+  // We want (in interchange format):
+  //   sign = {Negative}
+  //   exponent = 0..0
+  //   significand = 10..0
+
+  Val.exponent = Sem.minExponent;
+  Val.zeroSignificand();
+  Val.significandParts()[partCountForBits(Sem.precision)-1] |=
+    (((integerPart) 1) << ((Sem.precision - 1) % integerPartWidth));
+
+  return Val;
+}
+
+APFloat::APFloat(const APInt& api, bool isIEEE) {
   initFromAPInt(api, isIEEE);
 }
 
   initFromAPInt(api, isIEEE);
 }
 
-APFloat::APFloat(float f)
-{
-  APInt api = APInt(32, 0);
-  initFromAPInt(api.floatToBits(f));
+APFloat::APFloat(float f) {
+  initFromAPInt(APInt::floatToBits(f));
 }
 
 }
 
-APFloat::APFloat(double d)
-{
-  APInt api = APInt(64, 0);
-  initFromAPInt(api.doubleToBits(d));
+APFloat::APFloat(double d) {
+  initFromAPInt(APInt::doubleToBits(d));
+}
+
+namespace {
+  void append(SmallVectorImpl<char> &Buffer, StringRef Str) {
+    Buffer.append(Str.begin(), Str.end());
+  }
+
+  /// Removes data from the given significand until it is no more
+  /// precise than is required for the desired precision.
+  void AdjustToPrecision(APInt &significand,
+                         int &exp, unsigned FormatPrecision) {
+    unsigned bits = significand.getActiveBits();
+
+    // 196/59 is a very slight overestimate of lg_2(10).
+    unsigned bitsRequired = (FormatPrecision * 196 + 58) / 59;
+
+    if (bits <= bitsRequired) return;
+
+    unsigned tensRemovable = (bits - bitsRequired) * 59 / 196;
+    if (!tensRemovable) return;
+
+    exp += tensRemovable;
+
+    APInt divisor(significand.getBitWidth(), 1);
+    APInt powten(significand.getBitWidth(), 10);
+    while (true) {
+      if (tensRemovable & 1)
+        divisor *= powten;
+      tensRemovable >>= 1;
+      if (!tensRemovable) break;
+      powten *= powten;
+    }
+
+    significand = significand.udiv(divisor);
+
+    // Truncate the significand down to its active bit count, but
+    // don't try to drop below 32.
+    unsigned newPrecision = std::max(32U, significand.getActiveBits());
+    significand = significand.trunc(newPrecision);
+  }
+
+
+  void AdjustToPrecision(SmallVectorImpl<char> &buffer,
+                         int &exp, unsigned FormatPrecision) {
+    unsigned N = buffer.size();
+    if (N <= FormatPrecision) return;
+
+    // The most significant figures are the last ones in the buffer.
+    unsigned FirstSignificant = N - FormatPrecision;
+
+    // Round.
+    // FIXME: this probably shouldn't use 'round half up'.
+
+    // Rounding down is just a truncation, except we also want to drop
+    // trailing zeros from the new result.
+    if (buffer[FirstSignificant - 1] < '5') {
+      while (FirstSignificant < N && buffer[FirstSignificant] == '0')
+        FirstSignificant++;
+
+      exp += FirstSignificant;
+      buffer.erase(&buffer[0], &buffer[FirstSignificant]);
+      return;
+    }
+
+    // Rounding up requires a decimal add-with-carry.  If we continue
+    // the carry, the newly-introduced zeros will just be truncated.
+    for (unsigned I = FirstSignificant; I != N; ++I) {
+      if (buffer[I] == '9') {
+        FirstSignificant++;
+      } else {
+        buffer[I]++;
+        break;
+      }
+    }
+
+    // If we carried through, we have exactly one digit of precision.
+    if (FirstSignificant == N) {
+      exp += FirstSignificant;
+      buffer.clear();
+      buffer.push_back('1');
+      return;
+    }
+
+    exp += FirstSignificant;
+    buffer.erase(&buffer[0], &buffer[FirstSignificant]);
+  }
+}
+
+void APFloat::toString(SmallVectorImpl<char> &Str,
+                       unsigned FormatPrecision,
+                       unsigned FormatMaxPadding) const {
+  switch (category) {
+  case fcInfinity:
+    if (isNegative())
+      return append(Str, "-Inf");
+    else
+      return append(Str, "+Inf");
+
+  case fcNaN: return append(Str, "NaN");
+
+  case fcZero:
+    if (isNegative())
+      Str.push_back('-');
+
+    if (!FormatMaxPadding)
+      append(Str, "0.0E+0");
+    else
+      Str.push_back('0');
+    return;
+
+  case fcNormal:
+    break;
+  }
+
+  if (isNegative())
+    Str.push_back('-');
+
+  // Decompose the number into an APInt and an exponent.
+  int exp = exponent - ((int) semantics->precision - 1);
+  APInt significand(semantics->precision,
+                    makeArrayRef(significandParts(),
+                                 partCountForBits(semantics->precision)));
+
+  // Set FormatPrecision if zero.  We want to do this before we
+  // truncate trailing zeros, as those are part of the precision.
+  if (!FormatPrecision) {
+    // It's an interesting question whether to use the nominal
+    // precision or the active precision here for denormals.
+
+    // FormatPrecision = ceil(significandBits / lg_2(10))
+    FormatPrecision = (semantics->precision * 59 + 195) / 196;
+  }
+
+  // Ignore trailing binary zeros.
+  int trailingZeros = significand.countTrailingZeros();
+  exp += trailingZeros;
+  significand = significand.lshr(trailingZeros);
+
+  // Change the exponent from 2^e to 10^e.
+  if (exp == 0) {
+    // Nothing to do.
+  } else if (exp > 0) {
+    // Just shift left.
+    significand = significand.zext(semantics->precision + exp);
+    significand <<= exp;
+    exp = 0;
+  } else { /* exp < 0 */
+    int texp = -exp;
+
+    // We transform this using the identity:
+    //   (N)(2^-e) == (N)(5^e)(10^-e)
+    // This means we have to multiply N (the significand) by 5^e.
+    // To avoid overflow, we have to operate on numbers large
+    // enough to store N * 5^e:
+    //   log2(N * 5^e) == log2(N) + e * log2(5)
+    //                 <= semantics->precision + e * 137 / 59
+    //   (log_2(5) ~ 2.321928 < 2.322034 ~ 137/59)
+
+    unsigned precision = semantics->precision + (137 * texp + 136) / 59;
+
+    // Multiply significand by 5^e.
+    //   N * 5^0101 == N * 5^(1*1) * 5^(0*2) * 5^(1*4) * 5^(0*8)
+    significand = significand.zext(precision);
+    APInt five_to_the_i(precision, 5);
+    while (true) {
+      if (texp & 1) significand *= five_to_the_i;
+
+      texp >>= 1;
+      if (!texp) break;
+      five_to_the_i *= five_to_the_i;
+    }
+  }
+
+  AdjustToPrecision(significand, exp, FormatPrecision);
+
+  llvm::SmallVector<char, 256> buffer;
+
+  // Fill the buffer.
+  unsigned precision = significand.getBitWidth();
+  APInt ten(precision, 10);
+  APInt digit(precision, 0);
+
+  bool inTrail = true;
+  while (significand != 0) {
+    // digit <- significand % 10
+    // significand <- significand / 10
+    APInt::udivrem(significand, ten, significand, digit);
+
+    unsigned d = digit.getZExtValue();
+
+    // Drop trailing zeros.
+    if (inTrail && !d) exp++;
+    else {
+      buffer.push_back((char) ('0' + d));
+      inTrail = false;
+    }
+  }
+
+  assert(!buffer.empty() && "no characters in buffer!");
+
+  // Drop down to FormatPrecision.
+  // TODO: don't do more precise calculations above than are required.
+  AdjustToPrecision(buffer, exp, FormatPrecision);
+
+  unsigned NDigits = buffer.size();
+
+  // Check whether we should use scientific notation.
+  bool FormatScientific;
+  if (!FormatMaxPadding)
+    FormatScientific = true;
+  else {
+    if (exp >= 0) {
+      // 765e3 --> 765000
+      //              ^^^
+      // But we shouldn't make the number look more precise than it is.
+      FormatScientific = ((unsigned) exp > FormatMaxPadding ||
+                          NDigits + (unsigned) exp > FormatPrecision);
+    } else {
+      // Power of the most significant digit.
+      int MSD = exp + (int) (NDigits - 1);
+      if (MSD >= 0) {
+        // 765e-2 == 7.65
+        FormatScientific = false;
+      } else {
+        // 765e-5 == 0.00765
+        //           ^ ^^
+        FormatScientific = ((unsigned) -MSD) > FormatMaxPadding;
+      }
+    }
+  }
+
+  // Scientific formatting is pretty straightforward.
+  if (FormatScientific) {
+    exp += (NDigits - 1);
+
+    Str.push_back(buffer[NDigits-1]);
+    Str.push_back('.');
+    if (NDigits == 1)
+      Str.push_back('0');
+    else
+      for (unsigned I = 1; I != NDigits; ++I)
+        Str.push_back(buffer[NDigits-1-I]);
+    Str.push_back('E');
+
+    Str.push_back(exp >= 0 ? '+' : '-');
+    if (exp < 0) exp = -exp;
+    SmallVector<char, 6> expbuf;
+    do {
+      expbuf.push_back((char) ('0' + (exp % 10)));
+      exp /= 10;
+    } while (exp);
+    for (unsigned I = 0, E = expbuf.size(); I != E; ++I)
+      Str.push_back(expbuf[E-1-I]);
+    return;
+  }
+
+  // Non-scientific, positive exponents.
+  if (exp >= 0) {
+    for (unsigned I = 0; I != NDigits; ++I)
+      Str.push_back(buffer[NDigits-1-I]);
+    for (unsigned I = 0; I != (unsigned) exp; ++I)
+      Str.push_back('0');
+    return;
+  }
+
+  // Non-scientific, negative exponents.
+
+  // The number of digits to the left of the decimal point.
+  int NWholeDigits = exp + (int) NDigits;
+
+  unsigned I = 0;
+  if (NWholeDigits > 0) {
+    for (; I != (unsigned) NWholeDigits; ++I)
+      Str.push_back(buffer[NDigits-I-1]);
+    Str.push_back('.');
+  } else {
+    unsigned NZeros = 1 + (unsigned) -NWholeDigits;
+
+    Str.push_back('0');
+    Str.push_back('.');
+    for (unsigned Z = 1; Z != NZeros; ++Z)
+      Str.push_back('0');
+  }
+
+  for (; I != NDigits; ++I)
+    Str.push_back(buffer[NDigits-I-1]);
+}
+
+bool APFloat::getExactInverse(APFloat *inv) const {
+  // Special floats and denormals have no exact inverse.
+  if (category != fcNormal)
+    return false;
+
+  // Check that the number is a power of two by making sure that only the
+  // integer bit is set in the significand.
+  if (significandLSB() != semantics->precision - 1)
+    return false;
+
+  // Get the inverse.
+  APFloat reciprocal(*semantics, 1ULL);
+  if (reciprocal.divide(*this, rmNearestTiesToEven) != opOK)
+    return false;
+
+  // Avoid multiplication with a denormal, it is not safe on all platforms and
+  // may be slower than a normal division.
+  if (reciprocal.significandMSB() + 1 < reciprocal.semantics->precision)
+    return false;
+
+  assert(reciprocal.category == fcNormal &&
+         reciprocal.significandLSB() == reciprocal.semantics->precision - 1);
+
+  if (inv)
+    *inv = reciprocal;
+
+  return true;
 }
 }