drm/doc: Integrate drm_modes.c kerneldoc
[firefly-linux-kernel-4.4.55.git] / Documentation / DocBook / drm.tmpl
index 0d2adf9825e9ab798a7490b169df319b79bff993..50af3298ac1f58206eb964e1f4425f42296f9e04 100644 (file)
          </address>
        </affiliation>
       </author>
+      <author>
+       <firstname>Daniel</firstname>
+       <surname>Vetter</surname>
+       <contrib>Contributions all over the place</contrib>
+       <affiliation>
+         <orgname>Intel Corporation</orgname>
+         <address>
+           <email>daniel.vetter@ffwll.ch</email>
+         </address>
+       </affiliation>
+      </author>
     </authorgroup>
 
     <copyright>
       <year>2008-2009</year>
-      <year>2012</year>
+      <year>2013-2014</year>
       <holder>Intel Corporation</holder>
+    </copyright>
+    <copyright>
+      <year>2012</year>
       <holder>Laurent Pinchart</holder>
     </copyright>
 
 
 <toc></toc>
 
-  <!-- Introduction -->
+<part id="drmCore">
+  <title>DRM Core</title>
+  <partintro>
+    <para>
+      This first part of the DRM Developer's Guide documents core DRM code,
+      helper libraries for writting drivers and generic userspace interfaces
+      exposed by DRM drivers.
+    </para>
+  </partintro>
 
   <chapter id="drmIntroduction">
     <title>Introduction</title>
@@ -264,8 +286,8 @@ char *date;</synopsis>
       <para>
         The <methodname>load</methodname> method is the driver and device
         initialization entry point. The method is responsible for allocating and
-        initializing driver private data, specifying supported performance
-        counters, performing resource allocation and mapping (e.g. acquiring
+       initializing driver private data, performing resource allocation and
+       mapping (e.g. acquiring
         clocks, mapping registers or allocating command buffers), initializing
         the memory manager (<xref linkend="drm-memory-management"/>), installing
         the IRQ handler (<xref linkend="drm-irq-registration"/>), setting up
@@ -295,7 +317,7 @@ char *date;</synopsis>
        their <methodname>load</methodname> method called with flags to 0.
       </para>
       <sect3>
-        <title>Driver Private &amp; Performance Counters</title>
+        <title>Driver Private Data</title>
         <para>
           The driver private hangs off the main
           <structname>drm_device</structname> structure and can be used for
@@ -307,14 +329,6 @@ char *date;</synopsis>
           <structname>drm_device</structname>.<structfield>dev_priv</structfield>
           set to NULL when the driver is unloaded.
         </para>
-        <para>
-          DRM supports several counters which were used for rough performance
-          characterization. This stat counter system is deprecated and should not
-          be used. If performance monitoring is desired, the developer should
-          investigate and potentially enhance the kernel perf and tracing
-          infrastructure to export GPU related performance information for
-          consumption by performance monitoring tools and applications.
-        </para>
       </sect3>
       <sect3 id="drm-irq-registration">
         <title>IRQ Registration</title>
@@ -697,55 +711,16 @@ char *date;</synopsis>
           respectively. The conversion is handled by the DRM core without any
           driver-specific support.
         </para>
-        <para>
-          Similar to global names, GEM file descriptors are also used to share GEM
-          objects across processes. They offer additional security: as file
-          descriptors must be explicitly sent over UNIX domain sockets to be shared
-          between applications, they can't be guessed like the globally unique GEM
-          names.
-        </para>
-        <para>
-          Drivers that support GEM file descriptors, also known as the DRM PRIME
-          API, must set the DRIVER_PRIME bit in the struct
-          <structname>drm_driver</structname>
-          <structfield>driver_features</structfield> field, and implement the
-          <methodname>prime_handle_to_fd</methodname> and
-          <methodname>prime_fd_to_handle</methodname> operations.
-        </para>
-        <para>
-          <synopsis>int (*prime_handle_to_fd)(struct drm_device *dev,
-                            struct drm_file *file_priv, uint32_t handle,
-                            uint32_t flags, int *prime_fd);
-  int (*prime_fd_to_handle)(struct drm_device *dev,
-                            struct drm_file *file_priv, int prime_fd,
-                            uint32_t *handle);</synopsis>
-          Those two operations convert a handle to a PRIME file descriptor and
-          vice versa. Drivers must use the kernel dma-buf buffer sharing framework
-          to manage the PRIME file descriptors.
-        </para>
-        <para>
-          While non-GEM drivers must implement the operations themselves, GEM
-          drivers must use the <function>drm_gem_prime_handle_to_fd</function>
-          and <function>drm_gem_prime_fd_to_handle</function> helper functions.
-          Those helpers rely on the driver
-          <methodname>gem_prime_export</methodname> and
-          <methodname>gem_prime_import</methodname> operations to create a dma-buf
-          instance from a GEM object (dma-buf exporter role) and to create a GEM
-          object from a dma-buf instance (dma-buf importer role).
-        </para>
-        <para>
-          <synopsis>struct dma_buf * (*gem_prime_export)(struct drm_device *dev,
-                                       struct drm_gem_object *obj,
-                                       int flags);
-  struct drm_gem_object * (*gem_prime_import)(struct drm_device *dev,
-                                              struct dma_buf *dma_buf);</synopsis>
-          These two operations are mandatory for GEM drivers that support DRM
-          PRIME.
-        </para>
-        <sect4>
-          <title>DRM PRIME Helper Functions Reference</title>
-!Pdrivers/gpu/drm/drm_prime.c PRIME Helpers
-        </sect4>
+       <para>
+         GEM also supports buffer sharing with dma-buf file descriptors through
+         PRIME. GEM-based drivers must use the provided helpers functions to
+         implement the exporting and importing correctly. See <xref linkend="drm-prime-support" />.
+         Since sharing file descriptors is inherently more secure than the
+         easily guessable and global GEM names it is the preferred buffer
+         sharing mechanism. Sharing buffers through GEM names is only supported
+         for legacy userspace. Furthermore PRIME also allows cross-device
+         buffer sharing since it is based on dma-bufs.
+       </para>
       </sect3>
       <sect3 id="drm-gem-objects-mapping">
         <title>GEM Objects Mapping</title>
@@ -868,10 +843,98 @@ char *date;</synopsis>
           abstracted from the client in libdrm.
         </para>
       </sect3>
-      <sect2>
+      <sect3>
         <title>GEM Function Reference</title>
 !Edrivers/gpu/drm/drm_gem.c
+      </sect3>
       </sect2>
+      <sect2>
+       <title>VMA Offset Manager</title>
+!Pdrivers/gpu/drm/drm_vma_manager.c vma offset manager
+!Edrivers/gpu/drm/drm_vma_manager.c
+!Iinclude/drm/drm_vma_manager.h
+      </sect2>
+      <sect2 id="drm-prime-support">
+       <title>PRIME Buffer Sharing</title>
+       <para>
+         PRIME is the cross device buffer sharing framework in drm, originally
+         created for the OPTIMUS range of multi-gpu platforms. To userspace
+         PRIME buffers are dma-buf based file descriptors.
+       </para>
+       <sect3>
+         <title>Overview and Driver Interface</title>
+         <para>
+           Similar to GEM global names, PRIME file descriptors are
+           also used to share buffer objects across processes. They offer
+           additional security: as file descriptors must be explicitly sent over
+           UNIX domain sockets to be shared between applications, they can't be
+           guessed like the globally unique GEM names.
+         </para>
+         <para>
+           Drivers that support the PRIME
+           API must set the DRIVER_PRIME bit in the struct
+           <structname>drm_driver</structname>
+           <structfield>driver_features</structfield> field, and implement the
+           <methodname>prime_handle_to_fd</methodname> and
+           <methodname>prime_fd_to_handle</methodname> operations.
+         </para>
+         <para>
+           <synopsis>int (*prime_handle_to_fd)(struct drm_device *dev,
+                         struct drm_file *file_priv, uint32_t handle,
+                         uint32_t flags, int *prime_fd);
+int (*prime_fd_to_handle)(struct drm_device *dev,
+                         struct drm_file *file_priv, int prime_fd,
+                         uint32_t *handle);</synopsis>
+           Those two operations convert a handle to a PRIME file descriptor and
+           vice versa. Drivers must use the kernel dma-buf buffer sharing framework
+           to manage the PRIME file descriptors. Similar to the mode setting
+           API PRIME is agnostic to the underlying buffer object manager, as
+           long as handles are 32bit unsinged integers.
+         </para>
+         <para>
+           While non-GEM drivers must implement the operations themselves, GEM
+           drivers must use the <function>drm_gem_prime_handle_to_fd</function>
+           and <function>drm_gem_prime_fd_to_handle</function> helper functions.
+           Those helpers rely on the driver
+           <methodname>gem_prime_export</methodname> and
+           <methodname>gem_prime_import</methodname> operations to create a dma-buf
+           instance from a GEM object (dma-buf exporter role) and to create a GEM
+           object from a dma-buf instance (dma-buf importer role).
+         </para>
+         <para>
+           <synopsis>struct dma_buf * (*gem_prime_export)(struct drm_device *dev,
+                                    struct drm_gem_object *obj,
+                                    int flags);
+struct drm_gem_object * (*gem_prime_import)(struct drm_device *dev,
+                                           struct dma_buf *dma_buf);</synopsis>
+           These two operations are mandatory for GEM drivers that support
+           PRIME.
+         </para>
+       </sect3>
+        <sect3>
+          <title>PRIME Helper Functions</title>
+!Pdrivers/gpu/drm/drm_prime.c PRIME Helpers
+        </sect3>
+      </sect2>
+      <sect2>
+       <title>PRIME Function References</title>
+!Edrivers/gpu/drm/drm_prime.c
+      </sect2>
+      <sect2>
+       <title>DRM MM Range Allocator</title>
+       <sect3>
+         <title>Overview</title>
+!Pdrivers/gpu/drm/drm_mm.c Overview
+       </sect3>
+       <sect3>
+         <title>LRU Scan/Eviction Support</title>
+!Pdrivers/gpu/drm/drm_mm.c lru scan roaster
+       </sect3>
+      </sect2>
+      <sect2>
+       <title>DRM MM Range Allocator Function References</title>
+!Edrivers/gpu/drm/drm_mm.c
+!Iinclude/drm/drm_mm.h
       </sect2>
   </sect1>
 
@@ -900,6 +963,10 @@ int max_width, max_height;</synopsis>
        <para>Mode setting functions.</para>
       </listitem>
     </itemizedlist>
+    <sect2>
+      <title>Display Modes Function Reference</title>
+!Edrivers/gpu/drm/drm_modes.c
+    </sect2>
     <sect2>
       <title>Frame Buffer Creation</title>
       <synopsis>struct drm_framebuffer *(*fb_create)(struct drm_device *dev,
@@ -1145,8 +1212,11 @@ int max_width, max_height;</synopsis>
             This operation is called with the mode config lock held.
           </para>
           <note><para>
-            FIXME: How should set_config interact with DPMS? If the CRTC is
-            suspended, should it be resumed?
+           Note that the drm core has no notion of restoring the mode setting
+           state after resume, since all resume handling is in the full
+           responsibility of the driver. The common mode setting helper library
+           though provides a helper which can be used for this:
+           <function>drm_helper_resume_force_mode</function>.
           </para></note>
         </sect4>
         <sect4>
@@ -2211,10 +2281,15 @@ void intel_crt_init(struct drm_device *dev)
 !Edrivers/gpu/drm/drm_flip_work.c
     </sect2>
     <sect2>
-      <title>VMA Offset Manager</title>
-!Pdrivers/gpu/drm/drm_vma_manager.c vma offset manager
-!Edrivers/gpu/drm/drm_vma_manager.c
-!Iinclude/drm/drm_vma_manager.h
+      <title>HDMI Infoframes Helper Reference</title>
+      <para>
+       Strictly speaking this is not a DRM helper library but generally useable
+       by any driver interfacing with HDMI outputs like v4l or alsa drivers.
+       But it nicely fits into the overall topic of mode setting helper
+       libraries and hence is also included here.
+      </para>
+!Iinclude/linux/hdmi.h
+!Edrivers/video/hdmi.c
     </sect2>
   </sect1>
 
@@ -2576,42 +2651,44 @@ int num_ioctls;</synopsis>
       </para>
     </sect2>
   </sect1>
-
   <sect1>
-    <title>Command submission &amp; fencing</title>
+    <title>Legacy Support Code</title>
     <para>
-      This should cover a few device-specific command submission
-      implementations.
+      The section very brievely covers some of the old legacy support code which
+      is only used by old DRM drivers which have done a so-called shadow-attach
+      to the underlying device instead of registering as a real driver. This
+      also includes some of the old generic buffer mangement and command
+      submission code. Do not use any of this in new and modern drivers.
     </para>
-  </sect1>
 
-  <!-- Internals: suspend/resume -->
-
-  <sect1>
-    <title>Suspend/Resume</title>
-    <para>
-      The DRM core provides some suspend/resume code, but drivers wanting full
-      suspend/resume support should provide save() and restore() functions.
-      These are called at suspend, hibernate, or resume time, and should perform
-      any state save or restore required by your device across suspend or
-      hibernate states.
-    </para>
-    <synopsis>int (*suspend) (struct drm_device *, pm_message_t state);
-int (*resume) (struct drm_device *);</synopsis>
-    <para>
-      Those are legacy suspend and resume methods. New driver should use the
-      power management interface provided by their bus type (usually through
-      the struct <structname>device_driver</structname> dev_pm_ops) and set
-      these methods to NULL.
-    </para>
-  </sect1>
+    <sect2>
+      <title>Legacy Suspend/Resume</title>
+      <para>
+       The DRM core provides some suspend/resume code, but drivers wanting full
+       suspend/resume support should provide save() and restore() functions.
+       These are called at suspend, hibernate, or resume time, and should perform
+       any state save or restore required by your device across suspend or
+       hibernate states.
+      </para>
+      <synopsis>int (*suspend) (struct drm_device *, pm_message_t state);
+  int (*resume) (struct drm_device *);</synopsis>
+      <para>
+       Those are legacy suspend and resume methods which
+       <emphasis>only</emphasis> work with the legacy shadow-attach driver
+       registration functions. New driver should use the power management
+       interface provided by their bus type (usually through
+       the struct <structname>device_driver</structname> dev_pm_ops) and set
+       these methods to NULL.
+      </para>
+    </sect2>
 
-  <sect1>
-    <title>DMA services</title>
-    <para>
-      This should cover how DMA mapping etc. is supported by the core.
-      These functions are deprecated and should not be used.
-    </para>
+    <sect2>
+      <title>Legacy DMA Services</title>
+      <para>
+       This should cover how DMA mapping etc. is supported by the core.
+       These functions are deprecated and should not be used.
+      </para>
+    </sect2>
   </sect1>
   </chapter>
 
@@ -2764,15 +2841,73 @@ int (*resume) (struct drm_device *);</synopsis>
     </sect1>
 
   </chapter>
+</part>
+<part id="drmDrivers">
+  <title>DRM Drivers</title>
 
-  <!-- API reference -->
+  <partintro>
+    <para>
+      This second part of the DRM Developer's Guide documents driver code,
+      implementation details and also all the driver-specific userspace
+      interfaces. Especially since all hardware-acceleration interfaces to
+      userspace are driver specific for efficiency and other reasons these
+      interfaces can be rather substantial. Hence every driver has its own
+      chapter.
+    </para>
+  </partintro>
 
-  <appendix id="drmDriverApi">
-    <title>DRM Driver API</title>
+  <chapter id="drmI915">
+    <title>drm/i915 Intel GFX Driver</title>
     <para>
-      Include auto-generated API reference here (need to reference it
-      from paragraphs above too).
+      The drm/i915 driver supports all (with the exception of some very early
+      models) integrated GFX chipsets with both Intel display and rendering
+      blocks. This excludes a set of SoC platforms with an SGX rendering unit,
+      those have basic support through the gma500 drm driver.
     </para>
-  </appendix>
+    <sect1>
+      <title>Display Hardware Handling</title>
+      <para>
+        This section covers everything related to the display hardware including
+        the mode setting infrastructure, plane, sprite and cursor handling and
+        display, output probing and related topics.
+      </para>
+      <sect2>
+        <title>Mode Setting Infrastructure</title>
+        <para>
+          The i915 driver is thus far the only DRM driver which doesn't use the
+          common DRM helper code to implement mode setting sequences. Thus it
+          has its own tailor-made infrastructure for executing a display
+          configuration change.
+        </para>
+      </sect2>
+      <sect2>
+        <title>Plane Configuration</title>
+        <para>
+         This section covers plane configuration and composition with the
+         primary plane, sprites, cursors and overlays. This includes the
+         infrastructure to do atomic vsync'ed updates of all this state and
+         also tightly coupled topics like watermark setup and computation,
+         framebuffer compression and panel self refresh.
+        </para>
+      </sect2>
+      <sect2>
+        <title>Output Probing</title>
+        <para>
+         This section covers output probing and related infrastructure like the
+         hotplug interrupt storm detection and mitigation code. Note that the
+         i915 driver still uses most of the common DRM helper code for output
+         probing, so those sections fully apply.
+        </para>
+      </sect2>
+    </sect1>
 
+    <sect1>
+      <title>Memory Management and Command Submission</title>
+      <para>
+       This sections covers all things related to the GEM implementation in the
+       i915 driver.
+      </para>
+    </sect1>
+  </chapter>
+</part>
 </book>