Replace (Lower|Upper)caseString in favor of StringRef's newest methods.
[oota-llvm.git] / docs / LangRef.html
index 3aad800d2afd85de5db03d6f8ecd34db475dac00..0cc88735acbc5ef408dd7d83bb3c20a27fd8d49d 100644 (file)
   <li><a href="#othervalues">Other Values</a>
     <ol>
       <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
-      <li><a href="#metadata">Metadata Nodes and Metadata Strings</a></li>
+      <li><a href="#metadata">Metadata Nodes and Metadata Strings</a>
+        <ol>
+          <li><a href="#tbaa">'<tt>tbaa</tt>' Metadata</a></li>
+          <li><a href="#fpaccuracy">'<tt>fpaccuracy</tt>' Metadata</a></li>
+        </ol>
+      </li>
     </ol>
   </li>
   <li><a href="#intrinsic_globals">Intrinsic Global Variables</a>
           <li><a href="#int_at">'<tt>llvm.adjust.trampoline</tt>' Intrinsic</a></li>
         </ol>
       </li>
-      <li><a href="#int_atomics">Atomic intrinsics</a>
-        <ol>
-          <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
-          <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
-          <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
-          <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
-          <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
-          <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
-          <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
-          <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
-          <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
-          <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
-          <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
-          <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
-          <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
-        </ol>
-      </li>
       <li><a href="#int_memorymarkers">Memory Use Markers</a>
         <ol>
           <li><a href="#int_lifetime_start"><tt>llvm.lifetime.start</tt></a></li>
@@ -647,7 +635,7 @@ define i32 @main() {   <i>; i32()* </i>&nbsp;
       be merged with equivalent globals.  These linkage types are otherwise the
       same as their non-<tt>odr</tt> versions.</dd>
 
-  <dt><tt><b><a name="linkage_external">external</a></b></tt>:</dt>
+  <dt><tt><b><a name="linkage_external">external</a></b></tt></dt>
   <dd>If none of the above identifiers are used, the global is externally
       visible, meaning that it participates in linkage and can be used to
       resolve external symbol references.</dd>
@@ -944,7 +932,7 @@ define i32 @main() {   <i>; i32()* </i>&nbsp;
    alignments must be a power of 2.</p>
 
 <p>If the <tt>unnamed_addr</tt> attribute is given, the address is know to not
-  be significant and two identical functions can be merged</p>.
+   be significant and two identical functions can be merged.</p>
 
 <h5>Syntax:</h5>
 <pre class="doc_code">
@@ -1915,9 +1903,6 @@ in signal handlers).</p>
    possible to have a two dimensional array, using an array as the element type
    of another array.</p>
 
-</div>
-  
-
 <!-- _______________________________________________________________________ -->
 <h4>
   <a name="t_aggregate">Aggregate Types</a>
@@ -2225,6 +2210,8 @@ in signal handlers).</p>
 
 </div>
 
+</div>
+
 <!-- *********************************************************************** -->
 <h2><a name="constants">Constants</a></h2>
 <!-- *********************************************************************** -->
@@ -2932,6 +2919,82 @@ call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
 </pre>
 </div>
 
+<p>More information about specific metadata nodes recognized by the optimizers
+   and code generator is found below.</p>
+
+<h4>
+  <a name="tbaa">'<tt>tbaa</tt>' Metadata</a>
+</h4>
+
+<div>
+
+<p>In LLVM IR, memory does not have types, so LLVM's own type system is not
+   suitable for doing TBAA. Instead, metadata is added to the IR to describe
+   a type system of a higher level language. This can be used to implement
+   typical C/C++ TBAA, but it can also be used to implement custom alias
+   analysis behavior for other languages.</p>
+
+<p>The current metadata format is very simple. TBAA metadata nodes have up to
+   three fields, e.g.:</p>
+
+<div class="doc_code">
+<pre>
+!0 = metadata !{ metadata !"an example type tree" }
+!1 = metadata !{ metadata !"int", metadata !0 }
+!2 = metadata !{ metadata !"float", metadata !0 }
+!3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
+</pre>
+</div>
+
+<p>The first field is an identity field. It can be any value, usually
+   a metadata string, which uniquely identifies the type. The most important
+   name in the tree is the name of the root node. Two trees with
+   different root node names are entirely disjoint, even if they
+   have leaves with common names.</p>
+
+<p>The second field identifies the type's parent node in the tree, or
+   is null or omitted for a root node. A type is considered to alias
+   all of its descendants and all of its ancestors in the tree. Also,
+   a type is considered to alias all types in other trees, so that
+   bitcode produced from multiple front-ends is handled conservatively.</p>
+
+<p>If the third field is present, it's an integer which if equal to 1
+   indicates that the type is "constant" (meaning
+   <tt>pointsToConstantMemory</tt> should return true; see
+   <a href="AliasAnalysis.html#OtherItfs">other useful
+   <tt>AliasAnalysis</tt> methods</a>).</p>
+
+</div>
+
+<h4>
+  <a name="fpaccuracy">'<tt>fpaccuracy</tt>' Metadata</a>
+</h4>
+<div>
+
+<p><tt>fpaccuracy</tt> metadata may be attached to any instruction of floating
+   point type.  It expresses the maximum relative error of the result of
+   that instruction, in ULPs. ULP is defined as follows:</p>
+
+<blockquote><p>
+If x is a real number that lies between two finite consecutive floating-point
+numbers a and b, without being equal to one of them, then ulp(x) = |b - a|,
+otherwise ulp(x) is the distance between the two non-equal finite
+floating-point numbers nearest x. Moreover, ulp(NaN) is NaN.
+</p></blockquote>
+
+<p>The maximum relative error may be any rational number.  The metadata node
+   shall consist of a pair of unsigned integers respectively representing
+   the numerator and denominator.  For example, 2.5 ULP:</p>
+
+<div class="doc_code">
+<pre>
+!0 = metadata !{ i32 5, i32 2 }
+</pre>
+</div>
+
+</div>
+
 </div>
 
 </div>
@@ -6321,8 +6384,6 @@ declare void @llvm.va_end(i8*)
 
 </div>
 
-</div>
-
 <!-- ======================================================================= -->
 <h3>
   <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
@@ -7018,8 +7079,6 @@ LLVM</a>.</p>
 
 </div>
 
-</div>
-
 <!-- _______________________________________________________________________ -->
 <h4>
   <a name="int_exp">'<tt>llvm.exp.*</tt>' Intrinsic</a>
@@ -7084,6 +7143,9 @@ LLVM</a>.</p>
 <p>This function returns the same values as the libm <tt>log</tt> functions
    would, and handles error conditions in the same way.</p>
 
+</div>
+
+<!-- _______________________________________________________________________ -->
 <h4>
   <a name="int_fma">'<tt>llvm.fma.*</tt>' Intrinsic</a>
 </h4>
@@ -7117,6 +7179,8 @@ LLVM</a>.</p>
 
 </div>
 
+</div>
+
 <!-- ======================================================================= -->
 <h3>
   <a name="int_manip">Bit Manipulation Intrinsics</a>
@@ -7810,503 +7874,6 @@ LLVM</a>.</p>
 
 </div>
 
-<!-- ======================================================================= -->
-<h3>
-  <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
-</h3>
-
-<div>
-
-<p>These intrinsic functions expand the "universal IR" of LLVM to represent
-   hardware constructs for atomic operations and memory synchronization.  This
-   provides an interface to the hardware, not an interface to the programmer. It
-   is aimed at a low enough level to allow any programming models or APIs
-   (Application Programming Interfaces) which need atomic behaviors to map
-   cleanly onto it. It is also modeled primarily on hardware behavior. Just as
-   hardware provides a "universal IR" for source languages, it also provides a
-   starting point for developing a "universal" atomic operation and
-   synchronization IR.</p>
-
-<p>These do <em>not</em> form an API such as high-level threading libraries,
-   software transaction memory systems, atomic primitives, and intrinsic
-   functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
-   application libraries.  The hardware interface provided by LLVM should allow
-   a clean implementation of all of these APIs and parallel programming models.
-   No one model or paradigm should be selected above others unless the hardware
-   itself ubiquitously does so.</p>
-
-<!-- _______________________________________________________________________ -->
-<h4>
-  <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
-</h4>
-
-<div>
-<h5>Syntax:</h5>
-<pre>
-  declare void @llvm.memory.barrier(i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;, i1 &lt;device&gt;)
-</pre>
-
-<h5>Overview:</h5>
-<p>The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
-   specific pairs of memory access types.</p>
-
-<h5>Arguments:</h5>
-<p>The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
-   The first four arguments enables a specific barrier as listed below.  The
-   fifth argument specifies that the barrier applies to io or device or uncached
-   memory.</p>
-
-<ul>
-  <li><tt>ll</tt>: load-load barrier</li>
-  <li><tt>ls</tt>: load-store barrier</li>
-  <li><tt>sl</tt>: store-load barrier</li>
-  <li><tt>ss</tt>: store-store barrier</li>
-  <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
-</ul>
-
-<h5>Semantics:</h5>
-<p>This intrinsic causes the system to enforce some ordering constraints upon
-   the loads and stores of the program. This barrier does not
-   indicate <em>when</em> any events will occur, it only enforces
-   an <em>order</em> in which they occur. For any of the specified pairs of load
-   and store operations (f.ex.  load-load, or store-load), all of the first
-   operations preceding the barrier will complete before any of the second
-   operations succeeding the barrier begin. Specifically the semantics for each
-   pairing is as follows:</p>
-
-<ul>
-  <li><tt>ll</tt>: All loads before the barrier must complete before any load
-      after the barrier begins.</li>
-  <li><tt>ls</tt>: All loads before the barrier must complete before any
-      store after the barrier begins.</li>
-  <li><tt>ss</tt>: All stores before the barrier must complete before any
-      store after the barrier begins.</li>
-  <li><tt>sl</tt>: All stores before the barrier must complete before any
-      load after the barrier begins.</li>
-</ul>
-
-<p>These semantics are applied with a logical "and" behavior when more than one
-   is enabled in a single memory barrier intrinsic.</p>
-
-<p>Backends may implement stronger barriers than those requested when they do
-   not support as fine grained a barrier as requested.  Some architectures do
-   not need all types of barriers and on such architectures, these become
-   noops.</p>
-
-<h5>Example:</h5>
-<pre>
-%mallocP  = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
-%ptr      = bitcast i8* %mallocP to i32*
-            store i32 4, %ptr
-
-%result1  = load i32* %ptr      <i>; yields {i32}:result1 = 4</i>
-            call void @llvm.memory.barrier(i1 false, i1 true, i1 false, i1 false, i1 true)
-                                <i>; guarantee the above finishes</i>
-            store i32 8, %ptr   <i>; before this begins</i>
-</pre>
-
-</div>
-
-<!-- _______________________________________________________________________ -->
-<h4>
-  <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
-</h4>
-
-<div>
-
-<h5>Syntax:</h5>
-<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
-   any integer bit width and for different address spaces. Not all targets
-   support all bit widths however.</p>
-
-<pre>
-  declare i8 @llvm.atomic.cmp.swap.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt;)
-  declare i16 @llvm.atomic.cmp.swap.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt;)
-  declare i32 @llvm.atomic.cmp.swap.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt;)
-  declare i64 @llvm.atomic.cmp.swap.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt;)
-</pre>
-
-<h5>Overview:</h5>
-<p>This loads a value in memory and compares it to a given value. If they are
-   equal, it stores a new value into the memory.</p>
-
-<h5>Arguments:</h5>
-<p>The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result
-   as well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
-   same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
-   this integer type. While any bit width integer may be used, targets may only
-   lower representations they support in hardware.</p>
-
-<h5>Semantics:</h5>
-<p>This entire intrinsic must be executed atomically. It first loads the value
-   in memory pointed to by <tt>ptr</tt> and compares it with the
-   value <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the
-   memory. The loaded value is yielded in all cases. This provides the
-   equivalent of an atomic compare-and-swap operation within the SSA
-   framework.</p>
-
-<h5>Examples:</h5>
-<pre>
-%mallocP  = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
-%ptr      = bitcast i8* %mallocP to i32*
-            store i32 4, %ptr
-
-%val1     = add i32 4, 4
-%result1  = call i32 @llvm.atomic.cmp.swap.i32.p0i32(i32* %ptr, i32 4, %val1)
-                                          <i>; yields {i32}:result1 = 4</i>
-%stored1  = icmp eq i32 %result1, 4       <i>; yields {i1}:stored1 = true</i>
-%memval1  = load i32* %ptr                <i>; yields {i32}:memval1 = 8</i>
-
-%val2     = add i32 1, 1
-%result2  = call i32 @llvm.atomic.cmp.swap.i32.p0i32(i32* %ptr, i32 5, %val2)
-                                          <i>; yields {i32}:result2 = 8</i>
-%stored2  = icmp eq i32 %result2, 5       <i>; yields {i1}:stored2 = false</i>
-
-%memval2  = load i32* %ptr                <i>; yields {i32}:memval2 = 8</i>
-</pre>
-
-</div>
-
-<!-- _______________________________________________________________________ -->
-<h4>
-  <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
-</h4>
-
-<div>
-<h5>Syntax:</h5>
-
-<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
-   integer bit width. Not all targets support all bit widths however.</p>
-
-<pre>
-  declare i8 @llvm.atomic.swap.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;val&gt;)
-  declare i16 @llvm.atomic.swap.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;val&gt;)
-  declare i32 @llvm.atomic.swap.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;val&gt;)
-  declare i64 @llvm.atomic.swap.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;val&gt;)
-</pre>
-
-<h5>Overview:</h5>
-<p>This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
-   the value from memory. It then stores the value in <tt>val</tt> in the memory
-   at <tt>ptr</tt>.</p>
-
-<h5>Arguments:</h5>
-<p>The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both
-  the <tt>val</tt> argument and the result must be integers of the same bit
-  width.  The first argument, <tt>ptr</tt>, must be a pointer to a value of this
-  integer type. The targets may only lower integer representations they
-  support.</p>
-
-<h5>Semantics:</h5>
-<p>This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
-   stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
-   equivalent of an atomic swap operation within the SSA framework.</p>
-
-<h5>Examples:</h5>
-<pre>
-%mallocP  = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
-%ptr      = bitcast i8* %mallocP to i32*
-            store i32 4, %ptr
-
-%val1     = add i32 4, 4
-%result1  = call i32 @llvm.atomic.swap.i32.p0i32(i32* %ptr, i32 %val1)
-                                        <i>; yields {i32}:result1 = 4</i>
-%stored1  = icmp eq i32 %result1, 4     <i>; yields {i1}:stored1 = true</i>
-%memval1  = load i32* %ptr              <i>; yields {i32}:memval1 = 8</i>
-
-%val2     = add i32 1, 1
-%result2  = call i32 @llvm.atomic.swap.i32.p0i32(i32* %ptr, i32 %val2)
-                                        <i>; yields {i32}:result2 = 8</i>
-
-%stored2  = icmp eq i32 %result2, 8     <i>; yields {i1}:stored2 = true</i>
-%memval2  = load i32* %ptr              <i>; yields {i32}:memval2 = 2</i>
-</pre>
-
-</div>
-
-<!-- _______________________________________________________________________ -->
-<h4>
-  <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
-</h4>
-
-<div>
-
-<h5>Syntax:</h5>
-<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on
-   any integer bit width. Not all targets support all bit widths however.</p>
-
-<pre>
-  declare i8 @llvm.atomic.load.add.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
-  declare i16 @llvm.atomic.load.add.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
-  declare i32 @llvm.atomic.load.add.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
-  declare i64 @llvm.atomic.load.add.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
-</pre>
-
-<h5>Overview:</h5>
-<p>This intrinsic adds <tt>delta</tt> to the value stored in memory
-   at <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
-
-<h5>Arguments:</h5>
-<p>The intrinsic takes two arguments, the first a pointer to an integer value
-   and the second an integer value. The result is also an integer value. These
-   integer types can have any bit width, but they must all have the same bit
-   width. The targets may only lower integer representations they support.</p>
-
-<h5>Semantics:</h5>
-<p>This intrinsic does a series of operations atomically. It first loads the
-   value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
-   to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.</p>
-
-<h5>Examples:</h5>
-<pre>
-%mallocP  = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
-%ptr      = bitcast i8* %mallocP to i32*
-            store i32 4, %ptr
-%result1  = call i32 @llvm.atomic.load.add.i32.p0i32(i32* %ptr, i32 4)
-                                <i>; yields {i32}:result1 = 4</i>
-%result2  = call i32 @llvm.atomic.load.add.i32.p0i32(i32* %ptr, i32 2)
-                                <i>; yields {i32}:result2 = 8</i>
-%result3  = call i32 @llvm.atomic.load.add.i32.p0i32(i32* %ptr, i32 5)
-                                <i>; yields {i32}:result3 = 10</i>
-%memval1  = load i32* %ptr      <i>; yields {i32}:memval1 = 15</i>
-</pre>
-
-</div>
-
-<!-- _______________________________________________________________________ -->
-<h4>
-  <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
-</h4>
-
-<div>
-
-<h5>Syntax:</h5>
-<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
-   any integer bit width and for different address spaces. Not all targets
-   support all bit widths however.</p>
-
-<pre>
-  declare i8 @llvm.atomic.load.sub.i8.p0i32(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
-  declare i16 @llvm.atomic.load.sub.i16.p0i32(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
-  declare i32 @llvm.atomic.load.sub.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
-  declare i64 @llvm.atomic.load.sub.i64.p0i32(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
-</pre>
-
-<h5>Overview:</h5>
-<p>This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
-   <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
-
-<h5>Arguments:</h5>
-<p>The intrinsic takes two arguments, the first a pointer to an integer value
-   and the second an integer value. The result is also an integer value. These
-   integer types can have any bit width, but they must all have the same bit
-   width. The targets may only lower integer representations they support.</p>
-
-<h5>Semantics:</h5>
-<p>This intrinsic does a series of operations atomically. It first loads the
-   value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
-   result to <tt>ptr</tt>. It yields the original value stored
-   at <tt>ptr</tt>.</p>
-
-<h5>Examples:</h5>
-<pre>
-%mallocP  = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
-%ptr      = bitcast i8* %mallocP to i32*
-            store i32 8, %ptr
-%result1  = call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %ptr, i32 4)
-                                <i>; yields {i32}:result1 = 8</i>
-%result2  = call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %ptr, i32 2)
-                                <i>; yields {i32}:result2 = 4</i>
-%result3  = call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %ptr, i32 5)
-                                <i>; yields {i32}:result3 = 2</i>
-%memval1  = load i32* %ptr      <i>; yields {i32}:memval1 = -3</i>
-</pre>
-
-</div>
-
-<!-- _______________________________________________________________________ -->
-<h4>
-  <a name="int_atomic_load_and">
-    '<tt>llvm.atomic.load.and.*</tt>' Intrinsic
-  </a>
-  <br>
-  <a name="int_atomic_load_nand">
-    '<tt>llvm.atomic.load.nand.*</tt>' Intrinsic
-  </a>
-  <br>
-  <a name="int_atomic_load_or">
-    '<tt>llvm.atomic.load.or.*</tt>' Intrinsic
-  </a>
-  <br>
-  <a name="int_atomic_load_xor">
-    '<tt>llvm.atomic.load.xor.*</tt>' Intrinsic
-  </a>
-</h4>
-
-<div>
-
-<h5>Syntax:</h5>
-<p>These are overloaded intrinsics. You can
-  use <tt>llvm.atomic.load_and</tt>, <tt>llvm.atomic.load_nand</tt>,
-  <tt>llvm.atomic.load_or</tt>, and <tt>llvm.atomic.load_xor</tt> on any integer
-  bit width and for different address spaces. Not all targets support all bit
-  widths however.</p>
-
-<pre>
-  declare i8 @llvm.atomic.load.and.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
-  declare i16 @llvm.atomic.load.and.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
-  declare i32 @llvm.atomic.load.and.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
-  declare i64 @llvm.atomic.load.and.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
-</pre>
-
-<pre>
-  declare i8 @llvm.atomic.load.or.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
-  declare i16 @llvm.atomic.load.or.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
-  declare i32 @llvm.atomic.load.or.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
-  declare i64 @llvm.atomic.load.or.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
-</pre>
-
-<pre>
-  declare i8 @llvm.atomic.load.nand.i8.p0i32(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
-  declare i16 @llvm.atomic.load.nand.i16.p0i32(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
-  declare i32 @llvm.atomic.load.nand.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
-  declare i64 @llvm.atomic.load.nand.i64.p0i32(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
-</pre>
-
-<pre>
-  declare i8 @llvm.atomic.load.xor.i8.p0i32(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
-  declare i16 @llvm.atomic.load.xor.i16.p0i32(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
-  declare i32 @llvm.atomic.load.xor.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
-  declare i64 @llvm.atomic.load.xor.i64.p0i32(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
-</pre>
-
-<h5>Overview:</h5>
-<p>These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
-   the value stored in memory at <tt>ptr</tt>. It yields the original value
-   at <tt>ptr</tt>.</p>
-
-<h5>Arguments:</h5>
-<p>These intrinsics take two arguments, the first a pointer to an integer value
-   and the second an integer value. The result is also an integer value. These
-   integer types can have any bit width, but they must all have the same bit
-   width. The targets may only lower integer representations they support.</p>
-
-<h5>Semantics:</h5>
-<p>These intrinsics does a series of operations atomically. They first load the
-   value stored at <tt>ptr</tt>. They then do the bitwise
-   operation <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the
-   original value stored at <tt>ptr</tt>.</p>
-
-<h5>Examples:</h5>
-<pre>
-%mallocP  = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
-%ptr      = bitcast i8* %mallocP to i32*
-            store i32 0x0F0F, %ptr
-%result0  = call i32 @llvm.atomic.load.nand.i32.p0i32(i32* %ptr, i32 0xFF)
-                                <i>; yields {i32}:result0 = 0x0F0F</i>
-%result1  = call i32 @llvm.atomic.load.and.i32.p0i32(i32* %ptr, i32 0xFF)
-                                <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
-%result2  = call i32 @llvm.atomic.load.or.i32.p0i32(i32* %ptr, i32 0F)
-                                <i>; yields {i32}:result2 = 0xF0</i>
-%result3  = call i32 @llvm.atomic.load.xor.i32.p0i32(i32* %ptr, i32 0F)
-                                <i>; yields {i32}:result3 = FF</i>
-%memval1  = load i32* %ptr      <i>; yields {i32}:memval1 = F0</i>
-</pre>
-
-</div>
-
-<!-- _______________________________________________________________________ -->
-<h4>
-  <a name="int_atomic_load_max">
-    '<tt>llvm.atomic.load.max.*</tt>' Intrinsic
-  </a>
-  <br>
-  <a name="int_atomic_load_min">
-    '<tt>llvm.atomic.load.min.*</tt>' Intrinsic
-  </a>
-  <br>
-  <a name="int_atomic_load_umax">
-    '<tt>llvm.atomic.load.umax.*</tt>' Intrinsic
-  </a>
-  <br>
-  <a name="int_atomic_load_umin">
-    '<tt>llvm.atomic.load.umin.*</tt>' Intrinsic
-  </a>
-</h4>
-
-<div>
-
-<h5>Syntax:</h5>
-<p>These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
-   <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
-   <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
-   address spaces. Not all targets support all bit widths however.</p>
-
-<pre>
-  declare i8 @llvm.atomic.load.max.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
-  declare i16 @llvm.atomic.load.max.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
-  declare i32 @llvm.atomic.load.max.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
-  declare i64 @llvm.atomic.load.max.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
-</pre>
-
-<pre>
-  declare i8 @llvm.atomic.load.min.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
-  declare i16 @llvm.atomic.load.min.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
-  declare i32 @llvm.atomic.load.min.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
-  declare i64 @llvm.atomic.load.min.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
-</pre>
-
-<pre>
-  declare i8 @llvm.atomic.load.umax.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
-  declare i16 @llvm.atomic.load.umax.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
-  declare i32 @llvm.atomic.load.umax.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
-  declare i64 @llvm.atomic.load.umax.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
-</pre>
-
-<pre>
-  declare i8 @llvm.atomic.load.umin.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
-  declare i16 @llvm.atomic.load.umin.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
-  declare i32 @llvm.atomic.load.umin.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
-  declare i64 @llvm.atomic.load.umin.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
-</pre>
-
-<h5>Overview:</h5>
-<p>These intrinsics takes the signed or unsigned minimum or maximum of
-   <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
-   original value at <tt>ptr</tt>.</p>
-
-<h5>Arguments:</h5>
-<p>These intrinsics take two arguments, the first a pointer to an integer value
-   and the second an integer value. The result is also an integer value. These
-   integer types can have any bit width, but they must all have the same bit
-   width. The targets may only lower integer representations they support.</p>
-
-<h5>Semantics:</h5>
-<p>These intrinsics does a series of operations atomically. They first load the
-   value stored at <tt>ptr</tt>. They then do the signed or unsigned min or
-   max <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They
-   yield the original value stored at <tt>ptr</tt>.</p>
-
-<h5>Examples:</h5>
-<pre>
-%mallocP  = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
-%ptr      = bitcast i8* %mallocP to i32*
-            store i32 7, %ptr
-%result0  = call i32 @llvm.atomic.load.min.i32.p0i32(i32* %ptr, i32 -2)
-                                <i>; yields {i32}:result0 = 7</i>
-%result1  = call i32 @llvm.atomic.load.max.i32.p0i32(i32* %ptr, i32 8)
-                                <i>; yields {i32}:result1 = -2</i>
-%result2  = call i32 @llvm.atomic.load.umin.i32.p0i32(i32* %ptr, i32 10)
-                                <i>; yields {i32}:result2 = 8</i>
-%result3  = call i32 @llvm.atomic.load.umax.i32.p0i32(i32* %ptr, i32 30)
-                                <i>; yields {i32}:result3 = 8</i>
-%memval1  = load i32* %ptr      <i>; yields {i32}:memval1 = 30</i>
-</pre>
-
-</div>
-
-</div>
-
 <!-- ======================================================================= -->
 <h3>
   <a name="int_memorymarkers">Memory Use Markers</a>