Fix computation of # operands, add a temporary hack for CopyToReg
[oota-llvm.git] / docs / ProgrammersManual.html
index 5d108824d7e37716848154994812ba8c7636b71c..464618aa37af24cfbb5acb942c15427290c6a729 100644 (file)
@@ -20,6 +20,7 @@
       <li>The <tt>-time-passes</tt> option</li>
       <li>How to use the LLVM Makefile system</li>
       <li>How to write a regression test</li>
+
 --> 
     </ul>
   </li>
@@ -81,6 +82,20 @@ with another <tt>Value</tt></a> </li>
 --> 
     </ul>
   </li>
+
+  <li><a href="#advanced">Advanced Topics</a>
+  <ul>
+  <li><a href="#TypeResolve">LLVM Type Resolution</a>
+  <ul>
+    <li><a href="#BuildRecType">Basic Recursive Type Construction</a></li>
+    <li><a href="#refineAbstractTypeTo">The <tt>refineAbstractTypeTo</tt> method</a></li>
+    <li><a href="#PATypeHolder">The PATypeHolder Class</a></li>
+    <li><a href="#AbstractTypeUser">The AbstractTypeUser Class</a></li>
+  </ul></li>
+
+  <li><a href="#SymbolTable">The <tt>SymbolTable</tt> class </a></li>
+  </ul></li>
+
   <li><a href="#coreclasses">The Core LLVM Class Hierarchy Reference</a>
     <ul>
       <li><a href="#Value">The <tt>Value</tt> class</a>
@@ -112,13 +127,6 @@ with another <tt>Value</tt></a> </li>
       </li>
     </ul>
   </li>
-  <li><a href="#SymbolTable">The <tt>SymbolTable</tt> class </a></li>
-  <li>The <tt>ilist</tt> and <tt>iplist</tt> classes
-    <ul>
-      <li>Creating, inserting, moving and deleting from LLVM lists </li>
-    </ul>
-  </li>
-  <li>Important iterator invalidation semantics to be aware of.</li>
 </ol>
 
 <div class="doc_author">    
@@ -212,7 +220,7 @@ STL</a>.</li>
 <li><a href="http://www.research.att.com/%7Ebs/C++.html">Bjarne Stroustrup's C++
 Page</a></li>
 
-<li><a href="http://www.linux.com.cn/Bruce_Eckel/TICPPv2/Contents.htm">
+<li><a href="http://64.78.49.204/">
 Bruce Eckel's Thinking in C++, 2nd ed. Volume 2 Revision 4.0 (even better, get
 the book).</a></li>
 
@@ -266,7 +274,7 @@ operator, but they don't have some drawbacks (primarily stemming from
 the fact that <tt>dynamic_cast&lt;&gt;</tt> only works on classes that
 have a v-table). Because they are used so often, you must know what they
 do and how they work. All of these templates are defined in the <a
- href="/doxygen/Casting_8h-source.html"><tt>Support/Casting.h</tt></a>
+ href="/doxygen/Casting_8h-source.html"><tt>llvm/Support/Casting.h</tt></a>
 file (note that you very rarely have to include this file directly).</p>
 
 <dl>
@@ -291,8 +299,9 @@ file (note that you very rarely have to include this file directly).</p>
     if (isa&lt;<a href="#Constant">Constant</a>&gt;(V) || isa&lt;<a href="#Argument">Argument</a>&gt;(V) || isa&lt;<a href="#GlobalValue">GlobalValue</a>&gt;(V))
       return true;
 
-  <i>// Otherwise, it must be an instruction...</i>
-  return !L-&gt;contains(cast&lt;<a href="#Instruction">Instruction</a>&gt;(V)-&gt;getParent());
+    <i>// Otherwise, it must be an instruction...</i>
+    return !L-&gt;contains(cast&lt;<a href="#Instruction">Instruction</a>&gt;(V)-&gt;getParent());
+  }
   </pre>
 
   <p>Note that you should <b>not</b> use an <tt>isa&lt;&gt;</tt> test followed
@@ -321,21 +330,12 @@ file (note that you very rarely have to include this file directly).</p>
    call to <tt>isa&lt;&gt;</tt> and a call to <tt>cast&lt;&gt;</tt> into one
    statement, which is very convenient.</p>
 
-   <p> Another common example is:</p>
-
-   <pre>
-     <i>// Loop over all of the phi nodes in a basic block</i>
-     BasicBlock::iterator BBI = BB-&gt;begin();
-     for (; <a href="#PhiNode">PHINode</a> *PN = dyn_cast&lt;<a href="#PHINode">PHINode</a>&gt;(BBI); ++BBI)
-       std::cerr &lt;&lt; *PN;
-   </pre>
-
    <p>Note that the <tt>dyn_cast&lt;&gt;</tt> operator, like C++'s
    <tt>dynamic_cast</tt> or Java's <tt>instanceof</tt> operator, can be abused.
    In particular you should not use big chained <tt>if/then/else</tt> blocks to
    check for lots of different variants of classes.  If you find yourself
    wanting to do this, it is much cleaner and more efficient to use the
-   InstVisitor class to dispatch over the instruction type directly.</p>
+   <tt>InstVisitor</tt> class to dispatch over the instruction type directly.</p>
 
     </dd>
 
@@ -379,7 +379,7 @@ across).</p>
 but you don't want them to always be noisy.  A standard compromise is to comment
 them out, allowing you to enable them if you need them in the future.</p>
 
-<p>The "<tt><a href="/doxygen/Debug_8h-source.html">Support/Debug.h</a></tt>"
+<p>The "<tt><a href="/doxygen/Debug_8h-source.html">llvm/Support/Debug.h</a></tt>"
 file provides a macro named <tt>DEBUG()</tt> that is a much nicer solution to
 this problem.  Basically, you can put arbitrary code into the argument of the
 <tt>DEBUG</tt> macro, and it is only executed if '<tt>opt</tt>' (or any other
@@ -407,7 +407,7 @@ program hasn't been started yet, you can always just run it with
 
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
-  <a name="DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE()</tt> and
+  <a name="DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE</tt> and
   the <tt>-debug-only</tt> option</a>
 </div>
 
@@ -427,7 +427,7 @@ option as follows:</p>
 
 <p>Of course, in practice, you should only set <tt>DEBUG_TYPE</tt> at the top of
 a file, to specify the debug type for the entire module (if you do this before
-you <tt>#include "Support/Debug.h"</tt>, you don't have to insert the ugly
+you <tt>#include "llvm/Support/Debug.h"</tt>, you don't have to insert the ugly
 <tt>#undef</tt>'s).  Also, you should use names more meaningful than "foo" and
 "bar", because there is no system in place to ensure that names do not
 conflict. If two different modules use the same string, they will all be turned
@@ -446,7 +446,7 @@ even if the source lives in multiple files.</p>
 <div class="doc_text">
 
 <p>The "<tt><a
-href="/doxygen/Statistic_8h-source.html">Support/Statistic.h</a></tt>" file
+href="/doxygen/Statistic_8h-source.html">llvm/ADT/Statistic.h</a></tt>" file
 provides a template named <tt>Statistic</tt> that is used as a unified way to
 keep track of what the LLVM compiler is doing and how effective various
 optimizations are.  It is useful to see what optimizations are contributing to
@@ -573,18 +573,18 @@ easy to iterate over the individual instructions that make up
 <tt>BasicBlock</tt>s. Here's a code snippet that prints out each instruction in
 a <tt>BasicBlock</tt>:</p>
 
-  <pre>  // blk is a pointer to a BasicBlock instance<br>  for (BasicBlock::iterator i = blk-&gt;begin(), e = blk-&gt;end(); i != e; ++i)<br>     // the next statement works since operator&lt;&lt;(ostream&amp;,...) <br>     // is overloaded for Instruction&amp;<br>     cerr &lt;&lt; *i &lt;&lt; "\n";<br></pre>
+<pre>
+  // blk is a pointer to a BasicBlock instance
+  for (BasicBlock::iterator i = blk-&gt;begin(), e = blk-&gt;end(); i != e; ++i)
+     // the next statement works since operator&lt;&lt;(ostream&amp;,...)
+     // is overloaded for Instruction&amp;
+     std::cerr &lt;&lt; *i &lt;&lt; "\n";
+</pre>
 
 <p>However, this isn't really the best way to print out the contents of a
 <tt>BasicBlock</tt>!  Since the ostream operators are overloaded for virtually
 anything you'll care about, you could have just invoked the print routine on the
-basic block itself: <tt>cerr &lt;&lt; *blk &lt;&lt; "\n";</tt>.</p>
-
-<p>Note that currently operator&lt;&lt; is implemented for <tt>Value*</tt>, so
-it will print out the contents of the pointer, instead of the pointer value you
-might expect.  This is a deprecated interface that will be removed in the
-future, so it's best not to depend on it.  To print out the pointer value for
-now, you must cast to <tt>void*</tt>.</p>
+basic block itself: <tt>std::cerr &lt;&lt; *blk &lt;&lt; "\n";</tt>.</p>
 
 </div>
 
@@ -903,7 +903,7 @@ and <tt>ReplaceInstWithInst</tt>.</p>
     <p>This function replaces all uses (within a basic block) of a given
     instruction with a value, and then removes the original instruction. The
     following example illustrates the replacement of the result of a particular
-    <tt>AllocaInst</tt> that allocates memory for a single integer with an null
+    <tt>AllocaInst</tt> that allocates memory for a single integer with a null
     pointer to an integer.</p>
 
       <pre>AllocaInst* instToReplace = ...;<br>BasicBlock::iterator ii(instToReplace);<br>ReplaceInstWithValue(instToReplace-&gt;getParent()-&gt;getInstList(), ii,<br>                     Constant::getNullValue(PointerType::get(Type::IntTy)));<br></pre></li>
@@ -933,267 +933,669 @@ ReplaceInstWithValue, ReplaceInstWithInst -->
 
 <!-- *********************************************************************** -->
 <div class="doc_section">
-  <a name="coreclasses">The Core LLVM Class Hierarchy Reference </a>
+  <a name="advanced">Advanced Topics</a>
 </div>
 <!-- *********************************************************************** -->
 
 <div class="doc_text">
-
-<p>The Core LLVM classes are the primary means of representing the program
-being inspected or transformed.  The core LLVM classes are defined in
-header files in the <tt>include/llvm/</tt> directory, and implemented in
-the <tt>lib/VMCore</tt> directory.</p>
-
+<p>
+This section describes some of the advanced or obscure API's that most clients
+do not need to be aware of.  These API's tend manage the inner workings of the
+LLVM system, and only need to be accessed in unusual circumstances.
+</p>
 </div>
 
 <!-- ======================================================================= -->
 <div class="doc_subsection">
-  <a name="Value">The <tt>Value</tt> class</a>
+  <a name="TypeResolve">LLVM Type Resolution</a>
 </div>
 
-<div>
-
-<p><tt>#include "<a href="/doxygen/Value_8h-source.html">llvm/Value.h</a>"</tt>
-<br> 
-doxygen info: <a href="/doxygen/structllvm_1_1Value.html">Value Class</a></p>
-
-<p>The <tt>Value</tt> class is the most important class in the LLVM Source
-base.  It represents a typed value that may be used (among other things) as an
-operand to an instruction.  There are many different types of <tt>Value</tt>s,
-such as <a href="#Constant"><tt>Constant</tt></a>s,<a
-href="#Argument"><tt>Argument</tt></a>s. Even <a
-href="#Instruction"><tt>Instruction</tt></a>s and <a
-href="#Function"><tt>Function</tt></a>s are <tt>Value</tt>s.</p>
-
-<p>A particular <tt>Value</tt> may be used many times in the LLVM representation
-for a program.  For example, an incoming argument to a function (represented
-with an instance of the <a href="#Argument">Argument</a> class) is "used" by
-every instruction in the function that references the argument.  To keep track
-of this relationship, the <tt>Value</tt> class keeps a list of all of the <a
-href="#User"><tt>User</tt></a>s that is using it (the <a
-href="#User"><tt>User</tt></a> class is a base class for all nodes in the LLVM
-graph that can refer to <tt>Value</tt>s).  This use list is how LLVM represents
-def-use information in the program, and is accessible through the <tt>use_</tt>*
-methods, shown below.</p>
-
-<p>Because LLVM is a typed representation, every LLVM <tt>Value</tt> is typed,
-and this <a href="#Type">Type</a> is available through the <tt>getType()</tt>
-method. In addition, all LLVM values can be named.  The "name" of the
-<tt>Value</tt> is a symbolic string printed in the LLVM code:</p>
+<div class="doc_text">
 
-  <pre>   %<b>foo</b> = add int 1, 2<br></pre>
+<p>
+The LLVM type system has a very simple goal: allow clients to compare types for
+structural equality with a simple pointer comparison (aka a shallow compare).
+This goal makes clients much simpler and faster, and is used throughout the LLVM
+system.
+</p>
 
-<p><a name="#nameWarning">The name of this instruction is "foo".</a> <b>NOTE</b>
-that the name of any value may be missing (an empty string), so names should
-<b>ONLY</b> be used for debugging (making the source code easier to read,
-debugging printouts), they should not be used to keep track of values or map
-between them.  For this purpose, use a <tt>std::map</tt> of pointers to the
-<tt>Value</tt> itself instead.</p>
+<p>
+Unfortunately achieving this goal is not a simple matter.  In particular,
+recursive types and late resolution of opaque types makes the situation very
+difficult to handle.  Fortunately, for the most part, our implementation makes
+most clients able to be completely unaware of the nasty internal details.  The
+primary case where clients are exposed to the inner workings of it are when
+building a recursive type.  In addition to this case, the LLVM bytecode reader,
+assembly parser, and linker also have to be aware of the inner workings of this
+system.
+</p>
 
-<p>One important aspect of LLVM is that there is no distinction between an SSA
-variable and the operation that produces it.  Because of this, any reference to
-the value produced by an instruction (or the value available as an incoming
-argument, for example) is represented as a direct pointer to the instance of
-the class that
-represents this value.  Although this may take some getting used to, it
-simplifies the representation and makes it easier to manipulate.</p>
+<p>
+For our purposes below, we need three concepts.  First, an "Opaque Type" is 
+exactly as defined in the <a href="LangRef.html#t_opaque">language 
+reference</a>.  Second an "Abstract Type" is any type which includes an 
+opaque type as part of its type graph (for example "<tt>{ opaque, int }</tt>").
+Third, a concrete type is a type that is not an abstract type (e.g. "<tt>[ int, 
+float }</tt>").
+</p>
 
 </div>
 
-<!-- _______________________________________________________________________ -->
+<!-- ______________________________________________________________________ -->
 <div class="doc_subsubsection">
-  <a name="m_Value">Important Public Members of the <tt>Value</tt> class</a>
+  <a name="BuildRecType">Basic Recursive Type Construction</a>
 </div>
 
 <div class="doc_text">
 
-<ul>
-  <li><tt>Value::use_iterator</tt> - Typedef for iterator over the
-use-list<br>
-    <tt>Value::use_const_iterator</tt> - Typedef for const_iterator over
-the use-list<br>
-    <tt>unsigned use_size()</tt> - Returns the number of users of the
-value.<br>
-    <tt>bool use_empty()</tt> - Returns true if there are no users.<br>
-    <tt>use_iterator use_begin()</tt> - Get an iterator to the start of
-the use-list.<br>
-    <tt>use_iterator use_end()</tt> - Get an iterator to the end of the
-use-list.<br>
-    <tt><a href="#User">User</a> *use_back()</tt> - Returns the last
-element in the list.
-    <p> These methods are the interface to access the def-use
-information in LLVM.  As with all other iterators in LLVM, the naming
-conventions follow the conventions defined by the <a href="#stl">STL</a>.</p>
-  </li>
-  <li><tt><a href="#Type">Type</a> *getType() const</tt>
-    <p>This method returns the Type of the Value.</p>
-  </li>
-  <li><tt>bool hasName() const</tt><br>
-    <tt>std::string getName() const</tt><br>
-    <tt>void setName(const std::string &amp;Name)</tt>
-    <p> This family of methods is used to access and assign a name to a <tt>Value</tt>,
-be aware of the <a href="#nameWarning">precaution above</a>.</p>
-  </li>
-  <li><tt>void replaceAllUsesWith(Value *V)</tt>
+<p>
+Because the most common question is "how do I build a recursive type with LLVM",
+we answer it now and explain it as we go.  Here we include enough to cause this
+to be emitted to an output .ll file:
+</p>
 
-    <p>This method traverses the use list of a <tt>Value</tt> changing all <a
-    href="#User"><tt>User</tt>s</a> of the current value to refer to
-    "<tt>V</tt>" instead.  For example, if you detect that an instruction always
-    produces a constant value (for example through constant folding), you can
-    replace all uses of the instruction with the constant like this:</p>
+<pre>
+   %mylist = type { %mylist*, int }
+</pre>
 
-    <pre>  Inst-&gt;replaceAllUsesWith(ConstVal);<br></pre>
-</ul>
+<p>
+To build this, use the following LLVM APIs:
+</p>
 
-</div>
+<pre>
+  //<i> Create the initial outer struct.</i>
+  <a href="#PATypeHolder">PATypeHolder</a> StructTy = OpaqueType::get();
+  std::vector&lt;const Type*&gt; Elts;
+  Elts.push_back(PointerType::get(StructTy));
+  Elts.push_back(Type::IntTy);
+  StructType *NewSTy = StructType::get(Elts);
 
-<!-- ======================================================================= -->
-<div class="doc_subsection">
-  <a name="User">The <tt>User</tt> class</a>
-</div>
+  //<i> At this point, NewSTy = "{ opaque*, int }". Tell VMCore that</i>
+  //<i> the struct and the opaque type are actually the same.</i>
+  cast&lt;OpaqueType&gt;(StructTy.get())-&gt;<a href="#refineAbstractTypeTo">refineAbstractTypeTo</a>(NewSTy);
 
-<div class="doc_text">
-  
-<p>
-<tt>#include "<a href="/doxygen/User_8h-source.html">llvm/User.h</a>"</tt><br>
-doxygen info: <a href="/doxygen/classllvm_1_1User.html">User Class</a><br>
-Superclass: <a href="#Value"><tt>Value</tt></a></p>
+  // <i>NewSTy is potentially invalidated, but StructTy (a <a href="#PATypeHolder">PATypeHolder</a>) is</i>
+  // <i>kept up-to-date.</i>
+  NewSTy = cast&lt;StructType&gt;(StructTy.get());
 
-<p>The <tt>User</tt> class is the common base class of all LLVM nodes that may
-refer to <a href="#Value"><tt>Value</tt></a>s.  It exposes a list of "Operands"
-that are all of the <a href="#Value"><tt>Value</tt></a>s that the User is
-referring to.  The <tt>User</tt> class itself is a subclass of
-<tt>Value</tt>.</p>
+  // <i>Add a name for the type to the module symbol table (optional).</i>
+  MyModule-&gt;addTypeName("mylist", NewSTy);
+</pre>
 
-<p>The operands of a <tt>User</tt> point directly to the LLVM <a
-href="#Value"><tt>Value</tt></a> that it refers to.  Because LLVM uses Static
-Single Assignment (SSA) form, there can only be one definition referred to,
-allowing this direct connection.  This connection provides the use-def
-information in LLVM.</p>
+<p>
+This code shows the basic approach used to build recursive types: build a
+non-recursive type using 'opaque', then use type unification to close the cycle.
+The type unification step is performed by the <tt><a
+ref="#refineAbstractTypeTo">refineAbstractTypeTo</a></tt> method, which is
+described next.  After that, we describe the <a
+href="#PATypeHolder">PATypeHolder class</a>.
+</p>
 
 </div>
 
-<!-- _______________________________________________________________________ -->
+<!-- ______________________________________________________________________ -->
 <div class="doc_subsubsection">
-  <a name="m_User">Important Public Members of the <tt>User</tt> class</a>
+  <a name="refineAbstractTypeTo">The <tt>refineAbstractTypeTo</tt> method</a>
 </div>
 
 <div class="doc_text">
+<p>
+The <tt>refineAbstractTypeTo</tt> method starts the type unification process.
+While this method is actually a member of the DerivedType class, it is most
+often used on OpaqueType instances.  Type unification is actually a recursive
+process.  After unification, types can become structurally isomorphic to
+existing types, and all duplicates are deleted (to preserve pointer equality).
+</p>
 
-<p>The <tt>User</tt> class exposes the operand list in two ways: through
-an index access interface and through an iterator based interface.</p>
-
-<ul>
-  <li><tt>Value *getOperand(unsigned i)</tt><br>
-    <tt>unsigned getNumOperands()</tt>
-    <p> These two methods expose the operands of the <tt>User</tt> in a
-convenient form for direct access.</p></li>
-
-  <li><tt>User::op_iterator</tt> - Typedef for iterator over the operand
-list<br>
-    <tt>User::op_const_iterator</tt> <tt>use_iterator op_begin()</tt> -
-Get an iterator to the start of the operand list.<br>
-    <tt>use_iterator op_end()</tt> - Get an iterator to the end of the
-operand list.
-    <p> Together, these methods make up the iterator based interface to
-the operands of a <tt>User</tt>.</p></li>
-</ul>
-
-</div>    
-
-<!-- ======================================================================= -->
-<div class="doc_subsection">
-  <a name="Instruction">The <tt>Instruction</tt> class</a>
+<p>
+In the example above, the OpaqueType object is definitely deleted.
+Additionally, if there is an "{ \2*, int}" type already created in the system,
+the pointer and struct type created are <b>also</b> deleted.  Obviously whenever
+a type is deleted, any "Type*" pointers in the program are invalidated.  As
+such, it is safest to avoid having <i>any</i> "Type*" pointers to abstract types
+live across a call to <tt>refineAbstractTypeTo</tt> (note that non-abstract
+types can never move or be deleted).  To deal with this, the <a
+href="#PATypeHolder">PATypeHolder</a> class is used to maintain a stable
+reference to a possibly refined type, and the <a
+href="#AbstractTypeUser">AbstractTypeUser</a> class is used to update more
+complex datastructures.
+</p>
+
+</div>
+
+<!-- ______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="PATypeHolder">The PATypeHolder Class</a>
 </div>
 
 <div class="doc_text">
+<p>
+PATypeHolder is a form of a "smart pointer" for Type objects.  When VMCore
+happily goes about nuking types that become isomorphic to existing types, it
+automatically updates all PATypeHolder objects to point to the new type.  In the
+example above, this allows the code to maintain a pointer to the resultant
+resolved recursive type, even though the Type*'s are potentially invalidated.
+</p>
 
-<p><tt>#include "</tt><tt><a
-href="/doxygen/Instruction_8h-source.html">llvm/Instruction.h</a>"</tt><br>
-doxygen info: <a href="/doxygen/classllvm_1_1Instruction.html">Instruction Class</a><br>
-Superclasses: <a href="#User"><tt>User</tt></a>, <a
-href="#Value"><tt>Value</tt></a></p>
-
-<p>The <tt>Instruction</tt> class is the common base class for all LLVM
-instructions.  It provides only a few methods, but is a very commonly used
-class.  The primary data tracked by the <tt>Instruction</tt> class itself is the
-opcode (instruction type) and the parent <a
-href="#BasicBlock"><tt>BasicBlock</tt></a> the <tt>Instruction</tt> is embedded
-into.  To represent a specific type of instruction, one of many subclasses of
-<tt>Instruction</tt> are used.</p>
-
-<p> Because the <tt>Instruction</tt> class subclasses the <a
-href="#User"><tt>User</tt></a> class, its operands can be accessed in the same
-way as for other <a href="#User"><tt>User</tt></a>s (with the
-<tt>getOperand()</tt>/<tt>getNumOperands()</tt> and
-<tt>op_begin()</tt>/<tt>op_end()</tt> methods).</p> <p> An important file for
-the <tt>Instruction</tt> class is the <tt>llvm/Instruction.def</tt> file. This
-file contains some meta-data about the various different types of instructions
-in LLVM.  It describes the enum values that are used as opcodes (for example
-<tt>Instruction::Add</tt> and <tt>Instruction::SetLE</tt>), as well as the
-concrete sub-classes of <tt>Instruction</tt> that implement the instruction (for
-example <tt><a href="#BinaryOperator">BinaryOperator</a></tt> and <tt><a
-href="#SetCondInst">SetCondInst</a></tt>).  Unfortunately, the use of macros in
-this file confuses doxygen, so these enum values don't show up correctly in the
-<a href="/doxygen/classllvm_1_1Instruction.html">doxygen output</a>.</p>
+<p>
+PATypeHolder is an extremely light-weight object that uses a lazy union-find
+implementation to update pointers.  For example the pointer from a Value to its
+Type is maintained by PATypeHolder objects.
+</p>
 
 </div>
 
-<!-- _______________________________________________________________________ -->
+<!-- ______________________________________________________________________ -->
 <div class="doc_subsubsection">
-  <a name="m_Instruction">Important Public Members of the <tt>Instruction</tt>
-  class</a>
+  <a name="AbstractTypeUser">The AbstractTypeUser Class</a>
 </div>
 
 <div class="doc_text">
 
-<ul>
-  <li><tt><a href="#BasicBlock">BasicBlock</a> *getParent()</tt>
-    <p>Returns the <a href="#BasicBlock"><tt>BasicBlock</tt></a> that
-this  <tt>Instruction</tt> is embedded into.</p></li>
-  <li><tt>bool mayWriteToMemory()</tt>
-    <p>Returns true if the instruction writes to memory, i.e. it is a
-      <tt>call</tt>,<tt>free</tt>,<tt>invoke</tt>, or <tt>store</tt>.</p></li>
-  <li><tt>unsigned getOpcode()</tt>
-    <p>Returns the opcode for the <tt>Instruction</tt>.</p></li>
-  <li><tt><a href="#Instruction">Instruction</a> *clone() const</tt>
-    <p>Returns another instance of the specified instruction, identical
-in all ways to the original except that the instruction has no parent
-(ie it's not embedded into a <a href="#BasicBlock"><tt>BasicBlock</tt></a>),
-and it has no name</p></li>
-</ul>
+<p>
+Some data structures need more to perform more complex updates when types get
+resolved.  The <a href="#SymbolTable">SymbolTable</a> class, for example, needs
+move and potentially merge type planes in its representation when a pointer
+changes.</p>
 
+<p>
+To support this, a class can derive from the AbstractTypeUser class.  This class
+allows it to get callbacks when certain types are resolved.  To register to get
+callbacks for a particular type, the DerivedType::{add/remove}AbstractTypeUser
+methods can be called on a type.  Note that these methods only work for <i>
+abstract</i> types.  Concrete types (those that do not include an opaque objects
+somewhere) can never be refined.
+</p>
 </div>
 
+
 <!-- ======================================================================= -->
 <div class="doc_subsection">
-  <a name="BasicBlock">The <tt>BasicBlock</tt> class</a>
+  <a name="SymbolTable">The <tt>SymbolTable</tt> class</a>
 </div>
 
 <div class="doc_text">
+<p>This class provides a symbol table that the <a
+href="#Function"><tt>Function</tt></a> and <a href="#Module">
+<tt>Module</tt></a> classes use for naming definitions. The symbol table can
+provide a name for any <a href="#Value"><tt>Value</tt></a> or <a
+href="#Type"><tt>Type</tt></a>.  <tt>SymbolTable</tt> is an abstract data
+type. It hides the data it contains and provides access to it through a
+controlled interface.</p>
 
-<p><tt>#include "<a
-href="/doxygen/BasicBlock_8h-source.html">llvm/BasicBlock.h</a>"</tt><br>
-doxygen info: <a href="/doxygen/structllvm_1_1BasicBlock.html">BasicBlock
-Class</a><br>
-Superclass: <a href="#Value"><tt>Value</tt></a></p>
+<p>Note that the symbol table class is should not be directly accessed by most
+clients.  It should only be used when iteration over the symbol table names
+themselves are required, which is very special purpose.  Note that not all LLVM
+<a href="#Value">Value</a>s have names, and those without names (i.e. they have
+an empty name) do not exist in the symbol table.
+</p>
 
-<p>This class represents a single entry multiple exit section of the code,
-commonly known as a basic block by the compiler community.  The
-<tt>BasicBlock</tt> class maintains a list of <a
-href="#Instruction"><tt>Instruction</tt></a>s, which form the body of the block.
-Matching the language definition, the last element of this list of instructions
-is always a terminator instruction (a subclass of the <a
-href="#TerminatorInst"><tt>TerminatorInst</tt></a> class).</p>
+<p>To use the <tt>SymbolTable</tt> well, you need to understand the 
+structure of the information it holds. The class contains two 
+<tt>std::map</tt> objects. The first, <tt>pmap</tt>, is a map of 
+<tt>Type*</tt> to maps of name (<tt>std::string</tt>) to <tt>Value*</tt>. 
+The second, <tt>tmap</tt>, is a map of names to <tt>Type*</tt>. Thus, Values
+are stored in two-dimensions and accessed by <tt>Type</tt> and name. Types,
+however, are stored in a single dimension and accessed only by name.</p>
 
-<p>In addition to tracking the list of instructions that make up the block, the
-<tt>BasicBlock</tt> class also keeps track of the <a
-href="#Function"><tt>Function</tt></a> that it is embedded into.</p>
+<p>The interface of this class provides three basic types of operations:
+<ol>
+  <li><em>Accessors</em>. Accessors provide read-only access to information
+  such as finding a value for a name with the 
+  <a href="#SymbolTable_lookup">lookup</a> method.</li> 
+  <li><em>Mutators</em>. Mutators allow the user to add information to the
+  <tt>SymbolTable</tt> with methods like 
+  <a href="#SymbolTable_insert"><tt>insert</tt></a>.</li>
+  <li><em>Iterators</em>. Iterators allow the user to traverse the content
+  of the symbol table in well defined ways, such as the method
+  <a href="#SymbolTable_type_begin"><tt>type_begin</tt></a>.</li>
+</ol>
 
-<p>Note that <tt>BasicBlock</tt>s themselves are <a
-href="#Value"><tt>Value</tt></a>s, because they are referenced by instructions
-like branches and can go in the switch tables. <tt>BasicBlock</tt>s have type
-<tt>label</tt>.</p>
+<h3>Accessors</h3>
+<dl>
+  <dt><tt>Value* lookup(const Type* Ty, const std::string&amp; name) const</tt>:
+  </dt>
+  <dd>The <tt>lookup</tt> method searches the type plane given by the
+  <tt>Ty</tt> parameter for a <tt>Value</tt> with the provided <tt>name</tt>.
+  If a suitable <tt>Value</tt> is not found, null is returned.</dd>
+
+  <dt><tt>Type* lookupType( const std::string&amp; name) const</tt>:</dt>
+  <dd>The <tt>lookupType</tt> method searches through the types for a
+  <tt>Type</tt> with the provided <tt>name</tt>. If a suitable <tt>Type</tt>
+  is not found, null is returned.</dd>
+
+  <dt><tt>bool hasTypes() const</tt>:</dt>
+  <dd>This function returns true if an entry has been made into the type
+  map.</dd>
+
+  <dt><tt>bool isEmpty() const</tt>:</dt>
+  <dd>This function returns true if both the value and types maps are
+  empty</dd>
+</dl>
+
+<h3>Mutators</h3>
+<dl>
+  <dt><tt>void insert(Value *Val)</tt>:</dt>
+  <dd>This method adds the provided value to the symbol table.  The Value must
+  have both a name and a type which are extracted and used to place the value
+  in the correct type plane under the value's name.</dd>
+
+  <dt><tt>void insert(const std::string&amp; Name, Value *Val)</tt>:</dt>
+  <dd> Inserts a constant or type into the symbol table with the specified
+  name. There can be a many to one mapping between names and constants
+  or types.</dd>
+
+  <dt><tt>void insert(const std::string&amp; Name, Type *Typ)</tt>:</dt>
+  <dd> Inserts a type into the symbol table with the specified name. There
+  can be a many-to-one mapping between names and types. This method
+  allows a type with an existing entry in the symbol table to get
+  a new name.</dd>
+
+  <dt><tt>void remove(Value* Val)</tt>:</dt>
+ <dd> This method removes a named value from the symbol table. The
+  type and name of the Value are extracted from \p N and used to
+  lookup the Value in the correct type plane. If the Value is
+  not in the symbol table, this method silently ignores the
+  request.</dd>
+
+  <dt><tt>void remove(Type* Typ)</tt>:</dt>
+  <dd> This method removes a named type from the symbol table. The
+  name of the type is extracted from \P T and used to look up
+  the Type in the type map. If the Type is not in the symbol
+  table, this method silently ignores the request.</dd>
+
+  <dt><tt>Value* remove(const std::string&amp; Name, Value *Val)</tt>:</dt>
+  <dd> Remove a constant or type with the specified name from the 
+  symbol table.</dd>
+
+  <dt><tt>Type* remove(const std::string&amp; Name, Type* T)</tt>:</dt>
+  <dd> Remove a type with the specified name from the symbol table.
+  Returns the removed Type.</dd>
+
+  <dt><tt>Value *value_remove(const value_iterator&amp; It)</tt>:</dt>
+  <dd> Removes a specific value from the symbol table. 
+  Returns the removed value.</dd>
+
+  <dt><tt>bool strip()</tt>:</dt>
+  <dd> This method will strip the symbol table of its names leaving
+  the type and values. </dd>
+
+  <dt><tt>void clear()</tt>:</dt>
+  <dd>Empty the symbol table completely.</dd>
+</dl>
+
+<h3>Iteration</h3>
+<p>The following functions describe three types of iterators you can obtain
+the beginning or end of the sequence for both const and non-const. It is
+important to keep track of the different kinds of iterators. There are
+three idioms worth pointing out:</p>
+<table>
+  <tr><th>Units</th><th>Iterator</th><th>Idiom</th></tr>
+  <tr>
+    <td align="left">Planes Of name/Value maps</td><td>PI</td>
+    <td align="left"><pre><tt>
+for (SymbolTable::plane_const_iterator PI = ST.plane_begin(),
+     PE = ST.plane_end(); PI != PE; ++PI ) {
+  PI-&gt;first // This is the Type* of the plane
+  PI-&gt;second // This is the SymbolTable::ValueMap of name/Value pairs
+    </tt></pre></td>
+  </tr>
+  <tr>
+    <td align="left">All name/Type Pairs</td><td>TI</td>
+    <td align="left"><pre><tt>
+for (SymbolTable::type_const_iterator TI = ST.type_begin(),
+     TE = ST.type_end(); TI != TE; ++TI )
+  TI-&gt;first  // This is the name of the type
+  TI-&gt;second // This is the Type* value associated with the name
+    </tt></pre></td>
+  </tr>
+  <tr>
+    <td align="left">name/Value pairs in a plane</td><td>VI</td>
+    <td align="left"><pre><tt>
+for (SymbolTable::value_const_iterator VI = ST.value_begin(SomeType),
+     VE = ST.value_end(SomeType); VI != VE; ++VI )
+  VI-&gt;first  // This is the name of the Value
+  VI-&gt;second // This is the Value* value associated with the name
+    </tt></pre></td>
+  </tr>
+</table>
+
+<p>Using the recommended iterator names and idioms will help you avoid
+making mistakes. Of particular note, make sure that whenever you use
+value_begin(SomeType) that you always compare the resulting iterator
+with value_end(SomeType) not value_end(SomeOtherType) or else you 
+will loop infinitely.</p>
+
+<dl>
+
+  <dt><tt>plane_iterator plane_begin()</tt>:</dt>
+  <dd>Get an iterator that starts at the beginning of the type planes.
+  The iterator will iterate over the Type/ValueMap pairs in the
+  type planes. </dd>
+
+  <dt><tt>plane_const_iterator plane_begin() const</tt>:</dt>
+  <dd>Get a const_iterator that starts at the beginning of the type 
+  planes.  The iterator will iterate over the Type/ValueMap pairs 
+  in the type planes. </dd>
+
+  <dt><tt>plane_iterator plane_end()</tt>:</dt>
+  <dd>Get an iterator at the end of the type planes. This serves as
+  the marker for end of iteration over the type planes.</dd>
+
+  <dt><tt>plane_const_iterator plane_end() const</tt>:</dt>
+  <dd>Get a const_iterator at the end of the type planes. This serves as
+  the marker for end of iteration over the type planes.</dd>
+
+  <dt><tt>value_iterator value_begin(const Type *Typ)</tt>:</dt>
+  <dd>Get an iterator that starts at the beginning of a type plane.
+  The iterator will iterate over the name/value pairs in the type plane.
+  Note: The type plane must already exist before using this.</dd>
+
+  <dt><tt>value_const_iterator value_begin(const Type *Typ) const</tt>:</dt>
+  <dd>Get a const_iterator that starts at the beginning of a type plane.
+  The iterator will iterate over the name/value pairs in the type plane.
+  Note: The type plane must already exist before using this.</dd>
+
+  <dt><tt>value_iterator value_end(const Type *Typ)</tt>:</dt>
+  <dd>Get an iterator to the end of a type plane. This serves as the marker
+  for end of iteration of the type plane.
+  Note: The type plane must already exist before using this.</dd>
+
+  <dt><tt>value_const_iterator value_end(const Type *Typ) const</tt>:</dt>
+  <dd>Get a const_iterator to the end of a type plane. This serves as the
+  marker for end of iteration of the type plane.
+  Note: the type plane must already exist before using this.</dd>
+
+  <dt><tt>type_iterator type_begin()</tt>:</dt>
+  <dd>Get an iterator to the start of the name/Type map.</dd>
+
+  <dt><tt>type_const_iterator type_begin() cons</tt>:</dt>
+  <dd> Get a const_iterator to the start of the name/Type map.</dd>
+
+  <dt><tt>type_iterator type_end()</tt>:</dt>
+  <dd>Get an iterator to the end of the name/Type map. This serves as the
+  marker for end of iteration of the types.</dd>
+
+  <dt><tt>type_const_iterator type_end() const</tt>:</dt>
+  <dd>Get a const-iterator to the end of the name/Type map. This serves 
+  as the marker for end of iteration of the types.</dd>
+
+  <dt><tt>plane_const_iterator find(const Type* Typ ) const</tt>:</dt>
+  <dd>This method returns a plane_const_iterator for iteration over
+  the type planes starting at a specific plane, given by \p Ty.</dd>
+
+  <dt><tt>plane_iterator find( const Type* Typ </tt>:</dt>
+  <dd>This method returns a plane_iterator for iteration over the
+  type planes starting at a specific plane, given by \p Ty.</dd>
+
+</dl>
+</div>
+
+
+
+<!-- *********************************************************************** -->
+<div class="doc_section">
+  <a name="coreclasses">The Core LLVM Class Hierarchy Reference </a>
+</div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>The Core LLVM classes are the primary means of representing the program
+being inspected or transformed.  The core LLVM classes are defined in
+header files in the <tt>include/llvm/</tt> directory, and implemented in
+the <tt>lib/VMCore</tt> directory.</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="Value">The <tt>Value</tt> class</a>
+</div>
+
+<div>
+
+<p><tt>#include "<a href="/doxygen/Value_8h-source.html">llvm/Value.h</a>"</tt>
+<br> 
+doxygen info: <a href="/doxygen/structllvm_1_1Value.html">Value Class</a></p>
+
+<p>The <tt>Value</tt> class is the most important class in the LLVM Source
+base.  It represents a typed value that may be used (among other things) as an
+operand to an instruction.  There are many different types of <tt>Value</tt>s,
+such as <a href="#Constant"><tt>Constant</tt></a>s,<a
+href="#Argument"><tt>Argument</tt></a>s. Even <a
+href="#Instruction"><tt>Instruction</tt></a>s and <a
+href="#Function"><tt>Function</tt></a>s are <tt>Value</tt>s.</p>
+
+<p>A particular <tt>Value</tt> may be used many times in the LLVM representation
+for a program.  For example, an incoming argument to a function (represented
+with an instance of the <a href="#Argument">Argument</a> class) is "used" by
+every instruction in the function that references the argument.  To keep track
+of this relationship, the <tt>Value</tt> class keeps a list of all of the <a
+href="#User"><tt>User</tt></a>s that is using it (the <a
+href="#User"><tt>User</tt></a> class is a base class for all nodes in the LLVM
+graph that can refer to <tt>Value</tt>s).  This use list is how LLVM represents
+def-use information in the program, and is accessible through the <tt>use_</tt>*
+methods, shown below.</p>
+
+<p>Because LLVM is a typed representation, every LLVM <tt>Value</tt> is typed,
+and this <a href="#Type">Type</a> is available through the <tt>getType()</tt>
+method. In addition, all LLVM values can be named.  The "name" of the
+<tt>Value</tt> is a symbolic string printed in the LLVM code:</p>
+
+  <pre>   %<b>foo</b> = add int 1, 2<br></pre>
+
+<p><a name="#nameWarning">The name of this instruction is "foo".</a> <b>NOTE</b>
+that the name of any value may be missing (an empty string), so names should
+<b>ONLY</b> be used for debugging (making the source code easier to read,
+debugging printouts), they should not be used to keep track of values or map
+between them.  For this purpose, use a <tt>std::map</tt> of pointers to the
+<tt>Value</tt> itself instead.</p>
+
+<p>One important aspect of LLVM is that there is no distinction between an SSA
+variable and the operation that produces it.  Because of this, any reference to
+the value produced by an instruction (or the value available as an incoming
+argument, for example) is represented as a direct pointer to the instance of
+the class that
+represents this value.  Although this may take some getting used to, it
+simplifies the representation and makes it easier to manipulate.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="m_Value">Important Public Members of the <tt>Value</tt> class</a>
+</div>
+
+<div class="doc_text">
+
+<ul>
+  <li><tt>Value::use_iterator</tt> - Typedef for iterator over the
+use-list<br>
+    <tt>Value::use_const_iterator</tt> - Typedef for const_iterator over
+the use-list<br>
+    <tt>unsigned use_size()</tt> - Returns the number of users of the
+value.<br>
+    <tt>bool use_empty()</tt> - Returns true if there are no users.<br>
+    <tt>use_iterator use_begin()</tt> - Get an iterator to the start of
+the use-list.<br>
+    <tt>use_iterator use_end()</tt> - Get an iterator to the end of the
+use-list.<br>
+    <tt><a href="#User">User</a> *use_back()</tt> - Returns the last
+element in the list.
+    <p> These methods are the interface to access the def-use
+information in LLVM.  As with all other iterators in LLVM, the naming
+conventions follow the conventions defined by the <a href="#stl">STL</a>.</p>
+  </li>
+  <li><tt><a href="#Type">Type</a> *getType() const</tt>
+    <p>This method returns the Type of the Value.</p>
+  </li>
+  <li><tt>bool hasName() const</tt><br>
+    <tt>std::string getName() const</tt><br>
+    <tt>void setName(const std::string &amp;Name)</tt>
+    <p> This family of methods is used to access and assign a name to a <tt>Value</tt>,
+be aware of the <a href="#nameWarning">precaution above</a>.</p>
+  </li>
+  <li><tt>void replaceAllUsesWith(Value *V)</tt>
+
+    <p>This method traverses the use list of a <tt>Value</tt> changing all <a
+    href="#User"><tt>User</tt>s</a> of the current value to refer to
+    "<tt>V</tt>" instead.  For example, if you detect that an instruction always
+    produces a constant value (for example through constant folding), you can
+    replace all uses of the instruction with the constant like this:</p>
+
+    <pre>  Inst-&gt;replaceAllUsesWith(ConstVal);<br></pre>
+</ul>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="User">The <tt>User</tt> class</a>
+</div>
+
+<div class="doc_text">
+  
+<p>
+<tt>#include "<a href="/doxygen/User_8h-source.html">llvm/User.h</a>"</tt><br>
+doxygen info: <a href="/doxygen/classllvm_1_1User.html">User Class</a><br>
+Superclass: <a href="#Value"><tt>Value</tt></a></p>
+
+<p>The <tt>User</tt> class is the common base class of all LLVM nodes that may
+refer to <a href="#Value"><tt>Value</tt></a>s.  It exposes a list of "Operands"
+that are all of the <a href="#Value"><tt>Value</tt></a>s that the User is
+referring to.  The <tt>User</tt> class itself is a subclass of
+<tt>Value</tt>.</p>
+
+<p>The operands of a <tt>User</tt> point directly to the LLVM <a
+href="#Value"><tt>Value</tt></a> that it refers to.  Because LLVM uses Static
+Single Assignment (SSA) form, there can only be one definition referred to,
+allowing this direct connection.  This connection provides the use-def
+information in LLVM.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="m_User">Important Public Members of the <tt>User</tt> class</a>
+</div>
+
+<div class="doc_text">
+
+<p>The <tt>User</tt> class exposes the operand list in two ways: through
+an index access interface and through an iterator based interface.</p>
+
+<ul>
+  <li><tt>Value *getOperand(unsigned i)</tt><br>
+    <tt>unsigned getNumOperands()</tt>
+    <p> These two methods expose the operands of the <tt>User</tt> in a
+convenient form for direct access.</p></li>
+
+  <li><tt>User::op_iterator</tt> - Typedef for iterator over the operand
+list<br>
+    <tt>op_iterator op_begin()</tt> - Get an iterator to the start of 
+the operand list.<br>
+    <tt>op_iterator op_end()</tt> - Get an iterator to the end of the
+operand list.
+    <p> Together, these methods make up the iterator based interface to
+the operands of a <tt>User</tt>.</p></li>
+</ul>
+
+</div>    
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="Instruction">The <tt>Instruction</tt> class</a>
+</div>
+
+<div class="doc_text">
+
+<p><tt>#include "</tt><tt><a
+href="/doxygen/Instruction_8h-source.html">llvm/Instruction.h</a>"</tt><br>
+doxygen info: <a href="/doxygen/classllvm_1_1Instruction.html">Instruction Class</a><br>
+Superclasses: <a href="#User"><tt>User</tt></a>, <a
+href="#Value"><tt>Value</tt></a></p>
+
+<p>The <tt>Instruction</tt> class is the common base class for all LLVM
+instructions.  It provides only a few methods, but is a very commonly used
+class.  The primary data tracked by the <tt>Instruction</tt> class itself is the
+opcode (instruction type) and the parent <a
+href="#BasicBlock"><tt>BasicBlock</tt></a> the <tt>Instruction</tt> is embedded
+into.  To represent a specific type of instruction, one of many subclasses of
+<tt>Instruction</tt> are used.</p>
+
+<p> Because the <tt>Instruction</tt> class subclasses the <a
+href="#User"><tt>User</tt></a> class, its operands can be accessed in the same
+way as for other <a href="#User"><tt>User</tt></a>s (with the
+<tt>getOperand()</tt>/<tt>getNumOperands()</tt> and
+<tt>op_begin()</tt>/<tt>op_end()</tt> methods).</p> <p> An important file for
+the <tt>Instruction</tt> class is the <tt>llvm/Instruction.def</tt> file. This
+file contains some meta-data about the various different types of instructions
+in LLVM.  It describes the enum values that are used as opcodes (for example
+<tt>Instruction::Add</tt> and <tt>Instruction::SetLE</tt>), as well as the
+concrete sub-classes of <tt>Instruction</tt> that implement the instruction (for
+example <tt><a href="#BinaryOperator">BinaryOperator</a></tt> and <tt><a
+href="#SetCondInst">SetCondInst</a></tt>).  Unfortunately, the use of macros in
+this file confuses doxygen, so these enum values don't show up correctly in the
+<a href="/doxygen/classllvm_1_1Instruction.html">doxygen output</a>.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="m_Instruction">Important Public Members of the <tt>Instruction</tt>
+  class</a>
+</div>
+
+<div class="doc_text">
+
+<ul>
+  <li><tt><a href="#BasicBlock">BasicBlock</a> *getParent()</tt>
+    <p>Returns the <a href="#BasicBlock"><tt>BasicBlock</tt></a> that
+this  <tt>Instruction</tt> is embedded into.</p></li>
+  <li><tt>bool mayWriteToMemory()</tt>
+    <p>Returns true if the instruction writes to memory, i.e. it is a
+      <tt>call</tt>,<tt>free</tt>,<tt>invoke</tt>, or <tt>store</tt>.</p></li>
+  <li><tt>unsigned getOpcode()</tt>
+    <p>Returns the opcode for the <tt>Instruction</tt>.</p></li>
+  <li><tt><a href="#Instruction">Instruction</a> *clone() const</tt>
+    <p>Returns another instance of the specified instruction, identical
+in all ways to the original except that the instruction has no parent
+(ie it's not embedded into a <a href="#BasicBlock"><tt>BasicBlock</tt></a>),
+and it has no name</p></li>
+</ul>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="BasicBlock">The <tt>BasicBlock</tt> class</a>
+</div>
+
+<div class="doc_text">
+
+<p><tt>#include "<a
+href="/doxygen/BasicBlock_8h-source.html">llvm/BasicBlock.h</a>"</tt><br>
+doxygen info: <a href="/doxygen/structllvm_1_1BasicBlock.html">BasicBlock
+Class</a><br>
+Superclass: <a href="#Value"><tt>Value</tt></a></p>
+
+<p>This class represents a single entry multiple exit section of the code,
+commonly known as a basic block by the compiler community.  The
+<tt>BasicBlock</tt> class maintains a list of <a
+href="#Instruction"><tt>Instruction</tt></a>s, which form the body of the block.
+Matching the language definition, the last element of this list of instructions
+is always a terminator instruction (a subclass of the <a
+href="#TerminatorInst"><tt>TerminatorInst</tt></a> class).</p>
+
+<p>In addition to tracking the list of instructions that make up the block, the
+<tt>BasicBlock</tt> class also keeps track of the <a
+href="#Function"><tt>Function</tt></a> that it is embedded into.</p>
+
+<p>Note that <tt>BasicBlock</tt>s themselves are <a
+href="#Value"><tt>Value</tt></a>s, because they are referenced by instructions
+like branches and can go in the switch tables. <tt>BasicBlock</tt>s have type
+<tt>label</tt>.</p>
 
 </div>
 
@@ -1221,7 +1623,7 @@ manually inserted into the <a href="#Function"><tt>Function</tt></a>.</p></li>
 <li><tt>BasicBlock::iterator</tt> - Typedef for instruction list iterator<br>
 <tt>BasicBlock::const_iterator</tt> - Typedef for const_iterator.<br>
 <tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
-<tt>size()</tt>, <tt>empty()</tt>, <tt>rbegin()</tt>, <tt>rend()</tt> -
+<tt>size()</tt>, <tt>empty()</tt>
 STL-style functions for accessing the instruction list.
 
 <p>These methods and typedefs are forwarding functions that have the same
@@ -1409,8 +1811,8 @@ is its address (after linking) which is guaranteed to be constant.</p>
   <li><tt>Function::iterator</tt> - Typedef for basic block list iterator<br>
     <tt>Function::const_iterator</tt> - Typedef for const_iterator.<br>
 
-    <tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
-    <tt>size()</tt>, <tt>empty()</tt>, <tt>rbegin()</tt>, <tt>rend()</tt>
+    <tt>begin()</tt>, <tt>end()</tt>
+    <tt>size()</tt>, <tt>empty()</tt>
 
     <p>These are forwarding methods that make it easy to access the contents of
     a <tt>Function</tt> object's <a href="#BasicBlock"><tt>BasicBlock</tt></a>
@@ -1422,12 +1824,12 @@ is its address (after linking) which is guaranteed to be constant.</p>
     is necessary to use when you need to update the list or perform a complex
     action that doesn't have a forwarding method.</p></li>
 
-  <li><tt>Function::aiterator</tt> - Typedef for the argument list
+  <li><tt>Function::arg_iterator</tt> - Typedef for the argument list
 iterator<br>
-    <tt>Function::const_aiterator</tt> - Typedef for const_iterator.<br>
+    <tt>Function::const_arg_iterator</tt> - Typedef for const_iterator.<br>
 
-    <tt>abegin()</tt>, <tt>aend()</tt>, <tt>afront()</tt>, <tt>aback()</tt>,
-    <tt>asize()</tt>, <tt>aempty()</tt>, <tt>arbegin()</tt>, <tt>arend()</tt>
+    <tt>arg_begin()</tt>, <tt>arg_end()</tt>
+    <tt>arg_size()</tt>, <tt>arg_empty()</tt>
 
     <p>These are forwarding methods that make it easy to access the contents of
     a <tt>Function</tt> object's <a href="#Argument"><tt>Argument</tt></a>
@@ -1571,8 +1973,8 @@ provide a name for it (probably based on the name of the translation unit).</p>
   <li><tt>Module::iterator</tt> - Typedef for function list iterator<br>
     <tt>Module::const_iterator</tt> - Typedef for const_iterator.<br>
 
-    <tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
-    <tt>size()</tt>, <tt>empty()</tt>, <tt>rbegin()</tt>, <tt>rend()</tt>
+    <tt>begin()</tt>, <tt>end()</tt>
+    <tt>size()</tt>, <tt>empty()</tt>
 
     <p>These are forwarding methods that make it easy to access the contents of
     a <tt>Module</tt> object's <a href="#Function"><tt>Function</tt></a>
@@ -1590,12 +1992,12 @@ provide a name for it (probably based on the name of the translation unit).</p>
 <hr>
 
 <ul>
-  <li><tt>Module::giterator</tt> - Typedef for global variable list iterator<br>
+  <li><tt>Module::global_iterator</tt> - Typedef for global variable list iterator<br>
 
-    <tt>Module::const_giterator</tt> - Typedef for const_iterator.<br>
+    <tt>Module::const_global_iterator</tt> - Typedef for const_iterator.<br>
 
-    <tt>gbegin()</tt>, <tt>gend()</tt>, <tt>gfront()</tt>, <tt>gback()</tt>,
-    <tt>gsize()</tt>, <tt>gempty()</tt>, <tt>grbegin()</tt>, <tt>grend()</tt>
+    <tt>global_begin()</tt>, <tt>global_end()</tt>
+    <tt>global_size()</tt>, <tt>global_empty()</tt>
 
     <p> These are forwarding methods that make it easy to access the contents of
     a <tt>Module</tt> object's <a
@@ -1709,13 +2111,13 @@ ConstantArray etc for representing the various types of Constants.</p>
   <li>ConstantArray : This represents a constant array.
     <ul>
       <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>: Returns 
-      a Vecotr of component constants that makeup this array. </li>
+      a vector of component constants that makeup this array. </li>
     </ul>
   </li>
   <li>ConstantStruct : This represents a constant struct.
     <ul>
       <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>: Returns 
-      a Vector of component constants that makeup this array. </li>
+      a vector of component constants that makeup this array. </li>
     </ul>
   </li>
   <li>GlobalValue : This represents either a global variable or a function. In 
@@ -1771,42 +2173,43 @@ types.</p>
   <li><tt>isLosslesslyConvertableTo (const Type *Ty) const</tt>: Return true if
   this type can be converted to 'Ty' without any reinterpretation of bits. For
   example, uint to int or one pointer type to another.</li>
+</ul>
+</div>
 
-<br>
-    <p>Derived Types</p>
-
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="m_Value">Important Derived Types</a>
+</div>
+<div class="doc_text">
+<ul>
+  <li>SequentialType : This is subclassed by ArrayType and PointerType
     <ul>
-      <li>SequentialType : This is subclassed by ArrayType and PointerType
-        <ul>
-       <li><tt>const Type * getElementType() const</tt>: Returns the type of
-each of the elements in the sequential type. </li>
-        </ul>
-      </li>
-      <li>ArrayType : This is a subclass of SequentialType and defines
-interface for array types.
-        <ul>
-       <li><tt>unsigned getNumElements() const</tt>: Returns the number of
-elements in the array. </li>
-        </ul>
-      </li>
-      <li>PointerType : Subclass of SequentialType for  pointer types. </li>
-      <li>StructType : subclass of DerivedTypes for struct types </li>
-      <li>FunctionType : subclass of DerivedTypes for function types.
-        <ul>
-         <li><tt>bool isVarArg() const</tt>: Returns true if its a vararg
-          function</li>
-          <li><tt> const Type * getReturnType() const</tt>: Returns the
-          return type of the function.</li>
-          <li><tt>const Type * getParamType (unsigned i)</tt>: Returns
-          the type of the ith parameter.</li>
-          <li><tt> const unsigned getNumParams() const</tt>: Returns the
-          number of formal parameters.</li>
-        </ul>
-      </li>
+      <li><tt>const Type * getElementType() const</tt>: Returns the type of each
+      of the elements in the sequential type. </li>
+    </ul>
+  </li>
+  <li>ArrayType : This is a subclass of SequentialType and defines interface for
+  array types.
+    <ul>
+      <li><tt>unsigned getNumElements() const</tt>: Returns the number of 
+      elements in the array. </li>
+    </ul>
+  </li>
+  <li>PointerType : Subclass of SequentialType for  pointer types. </li>
+  <li>StructType : subclass of DerivedTypes for struct types </li>
+  <li>FunctionType : subclass of DerivedTypes for function types.
+    <ul>
+      <li><tt>bool isVarArg() const</tt>: Returns true if its a vararg
+      function</li>
+      <li><tt> const Type * getReturnType() const</tt>: Returns the
+      return type of the function.</li>
+      <li><tt>const Type * getParamType (unsigned i)</tt>: Returns
+      the type of the ith parameter.</li>
+      <li><tt> const unsigned getNumParams() const</tt>: Returns the
+      number of formal parameters.</li>
     </ul>
   </li>
 </ul>
-
 </div>
 
 <!-- ======================================================================= -->
@@ -1817,235 +2220,11 @@ elements in the array. </li>
 <div class="doc_text">
 
 <p>This subclass of Value defines the interface for incoming formal
-arguments to a function. A Function maitanis a list of its formal
+arguments to a function. A Function maintains a list of its formal
 arguments. An argument has a pointer to the parent Function.</p>
 
 </div>
 
-<!-- ======================================================================= -->
-<div class="doc_subsection">
-  <a name="SymbolTable">The <tt>SymbolTable</tt> class</a>
-</div>
-<div class="doc_text">
-<p>This class provides a symbol table that the
-<a href="#Function"><tt>Function</tt></a> and <a href="#Module">
-<tt>Module</tt></a> classes use for naming definitions. The symbol table can 
-provide a name for any <a href="#Value"><tt>Value</tt></a> or 
-<a href="#Type"><tt>Type</tt></a>.  <tt>SymbolTable</tt> is an abstract data 
-type. It hides the data it contains and provides access to it through a 
-controlled interface.</p>
-
-<p>To use the <tt>SymbolTable</tt> well, you need to understand the 
-structure of the information it holds. The class contains two 
-<tt>std::map</tt> objects. The first, <tt>pmap</tt>, is a map of 
-<tt>Type*</tt> to maps of name (<tt>std::string</tt>) to <tt>Value*</tt>. 
-The second, <tt>tmap</tt>, is a map of names to <tt>Type*</tt>. Thus, Values
-are stored in two-dimensions and accessed by <tt>Type</tt> and name. Types,
-however, are stored in a single dimension and accessed only by name.</p>
-
-<p>The interface of this class provides three basic types of operations:
-<ol>
-  <li><em>Accessors</em>. Accessors provide read-only access to information
-  such as finding a value for a name with the 
-  <a href="#SymbolTable_lookup">lookup</a> method.</li> 
-  <li><em>Mutators</em>. Mutators allow the user to add information to the
-  <tt>SymbolTable</tt> with methods like 
-  <a href="#SymbolTable_insert"><tt>insert</tt></a>.</li>
-  <li><em>Iterators</em>. Iterators allow the user to traverse the content
-  of the symbol table in well defined ways, such as the method
-  <a href="#SymbolTable_type_begin"><tt>type_begin</tt></a>.</li>
-</ol>
-
-<h3>Accessors</h3>
-<dl>
-  <dt><tt>Value* lookup(const Type* Ty, const std::string&amp; name) const</tt>:
-  </dt>
-  <dd>The <tt>lookup</tt> method searches the type plane given by the
-  <tt>Ty</tt> parameter for a <tt>Value</tt> with the provided <tt>name</tt>.
-  If a suitable <tt>Value</tt> is not found, null is returned.</dd>
-
-  <dt><tt>Type* lookupType( const std::string&amp; name) const</tt>:</dt>
-  <dd>The <tt>lookupType</tt> method searches through the types for a
-  <tt>Type</tt> with the provided <tt>name</tt>. If a suitable <tt>Type</tt>
-  is not found, null is returned.</dd>
-
-  <dt><tt>bool hasTypes() const</tt>:</dt>
-  <dd>This function returns true if an entry has been made into the type
-  map.</dd>
-
-  <dt><tt>bool isEmpty() const</tt>:</dt>
-  <dd>This function returns true if both the value and types maps are
-  empty</dd>
-
-  <dt><tt>std::string get_name(const Value*) const</tt>:</dt>
-  <dd>This function returns the name of the Value provided or the empty
-  string if the Value is not in the symbol table.</dd> 
-
-  <dt><tt>std::string get_name(const Type*) const</tt>:</dt>
-  <dd>This function returns the name of the Type provided or the empty
-  string if the Type is not in the symbol table.</dd>
-</dl>
-
-<h3>Mutators</h3>
-<dl>
-  <dt><tt>void insert(Value *Val)</tt>:</dt>
-  <dd>This method adds the provided value to the symbol table.  The Value must
-  have both a name and a type which are extracted and used to place the value
-  in the correct type plane under the value's name.</dd>
-
-  <dt><tt>void insert(const std::string&amp; Name, Value *Val)</tt>:</dt>
-  <dd> Inserts a constant or type into the symbol table with the specified
-  name. There can be a many to one mapping between names and constants
-  or types.</dd>
-
-  <dt><tt>void insert(const std::string&amp; Name, Type *Typ)</tt>:</dt>
-  <dd> Inserts a type into the symbol table with the specified name. There
-  can be a many-to-one mapping between names and types. This method
-  allows a type with an existing entry in the symbol table to get
-  a new name.</dd>
-
-  <dt><tt>void remove(Value* Val)</tt>:</dt>
- <dd> This method removes a named value from the symbol table. The
-  type and name of the Value are extracted from \p N and used to
-  lookup the Value in the correct type plane. If the Value is
-  not in the symbol table, this method silently ignores the
-  request.</dd>
-
-  <dt><tt>void remove(Type* Typ)</tt>:</dt>
-  <dd> This method removes a named type from the symbol table. The
-  name of the type is extracted from \P T and used to look up
-  the Type in the type map. If the Type is not in the symbol
-  table, this method silently ignores the request.</dd>
-
-  <dt><tt>Value* remove(const std::string&amp; Name, Value *Val)</tt>:</dt>
-  <dd> Remove a constant or type with the specified name from the 
-  symbol table.</dd>
-
-  <dt><tt>Type* remove(const std::string&amp; Name, Type* T)</tt>:</dt>
-  <dd> Remove a type with the specified name from the symbol table.
-  Returns the removed Type.</dd>
-
-  <dt><tt>Value *value_remove(const value_iterator&amp; It)</tt>:</dt>
-  <dd> Removes a specific value from the symbol table. 
-  Returns the removed value.</dd>
-
-  <dt><tt>bool strip()</tt>:</dt>
-  <dd> This method will strip the symbol table of its names leaving
-  the type and values. </dd>
-
-  <dt><tt>void clear()</tt>:</dt>
-  <dd>Empty the symbol table completely.</dd>
-</dl>
-
-<h3>Iteration</h3>
-<p>The following functions describe three types of iterators you can obtain
-the beginning or end of the sequence for both const and non-const. It is
-important to keep track of the different kinds of iterators. There are
-three idioms worth pointing out:</p>
-<table>
-  <tr><th>Units</th><th>Iterator</th><th>Idiom</th></tr>
-  <tr>
-    <td align="left">Planes Of name/Value maps</td><td>PI</td>
-    <td align="left"><tt><pre>
-for (SymbolTable::plane_const_iterator PI = ST.plane_begin(),
-     PE = ST.plane_end(); PI != PE; ++PI ) {
-  PI-&gt;first // This is the Type* of the plane
-  PI-&gt;second // This is the SymbolTable::ValueMap of name/Value pairs
-    </pre></tt></td>
-  </tr>
-  <tr>
-    <td align="left">All name/Type Pairs</td><td>TI</td>
-    <td align="left"><tt><pre>
-for (SymbolTable::type_const_iterator TI = ST.type_begin(),
-     TE = ST.type_end(); TI != TE; ++TI )
-  TI-&gt;first  // This is the name of the type
-  TI-&gt;second // This is the Type* value associated with the name
-    </pre></tt></td>
-  </tr>
-  <tr>
-    <td align="left">name/Value pairs in a plane</td><td>VI</td>
-    <td align="left"><tt><pre>
-for (SymbolTable::value_const_iterator VI = ST.value_begin(SomeType),
-     VE = ST.value_end(SomeType); VI != VE; ++VI )
-  VI-&gt;first  // This is the name of the Value
-  VI-&gt;second // This is the Value* value associated with the name
-    </pre></tt></td>
-  </tr>
-</table>
-<p>Using the recommended iterator names and idioms will help you avoid
-making mistakes. Of particular note, make sure that whenever you use
-value_begin(SomeType) that you always compare the resulting iterator
-with value_end(SomeType) not value_end(SomeOtherType) or else you 
-will loop infinitely.</p>
-
-<dl>
-
-  <dt><tt>plane_iterator plane_begin()</tt>:</dt>
-  <dd>Get an iterator that starts at the beginning of the type planes.
-  The iterator will iterate over the Type/ValueMap pairs in the
-  type planes. </dd>
-
-  <dt><tt>plane_const_iterator plane_begin() const</tt>:</dt>
-  <dd>Get a const_iterator that starts at the beginning of the type 
-  planes.  The iterator will iterate over the Type/ValueMap pairs 
-  in the type planes. </dd>
-
-  <dt><tt>plane_iterator plane_end()</tt>:</dt>
-  <dd>Get an iterator at the end of the type planes. This serves as
-  the marker for end of iteration over the type planes.</dd>
-
-  <dt><tt>plane_const_iterator plane_end() const</tt>:</dt>
-  <dd>Get a const_iterator at the end of the type planes. This serves as
-  the marker for end of iteration over the type planes.</dd>
-
-  <dt><tt>value_iterator value_begin(const Type *Typ)</tt>:</dt>
-  <dd>Get an iterator that starts at the beginning of a type plane.
-  The iterator will iterate over the name/value pairs in the type plane.
-  Note: The type plane must already exist before using this.</dd>
-
-  <dt><tt>value_const_iterator value_begin(const Type *Typ) const</tt>:</dt>
-  <dd>Get a const_iterator that starts at the beginning of a type plane.
-  The iterator will iterate over the name/value pairs in the type plane.
-  Note: The type plane must already exist before using this.</dd>
-
-  <dt><tt>value_iterator value_end(const Type *Typ)</tt>:</dt>
-  <dd>Get an iterator to the end of a type plane. This serves as the marker
-  for end of iteration of the type plane.
-  Note: The type plane must already exist before using this.</dd>
-
-  <dt><tt>value_const_iterator value_end(const Type *Typ) const</tt>:</dt>
-  <dd>Get a const_iterator to the end of a type plane. This serves as the
-  marker for end of iteration of the type plane.
-  Note: the type plane must already exist before using this.</dd>
-
-  <dt><tt>type_iterator type_begin()</tt>:</dt>
-  <dd>Get an iterator to the start of the name/Type map.</dd>
-
-  <dt><tt>type_const_iterator type_begin() cons</tt>:</dt>
-  <dd> Get a const_iterator to the start of the name/Type map.</dd>
-
-  <dt><tt>type_iterator type_end()</tt>:</dt>
-  <dd>Get an iterator to the end of the name/Type map. This serves as the
-  marker for end of iteration of the types.</dd>
-
-  <dt><tt>type_const_iterator type_end() const</tt>:</dt>
-  <dd>Get a const-iterator to the end of the name/Type map. This serves 
-  as the marker for end of iteration of the types.</dd>
-
-  <dt><tt>plane_const_iterator find(const Type* Typ ) const</tt>:</dt>
-  <dd>This method returns a plane_const_iterator for iteration over
-  the type planes starting at a specific plane, given by \p Ty.</dd>
-
-  <dt><tt>plane_iterator find( const Type* Typ </tt>:</dt>
-  <dd>This method returns a plane_iterator for iteration over the
-  type planes starting at a specific plane, given by \p Ty.</dd>
-
-  <dt><tt>const ValueMap* findPlane( const Type* Typ ) cons</tt>:</dt>
-  <dd>This method returns a ValueMap* for a specific type plane. This
-  interface is deprecated and may go away in the future.</dd>
-</dl>
-</div>
-
 <!-- *********************************************************************** -->
 <hr>
 <address>
@@ -2062,5 +2241,3 @@ will loop infinitely.</p>
 
 </body>
 </html>
-<!-- vim: sw=2 noai
--->