Fix computation of # operands, add a temporary hack for CopyToReg
[oota-llvm.git] / docs / ProgrammersManual.html
index eb3bde98a8bef86e9b88a7507226fcd67af46487..464618aa37af24cfbb5acb942c15427290c6a729 100644 (file)
@@ -82,6 +82,20 @@ with another <tt>Value</tt></a> </li>
 --> 
     </ul>
   </li>
+
+  <li><a href="#advanced">Advanced Topics</a>
+  <ul>
+  <li><a href="#TypeResolve">LLVM Type Resolution</a>
+  <ul>
+    <li><a href="#BuildRecType">Basic Recursive Type Construction</a></li>
+    <li><a href="#refineAbstractTypeTo">The <tt>refineAbstractTypeTo</tt> method</a></li>
+    <li><a href="#PATypeHolder">The PATypeHolder Class</a></li>
+    <li><a href="#AbstractTypeUser">The AbstractTypeUser Class</a></li>
+  </ul></li>
+
+  <li><a href="#SymbolTable">The <tt>SymbolTable</tt> class </a></li>
+  </ul></li>
+
   <li><a href="#coreclasses">The Core LLVM Class Hierarchy Reference</a>
     <ul>
       <li><a href="#Value">The <tt>Value</tt> class</a>
@@ -113,13 +127,6 @@ with another <tt>Value</tt></a> </li>
       </li>
     </ul>
   </li>
-  <li><a href="#SymbolTable">The <tt>SymbolTable</tt> class </a></li>
-  <li>The <tt>ilist</tt> and <tt>iplist</tt> classes
-    <ul>
-      <li>Creating, inserting, moving and deleting from LLVM lists </li>
-    </ul>
-  </li>
-  <li>Important iterator invalidation semantics to be aware of.</li>
 </ol>
 
 <div class="doc_author">    
@@ -267,7 +274,7 @@ operator, but they don't have some drawbacks (primarily stemming from
 the fact that <tt>dynamic_cast&lt;&gt;</tt> only works on classes that
 have a v-table). Because they are used so often, you must know what they
 do and how they work. All of these templates are defined in the <a
- href="/doxygen/Casting_8h-source.html"><tt>Support/Casting.h</tt></a>
+ href="/doxygen/Casting_8h-source.html"><tt>llvm/Support/Casting.h</tt></a>
 file (note that you very rarely have to include this file directly).</p>
 
 <dl>
@@ -372,7 +379,7 @@ across).</p>
 but you don't want them to always be noisy.  A standard compromise is to comment
 them out, allowing you to enable them if you need them in the future.</p>
 
-<p>The "<tt><a href="/doxygen/Debug_8h-source.html">Support/Debug.h</a></tt>"
+<p>The "<tt><a href="/doxygen/Debug_8h-source.html">llvm/Support/Debug.h</a></tt>"
 file provides a macro named <tt>DEBUG()</tt> that is a much nicer solution to
 this problem.  Basically, you can put arbitrary code into the argument of the
 <tt>DEBUG</tt> macro, and it is only executed if '<tt>opt</tt>' (or any other
@@ -400,7 +407,7 @@ program hasn't been started yet, you can always just run it with
 
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
-  <a name="DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE()</tt> and
+  <a name="DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE</tt> and
   the <tt>-debug-only</tt> option</a>
 </div>
 
@@ -420,7 +427,7 @@ option as follows:</p>
 
 <p>Of course, in practice, you should only set <tt>DEBUG_TYPE</tt> at the top of
 a file, to specify the debug type for the entire module (if you do this before
-you <tt>#include "Support/Debug.h"</tt>, you don't have to insert the ugly
+you <tt>#include "llvm/Support/Debug.h"</tt>, you don't have to insert the ugly
 <tt>#undef</tt>'s).  Also, you should use names more meaningful than "foo" and
 "bar", because there is no system in place to ensure that names do not
 conflict. If two different modules use the same string, they will all be turned
@@ -439,7 +446,7 @@ even if the source lives in multiple files.</p>
 <div class="doc_text">
 
 <p>The "<tt><a
-href="/doxygen/Statistic_8h-source.html">Support/Statistic.h</a></tt>" file
+href="/doxygen/Statistic_8h-source.html">llvm/ADT/Statistic.h</a></tt>" file
 provides a template named <tt>Statistic</tt> that is used as a unified way to
 keep track of what the LLVM compiler is doing and how effective various
 optimizations are.  It is useful to see what optimizations are contributing to
@@ -924,6 +931,408 @@ ReplaceInstWithValue, ReplaceInstWithInst -->
 
 </div>
 
+<!-- *********************************************************************** -->
+<div class="doc_section">
+  <a name="advanced">Advanced Topics</a>
+</div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+<p>
+This section describes some of the advanced or obscure API's that most clients
+do not need to be aware of.  These API's tend manage the inner workings of the
+LLVM system, and only need to be accessed in unusual circumstances.
+</p>
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="TypeResolve">LLVM Type Resolution</a>
+</div>
+
+<div class="doc_text">
+
+<p>
+The LLVM type system has a very simple goal: allow clients to compare types for
+structural equality with a simple pointer comparison (aka a shallow compare).
+This goal makes clients much simpler and faster, and is used throughout the LLVM
+system.
+</p>
+
+<p>
+Unfortunately achieving this goal is not a simple matter.  In particular,
+recursive types and late resolution of opaque types makes the situation very
+difficult to handle.  Fortunately, for the most part, our implementation makes
+most clients able to be completely unaware of the nasty internal details.  The
+primary case where clients are exposed to the inner workings of it are when
+building a recursive type.  In addition to this case, the LLVM bytecode reader,
+assembly parser, and linker also have to be aware of the inner workings of this
+system.
+</p>
+
+<p>
+For our purposes below, we need three concepts.  First, an "Opaque Type" is 
+exactly as defined in the <a href="LangRef.html#t_opaque">language 
+reference</a>.  Second an "Abstract Type" is any type which includes an 
+opaque type as part of its type graph (for example "<tt>{ opaque, int }</tt>").
+Third, a concrete type is a type that is not an abstract type (e.g. "<tt>[ int, 
+float }</tt>").
+</p>
+
+</div>
+
+<!-- ______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="BuildRecType">Basic Recursive Type Construction</a>
+</div>
+
+<div class="doc_text">
+
+<p>
+Because the most common question is "how do I build a recursive type with LLVM",
+we answer it now and explain it as we go.  Here we include enough to cause this
+to be emitted to an output .ll file:
+</p>
+
+<pre>
+   %mylist = type { %mylist*, int }
+</pre>
+
+<p>
+To build this, use the following LLVM APIs:
+</p>
+
+<pre>
+  //<i> Create the initial outer struct.</i>
+  <a href="#PATypeHolder">PATypeHolder</a> StructTy = OpaqueType::get();
+  std::vector&lt;const Type*&gt; Elts;
+  Elts.push_back(PointerType::get(StructTy));
+  Elts.push_back(Type::IntTy);
+  StructType *NewSTy = StructType::get(Elts);
+
+  //<i> At this point, NewSTy = "{ opaque*, int }". Tell VMCore that</i>
+  //<i> the struct and the opaque type are actually the same.</i>
+  cast&lt;OpaqueType&gt;(StructTy.get())-&gt;<a href="#refineAbstractTypeTo">refineAbstractTypeTo</a>(NewSTy);
+
+  // <i>NewSTy is potentially invalidated, but StructTy (a <a href="#PATypeHolder">PATypeHolder</a>) is</i>
+  // <i>kept up-to-date.</i>
+  NewSTy = cast&lt;StructType&gt;(StructTy.get());
+
+  // <i>Add a name for the type to the module symbol table (optional).</i>
+  MyModule-&gt;addTypeName("mylist", NewSTy);
+</pre>
+
+<p>
+This code shows the basic approach used to build recursive types: build a
+non-recursive type using 'opaque', then use type unification to close the cycle.
+The type unification step is performed by the <tt><a
+ref="#refineAbstractTypeTo">refineAbstractTypeTo</a></tt> method, which is
+described next.  After that, we describe the <a
+href="#PATypeHolder">PATypeHolder class</a>.
+</p>
+
+</div>
+
+<!-- ______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="refineAbstractTypeTo">The <tt>refineAbstractTypeTo</tt> method</a>
+</div>
+
+<div class="doc_text">
+<p>
+The <tt>refineAbstractTypeTo</tt> method starts the type unification process.
+While this method is actually a member of the DerivedType class, it is most
+often used on OpaqueType instances.  Type unification is actually a recursive
+process.  After unification, types can become structurally isomorphic to
+existing types, and all duplicates are deleted (to preserve pointer equality).
+</p>
+
+<p>
+In the example above, the OpaqueType object is definitely deleted.
+Additionally, if there is an "{ \2*, int}" type already created in the system,
+the pointer and struct type created are <b>also</b> deleted.  Obviously whenever
+a type is deleted, any "Type*" pointers in the program are invalidated.  As
+such, it is safest to avoid having <i>any</i> "Type*" pointers to abstract types
+live across a call to <tt>refineAbstractTypeTo</tt> (note that non-abstract
+types can never move or be deleted).  To deal with this, the <a
+href="#PATypeHolder">PATypeHolder</a> class is used to maintain a stable
+reference to a possibly refined type, and the <a
+href="#AbstractTypeUser">AbstractTypeUser</a> class is used to update more
+complex datastructures.
+</p>
+
+</div>
+
+<!-- ______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="PATypeHolder">The PATypeHolder Class</a>
+</div>
+
+<div class="doc_text">
+<p>
+PATypeHolder is a form of a "smart pointer" for Type objects.  When VMCore
+happily goes about nuking types that become isomorphic to existing types, it
+automatically updates all PATypeHolder objects to point to the new type.  In the
+example above, this allows the code to maintain a pointer to the resultant
+resolved recursive type, even though the Type*'s are potentially invalidated.
+</p>
+
+<p>
+PATypeHolder is an extremely light-weight object that uses a lazy union-find
+implementation to update pointers.  For example the pointer from a Value to its
+Type is maintained by PATypeHolder objects.
+</p>
+
+</div>
+
+<!-- ______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="AbstractTypeUser">The AbstractTypeUser Class</a>
+</div>
+
+<div class="doc_text">
+
+<p>
+Some data structures need more to perform more complex updates when types get
+resolved.  The <a href="#SymbolTable">SymbolTable</a> class, for example, needs
+move and potentially merge type planes in its representation when a pointer
+changes.</p>
+
+<p>
+To support this, a class can derive from the AbstractTypeUser class.  This class
+allows it to get callbacks when certain types are resolved.  To register to get
+callbacks for a particular type, the DerivedType::{add/remove}AbstractTypeUser
+methods can be called on a type.  Note that these methods only work for <i>
+abstract</i> types.  Concrete types (those that do not include an opaque objects
+somewhere) can never be refined.
+</p>
+</div>
+
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="SymbolTable">The <tt>SymbolTable</tt> class</a>
+</div>
+
+<div class="doc_text">
+<p>This class provides a symbol table that the <a
+href="#Function"><tt>Function</tt></a> and <a href="#Module">
+<tt>Module</tt></a> classes use for naming definitions. The symbol table can
+provide a name for any <a href="#Value"><tt>Value</tt></a> or <a
+href="#Type"><tt>Type</tt></a>.  <tt>SymbolTable</tt> is an abstract data
+type. It hides the data it contains and provides access to it through a
+controlled interface.</p>
+
+<p>Note that the symbol table class is should not be directly accessed by most
+clients.  It should only be used when iteration over the symbol table names
+themselves are required, which is very special purpose.  Note that not all LLVM
+<a href="#Value">Value</a>s have names, and those without names (i.e. they have
+an empty name) do not exist in the symbol table.
+</p>
+
+<p>To use the <tt>SymbolTable</tt> well, you need to understand the 
+structure of the information it holds. The class contains two 
+<tt>std::map</tt> objects. The first, <tt>pmap</tt>, is a map of 
+<tt>Type*</tt> to maps of name (<tt>std::string</tt>) to <tt>Value*</tt>. 
+The second, <tt>tmap</tt>, is a map of names to <tt>Type*</tt>. Thus, Values
+are stored in two-dimensions and accessed by <tt>Type</tt> and name. Types,
+however, are stored in a single dimension and accessed only by name.</p>
+
+<p>The interface of this class provides three basic types of operations:
+<ol>
+  <li><em>Accessors</em>. Accessors provide read-only access to information
+  such as finding a value for a name with the 
+  <a href="#SymbolTable_lookup">lookup</a> method.</li> 
+  <li><em>Mutators</em>. Mutators allow the user to add information to the
+  <tt>SymbolTable</tt> with methods like 
+  <a href="#SymbolTable_insert"><tt>insert</tt></a>.</li>
+  <li><em>Iterators</em>. Iterators allow the user to traverse the content
+  of the symbol table in well defined ways, such as the method
+  <a href="#SymbolTable_type_begin"><tt>type_begin</tt></a>.</li>
+</ol>
+
+<h3>Accessors</h3>
+<dl>
+  <dt><tt>Value* lookup(const Type* Ty, const std::string&amp; name) const</tt>:
+  </dt>
+  <dd>The <tt>lookup</tt> method searches the type plane given by the
+  <tt>Ty</tt> parameter for a <tt>Value</tt> with the provided <tt>name</tt>.
+  If a suitable <tt>Value</tt> is not found, null is returned.</dd>
+
+  <dt><tt>Type* lookupType( const std::string&amp; name) const</tt>:</dt>
+  <dd>The <tt>lookupType</tt> method searches through the types for a
+  <tt>Type</tt> with the provided <tt>name</tt>. If a suitable <tt>Type</tt>
+  is not found, null is returned.</dd>
+
+  <dt><tt>bool hasTypes() const</tt>:</dt>
+  <dd>This function returns true if an entry has been made into the type
+  map.</dd>
+
+  <dt><tt>bool isEmpty() const</tt>:</dt>
+  <dd>This function returns true if both the value and types maps are
+  empty</dd>
+</dl>
+
+<h3>Mutators</h3>
+<dl>
+  <dt><tt>void insert(Value *Val)</tt>:</dt>
+  <dd>This method adds the provided value to the symbol table.  The Value must
+  have both a name and a type which are extracted and used to place the value
+  in the correct type plane under the value's name.</dd>
+
+  <dt><tt>void insert(const std::string&amp; Name, Value *Val)</tt>:</dt>
+  <dd> Inserts a constant or type into the symbol table with the specified
+  name. There can be a many to one mapping between names and constants
+  or types.</dd>
+
+  <dt><tt>void insert(const std::string&amp; Name, Type *Typ)</tt>:</dt>
+  <dd> Inserts a type into the symbol table with the specified name. There
+  can be a many-to-one mapping between names and types. This method
+  allows a type with an existing entry in the symbol table to get
+  a new name.</dd>
+
+  <dt><tt>void remove(Value* Val)</tt>:</dt>
+ <dd> This method removes a named value from the symbol table. The
+  type and name of the Value are extracted from \p N and used to
+  lookup the Value in the correct type plane. If the Value is
+  not in the symbol table, this method silently ignores the
+  request.</dd>
+
+  <dt><tt>void remove(Type* Typ)</tt>:</dt>
+  <dd> This method removes a named type from the symbol table. The
+  name of the type is extracted from \P T and used to look up
+  the Type in the type map. If the Type is not in the symbol
+  table, this method silently ignores the request.</dd>
+
+  <dt><tt>Value* remove(const std::string&amp; Name, Value *Val)</tt>:</dt>
+  <dd> Remove a constant or type with the specified name from the 
+  symbol table.</dd>
+
+  <dt><tt>Type* remove(const std::string&amp; Name, Type* T)</tt>:</dt>
+  <dd> Remove a type with the specified name from the symbol table.
+  Returns the removed Type.</dd>
+
+  <dt><tt>Value *value_remove(const value_iterator&amp; It)</tt>:</dt>
+  <dd> Removes a specific value from the symbol table. 
+  Returns the removed value.</dd>
+
+  <dt><tt>bool strip()</tt>:</dt>
+  <dd> This method will strip the symbol table of its names leaving
+  the type and values. </dd>
+
+  <dt><tt>void clear()</tt>:</dt>
+  <dd>Empty the symbol table completely.</dd>
+</dl>
+
+<h3>Iteration</h3>
+<p>The following functions describe three types of iterators you can obtain
+the beginning or end of the sequence for both const and non-const. It is
+important to keep track of the different kinds of iterators. There are
+three idioms worth pointing out:</p>
+<table>
+  <tr><th>Units</th><th>Iterator</th><th>Idiom</th></tr>
+  <tr>
+    <td align="left">Planes Of name/Value maps</td><td>PI</td>
+    <td align="left"><pre><tt>
+for (SymbolTable::plane_const_iterator PI = ST.plane_begin(),
+     PE = ST.plane_end(); PI != PE; ++PI ) {
+  PI-&gt;first // This is the Type* of the plane
+  PI-&gt;second // This is the SymbolTable::ValueMap of name/Value pairs
+    </tt></pre></td>
+  </tr>
+  <tr>
+    <td align="left">All name/Type Pairs</td><td>TI</td>
+    <td align="left"><pre><tt>
+for (SymbolTable::type_const_iterator TI = ST.type_begin(),
+     TE = ST.type_end(); TI != TE; ++TI )
+  TI-&gt;first  // This is the name of the type
+  TI-&gt;second // This is the Type* value associated with the name
+    </tt></pre></td>
+  </tr>
+  <tr>
+    <td align="left">name/Value pairs in a plane</td><td>VI</td>
+    <td align="left"><pre><tt>
+for (SymbolTable::value_const_iterator VI = ST.value_begin(SomeType),
+     VE = ST.value_end(SomeType); VI != VE; ++VI )
+  VI-&gt;first  // This is the name of the Value
+  VI-&gt;second // This is the Value* value associated with the name
+    </tt></pre></td>
+  </tr>
+</table>
+
+<p>Using the recommended iterator names and idioms will help you avoid
+making mistakes. Of particular note, make sure that whenever you use
+value_begin(SomeType) that you always compare the resulting iterator
+with value_end(SomeType) not value_end(SomeOtherType) or else you 
+will loop infinitely.</p>
+
+<dl>
+
+  <dt><tt>plane_iterator plane_begin()</tt>:</dt>
+  <dd>Get an iterator that starts at the beginning of the type planes.
+  The iterator will iterate over the Type/ValueMap pairs in the
+  type planes. </dd>
+
+  <dt><tt>plane_const_iterator plane_begin() const</tt>:</dt>
+  <dd>Get a const_iterator that starts at the beginning of the type 
+  planes.  The iterator will iterate over the Type/ValueMap pairs 
+  in the type planes. </dd>
+
+  <dt><tt>plane_iterator plane_end()</tt>:</dt>
+  <dd>Get an iterator at the end of the type planes. This serves as
+  the marker for end of iteration over the type planes.</dd>
+
+  <dt><tt>plane_const_iterator plane_end() const</tt>:</dt>
+  <dd>Get a const_iterator at the end of the type planes. This serves as
+  the marker for end of iteration over the type planes.</dd>
+
+  <dt><tt>value_iterator value_begin(const Type *Typ)</tt>:</dt>
+  <dd>Get an iterator that starts at the beginning of a type plane.
+  The iterator will iterate over the name/value pairs in the type plane.
+  Note: The type plane must already exist before using this.</dd>
+
+  <dt><tt>value_const_iterator value_begin(const Type *Typ) const</tt>:</dt>
+  <dd>Get a const_iterator that starts at the beginning of a type plane.
+  The iterator will iterate over the name/value pairs in the type plane.
+  Note: The type plane must already exist before using this.</dd>
+
+  <dt><tt>value_iterator value_end(const Type *Typ)</tt>:</dt>
+  <dd>Get an iterator to the end of a type plane. This serves as the marker
+  for end of iteration of the type plane.
+  Note: The type plane must already exist before using this.</dd>
+
+  <dt><tt>value_const_iterator value_end(const Type *Typ) const</tt>:</dt>
+  <dd>Get a const_iterator to the end of a type plane. This serves as the
+  marker for end of iteration of the type plane.
+  Note: the type plane must already exist before using this.</dd>
+
+  <dt><tt>type_iterator type_begin()</tt>:</dt>
+  <dd>Get an iterator to the start of the name/Type map.</dd>
+
+  <dt><tt>type_const_iterator type_begin() cons</tt>:</dt>
+  <dd> Get a const_iterator to the start of the name/Type map.</dd>
+
+  <dt><tt>type_iterator type_end()</tt>:</dt>
+  <dd>Get an iterator to the end of the name/Type map. This serves as the
+  marker for end of iteration of the types.</dd>
+
+  <dt><tt>type_const_iterator type_end() const</tt>:</dt>
+  <dd>Get a const-iterator to the end of the name/Type map. This serves 
+  as the marker for end of iteration of the types.</dd>
+
+  <dt><tt>plane_const_iterator find(const Type* Typ ) const</tt>:</dt>
+  <dd>This method returns a plane_const_iterator for iteration over
+  the type planes starting at a specific plane, given by \p Ty.</dd>
+
+  <dt><tt>plane_iterator find( const Type* Typ </tt>:</dt>
+  <dd>This method returns a plane_iterator for iteration over the
+  type planes starting at a specific plane, given by \p Ty.</dd>
+
+</dl>
+</div>
+
+
+
 <!-- *********************************************************************** -->
 <div class="doc_section">
   <a name="coreclasses">The Core LLVM Class Hierarchy Reference </a>
@@ -1816,220 +2225,6 @@ arguments. An argument has a pointer to the parent Function.</p>
 
 </div>
 
-<!-- ======================================================================= -->
-<div class="doc_subsection">
-  <a name="SymbolTable">The <tt>SymbolTable</tt> class</a>
-</div>
-<div class="doc_text">
-<p>This class provides a symbol table that the
-<a href="#Function"><tt>Function</tt></a> and <a href="#Module">
-<tt>Module</tt></a> classes use for naming definitions. The symbol table can 
-provide a name for any <a href="#Value"><tt>Value</tt></a> or 
-<a href="#Type"><tt>Type</tt></a>.  <tt>SymbolTable</tt> is an abstract data 
-type. It hides the data it contains and provides access to it through a 
-controlled interface.</p>
-
-<p>To use the <tt>SymbolTable</tt> well, you need to understand the 
-structure of the information it holds. The class contains two 
-<tt>std::map</tt> objects. The first, <tt>pmap</tt>, is a map of 
-<tt>Type*</tt> to maps of name (<tt>std::string</tt>) to <tt>Value*</tt>. 
-The second, <tt>tmap</tt>, is a map of names to <tt>Type*</tt>. Thus, Values
-are stored in two-dimensions and accessed by <tt>Type</tt> and name. Types,
-however, are stored in a single dimension and accessed only by name.</p>
-
-<p>The interface of this class provides three basic types of operations:
-<ol>
-  <li><em>Accessors</em>. Accessors provide read-only access to information
-  such as finding a value for a name with the 
-  <a href="#SymbolTable_lookup">lookup</a> method.</li> 
-  <li><em>Mutators</em>. Mutators allow the user to add information to the
-  <tt>SymbolTable</tt> with methods like 
-  <a href="#SymbolTable_insert"><tt>insert</tt></a>.</li>
-  <li><em>Iterators</em>. Iterators allow the user to traverse the content
-  of the symbol table in well defined ways, such as the method
-  <a href="#SymbolTable_type_begin"><tt>type_begin</tt></a>.</li>
-</ol>
-
-<h3>Accessors</h3>
-<dl>
-  <dt><tt>Value* lookup(const Type* Ty, const std::string&amp; name) const</tt>:
-  </dt>
-  <dd>The <tt>lookup</tt> method searches the type plane given by the
-  <tt>Ty</tt> parameter for a <tt>Value</tt> with the provided <tt>name</tt>.
-  If a suitable <tt>Value</tt> is not found, null is returned.</dd>
-
-  <dt><tt>Type* lookupType( const std::string&amp; name) const</tt>:</dt>
-  <dd>The <tt>lookupType</tt> method searches through the types for a
-  <tt>Type</tt> with the provided <tt>name</tt>. If a suitable <tt>Type</tt>
-  is not found, null is returned.</dd>
-
-  <dt><tt>bool hasTypes() const</tt>:</dt>
-  <dd>This function returns true if an entry has been made into the type
-  map.</dd>
-
-  <dt><tt>bool isEmpty() const</tt>:</dt>
-  <dd>This function returns true if both the value and types maps are
-  empty</dd>
-</dl>
-
-<h3>Mutators</h3>
-<dl>
-  <dt><tt>void insert(Value *Val)</tt>:</dt>
-  <dd>This method adds the provided value to the symbol table.  The Value must
-  have both a name and a type which are extracted and used to place the value
-  in the correct type plane under the value's name.</dd>
-
-  <dt><tt>void insert(const std::string&amp; Name, Value *Val)</tt>:</dt>
-  <dd> Inserts a constant or type into the symbol table with the specified
-  name. There can be a many to one mapping between names and constants
-  or types.</dd>
-
-  <dt><tt>void insert(const std::string&amp; Name, Type *Typ)</tt>:</dt>
-  <dd> Inserts a type into the symbol table with the specified name. There
-  can be a many-to-one mapping between names and types. This method
-  allows a type with an existing entry in the symbol table to get
-  a new name.</dd>
-
-  <dt><tt>void remove(Value* Val)</tt>:</dt>
- <dd> This method removes a named value from the symbol table. The
-  type and name of the Value are extracted from \p N and used to
-  lookup the Value in the correct type plane. If the Value is
-  not in the symbol table, this method silently ignores the
-  request.</dd>
-
-  <dt><tt>void remove(Type* Typ)</tt>:</dt>
-  <dd> This method removes a named type from the symbol table. The
-  name of the type is extracted from \P T and used to look up
-  the Type in the type map. If the Type is not in the symbol
-  table, this method silently ignores the request.</dd>
-
-  <dt><tt>Value* remove(const std::string&amp; Name, Value *Val)</tt>:</dt>
-  <dd> Remove a constant or type with the specified name from the 
-  symbol table.</dd>
-
-  <dt><tt>Type* remove(const std::string&amp; Name, Type* T)</tt>:</dt>
-  <dd> Remove a type with the specified name from the symbol table.
-  Returns the removed Type.</dd>
-
-  <dt><tt>Value *value_remove(const value_iterator&amp; It)</tt>:</dt>
-  <dd> Removes a specific value from the symbol table. 
-  Returns the removed value.</dd>
-
-  <dt><tt>bool strip()</tt>:</dt>
-  <dd> This method will strip the symbol table of its names leaving
-  the type and values. </dd>
-
-  <dt><tt>void clear()</tt>:</dt>
-  <dd>Empty the symbol table completely.</dd>
-</dl>
-
-<h3>Iteration</h3>
-<p>The following functions describe three types of iterators you can obtain
-the beginning or end of the sequence for both const and non-const. It is
-important to keep track of the different kinds of iterators. There are
-three idioms worth pointing out:</p>
-<table>
-  <tr><th>Units</th><th>Iterator</th><th>Idiom</th></tr>
-  <tr>
-    <td align="left">Planes Of name/Value maps</td><td>PI</td>
-    <td align="left"><pre><tt>
-for (SymbolTable::plane_const_iterator PI = ST.plane_begin(),
-     PE = ST.plane_end(); PI != PE; ++PI ) {
-  PI-&gt;first // This is the Type* of the plane
-  PI-&gt;second // This is the SymbolTable::ValueMap of name/Value pairs
-    </tt></pre></td>
-  </tr>
-  <tr>
-    <td align="left">All name/Type Pairs</td><td>TI</td>
-    <td align="left"><pre><tt>
-for (SymbolTable::type_const_iterator TI = ST.type_begin(),
-     TE = ST.type_end(); TI != TE; ++TI )
-  TI-&gt;first  // This is the name of the type
-  TI-&gt;second // This is the Type* value associated with the name
-    </tt></pre></td>
-  </tr>
-  <tr>
-    <td align="left">name/Value pairs in a plane</td><td>VI</td>
-    <td align="left"><pre><tt>
-for (SymbolTable::value_const_iterator VI = ST.value_begin(SomeType),
-     VE = ST.value_end(SomeType); VI != VE; ++VI )
-  VI-&gt;first  // This is the name of the Value
-  VI-&gt;second // This is the Value* value associated with the name
-    </tt></pre></td>
-  </tr>
-</table>
-
-<p>Using the recommended iterator names and idioms will help you avoid
-making mistakes. Of particular note, make sure that whenever you use
-value_begin(SomeType) that you always compare the resulting iterator
-with value_end(SomeType) not value_end(SomeOtherType) or else you 
-will loop infinitely.</p>
-
-<dl>
-
-  <dt><tt>plane_iterator plane_begin()</tt>:</dt>
-  <dd>Get an iterator that starts at the beginning of the type planes.
-  The iterator will iterate over the Type/ValueMap pairs in the
-  type planes. </dd>
-
-  <dt><tt>plane_const_iterator plane_begin() const</tt>:</dt>
-  <dd>Get a const_iterator that starts at the beginning of the type 
-  planes.  The iterator will iterate over the Type/ValueMap pairs 
-  in the type planes. </dd>
-
-  <dt><tt>plane_iterator plane_end()</tt>:</dt>
-  <dd>Get an iterator at the end of the type planes. This serves as
-  the marker for end of iteration over the type planes.</dd>
-
-  <dt><tt>plane_const_iterator plane_end() const</tt>:</dt>
-  <dd>Get a const_iterator at the end of the type planes. This serves as
-  the marker for end of iteration over the type planes.</dd>
-
-  <dt><tt>value_iterator value_begin(const Type *Typ)</tt>:</dt>
-  <dd>Get an iterator that starts at the beginning of a type plane.
-  The iterator will iterate over the name/value pairs in the type plane.
-  Note: The type plane must already exist before using this.</dd>
-
-  <dt><tt>value_const_iterator value_begin(const Type *Typ) const</tt>:</dt>
-  <dd>Get a const_iterator that starts at the beginning of a type plane.
-  The iterator will iterate over the name/value pairs in the type plane.
-  Note: The type plane must already exist before using this.</dd>
-
-  <dt><tt>value_iterator value_end(const Type *Typ)</tt>:</dt>
-  <dd>Get an iterator to the end of a type plane. This serves as the marker
-  for end of iteration of the type plane.
-  Note: The type plane must already exist before using this.</dd>
-
-  <dt><tt>value_const_iterator value_end(const Type *Typ) const</tt>:</dt>
-  <dd>Get a const_iterator to the end of a type plane. This serves as the
-  marker for end of iteration of the type plane.
-  Note: the type plane must already exist before using this.</dd>
-
-  <dt><tt>type_iterator type_begin()</tt>:</dt>
-  <dd>Get an iterator to the start of the name/Type map.</dd>
-
-  <dt><tt>type_const_iterator type_begin() cons</tt>:</dt>
-  <dd> Get a const_iterator to the start of the name/Type map.</dd>
-
-  <dt><tt>type_iterator type_end()</tt>:</dt>
-  <dd>Get an iterator to the end of the name/Type map. This serves as the
-  marker for end of iteration of the types.</dd>
-
-  <dt><tt>type_const_iterator type_end() const</tt>:</dt>
-  <dd>Get a const-iterator to the end of the name/Type map. This serves 
-  as the marker for end of iteration of the types.</dd>
-
-  <dt><tt>plane_const_iterator find(const Type* Typ ) const</tt>:</dt>
-  <dd>This method returns a plane_const_iterator for iteration over
-  the type planes starting at a specific plane, given by \p Ty.</dd>
-
-  <dt><tt>plane_iterator find( const Type* Typ </tt>:</dt>
-  <dd>This method returns a plane_iterator for iteration over the
-  type planes starting at a specific plane, given by \p Ty.</dd>
-
-</dl>
-</div>
-
 <!-- *********************************************************************** -->
 <hr>
 <address>
@@ -2046,5 +2241,3 @@ will loop infinitely.</p>
 
 </body>
 </html>
-<!-- vim: sw=2 noai
--->