I'm introducing a new machine model to simultaneously allow simple
[oota-llvm.git] / include / llvm / Target / Target.td
index ab6a4e2cdb1d2e1bbe09b62786000bcce02f6b1d..440cf65d47077c72027834a072f2376909951ca0 100644 (file)
@@ -22,15 +22,27 @@ include "llvm/Intrinsics.td"
 class RegisterClass; // Forward def
 
 // SubRegIndex - Use instances of SubRegIndex to identify subregisters.
-class SubRegIndex {
+class SubRegIndex<list<SubRegIndex> comps = []> {
   string Namespace = "";
+
+  // ComposedOf - A list of two SubRegIndex instances, [A, B].
+  // This indicates that this SubRegIndex is the result of composing A and B.
+  list<SubRegIndex> ComposedOf = comps;
 }
 
+// RegAltNameIndex - The alternate name set to use for register operands of
+// this register class when printing.
+class RegAltNameIndex {
+  string Namespace = "";
+}
+def NoRegAltName : RegAltNameIndex;
+
 // Register - You should define one instance of this class for each register
 // in the target machine.  String n will become the "name" of the register.
-class Register<string n> {
+class Register<string n, list<string> altNames = []> {
   string Namespace = "";
   string AsmName = n;
+  list<string> AltNames = altNames;
 
   // Aliases - A list of registers that this register overlaps with.  A read or
   // modification of this register can potentially read or modify the aliased
@@ -48,6 +60,10 @@ class Register<string n> {
   // SubRegs.
   list<SubRegIndex> SubRegIndices = [];
 
+  // RegAltNameIndices - The alternate name indices which are valid for this
+  // register.
+  list<RegAltNameIndex> RegAltNameIndices = [];
+
   // CompositeIndices - Specify subreg indices that don't correspond directly to
   // a register in SubRegs and are not inherited. The following formats are
   // supported:
@@ -71,9 +87,18 @@ class Register<string n> {
   // CostPerUse - Additional cost of instructions using this register compared
   // to other registers in its class. The register allocator will try to
   // minimize the number of instructions using a register with a CostPerUse.
-  // This is used by the x86-64 and ARM Thumb targets where some registers 
+  // This is used by the x86-64 and ARM Thumb targets where some registers
   // require larger instruction encodings.
   int CostPerUse = 0;
+
+  // CoveredBySubRegs - When this bit is set, the value of this register is
+  // completely determined by the value of its sub-registers.  For example, the
+  // x86 register AX is covered by its sub-registers AL and AH, but EAX is not
+  // covered by its sub-register AX.
+  bit CoveredBySubRegs = 0;
+
+  // HWEncoding - The target specific hardware encoding for this register.
+  bits<16> HWEncoding = 0;
 }
 
 // RegisterWithSubRegs - This can be used to define instances of Register which
@@ -86,13 +111,20 @@ class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
   let SubRegs = subregs;
 }
 
+// DAGOperand - An empty base class that unifies RegisterClass's and other forms
+// of Operand's that are legal as type qualifiers in DAG patterns.  This should
+// only ever be used for defining multiclasses that are polymorphic over both
+// RegisterClass's and other Operand's.
+class DAGOperand { }
+
 // RegisterClass - Now that all of the registers are defined, and aliases
 // between registers are defined, specify which registers belong to which
 // register classes.  This also defines the default allocation order of
 // registers by register allocators.
 //
 class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
-                    list<Register> regList> {
+                    dag regList, RegAltNameIndex idx = NoRegAltName>
+  : DAGOperand {
   string Namespace = namespace;
 
   // RegType - Specify the list ValueType of the registers in this register
@@ -122,22 +154,107 @@ class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
   // allocation_order_* method are not specified, this also defines the order of
   // allocation used by the register allocator.
   //
-  list<Register> MemberList = regList;
+  dag MemberList = regList;
 
-  // SubRegClasses - Specify the register class of subregisters as a list of
-  // dags: (RegClass SubRegIndex, SubRegindex, ...)
-  list<dag> SubRegClasses = [];
+  // AltNameIndex - The alternate register name to use when printing operands
+  // of this register class. Every register in the register class must have
+  // a valid alternate name for the given index.
+  RegAltNameIndex altNameIndex = idx;
 
   // isAllocatable - Specify that the register class can be used for virtual
   // registers and register allocation.  Some register classes are only used to
   // model instruction operand constraints, and should have isAllocatable = 0.
   bit isAllocatable = 1;
 
-  // MethodProtos/MethodBodies - These members can be used to insert arbitrary
-  // code into a generated register class.   The normal usage of this is to
-  // overload virtual methods.
-  code MethodProtos = [{}];
-  code MethodBodies = [{}];
+  // AltOrders - List of alternative allocation orders. The default order is
+  // MemberList itself, and that is good enough for most targets since the
+  // register allocators automatically remove reserved registers and move
+  // callee-saved registers to the end.
+  list<dag> AltOrders = [];
+
+  // AltOrderSelect - The body of a function that selects the allocation order
+  // to use in a given machine function. The code will be inserted in a
+  // function like this:
+  //
+  //   static inline unsigned f(const MachineFunction &MF) { ... }
+  //
+  // The function should return 0 to select the default order defined by
+  // MemberList, 1 to select the first AltOrders entry and so on.
+  code AltOrderSelect = [{}];
+}
+
+// The memberList in a RegisterClass is a dag of set operations. TableGen
+// evaluates these set operations and expand them into register lists. These
+// are the most common operation, see test/TableGen/SetTheory.td for more
+// examples of what is possible:
+//
+// (add R0, R1, R2) - Set Union. Each argument can be an individual register, a
+// register class, or a sub-expression. This is also the way to simply list
+// registers.
+//
+// (sub GPR, SP) - Set difference. Subtract the last arguments from the first.
+//
+// (and GPR, CSR) - Set intersection. All registers from the first set that are
+// also in the second set.
+//
+// (sequence "R%u", 0, 15) -> [R0, R1, ..., R15]. Generate a sequence of
+// numbered registers.  Takes an optional 4th operand which is a stride to use
+// when generating the sequence.
+//
+// (shl GPR, 4) - Remove the first N elements.
+//
+// (trunc GPR, 4) - Truncate after the first N elements.
+//
+// (rotl GPR, 1) - Rotate N places to the left.
+//
+// (rotr GPR, 1) - Rotate N places to the right.
+//
+// (decimate GPR, 2) - Pick every N'th element, starting with the first.
+//
+// (interleave A, B, ...) - Interleave the elements from each argument list.
+//
+// All of these operators work on ordered sets, not lists. That means
+// duplicates are removed from sub-expressions.
+
+// Set operators. The rest is defined in TargetSelectionDAG.td.
+def sequence;
+def decimate;
+def interleave;
+
+// RegisterTuples - Automatically generate super-registers by forming tuples of
+// sub-registers. This is useful for modeling register sequence constraints
+// with pseudo-registers that are larger than the architectural registers.
+//
+// The sub-register lists are zipped together:
+//
+//   def EvenOdd : RegisterTuples<[sube, subo], [(add R0, R2), (add R1, R3)]>;
+//
+// Generates the same registers as:
+//
+//   let SubRegIndices = [sube, subo] in {
+//     def R0_R1 : RegisterWithSubRegs<"", [R0, R1]>;
+//     def R2_R3 : RegisterWithSubRegs<"", [R2, R3]>;
+//   }
+//
+// The generated pseudo-registers inherit super-classes and fields from their
+// first sub-register. Most fields from the Register class are inferred, and
+// the AsmName and Dwarf numbers are cleared.
+//
+// RegisterTuples instances can be used in other set operations to form
+// register classes and so on. This is the only way of using the generated
+// registers.
+class RegisterTuples<list<SubRegIndex> Indices, list<dag> Regs> {
+  // SubRegs - N lists of registers to be zipped up. Super-registers are
+  // synthesized from the first element of each SubRegs list, the second
+  // element and so on.
+  list<dag> SubRegs = Regs;
+
+  // SubRegIndices - N SubRegIndex instances. This provides the names of the
+  // sub-registers in the synthesized super-registers.
+  list<SubRegIndex> SubRegIndices = Indices;
+
+  // Compose sub-register indices like in a normal Register.
+  list<dag> CompositeIndices = [];
 }
 
 
@@ -196,7 +313,16 @@ class Instruction {
   // code.
   list<Predicate> Predicates = [];
 
-  // Code size.
+  // Size - Size of encoded instruction, or zero if the size cannot be determined
+  // from the opcode.
+  int Size = 0;
+
+  // DecoderNamespace - The "namespace" in which this instruction exists, on
+  // targets like ARM which multiple ISA namespaces exist.
+  string DecoderNamespace = "";
+
+  // Code size, for instruction selection.
+  // FIXME: What does this actually mean?
   int CodeSize = 0;
 
   // Added complexity passed onto matching pattern.
@@ -222,11 +348,15 @@ class Instruction {
   bit isPredicable = 0;     // Is this instruction predicable?
   bit hasDelaySlot = 0;     // Does this instruction have an delay slot?
   bit usesCustomInserter = 0; // Pseudo instr needing special help.
+  bit hasPostISelHook = 0;  // To be *adjusted* after isel by target hook.
   bit hasCtrlDep   = 0;     // Does this instruction r/w ctrl-flow chains?
   bit isNotDuplicable = 0;  // Is it unsafe to duplicate this instruction?
   bit isAsCheapAsAMove = 0; // As cheap (or cheaper) than a move instruction.
   bit hasExtraSrcRegAllocReq = 0; // Sources have special regalloc requirement?
   bit hasExtraDefRegAllocReq = 0; // Defs have special regalloc requirement?
+  bit isPseudo     = 0;     // Is this instruction a pseudo-instruction?
+                            // If so, won't have encoding information for
+                            // the [MC]CodeEmitter stuff.
 
   // Side effect flags - When set, the flags have these meanings:
   //
@@ -241,6 +371,20 @@ class Instruction {
   // Is this instruction a "real" instruction (with a distinct machine
   // encoding), or is it a pseudo instruction used for codegen modeling
   // purposes.
+  // FIXME: For now this is distinct from isPseudo, above, as code-gen-only
+  // instructions can (and often do) still have encoding information
+  // associated with them. Once we've migrated all of them over to true
+  // pseudo-instructions that are lowered to real instructions prior to
+  // the printer/emitter, we can remove this attribute and just use isPseudo.
+  //
+  // The intended use is:
+  // isPseudo: Does not have encoding information and should be expanded,
+  //   at the latest, during lowering to MCInst.
+  //
+  // isCodeGenOnly: Does have encoding information and can go through to the
+  //   CodeEmitter unchanged, but duplicates a canonical instruction
+  //   definition's encoding and should be ignored when constructing the
+  //   assembler match tables.
   bit isCodeGenOnly = 0;
 
   // Is this instruction a pseudo instruction for use by the assembler parser.
@@ -265,9 +409,24 @@ class Instruction {
 
   string AsmMatchConverter = "";
 
+  /// TwoOperandAliasConstraint - Enable TableGen to auto-generate a
+  /// two-operand matcher inst-alias for a three operand instruction.
+  /// For example, the arm instruction "add r3, r3, r5" can be written
+  /// as "add r3, r5". The constraint is of the same form as a tied-operand
+  /// constraint. For example, "$Rn = $Rd".
+  string TwoOperandAliasConstraint = "";
+
   ///@}
 }
 
+/// PseudoInstExpansion - Expansion information for a pseudo-instruction.
+/// Which instruction it expands to and how the operands map from the
+/// pseudo.
+class PseudoInstExpansion<dag Result> {
+  dag ResultInst = Result;     // The instruction to generate.
+  bit isPseudo = 1;
+}
+
 /// Predicates - These are extra conditionals which are turned into instruction
 /// selector matching code. Currently each predicate is just a string.
 class Predicate<string cond> {
@@ -277,12 +436,25 @@ class Predicate<string cond> {
   /// matcher, this is true.  Targets should set this by inheriting their
   /// feature from the AssemblerPredicate class in addition to Predicate.
   bit AssemblerMatcherPredicate = 0;
+
+  /// AssemblerCondString - Name of the subtarget feature being tested used
+  /// as alternative condition string used for assembler matcher.
+  /// e.g. "ModeThumb" is translated to "(Bits & ModeThumb) != 0".
+  ///      "!ModeThumb" is translated to "(Bits & ModeThumb) == 0".
+  /// It can also list multiple features separated by ",".
+  /// e.g. "ModeThumb,FeatureThumb2" is translated to
+  ///      "(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0".
+  string AssemblerCondString = "";
+
+  /// PredicateName - User-level name to use for the predicate. Mainly for use
+  /// in diagnostics such as missing feature errors in the asm matcher.
+  string PredicateName = "";
 }
 
 /// NoHonorSignDependentRounding - This predicate is true if support for
 /// sign-dependent-rounding is not enabled.
 def NoHonorSignDependentRounding
- : Predicate<"!HonorSignDependentRoundingFPMath()">;
+ : Predicate<"!TM.Options.HonorSignDependentRoundingFPMath()">;
 
 class Requires<list<Predicate> preds> {
   list<Predicate> Predicates = preds;
@@ -358,6 +530,11 @@ class AsmOperandClass {
   /// to immediates or registers and are very instruction specific (as flags to
   /// set in a processor register, coprocessor number, ...).
   string ParserMethod = ?;
+
+  // The diagnostic type to present when referencing this operand in a
+  // match failure error message. By default, use a generic "invalid operand"
+  // diagnostic. The target AsmParser maps these codes to text.
+  string DiagnosticType = "";
 }
 
 def ImmAsmOperand : AsmOperandClass {
@@ -367,12 +544,13 @@ def ImmAsmOperand : AsmOperandClass {
 /// Operand Types - These provide the built-in operand types that may be used
 /// by a target.  Targets can optionally provide their own operand types as
 /// needed, though this should not be needed for RISC targets.
-class Operand<ValueType ty> {
+class Operand<ValueType ty> : DAGOperand {
   ValueType Type = ty;
   string PrintMethod = "printOperand";
   string EncoderMethod = "";
   string DecoderMethod = "";
   string AsmOperandLowerMethod = ?;
+  string OperandType = "OPERAND_UNKNOWN";
   dag MIOperandInfo = (ops);
 
   // ParserMatchClass - The "match class" that operands of this type fit
@@ -386,6 +564,25 @@ class Operand<ValueType ty> {
   AsmOperandClass ParserMatchClass = ImmAsmOperand;
 }
 
+class RegisterOperand<RegisterClass regclass, string pm = "printOperand"> {
+  // RegClass - The register class of the operand.
+  RegisterClass RegClass = regclass;
+  // PrintMethod - The target method to call to print register operands of
+  // this type. The method normally will just use an alt-name index to look
+  // up the name to print. Default to the generic printOperand().
+  string PrintMethod = pm;
+  // ParserMatchClass - The "match class" that operands of this type fit
+  // in. Match classes are used to define the order in which instructions are
+  // match, to ensure that which instructions gets matched is deterministic.
+  //
+  // The target specific parser must be able to classify an parsed operand into
+  // a unique class, which does not partially overlap with any other classes. It
+  // can match a subset of some other class, in which case the AsmOperandClass
+  // should declare the other operand as one of its super classes.
+  AsmOperandClass ParserMatchClass;
+}
+
+let OperandType = "OPERAND_IMMEDIATE" in {
 def i1imm  : Operand<i1>;
 def i8imm  : Operand<i8>;
 def i16imm : Operand<i16>;
@@ -394,6 +591,7 @@ def i64imm : Operand<i64>;
 
 def f32imm : Operand<f32>;
 def f64imm : Operand<f64>;
+}
 
 /// zero_reg definition - Special node to stand for the zero register.
 ///
@@ -433,7 +631,7 @@ class InstrInfo {
 // Standard Pseudo Instructions.
 // This list must match TargetOpcodes.h and CodeGenTarget.cpp.
 // Only these instructions are allowed in the TargetOpcode namespace.
-let isCodeGenOnly = 1, Namespace = "TargetOpcode" in {
+let isCodeGenOnly = 1, isPseudo = 1, Namespace = "TargetOpcode" in {
 def PHI : Instruction {
   let OutOperandList = (outs);
   let InOperandList = (ins variable_ops);
@@ -526,6 +724,11 @@ def COPY : Instruction {
   let neverHasSideEffects = 1;
   let isAsCheapAsAMove = 1;
 }
+def BUNDLE : Instruction {
+  let OutOperandList = (outs);
+  let InOperandList = (ins variable_ops);
+  let AsmString = "BUNDLE";
+}
 }
 
 //===----------------------------------------------------------------------===//
@@ -545,7 +748,15 @@ class AsmParser {
   // function of the AsmParser class to call on every matched instruction.
   // This can be used to perform target specific instruction post-processing.
   string AsmParserInstCleanup  = "";
+}
+def DefaultAsmParser : AsmParser;
 
+//===----------------------------------------------------------------------===//
+// AsmParserVariant - Subtargets can have multiple different assembly parsers
+// (e.g. AT&T vs Intel syntax on X86 for example). This class can be
+// implemented by targets to describe such variants.
+//
+class AsmParserVariant {
   // Variant - AsmParsers can be of multiple different variants.  Variants are
   // used to support targets that need to parser multiple formats for the
   // assembly language.
@@ -562,15 +773,30 @@ class AsmParser {
   // purposes of matching.
   string RegisterPrefix = "";
 }
-def DefaultAsmParser : AsmParser;
+def DefaultAsmParserVariant : AsmParserVariant;
 
 /// AssemblerPredicate - This is a Predicate that can be used when the assembler
 /// matches instructions and aliases.
-class AssemblerPredicate {
+class AssemblerPredicate<string cond, string name = ""> {
   bit AssemblerMatcherPredicate = 1;
+  string AssemblerCondString = cond;
+  string PredicateName = name;
 }
 
-
+/// TokenAlias - This class allows targets to define assembler token
+/// operand aliases. That is, a token literal operand which is equivalent
+/// to another, canonical, token literal. For example, ARM allows:
+///   vmov.u32 s4, #0  -> vmov.i32, #0
+/// 'u32' is a more specific designator for the 32-bit integer type specifier
+/// and is legal for any instruction which accepts 'i32' as a datatype suffix.
+///   def : TokenAlias<".u32", ".i32">;
+///
+/// This works by marking the match class of 'From' as a subclass of the
+/// match class of 'To'.
+class TokenAlias<string From, string To> {
+  string FromToken = From;
+  string ToToken = To;
+}
 
 /// MnemonicAlias - This class allows targets to define assembler mnemonic
 /// aliases.  This should be used when all forms of one mnemonic are accepted
@@ -659,6 +885,10 @@ class Target {
   // AssemblyParsers - The AsmParser instances available for this target.
   list<AsmParser> AssemblyParsers = [DefaultAsmParser];
 
+  /// AssemblyParserVariants - The AsmParserVariant instances available for
+  /// this target.
+  list<AsmParserVariant> AssemblyParserVariants = [DefaultAsmParserVariant];
+
   // AssemblyWriters - The AsmWriter instances available for this target.
   list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
 }
@@ -703,6 +933,10 @@ class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f> {
   //
   string Name = n;
 
+  // SchedModel - The machine model for scheduling and instruction cost.
+  //
+  SchedMachineModel SchedModel = NoSchedModel;
+
   // ProcItin - The scheduling information for the target processor.
   //
   ProcessorItineraries ProcItin = pi;
@@ -711,6 +945,14 @@ class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f> {
   list<SubtargetFeature> Features = f;
 }
 
+// ProcessorModel allows subtargets to specify the more general
+// SchedMachineModel instead if a ProcessorItinerary. Subtargets will
+// gradually move to this newer form.
+class ProcessorModel<string n, SchedMachineModel m, list<SubtargetFeature> f>
+  : Processor<n, NoItineraries, f> {
+  let SchedModel = m;
+}
+
 //===----------------------------------------------------------------------===//
 // Pull in the common support for calling conventions.
 //