obj2yaml: Use the correct relocation type for different machine types
[oota-llvm.git] / lib / Analysis / BasicAliasAnalysis.cpp
index 9ed8f08af42da5c7690a5ab8730e19d5f28d3571..e26737483441603e64a51bc861c6be22644c8082 100644 (file)
@@ -28,6 +28,7 @@
 #include "llvm/IR/DerivedTypes.h"
 #include "llvm/IR/Dominators.h"
 #include "llvm/IR/Function.h"
+#include "llvm/IR/GetElementPtrTypeIterator.h"
 #include "llvm/IR/GlobalAlias.h"
 #include "llvm/IR/GlobalVariable.h"
 #include "llvm/IR/Instructions.h"
@@ -36,7 +37,6 @@
 #include "llvm/IR/Operator.h"
 #include "llvm/Pass.h"
 #include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/GetElementPtrTypeIterator.h"
 #include "llvm/Target/TargetLibraryInfo.h"
 #include <algorithm>
 using namespace llvm;
@@ -47,6 +47,11 @@ using namespace llvm;
 /// cannot be involved in a cycle.
 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
 
+// The max limit of the search depth in DecomposeGEPExpression() and
+// GetUnderlyingObject(), both functions need to use the same search
+// depth otherwise the algorithm in aliasGEP will assert.
+static const unsigned MaxLookupSearchDepth = 6;
+
 //===----------------------------------------------------------------------===//
 // Useful predicates
 //===----------------------------------------------------------------------===//
@@ -93,11 +98,11 @@ static bool isEscapeSource(const Value *V) {
 
 /// getObjectSize - Return the size of the object specified by V, or
 /// UnknownSize if unknown.
-static uint64_t getObjectSize(const Value *V, const DataLayout &TD,
+static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
                               const TargetLibraryInfo &TLI,
                               bool RoundToAlign = false) {
   uint64_t Size;
-  if (getObjectSize(V, Size, &TD, &TLI, RoundToAlign))
+  if (getObjectSize(V, Size, &DL, &TLI, RoundToAlign))
     return Size;
   return AliasAnalysis::UnknownSize;
 }
@@ -105,7 +110,7 @@ static uint64_t getObjectSize(const Value *V, const DataLayout &TD,
 /// isObjectSmallerThan - Return true if we can prove that the object specified
 /// by V is smaller than Size.
 static bool isObjectSmallerThan(const Value *V, uint64_t Size,
-                                const DataLayout &TD,
+                                const DataLayout &DL,
                                 const TargetLibraryInfo &TLI) {
   // Note that the meanings of the "object" are slightly different in the
   // following contexts:
@@ -138,7 +143,7 @@ static bool isObjectSmallerThan(const Value *V, uint64_t Size,
 
   // This function needs to use the aligned object size because we allow
   // reads a bit past the end given sufficient alignment.
-  uint64_t ObjectSize = getObjectSize(V, TD, TLI, /*RoundToAlign*/true);
+  uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/true);
 
   return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize < Size;
 }
@@ -146,8 +151,8 @@ static bool isObjectSmallerThan(const Value *V, uint64_t Size,
 /// isObjectSize - Return true if we can prove that the object specified
 /// by V has size Size.
 static bool isObjectSize(const Value *V, uint64_t Size,
-                         const DataLayout &TD, const TargetLibraryInfo &TLI) {
-  uint64_t ObjectSize = getObjectSize(V, TD, TLI);
+                         const DataLayout &DL, const TargetLibraryInfo &TLI) {
+  uint64_t ObjectSize = getObjectSize(V, DL, TLI);
   return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize == Size;
 }
 
@@ -200,7 +205,7 @@ namespace {
 /// represented in the result.
 static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
                                   ExtensionKind &Extension,
-                                  const DataLayout &TD, unsigned Depth) {
+                                  const DataLayout &DL, unsigned Depth) {
   assert(V->getType()->isIntegerTy() && "Not an integer value");
 
   // Limit our recursion depth.
@@ -217,23 +222,23 @@ static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
       case Instruction::Or:
         // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
         // analyze it.
-        if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), &TD))
+        if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), &DL))
           break;
         // FALL THROUGH.
       case Instruction::Add:
         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
-                                TD, Depth+1);
+                                DL, Depth+1);
         Offset += RHSC->getValue();
         return V;
       case Instruction::Mul:
         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
-                                TD, Depth+1);
+                                DL, Depth+1);
         Offset *= RHSC->getValue();
         Scale *= RHSC->getValue();
         return V;
       case Instruction::Shl:
         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
-                                TD, Depth+1);
+                                DL, Depth+1);
         Offset <<= RHSC->getValue().getLimitedValue();
         Scale <<= RHSC->getValue().getLimitedValue();
         return V;
@@ -254,7 +259,7 @@ static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
     Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt;
 
     Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension,
-                                        TD, Depth+1);
+                                        DL, Depth+1);
     Scale = Scale.zext(OldWidth);
     Offset = Offset.zext(OldWidth);
 
@@ -276,15 +281,18 @@ static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
 /// the gep cannot necessarily be reconstructed from its decomposed form.
 ///
 /// When DataLayout is around, this function is capable of analyzing everything
-/// that GetUnderlyingObject can look through.  When not, it just looks
-/// through pointer casts.
+/// that GetUnderlyingObject can look through. To be able to do that
+/// GetUnderlyingObject and DecomposeGEPExpression must use the same search
+/// depth (MaxLookupSearchDepth).
+/// When DataLayout not is around, it just looks through pointer casts.
 ///
 static const Value *
 DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
                        SmallVectorImpl<VariableGEPIndex> &VarIndices,
-                       const DataLayout *TD) {
+                       bool &MaxLookupReached, const DataLayout *DL) {
   // Limit recursion depth to limit compile time in crazy cases.
-  unsigned MaxLookup = 6;
+  unsigned MaxLookup = MaxLookupSearchDepth;
+  MaxLookupReached = false;
 
   BaseOffs = 0;
   do {
@@ -313,7 +321,7 @@ DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
       if (const Instruction *I = dyn_cast<Instruction>(V))
         // TODO: Get a DominatorTree and use it here.
         if (const Value *Simplified =
-              SimplifyInstruction(const_cast<Instruction *>(I), TD)) {
+              SimplifyInstruction(const_cast<Instruction *>(I), DL)) {
           V = Simplified;
           continue;
         }
@@ -328,7 +336,7 @@ DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
     // If we are lacking DataLayout information, we can't compute the offets of
     // elements computed by GEPs.  However, we can handle bitcast equivalent
     // GEPs.
-    if (TD == 0) {
+    if (DL == 0) {
       if (!GEPOp->hasAllZeroIndices())
         return V;
       V = GEPOp->getOperand(0);
@@ -347,30 +355,30 @@ DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
         unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
         if (FieldNo == 0) continue;
 
-        BaseOffs += TD->getStructLayout(STy)->getElementOffset(FieldNo);
+        BaseOffs += DL->getStructLayout(STy)->getElementOffset(FieldNo);
         continue;
       }
 
       // For an array/pointer, add the element offset, explicitly scaled.
       if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
         if (CIdx->isZero()) continue;
-        BaseOffs += TD->getTypeAllocSize(*GTI)*CIdx->getSExtValue();
+        BaseOffs += DL->getTypeAllocSize(*GTI)*CIdx->getSExtValue();
         continue;
       }
 
-      uint64_t Scale = TD->getTypeAllocSize(*GTI);
+      uint64_t Scale = DL->getTypeAllocSize(*GTI);
       ExtensionKind Extension = EK_NotExtended;
 
       // If the integer type is smaller than the pointer size, it is implicitly
       // sign extended to pointer size.
       unsigned Width = Index->getType()->getIntegerBitWidth();
-      if (TD->getPointerSizeInBits(AS) > Width)
+      if (DL->getPointerSizeInBits(AS) > Width)
         Extension = EK_SignExt;
 
       // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
       APInt IndexScale(Width, 0), IndexOffset(Width, 0);
       Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension,
-                                  *TD, 0);
+                                  *DL, 0);
 
       // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
       // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
@@ -392,7 +400,7 @@ DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
 
       // Make sure that we have a scale that makes sense for this target's
       // pointer size.
-      if (unsigned ShiftBits = 64 - TD->getPointerSizeInBits(AS)) {
+      if (unsigned ShiftBits = 64 - DL->getPointerSizeInBits(AS)) {
         Scale <<= ShiftBits;
         Scale = (int64_t)Scale >> ShiftBits;
       }
@@ -409,6 +417,7 @@ DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
   } while (--MaxLookup);
 
   // If the chain of expressions is too deep, just return early.
+  MaxLookupReached = true;
   return V;
 }
 
@@ -444,17 +453,16 @@ namespace {
       initializeBasicAliasAnalysisPass(*PassRegistry::getPassRegistry());
     }
 
-    virtual void initializePass() {
+    void initializePass() override {
       InitializeAliasAnalysis(this);
     }
 
-    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+    void getAnalysisUsage(AnalysisUsage &AU) const override {
       AU.addRequired<AliasAnalysis>();
       AU.addRequired<TargetLibraryInfo>();
     }
 
-    virtual AliasResult alias(const Location &LocA,
-                              const Location &LocB) {
+    AliasResult alias(const Location &LocA, const Location &LocB) override {
       assert(AliasCache.empty() && "AliasCache must be cleared after use!");
       assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
              "BasicAliasAnalysis doesn't support interprocedural queries.");
@@ -469,32 +477,32 @@ namespace {
       return Alias;
     }
 
-    virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
-                                       const Location &Loc);
+    ModRefResult getModRefInfo(ImmutableCallSite CS,
+                               const Location &Loc) override;
 
-    virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
-                                       ImmutableCallSite CS2) {
+    ModRefResult getModRefInfo(ImmutableCallSite CS1,
+                               ImmutableCallSite CS2) override {
       // The AliasAnalysis base class has some smarts, lets use them.
       return AliasAnalysis::getModRefInfo(CS1, CS2);
     }
 
     /// pointsToConstantMemory - Chase pointers until we find a (constant
     /// global) or not.
-    virtual bool pointsToConstantMemory(const Location &Loc, bool OrLocal);
+    bool pointsToConstantMemory(const Location &Loc, bool OrLocal) override;
 
     /// getModRefBehavior - Return the behavior when calling the given
     /// call site.
-    virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
+    ModRefBehavior getModRefBehavior(ImmutableCallSite CS) override;
 
     /// getModRefBehavior - Return the behavior when calling the given function.
     /// For use when the call site is not known.
-    virtual ModRefBehavior getModRefBehavior(const Function *F);
+    ModRefBehavior getModRefBehavior(const Function *F) override;
 
     /// getAdjustedAnalysisPointer - This method is used when a pass implements
     /// an analysis interface through multiple inheritance.  If needed, it
     /// should override this to adjust the this pointer as needed for the
     /// specified pass info.
-    virtual void *getAdjustedAnalysisPointer(const void *ID) {
+    void *getAdjustedAnalysisPointer(const void *ID) override {
       if (ID == &AliasAnalysis::ID)
         return (AliasAnalysis*)this;
       return this;
@@ -888,6 +896,7 @@ BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
                              const Value *UnderlyingV1,
                              const Value *UnderlyingV2) {
   int64_t GEP1BaseOffset;
+  bool GEP1MaxLookupReached;
   SmallVector<VariableGEPIndex, 4> GEP1VariableIndices;
 
   // If we have two gep instructions with must-alias or not-alias'ing base
@@ -909,11 +918,14 @@ BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
         // See if the computed offset from the common pointer tells us about the
         // relation of the resulting pointer.
         int64_t GEP2BaseOffset;
+        bool GEP2MaxLookupReached;
         SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
         const Value *GEP2BasePtr =
-          DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, DL);
+          DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices,
+                                 GEP2MaxLookupReached, DL);
         const Value *GEP1BasePtr =
-          DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, DL);
+          DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
+                                 GEP1MaxLookupReached, DL);
         // DecomposeGEPExpression and GetUnderlyingObject should return the
         // same result except when DecomposeGEPExpression has no DataLayout.
         if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
@@ -921,6 +933,10 @@ BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
              "DecomposeGEPExpression and GetUnderlyingObject disagree!");
           return MayAlias;
         }
+        // If the max search depth is reached the result is undefined
+        if (GEP2MaxLookupReached || GEP1MaxLookupReached)
+          return MayAlias;
+
         // Same offsets.
         if (GEP1BaseOffset == GEP2BaseOffset &&
             areVarIndicesEqual(GEP1VariableIndices, GEP2VariableIndices))
@@ -937,12 +953,15 @@ BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
     // exactly, see if the computed offset from the common pointer tells us
     // about the relation of the resulting pointer.
     const Value *GEP1BasePtr =
-      DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, DL);
+      DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
+                             GEP1MaxLookupReached, DL);
 
     int64_t GEP2BaseOffset;
+    bool GEP2MaxLookupReached;
     SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
     const Value *GEP2BasePtr =
-      DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, DL);
+      DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices,
+                             GEP2MaxLookupReached, DL);
 
     // DecomposeGEPExpression and GetUnderlyingObject should return the
     // same result except when DecomposeGEPExpression has no DataLayout.
@@ -951,6 +970,9 @@ BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
              "DecomposeGEPExpression and GetUnderlyingObject disagree!");
       return MayAlias;
     }
+    // If the max search depth is reached the result is undefined
+    if (GEP2MaxLookupReached || GEP1MaxLookupReached)
+      return MayAlias;
 
     // Subtract the GEP2 pointer from the GEP1 pointer to find out their
     // symbolic difference.
@@ -977,7 +999,8 @@ BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
       return R;
 
     const Value *GEP1BasePtr =
-      DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, DL);
+      DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
+                             GEP1MaxLookupReached, DL);
 
     // DecomposeGEPExpression and GetUnderlyingObject should return the
     // same result except when DecomposeGEPExpression has no DataLayout.
@@ -986,6 +1009,9 @@ BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
              "DecomposeGEPExpression and GetUnderlyingObject disagree!");
       return MayAlias;
     }
+    // If the max search depth is reached the result is undefined
+    if (GEP1MaxLookupReached)
+      return MayAlias;
   }
 
   // In the two GEP Case, if there is no difference in the offsets of the
@@ -1215,8 +1241,8 @@ BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size,
     return NoAlias;  // Scalars cannot alias each other
 
   // Figure out what objects these things are pointing to if we can.
-  const Value *O1 = GetUnderlyingObject(V1, DL);
-  const Value *O2 = GetUnderlyingObject(V2, DL);
+  const Value *O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth);
+  const Value *O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth);
 
   // Null values in the default address space don't point to any object, so they
   // don't alias any other pointer.