Remove dead code.
[oota-llvm.git] / lib / Analysis / ConstantFolding.cpp
index 8bb3673195df443a16c354a41add4a3e5438517c..4ae8859a257b1d4df1ee57fe7b7c2d28191b6bd7 100644 (file)
@@ -23,7 +23,6 @@
 #include "llvm/GlobalVariable.h"
 #include "llvm/Instructions.h"
 #include "llvm/Intrinsics.h"
-#include "llvm/LLVMContext.h"
 #include "llvm/Analysis/ValueTracking.h"
 #include "llvm/Target/TargetData.h"
 #include "llvm/ADT/SmallVector.h"
@@ -44,15 +43,24 @@ using namespace llvm;
 /// ConstantExpr if unfoldable.
 static Constant *FoldBitCast(Constant *C, const Type *DestTy,
                              const TargetData &TD) {
-  // If this is a bitcast from constant vector -> vector, fold it.
-  ConstantVector *CV = dyn_cast<ConstantVector>(C);
-  if (CV == 0)
-    return ConstantExpr::getBitCast(C, DestTy);
   
+  // This only handles casts to vectors currently.
   const VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
   if (DestVTy == 0)
     return ConstantExpr::getBitCast(C, DestTy);
   
+  // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
+  // vector so the code below can handle it uniformly.
+  if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
+    Constant *Ops = C; // don't take the address of C!
+    return FoldBitCast(ConstantVector::get(&Ops, 1), DestTy, TD);
+  }
+  
+  // If this is a bitcast from constant vector -> vector, fold it.
+  ConstantVector *CV = dyn_cast<ConstantVector>(C);
+  if (CV == 0)
+    return ConstantExpr::getBitCast(C, DestTy);
+  
   // If the element types match, VMCore can fold it.
   unsigned NumDstElt = DestVTy->getNumElements();
   unsigned NumSrcElt = CV->getNumOperands();
@@ -390,8 +398,8 @@ static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
                           BytesLoaded, TD))
     return 0;
 
-  APInt ResultVal(IntType->getBitWidth(), 0);
-  for (unsigned i = 0; i != BytesLoaded; ++i) {
+  APInt ResultVal = APInt(IntType->getBitWidth(), RawBytes[BytesLoaded-1]);
+  for (unsigned i = 1; i != BytesLoaded; ++i) {
     ResultVal <<= 8;
     ResultVal |= APInt(IntType->getBitWidth(), RawBytes[BytesLoaded-1-i]);
   }
@@ -424,7 +432,7 @@ Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
   // Instead of loading constant c string, use corresponding integer value
   // directly if string length is small enough.
   std::string Str;
-  if (TD && GetConstantStringInfo(CE->getOperand(0), Str) && !Str.empty()) {
+  if (TD && GetConstantStringInfo(CE, Str) && !Str.empty()) {
     unsigned StrLen = Str.length();
     const Type *Ty = cast<PointerType>(CE->getType())->getElementType();
     unsigned NumBits = Ty->getPrimitiveSizeInBits();
@@ -484,8 +492,7 @@ static Constant *ConstantFoldLoadInst(const LoadInst *LI, const TargetData *TD){
 /// these together.  If target data info is available, it is provided as TD, 
 /// otherwise TD is null.
 static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
-                                           Constant *Op1, const TargetData *TD,
-                                           LLVMContext &Context){
+                                           Constant *Op1, const TargetData *TD){
   // SROA
   
   // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
@@ -512,15 +519,15 @@ static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
 
 /// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
 /// constant expression, do so.
-static Constant *SymbolicallyEvaluateGEP(Constant* const* Ops, unsigned NumOps,
+static Constant *SymbolicallyEvaluateGEP(Constant *const *Ops, unsigned NumOps,
                                          const Type *ResultTy,
-                                         LLVMContext &Context,
                                          const TargetData *TD) {
   Constant *Ptr = Ops[0];
   if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized())
     return 0;
 
-  unsigned BitWidth = TD->getTypeSizeInBits(TD->getIntPtrType(Context));
+  unsigned BitWidth =
+    TD->getTypeSizeInBits(TD->getIntPtrType(Ptr->getContext()));
   APInt BasePtr(BitWidth, 0);
   bool BaseIsInt = true;
   if (!Ptr->isNullValue()) {
@@ -549,7 +556,7 @@ static Constant *SymbolicallyEvaluateGEP(Constant* const* Ops, unsigned NumOps,
   // If the base value for this address is a literal integer value, fold the
   // getelementptr to the resulting integer value casted to the pointer type.
   if (BaseIsInt) {
-    Constant *C = ConstantInt::get(Context, Offset+BasePtr);
+    Constant *C = ConstantInt::get(Ptr->getContext(), Offset+BasePtr);
     return ConstantExpr::getIntToPtr(C, ResultTy);
   }
 
@@ -557,20 +564,29 @@ static Constant *SymbolicallyEvaluateGEP(Constant* const* Ops, unsigned NumOps,
   // we eliminate over-indexing of the notional static type array bounds.
   // This makes it easy to determine if the getelementptr is "inbounds".
   // Also, this helps GlobalOpt do SROA on GlobalVariables.
+  Ptr = cast<Constant>(Ptr->stripPointerCasts());
   const Type *Ty = Ptr->getType();
   SmallVector<Constant*, 32> NewIdxs;
   do {
     if (const SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
-      // The only pointer indexing we'll do is on the first index of the GEP.
-      if (isa<PointerType>(ATy) && !NewIdxs.empty())
-        break;
+      if (isa<PointerType>(ATy)) {
+        // The only pointer indexing we'll do is on the first index of the GEP.
+        if (!NewIdxs.empty())
+          break;
+       
+        // Only handle pointers to sized types, not pointers to functions.
+        if (!ATy->getElementType()->isSized())
+          return 0;
+      }
+        
       // Determine which element of the array the offset points into.
       APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType()));
       if (ElemSize == 0)
         return 0;
       APInt NewIdx = Offset.udiv(ElemSize);
       Offset -= NewIdx * ElemSize;
-      NewIdxs.push_back(ConstantInt::get(TD->getIntPtrType(Context), NewIdx));
+      NewIdxs.push_back(ConstantInt::get(TD->getIntPtrType(Ty->getContext()),
+                                         NewIdx));
       Ty = ATy->getElementType();
     } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
       // Determine which field of the struct the offset points into. The
@@ -578,7 +594,8 @@ static Constant *SymbolicallyEvaluateGEP(Constant* const* Ops, unsigned NumOps,
       // know the offset is within the struct at this point.
       const StructLayout &SL = *TD->getStructLayout(STy);
       unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
-      NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Context), ElIdx));
+      NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
+                                         ElIdx));
       Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
       Ty = STy->getTypeAtIndex(ElIdx);
     } else {
@@ -619,8 +636,7 @@ static Constant *SymbolicallyEvaluateGEP(Constant* const* Ops, unsigned NumOps,
 /// is returned.  Note that this function can only fail when attempting to fold
 /// instructions like loads and stores, which have no constant expression form.
 ///
-Constant *llvm::ConstantFoldInstruction(Instruction *I, LLVMContext &Context,
-                                        const TargetData *TD) {
+Constant *llvm::ConstantFoldInstruction(Instruction *I, const TargetData *TD) {
   if (PHINode *PN = dyn_cast<PHINode>(I)) {
     if (PN->getNumIncomingValues() == 0)
       return UndefValue::get(PN->getType());
@@ -647,33 +663,35 @@ Constant *llvm::ConstantFoldInstruction(Instruction *I, LLVMContext &Context,
       return 0;  // All operands not constant!
 
   if (const CmpInst *CI = dyn_cast<CmpInst>(I))
-    return ConstantFoldCompareInstOperands(CI->getPredicate(),
-                                           Ops.data(), Ops.size(), 
-                                           Context, TD);
+    return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
+                                           TD);
   
   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
     return ConstantFoldLoadInst(LI, TD);
   
   return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
-                                  Ops.data(), Ops.size(), Context, TD);
+                                  Ops.data(), Ops.size(), TD);
 }
 
 /// ConstantFoldConstantExpression - Attempt to fold the constant expression
 /// using the specified TargetData.  If successful, the constant result is
 /// result is returned, if not, null is returned.
 Constant *llvm::ConstantFoldConstantExpression(ConstantExpr *CE,
-                                               LLVMContext &Context,
                                                const TargetData *TD) {
   SmallVector<Constant*, 8> Ops;
-  for (User::op_iterator i = CE->op_begin(), e = CE->op_end(); i != e; ++i)
-    Ops.push_back(cast<Constant>(*i));
+  for (User::op_iterator i = CE->op_begin(), e = CE->op_end(); i != e; ++i) {
+    Constant *NewC = cast<Constant>(*i);
+    // Recursively fold the ConstantExpr's operands.
+    if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(NewC))
+      NewC = ConstantFoldConstantExpression(NewCE, TD);
+    Ops.push_back(NewC);
+  }
 
   if (CE->isCompare())
-    return ConstantFoldCompareInstOperands(CE->getPredicate(),
-                                           Ops.data(), Ops.size(), 
-                                           Context, TD);
+    return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
+                                           TD);
   return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(),
-                                  Ops.data(), Ops.size(), Context, TD);
+                                  Ops.data(), Ops.size(), TD);
 }
 
 /// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
@@ -682,15 +700,17 @@ Constant *llvm::ConstantFoldConstantExpression(ConstantExpr *CE,
 /// attempting to fold instructions like loads and stores, which have no
 /// constant expression form.
 ///
+/// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/etc
+/// information, due to only being passed an opcode and operands. Constant
+/// folding using this function strips this information.
+///
 Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy, 
                                          Constant* const* Ops, unsigned NumOps,
-                                         LLVMContext &Context,
                                          const TargetData *TD) {
   // Handle easy binops first.
   if (Instruction::isBinaryOp(Opcode)) {
     if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
-      if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD,
-                                                  Context))
+      if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD))
         return C;
     
     return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
@@ -698,14 +718,13 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
   
   switch (Opcode) {
   default: return 0;
+  case Instruction::ICmp:
+  case Instruction::FCmp: assert(0 && "Invalid for compares");
   case Instruction::Call:
     if (Function *F = dyn_cast<Function>(Ops[0]))
       if (canConstantFoldCallTo(F))
         return ConstantFoldCall(F, Ops+1, NumOps-1);
     return 0;
-  case Instruction::ICmp:
-  case Instruction::FCmp:
-    llvm_unreachable("This function is invalid for compares: no predicate specified");
   case Instruction::PtrToInt:
     // If the input is a inttoptr, eliminate the pair.  This requires knowing
     // the width of a pointer, so it can't be done in ConstantExpr::getCast.
@@ -715,7 +734,7 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
         unsigned InWidth = Input->getType()->getScalarSizeInBits();
         if (TD->getPointerSizeInBits() < InWidth) {
           Constant *Mask = 
-            ConstantInt::get(Context, APInt::getLowBitsSet(InWidth,
+            ConstantInt::get(CE->getContext(), APInt::getLowBitsSet(InWidth,
                                                   TD->getPointerSizeInBits()));
           Input = ConstantExpr::getAnd(Input, Mask);
         }
@@ -757,7 +776,7 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
                                             AT->getNumElements()))) {
                         Constant *Index[] = {
                           Constant::getNullValue(CE->getType()),
-                          ConstantInt::get(Context, ElemIdx)
+                          ConstantInt::get(ElTy->getContext(), ElemIdx)
                         };
                         return
                         ConstantExpr::getGetElementPtr(GV, &Index[0], 2);
@@ -791,7 +810,7 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
   case Instruction::ShuffleVector:
     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
   case Instruction::GetElementPtr:
-    if (Constant *C = SymbolicallyEvaluateGEP(Ops, NumOps, DestTy, Context, TD))
+    if (Constant *C = SymbolicallyEvaluateGEP(Ops, NumOps, DestTy, TD))
       return C;
     
     return ConstantExpr::getGetElementPtr(Ops[0], Ops+1, NumOps-1);
@@ -803,9 +822,7 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
 /// returns a constant expression of the specified operands.
 ///
 Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
-                                                Constant*const * Ops, 
-                                                unsigned NumOps,
-                                                LLVMContext &Context,
+                                                Constant *Ops0, Constant *Ops1, 
                                                 const TargetData *TD) {
   // fold: icmp (inttoptr x), null         -> icmp x, 0
   // fold: icmp (ptrtoint x), 0            -> icmp x, null
@@ -814,17 +831,16 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
   //
   // ConstantExpr::getCompare cannot do this, because it doesn't have TD
   // around to know if bit truncation is happening.
-  if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops[0])) {
-    if (TD && Ops[1]->isNullValue()) {
-      const Type *IntPtrTy = TD->getIntPtrType(Context);
+  if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
+    if (TD && Ops1->isNullValue()) {
+      const Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
       if (CE0->getOpcode() == Instruction::IntToPtr) {
         // Convert the integer value to the right size to ensure we get the
         // proper extension or truncation.
         Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
                                                    IntPtrTy, false);
-        Constant *NewOps[] = { C, Constant::getNullValue(C->getType()) };
-        return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
-                                               Context, TD);
+        Constant *Null = Constant::getNullValue(C->getType());
+        return ConstantFoldCompareInstOperands(Predicate, C, Null, TD);
       }
       
       // Only do this transformation if the int is intptrty in size, otherwise
@@ -832,16 +848,14 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
       if (CE0->getOpcode() == Instruction::PtrToInt && 
           CE0->getType() == IntPtrTy) {
         Constant *C = CE0->getOperand(0);
-        Constant *NewOps[] = { C, Constant::getNullValue(C->getType()) };
-        // FIXME!
-        return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
-                                               Context, TD);
+        Constant *Null = Constant::getNullValue(C->getType());
+        return ConstantFoldCompareInstOperands(Predicate, C, Null, TD);
       }
     }
     
-    if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops[1])) {
+    if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
       if (TD && CE0->getOpcode() == CE1->getOpcode()) {
-        const Type *IntPtrTy = TD->getIntPtrType(Context);
+        const Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
 
         if (CE0->getOpcode() == Instruction::IntToPtr) {
           // Convert the integer value to the right size to ensure we get the
@@ -850,26 +864,35 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
                                                       IntPtrTy, false);
           Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
                                                       IntPtrTy, false);
-          Constant *NewOps[] = { C0, C1 };
-          return ConstantFoldCompareInstOperands(Predicate, NewOps, 2, 
-                                                 Context, TD);
+          return ConstantFoldCompareInstOperands(Predicate, C0, C1, TD);
         }
 
         // Only do this transformation if the int is intptrty in size, otherwise
         // there is a truncation or extension that we aren't modeling.
         if ((CE0->getOpcode() == Instruction::PtrToInt &&
              CE0->getType() == IntPtrTy &&
-             CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType())) {
-          Constant *NewOps[] = { 
-            CE0->getOperand(0), CE1->getOperand(0) 
-          };
-          return ConstantFoldCompareInstOperands(Predicate, NewOps, 2, 
-                                                 Context, TD);
-        }
+             CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()))
+          return ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0),
+                                                 CE1->getOperand(0), TD);
       }
     }
+    
+    // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
+    // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
+    if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
+        CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
+      Constant *LHS = 
+        ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0), Ops1,TD);
+      Constant *RHS = 
+        ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(1), Ops1,TD);
+      unsigned OpC = 
+        Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
+      Constant *Ops[] = { LHS, RHS };
+      return ConstantFoldInstOperands(OpC, LHS->getType(), Ops, 2, TD);
+    }
   }
-  return ConstantExpr::getCompare(Predicate, Ops[0], Ops[1]);
+  
+  return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
 }
 
 
@@ -987,7 +1010,7 @@ llvm::canConstantFoldCallTo(const Function *F) {
 }
 
 static Constant *ConstantFoldFP(double (*NativeFP)(double), double V, 
-                                const Type *Ty, LLVMContext &Context) {
+                                const Type *Ty) {
   errno = 0;
   V = NativeFP(V);
   if (errno != 0) {
@@ -996,17 +1019,15 @@ static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
   }
   
   if (Ty->isFloatTy())
-    return ConstantFP::get(Context, APFloat((float)V));
+    return ConstantFP::get(Ty->getContext(), APFloat((float)V));
   if (Ty->isDoubleTy())
-    return ConstantFP::get(Context, APFloat(V));
+    return ConstantFP::get(Ty->getContext(), APFloat(V));
   llvm_unreachable("Can only constant fold float/double");
   return 0; // dummy return to suppress warning
 }
 
 static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
-                                      double V, double W,
-                                      const Type *Ty,
-                                      LLVMContext &Context) {
+                                      double V, double W, const Type *Ty) {
   errno = 0;
   V = NativeFP(V, W);
   if (errno != 0) {
@@ -1015,9 +1036,9 @@ static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
   }
   
   if (Ty->isFloatTy())
-    return ConstantFP::get(Context, APFloat((float)V));
+    return ConstantFP::get(Ty->getContext(), APFloat((float)V));
   if (Ty->isDoubleTy())
-    return ConstantFP::get(Context, APFloat(V));
+    return ConstantFP::get(Ty->getContext(), APFloat(V));
   llvm_unreachable("Can only constant fold float/double");
   return 0; // dummy return to suppress warning
 }
@@ -1028,7 +1049,6 @@ Constant *
 llvm::ConstantFoldCall(Function *F, 
                        Constant *const *Operands, unsigned NumOperands) {
   if (!F->hasName()) return 0;
-  LLVMContext &Context = F->getContext();
   StringRef Name = F->getName();
 
   const Type *Ty = F->getReturnType();
@@ -1045,62 +1065,62 @@ llvm::ConstantFoldCall(Function *F,
       switch (Name[0]) {
       case 'a':
         if (Name == "acos")
-          return ConstantFoldFP(acos, V, Ty, Context);
+          return ConstantFoldFP(acos, V, Ty);
         else if (Name == "asin")
-          return ConstantFoldFP(asin, V, Ty, Context);
+          return ConstantFoldFP(asin, V, Ty);
         else if (Name == "atan")
-          return ConstantFoldFP(atan, V, Ty, Context);
+          return ConstantFoldFP(atan, V, Ty);
         break;
       case 'c':
         if (Name == "ceil")
-          return ConstantFoldFP(ceil, V, Ty, Context);
+          return ConstantFoldFP(ceil, V, Ty);
         else if (Name == "cos")
-          return ConstantFoldFP(cos, V, Ty, Context);
+          return ConstantFoldFP(cos, V, Ty);
         else if (Name == "cosh")
-          return ConstantFoldFP(cosh, V, Ty, Context);
+          return ConstantFoldFP(cosh, V, Ty);
         else if (Name == "cosf")
-          return ConstantFoldFP(cos, V, Ty, Context);
+          return ConstantFoldFP(cos, V, Ty);
         break;
       case 'e':
         if (Name == "exp")
-          return ConstantFoldFP(exp, V, Ty, Context);
+          return ConstantFoldFP(exp, V, Ty);
         break;
       case 'f':
         if (Name == "fabs")
-          return ConstantFoldFP(fabs, V, Ty, Context);
+          return ConstantFoldFP(fabs, V, Ty);
         else if (Name == "floor")
-          return ConstantFoldFP(floor, V, Ty, Context);
+          return ConstantFoldFP(floor, V, Ty);
         break;
       case 'l':
         if (Name == "log" && V > 0)
-          return ConstantFoldFP(log, V, Ty, Context);
+          return ConstantFoldFP(log, V, Ty);
         else if (Name == "log10" && V > 0)
-          return ConstantFoldFP(log10, V, Ty, Context);
+          return ConstantFoldFP(log10, V, Ty);
         else if (Name == "llvm.sqrt.f32" ||
                  Name == "llvm.sqrt.f64") {
           if (V >= -0.0)
-            return ConstantFoldFP(sqrt, V, Ty, Context);
+            return ConstantFoldFP(sqrt, V, Ty);
           else // Undefined
             return Constant::getNullValue(Ty);
         }
         break;
       case 's':
         if (Name == "sin")
-          return ConstantFoldFP(sin, V, Ty, Context);
+          return ConstantFoldFP(sin, V, Ty);
         else if (Name == "sinh")
-          return ConstantFoldFP(sinh, V, Ty, Context);
+          return ConstantFoldFP(sinh, V, Ty);
         else if (Name == "sqrt" && V >= 0)
-          return ConstantFoldFP(sqrt, V, Ty, Context);
+          return ConstantFoldFP(sqrt, V, Ty);
         else if (Name == "sqrtf" && V >= 0)
-          return ConstantFoldFP(sqrt, V, Ty, Context);
+          return ConstantFoldFP(sqrt, V, Ty);
         else if (Name == "sinf")
-          return ConstantFoldFP(sin, V, Ty, Context);
+          return ConstantFoldFP(sin, V, Ty);
         break;
       case 't':
         if (Name == "tan")
-          return ConstantFoldFP(tan, V, Ty, Context);
+          return ConstantFoldFP(tan, V, Ty);
         else if (Name == "tanh")
-          return ConstantFoldFP(tanh, V, Ty, Context);
+          return ConstantFoldFP(tanh, V, Ty);
         break;
       default:
         break;
@@ -1111,7 +1131,7 @@ llvm::ConstantFoldCall(Function *F,
     
     if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
       if (Name.startswith("llvm.bswap"))
-        return ConstantInt::get(Context, Op->getValue().byteSwap());
+        return ConstantInt::get(F->getContext(), Op->getValue().byteSwap());
       else if (Name.startswith("llvm.ctpop"))
         return ConstantInt::get(Ty, Op->getValue().countPopulation());
       else if (Name.startswith("llvm.cttz"))
@@ -1140,18 +1160,20 @@ llvm::ConstantFoldCall(Function *F,
                       Op2->getValueAPF().convertToDouble();
 
         if (Name == "pow")
-          return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty, Context);
+          return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
         if (Name == "fmod")
-          return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty, Context);
+          return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
         if (Name == "atan2")
-          return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty, Context);
+          return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
       } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
         if (Name == "llvm.powi.f32")
-          return ConstantFP::get(Context, APFloat((float)std::pow((float)Op1V,
+          return ConstantFP::get(F->getContext(),
+                                 APFloat((float)std::pow((float)Op1V,
                                                  (int)Op2C->getZExtValue())));
         if (Name == "llvm.powi.f64")
-          return ConstantFP::get(Context, APFloat((double)std::pow((double)Op1V,
-                                                 (int)Op2C->getZExtValue())));
+          return ConstantFP::get(F->getContext(),
+                                 APFloat((double)std::pow((double)Op1V,
+                                                   (int)Op2C->getZExtValue())));
       }
       return 0;
     }