Add dump method for Loops
[oota-llvm.git] / lib / Analysis / PostDominators.cpp
index 2bc3edbc2a82583808d5706a7133465a09cc6e17..f027949793f853e16c07c11d5839ce00f1635ce7 100644 (file)
-//===- DominatorSet.cpp - Dominator Set Calculation --------------*- C++ -*--=//
+//===- PostDominators.cpp - Post-Dominator Calculation --------------------===//
 //
-// This file provides a simple class to calculate the dominator set of a method.
+// This file implements the post-dominator construction algorithms.
 //
 //===----------------------------------------------------------------------===//
 
-#include "llvm/Analysis/Dominators.h"
-#include "llvm/Analysis/SimplifyCFG.h"   // To get cfg::UnifyAllExitNodes
-#include "llvm/Support/DepthFirstIterator.h"
-#include "llvm/Support/STLExtras.h"
-#include "llvm/Method.h"
-#include <algorithm>
+#include "llvm/Analysis/PostDominators.h"
+#include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
+#include "llvm/Support/CFG.h"
+#include "Support/DepthFirstIterator.h"
+#include "Support/SetOperations.h"
+using std::set;
 
 //===----------------------------------------------------------------------===//
-//  Helper Template
+//  PostDominatorSet Implementation
 //===----------------------------------------------------------------------===//
 
-// set_intersect - Identical to set_intersection, except that it works on 
-// set<>'s and is nicer to use.  Functionally, this iterates through S1, 
-// removing elements that are not contained in S2.
-//
-template <class Ty, class Ty2>
-void set_intersect(set<Ty> &S1, const set<Ty2> &S2) {
-  for (typename set<Ty>::iterator I = S1.begin(); I != S1.end();) {
-    const Ty &E = *I;
-    ++I;
-    if (!S2.count(E)) S1.erase(E);   // Erase element if not in S2
-  }
-}
-
-//===----------------------------------------------------------------------===//
-//  DominatorBase Implementation
-//===----------------------------------------------------------------------===//
-
-bool cfg::DominatorBase::isPostDominator() const { 
-  // Root can be null if there is no exit node from the CFG and is postdom set
-  return Root == 0 || Root != Root->getParent()->front();
-}
+static RegisterAnalysis<PostDominatorSet>
+B("postdomset", "Post-Dominator Set Construction", true);
 
-
-//===----------------------------------------------------------------------===//
-//  DominatorSet Implementation
-//===----------------------------------------------------------------------===//
-
-// DominatorSet ctor - Build either the dominator set or the post-dominator
-// set for a method...
+// Postdominator set construction.  This converts the specified function to only
+// have a single exit node (return stmt), then calculates the post dominance
+// sets for the function.
 //
-cfg::DominatorSet::DominatorSet(const Method *M) : DominatorBase(M->front()) {
-  calcForwardDominatorSet(M);
-}
-
-// calcForwardDominatorSet - This method calculates the forward dominator sets
-// for the specified method.
-//
-void cfg::DominatorSet::calcForwardDominatorSet(const Method *M) {
-  assert(Root && M && "Can't build dominator set of null method!");
-  assert(Root->pred_begin() == Root->pred_end() &&
-        "Root node has predecessors in method!");
-
-  bool Changed;
-  do {
-    Changed = false;
-
-    DomSetType WorkingSet;
-    df_iterator<const Method*> It = df_begin(M), End = df_end(M);
-    for ( ; It != End; ++It) {
-      const BasicBlock *BB = *It;
-      BasicBlock::pred_const_iterator PI = BB->pred_begin(),
-                                      PEnd = BB->pred_end();
-      if (PI != PEnd) {                // Is there SOME predecessor?
-       // Loop until we get to a predecessor that has had it's dom set filled
-       // in at least once.  We are guaranteed to have this because we are
-       // traversing the graph in DFO and have handled start nodes specially.
-       //
-       while (Doms[*PI].size() == 0) ++PI;
-       WorkingSet = Doms[*PI];
-
-       for (++PI; PI != PEnd; ++PI) { // Intersect all of the predecessor sets
-         DomSetType &PredSet = Doms[*PI];
-         if (PredSet.size())
-           set_intersect(WorkingSet, PredSet);
-       }
-      }
-       
-      WorkingSet.insert(BB);           // A block always dominates itself
-      DomSetType &BBSet = Doms[BB];
-      if (BBSet != WorkingSet) {
-       BBSet.swap(WorkingSet);        // Constant time operation!
-       Changed = true;                // The sets changed.
-      }
-      WorkingSet.clear();              // Clear out the set for next iteration
-    }
-  } while (Changed);
-}
-
-// Postdominator set constructor.  This ctor converts the specified method to
-// only have a single exit node (return stmt), then calculates the post
-// dominance sets for the method.
-//
-cfg::DominatorSet::DominatorSet(Method *M, bool PostDomSet)
-  : DominatorBase(M->front()) {
-  if (!PostDomSet) { calcForwardDominatorSet(M); return; }
+bool PostDominatorSet::runOnFunction(Function &F) {
+  Doms.clear();   // Reset from the last time we were run...
+  // Since we require that the unify all exit nodes pass has been run, we know
+  // that there can be at most one return instruction in the function left.
+  // Get it.
+  //
+  Root = getAnalysis<UnifyFunctionExitNodes>().getExitNode();
 
-  Root = cfg::UnifyAllExitNodes(M);
-  if (Root == 0) {  // No exit node for the method?  Postdomsets are all empty
-    for (Method::iterator MI = M->begin(), ME = M->end(); MI != ME; ++MI)
-      Doms[*MI] = DomSetType();
-    return;
+  if (Root == 0) {  // No exit node for the function?  Postdomsets are all empty
+    for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
+      Doms[FI] = DomSetType();
+    return false;
   }
 
   bool Changed;
@@ -114,11 +42,10 @@ cfg::DominatorSet::DominatorSet(Method *M, bool PostDomSet)
 
     set<const BasicBlock*> Visited;
     DomSetType WorkingSet;
-    idf_iterator<const BasicBlock*> It = idf_begin(Root), End = idf_end(Root);
+    idf_iterator<BasicBlock*> It = idf_begin(Root), End = idf_end(Root);
     for ( ; It != End; ++It) {
-      const BasicBlock *BB = *It;
-      BasicBlock::succ_const_iterator PI = BB->succ_begin(),
-                                      PEnd = BB->succ_end();
+      BasicBlock *BB = *It;
+      succ_iterator PI = succ_begin(BB), PEnd = succ_end(BB);
       if (PI != PEnd) {                // Is there SOME predecessor?
        // Loop until we get to a successor that has had it's dom set filled
        // in at least once.  We are guaranteed to have this because we are
@@ -132,6 +59,18 @@ cfg::DominatorSet::DominatorSet(Method *M, bool PostDomSet)
          if (PredSet.size())
            set_intersect(WorkingSet, PredSet);
        }
+      } else if (BB != Root) {
+        // If this isn't the root basic block and it has no successors, it must
+        // be an non-returning block.  Fib a bit by saying that the root node
+        // postdominates this unreachable node.  This isn't exactly true,
+        // because there is no path from this node to the root node, but it is
+        // sorta true because any paths to the exit node would have to go
+        // through this node.
+        //
+        // This allows for postdominator properties to be built for code that
+        // doesn't return in a reasonable manner.
+        //
+        WorkingSet = Doms[Root];
       }
        
       WorkingSet.insert(BB);           // A block always dominates itself
@@ -143,135 +82,39 @@ cfg::DominatorSet::DominatorSet(Method *M, bool PostDomSet)
       WorkingSet.clear();              // Clear out the set for next iteration
     }
   } while (Changed);
+  return false;
 }
 
+// getAnalysisUsage - This obviously provides a post-dominator set, but it also
+// requires the UnifyFunctionExitNodes pass.
+//
+void PostDominatorSet::getAnalysisUsage(AnalysisUsage &AU) const {
+  AU.setPreservesAll();
+  AU.addRequired<UnifyFunctionExitNodes>();
+}
 
 //===----------------------------------------------------------------------===//
-//  ImmediateDominators Implementation
+//  ImmediatePostDominators Implementation
 //===----------------------------------------------------------------------===//
 
-// calcIDoms - Calculate the immediate dominator mapping, given a set of
-// dominators for every basic block.
-void cfg::ImmediateDominators::calcIDoms(const DominatorSet &DS) {
-  // Loop over all of the nodes that have dominators... figuring out the IDOM
-  // for each node...
-  //
-  for (DominatorSet::const_iterator DI = DS.begin(), DEnd = DS.end(); 
-       DI != DEnd; ++DI) {
-    const BasicBlock *BB = DI->first;
-    const DominatorSet::DomSetType &Dominators = DI->second;
-    unsigned DomSetSize = Dominators.size();
-    if (DomSetSize == 1) continue;  // Root node... IDom = null
-
-    // Loop over all dominators of this node.  This corresponds to looping over
-    // nodes in the dominator chain, looking for a node whose dominator set is
-    // equal to the current nodes, except that the current node does not exist
-    // in it.  This means that it is one level higher in the dom chain than the
-    // current node, and it is our idom!
-    //
-    DominatorSet::DomSetType::const_iterator I = Dominators.begin();
-    DominatorSet::DomSetType::const_iterator End = Dominators.end();
-    for (; I != End; ++I) {   // Iterate over dominators...
-      // All of our dominators should form a chain, where the number of elements
-      // in the dominator set indicates what level the node is at in the chain.
-      // We want the node immediately above us, so it will have an identical 
-      // dominator set, except that BB will not dominate it... therefore it's
-      // dominator set size will be one less than BB's...
-      //
-      if (DS.getDominators(*I).size() == DomSetSize - 1) {
-       IDoms[BB] = *I;
-       break;
-      }
-    }
-  }
-}
-
+static RegisterAnalysis<ImmediatePostDominators>
+D("postidom", "Immediate Post-Dominators Construction", true);
 
 //===----------------------------------------------------------------------===//
-//  DominatorTree Implementation
+//  PostDominatorTree Implementation
 //===----------------------------------------------------------------------===//
 
-// DominatorTree dtor - Free all of the tree node memory.
-//
-cfg::DominatorTree::~DominatorTree() { 
-  for (NodeMapType::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I)
-    delete I->second;
-}
-
+static RegisterAnalysis<PostDominatorTree>
+F("postdomtree", "Post-Dominator Tree Construction", true);
 
-cfg::DominatorTree::DominatorTree(const ImmediateDominators &IDoms) 
-  : DominatorBase(IDoms.getRoot()) {
-  const Method *M = Root->getParent();
-
-  Nodes[Root] = new Node(Root, 0);   // Add a node for the root...
-
-  // Iterate over all nodes in depth first order...
-  for (df_iterator<const Method*> I = df_begin(M), E = df_end(M); I != E; ++I) {
-    const BasicBlock *BB = *I, *IDom = IDoms[*I];
-
-    if (IDom != 0) {   // Ignore the root node and other nasty nodes
-      // We know that the immediate dominator should already have a node, 
-      // because we are traversing the CFG in depth first order!
-      //
-      assert(Nodes[IDom] && "No node for IDOM?");
-      Node *IDomNode = Nodes[IDom];
-
-      // Add a new tree node for this BasicBlock, and link it as a child of
-      // IDomNode
-      Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
-    }
-  }
-}
-
-void cfg::DominatorTree::calculate(const DominatorSet &DS) {
+void PostDominatorTree::calculate(const PostDominatorSet &DS) {
   Nodes[Root] = new Node(Root, 0);   // Add a node for the root...
 
-  if (!isPostDominator()) {
+  if (Root) {
     // Iterate over all nodes in depth first order...
-    for (df_iterator<const BasicBlock*> I = df_begin(Root), E = df_end(Root);
+    for (idf_iterator<BasicBlock*> I = idf_begin(Root), E = idf_end(Root);
          I != E; ++I) {
-      const BasicBlock *BB = *I;
-      const DominatorSet::DomSetType &Dominators = DS.getDominators(BB);
-      unsigned DomSetSize = Dominators.size();
-      if (DomSetSize == 1) continue;  // Root node... IDom = null
-      
-      // Loop over all dominators of this node. This corresponds to looping over
-      // nodes in the dominator chain, looking for a node whose dominator set is
-      // equal to the current nodes, except that the current node does not exist
-      // in it. This means that it is one level higher in the dom chain than the
-      // current node, and it is our idom!  We know that we have already added
-      // a DominatorTree node for our idom, because the idom must be a
-      // predecessor in the depth first order that we are iterating through the
-      // method.
-      //
-      DominatorSet::DomSetType::const_iterator I = Dominators.begin();
-      DominatorSet::DomSetType::const_iterator End = Dominators.end();
-      for (; I != End; ++I) {   // Iterate over dominators...
-       // All of our dominators should form a chain, where the number of
-       // elements in the dominator set indicates what level the node is at in
-       // the chain.  We want the node immediately above us, so it will have
-       // an identical dominator set, except that BB will not dominate it...
-       // therefore it's dominator set size will be one less than BB's...
-       //
-       if (DS.getDominators(*I).size() == DomSetSize - 1) {
-         // We know that the immediate dominator should already have a node, 
-         // because we are traversing the CFG in depth first order!
-         //
-         Node *IDomNode = Nodes[*I];
-         assert(IDomNode && "No node for IDOM?");
-         
-         // Add a new tree node for this BasicBlock, and link it as a child of
-         // IDomNode
-         Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
-         break;
-       }
-      }
-    }
-  } else if (Root) {
-    // Iterate over all nodes in depth first order...
-    for (idf_iterator<const BasicBlock*> I = idf_begin(Root), E = idf_end(Root);
-         I != E; ++I) {
-      const BasicBlock *BB = *I;
+      BasicBlock *BB = *I;
       const DominatorSet::DomSetType &Dominators = DS.getDominators(BB);
       unsigned DomSetSize = Dominators.size();
       if (DomSetSize == 1) continue;  // Root node... IDom = null
@@ -283,15 +126,16 @@ void cfg::DominatorTree::calculate(const DominatorSet &DS) {
       // chain than the current node, and it is our idom!  We know that we have
       // already added a DominatorTree node for our idom, because the idom must
       // be a predecessor in the depth first order that we are iterating through
-      // the method.
+      // the function.
       //
       DominatorSet::DomSetType::const_iterator I = Dominators.begin();
       DominatorSet::DomSetType::const_iterator End = Dominators.end();
       for (; I != End; ++I) {   // Iterate over dominators...
-       // All of our dominators should form a chain, where the number of elements
-       // in the dominator set indicates what level the node is at in the chain.
-       // We want the node immediately above us, so it will have an identical 
-       // dominator set, except that BB will not dominate it... therefore it's
+       // All of our dominators should form a chain, where the number
+       // of elements in the dominator set indicates what level the
+       // node is at in the chain.  We want the node immediately
+       // above us, so it will have an identical dominator set,
+       // except that BB will not dominate it... therefore it's
        // dominator set size will be one less than BB's...
        //
        if (DS.getDominators(*I).size() == DomSetSize - 1) {
@@ -311,55 +155,23 @@ void cfg::DominatorTree::calculate(const DominatorSet &DS) {
   }
 }
 
-
-
 //===----------------------------------------------------------------------===//
-//  DominanceFrontier Implementation
+//  PostDominanceFrontier Implementation
 //===----------------------------------------------------------------------===//
 
-const cfg::DominanceFrontier::DomSetType &
-cfg::DominanceFrontier::calcDomFrontier(const DominatorTree &DT, 
-                                       const DominatorTree::Node *Node) {
-  // Loop over CFG successors to calculate DFlocal[Node]
-  const BasicBlock *BB = Node->getNode();
-  DomSetType &S = Frontiers[BB];       // The new set to fill in...
-
-  for (BasicBlock::succ_const_iterator SI = BB->succ_begin(),
-                                       SE = BB->succ_end(); SI != SE; ++SI) {
-    // Does Node immediately dominate this successor?
-    if (DT[*SI]->getIDom() != Node)
-      S.insert(*SI);
-  }
-
-  // At this point, S is DFlocal.  Now we union in DFup's of our children...
-  // Loop through and visit the nodes that Node immediately dominates (Node's
-  // children in the IDomTree)
-  //
-  for (DominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end();
-       NI != NE; ++NI) {
-    DominatorTree::Node *IDominee = *NI;
-    const DomSetType &ChildDF = calcDomFrontier(DT, IDominee);
-
-    DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end();
-    for (; CDFI != CDFE; ++CDFI) {
-      if (!Node->dominates(DT[*CDFI]))
-       S.insert(*CDFI);
-    }
-  }
+static RegisterAnalysis<PostDominanceFrontier>
+H("postdomfrontier", "Post-Dominance Frontier Construction", true);
 
-  return S;
-}
-
-const cfg::DominanceFrontier::DomSetType &
-cfg::DominanceFrontier::calcPostDomFrontier(const DominatorTree &DT, 
-                                           const DominatorTree::Node *Node) {
+const DominanceFrontier::DomSetType &
+PostDominanceFrontier::calculate(const PostDominatorTree &DT, 
+                                 const DominatorTree::Node *Node) {
   // Loop over CFG successors to calculate DFlocal[Node]
-  const BasicBlock *BB = Node->getNode();
+  BasicBlock *BB = Node->getNode();
   DomSetType &S = Frontiers[BB];       // The new set to fill in...
   if (!Root) return S;
 
-  for (BasicBlock::pred_const_iterator SI = BB->pred_begin(),
-                                       SE = BB->pred_end(); SI != SE; ++SI) {
+  for (pred_iterator SI = pred_begin(BB), SE = pred_end(BB);
+       SI != SE; ++SI) {
     // Does Node immediately dominate this predeccessor?
     if (DT[*SI]->getIDom() != Node)
       S.insert(*SI);
@@ -369,10 +181,10 @@ cfg::DominanceFrontier::calcPostDomFrontier(const DominatorTree &DT,
   // Loop through and visit the nodes that Node immediately dominates (Node's
   // children in the IDomTree)
   //
-  for (DominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end();
-       NI != NE; ++NI) {
+  for (PostDominatorTree::Node::const_iterator
+         NI = Node->begin(), NE = Node->end(); NI != NE; ++NI) {
     DominatorTree::Node *IDominee = *NI;
-    const DomSetType &ChildDF = calcPostDomFrontier(DT, IDominee);
+    const DomSetType &ChildDF = calculate(DT, IDominee);
 
     DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end();
     for (; CDFI != CDFE; ++CDFI) {
@@ -383,3 +195,7 @@ cfg::DominanceFrontier::calcPostDomFrontier(const DominatorTree &DT,
 
   return S;
 }
+
+// stub - a dummy function to make linking work ok.
+void PostDominanceFrontier::stub() {
+}