Attempt to update the shadow stack GC pass to the new EH model.
[oota-llvm.git] / lib / Analysis / ScalarEvolution.cpp
index 5c6934304baaa22f4d4f7c7a60d90e8b2ad4c26a..b1662a026086e0d1bd9471fbadc22fe2a4a742af 100644 (file)
@@ -652,7 +652,7 @@ static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
 /// Assume, K > 0.
 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
                                        ScalarEvolution &SE,
-                                       TypeResultTy) {
+                                       Type *ResultTy) {
   // Handle the simplest case efficiently.
   if (K == 1)
     return SE.getTruncateOrZeroExtend(It, ResultTy);
@@ -1735,7 +1735,7 @@ const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
       // If all of the other operands were loop invariant, we are done.
       if (Ops.size() == 1) return NewRec;
 
-      // Otherwise, add the folded AddRec by the non-liv parts.
+      // Otherwise, add the folded AddRec by the non-invariant parts.
       for (unsigned i = 0;; ++i)
         if (Ops[i] == AddRec) {
           Ops[i] = NewRec;
@@ -1960,7 +1960,7 @@ const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
       // If all of the other operands were loop invariant, we are done.
       if (Ops.size() == 1) return NewRec;
 
-      // Otherwise, multiply the folded AddRec by the non-liv parts.
+      // Otherwise, multiply the folded AddRec by the non-invariant parts.
       for (unsigned i = 0;; ++i)
         if (Ops[i] == AddRec) {
           Ops[i] = NewRec;
@@ -1974,31 +1974,57 @@ const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
     // multiplied together.  If so, we can fold them.
     for (unsigned OtherIdx = Idx+1;
          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
-         ++OtherIdx)
+         ++OtherIdx) {
+      bool Retry = false;
       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
-        // F * G, where F = {A,+,B}<L> and G = {C,+,D}<L>  -->
-        // {A*C,+,F*D + G*B + B*D}<L>
+        // {A,+,B}<L> * {C,+,D}<L>  -->  {A*C,+,A*D + B*C + B*D,+,2*B*D}<L>
+        //
+        // {A,+,B} * {C,+,D} = A+It*B * C+It*D = A*C + (A*D + B*C)*It + B*D*It^2
+        // Given an equation of the form x + y*It + z*It^2 (above), we want to
+        // express it in terms of {X,+,Y,+,Z}.
+        // {X,+,Y,+,Z} = X + Y*It + Z*(It^2 - It)/2.
+        // Rearranging, X = x, Y = y+z, Z = 2z.
+        //
+        // x = A*C, y = (A*D + B*C), z = B*D.
+        // Therefore X = A*C, Y = A*D + B*C + B*D and Z = 2*B*D.
         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
              ++OtherIdx)
           if (const SCEVAddRecExpr *OtherAddRec =
                 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
             if (OtherAddRec->getLoop() == AddRecLoop) {
-              const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
-              const SCEV *NewStart = getMulExpr(F->getStart(), G->getStart());
-              const SCEV *B = F->getStepRecurrence(*this);
-              const SCEV *D = G->getStepRecurrence(*this);
-              const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
-                                               getMulExpr(G, B),
-                                               getMulExpr(B, D));
-              const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
-                                                    F->getLoop(),
-                                                    SCEV::FlagAnyWrap);
-              if (Ops.size() == 2) return NewAddRec;
-              Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
-              Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
+              const SCEV *A = AddRec->getStart();
+              const SCEV *B = AddRec->getStepRecurrence(*this);
+              const SCEV *C = OtherAddRec->getStart();
+              const SCEV *D = OtherAddRec->getStepRecurrence(*this);
+              const SCEV *NewStart = getMulExpr(A, C);
+              const SCEV *BD = getMulExpr(B, D);
+              const SCEV *NewStep = getAddExpr(getMulExpr(A, D),
+                                               getMulExpr(B, C), BD);
+              const SCEV *NewSecondOrderStep =
+                  getMulExpr(BD, getConstant(BD->getType(), 2));
+
+              // This can happen when AddRec or OtherAddRec have >3 operands.
+              // TODO: support these add-recs.
+              if (isLoopInvariant(NewStart, AddRecLoop) &&
+                  isLoopInvariant(NewStep, AddRecLoop) &&
+                  isLoopInvariant(NewSecondOrderStep, AddRecLoop)) {
+                SmallVector<const SCEV *, 3> AddRecOps;
+                AddRecOps.push_back(NewStart);
+                AddRecOps.push_back(NewStep);
+                AddRecOps.push_back(NewSecondOrderStep);
+                const SCEV *NewAddRec = getAddRecExpr(AddRecOps,
+                                                      AddRec->getLoop(),
+                                                      SCEV::FlagAnyWrap);
+                if (Ops.size() == 2) return NewAddRec;
+                Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
+                Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
+                Retry = true;
+              }
             }
-        return getMulExpr(Ops);
+        if (Retry)
+          return getMulExpr(Ops);
       }
+    }
 
     // Otherwise couldn't fold anything into this recurrence.  Move onto the
     // next one.
@@ -2051,12 +2077,13 @@ const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
         ++MaxShiftAmt;
       IntegerType *ExtTy =
         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
-      // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
         if (const SCEVConstant *Step =
-              dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
-          if (!Step->getValue()->getValue()
-                .urem(RHSC->getValue()->getValue()) &&
+            dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
+          // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
+          const APInt &StepInt = Step->getValue()->getValue();
+          const APInt &DivInt = RHSC->getValue()->getValue();
+          if (!StepInt.urem(DivInt) &&
               getZeroExtendExpr(AR, ExtTy) ==
               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
                             getZeroExtendExpr(Step, ExtTy),
@@ -2067,6 +2094,22 @@ const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
             return getAddRecExpr(Operands, AR->getLoop(),
                                  SCEV::FlagNW);
           }
+          /// Get a canonical UDivExpr for a recurrence.
+          /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
+          // We can currently only fold X%N if X is constant.
+          const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
+          if (StartC && !DivInt.urem(StepInt) &&
+              getZeroExtendExpr(AR, ExtTy) ==
+              getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
+                            getZeroExtendExpr(Step, ExtTy),
+                            AR->getLoop(), SCEV::FlagAnyWrap)) {
+            const APInt &StartInt = StartC->getValue()->getValue();
+            const APInt &StartRem = StartInt.urem(StepInt);
+            if (StartRem != 0)
+              LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
+                                  AR->getLoop(), SCEV::FlagNW);
+          }
+        }
       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
         SmallVector<const SCEV *, 4> Operands;
@@ -3503,7 +3546,13 @@ const SCEV *ScalarEvolution::createSCEV(Value *V) {
         AddOps.push_back(Op1);
     }
     AddOps.push_back(getSCEV(U->getOperand(0)));
-    return getAddExpr(AddOps);
+    SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
+    OverflowingBinaryOperator *OBO = cast<OverflowingBinaryOperator>(V);
+    if (OBO->hasNoSignedWrap())
+      setFlags(Flags, SCEV::FlagNSW);
+    if (OBO->hasNoUnsignedWrap())
+      setFlags(Flags, SCEV::FlagNUW);
+    return getAddExpr(AddOps, Flags);
   }
   case Instruction::Mul: {
     // See the Add code above.
@@ -3813,11 +3862,68 @@ const SCEV *ScalarEvolution::createSCEV(Value *V) {
 //                   Iteration Count Computation Code
 //
 
+/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
+/// normal unsigned value, if possible. Returns 0 if the trip count is unknown
+/// or not constant. Will also return 0 if the maximum trip count is very large
+/// (>= 2^32)
+unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
+                                                    BasicBlock *ExitBlock) {
+  const SCEVConstant *ExitCount =
+    dyn_cast<SCEVConstant>(getExitCount(L, ExitBlock));
+  if (!ExitCount)
+    return 0;
+
+  ConstantInt *ExitConst = ExitCount->getValue();
+
+  // Guard against huge trip counts.
+  if (ExitConst->getValue().getActiveBits() > 32)
+    return 0;
+
+  // In case of integer overflow, this returns 0, which is correct.
+  return ((unsigned)ExitConst->getZExtValue()) + 1;
+}
+
+/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
+/// trip count of this loop as a normal unsigned value, if possible. This
+/// means that the actual trip count is always a multiple of the returned
+/// value (don't forget the trip count could very well be zero as well!).
+///
+/// Returns 1 if the trip count is unknown or not guaranteed to be the
+/// multiple of a constant (which is also the case if the trip count is simply
+/// constant, use getSmallConstantTripCount for that case), Will also return 1
+/// if the trip count is very large (>= 2^32).
+unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
+                                                       BasicBlock *ExitBlock) {
+  const SCEV *ExitCount = getExitCount(L, ExitBlock);
+  if (ExitCount == getCouldNotCompute())
+    return 1;
+
+  // Get the trip count from the BE count by adding 1.
+  const SCEV *TCMul = getAddExpr(ExitCount,
+                                 getConstant(ExitCount->getType(), 1));
+  // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
+  // to factor simple cases.
+  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
+    TCMul = Mul->getOperand(0);
+
+  const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
+  if (!MulC)
+    return 1;
+
+  ConstantInt *Result = MulC->getValue();
+
+  // Guard against huge trip counts.
+  if (!Result || Result->getValue().getActiveBits() > 32)
+    return 1;
+
+  return (unsigned)Result->getZExtValue();
+}
+
 // getExitCount - Get the expression for the number of loop iterations for which
-// this loop is guaranteed not to exit via ExitBlock. Otherwise return
+// this loop is guaranteed not to exit via ExitintBlock. Otherwise return
 // SCEVCouldNotCompute.
-const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitBlock) {
-  return getBackedgeTakenInfo(L).getExact(ExitBlock, this);
+const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
+  return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
 }
 
 /// getBackedgeTakenCount - If the specified loop has a predictable
@@ -4002,7 +4108,7 @@ ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
   if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
 
   // We need at least one computable exit.
-  if (!ExitNotTaken.ExitBlock) return SE->getCouldNotCompute();
+  if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
   assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
 
   const SCEV *BECount = 0;
@@ -4016,17 +4122,18 @@ ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
     else
       BECount = SE->getUMinFromMismatchedTypes(BECount, ENT->ExactNotTaken);
   }
+  assert(BECount && "Invalid not taken count for loop exit");
   return BECount;
 }
 
 /// getExact - Get the exact not taken count for this loop exit.
 const SCEV *
-ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitBlock,
+ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
                                              ScalarEvolution *SE) const {
   for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
        ENT != 0; ENT = ENT->getNextExit()) {
 
-    if (ENT->ExitBlock == ExitBlock)
+    if (ENT->ExitingBlock == ExitingBlock)
       return ENT->ExactNotTaken;
   }
   return SE->getCouldNotCompute();
@@ -4050,7 +4157,7 @@ ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
   unsigned NumExits = ExitCounts.size();
   if (NumExits == 0) return;
 
-  ExitNotTaken.ExitBlock = ExitCounts[0].first;
+  ExitNotTaken.ExitingBlock = ExitCounts[0].first;
   ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
   if (NumExits == 1) return;
 
@@ -4060,14 +4167,14 @@ ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
   ExitNotTakenInfo *PrevENT = &ExitNotTaken;
   for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
     PrevENT->setNextExit(ENT);
-    ENT->ExitBlock = ExitCounts[i].first;
+    ENT->ExitingBlock = ExitCounts[i].first;
     ENT->ExactNotTaken = ExitCounts[i].second;
   }
 }
 
 /// clear - Invalidate this result and free the ExitNotTakenInfo array.
 void ScalarEvolution::BackedgeTakenInfo::clear() {
-  ExitNotTaken.ExitBlock = 0;
+  ExitNotTaken.ExitingBlock = 0;
   ExitNotTaken.ExactNotTaken = 0;
   delete[] ExitNotTaken.getNextExit();
 }