FP16 constfolding
[oota-llvm.git] / lib / Analysis / ScalarEvolutionExpander.cpp
index ccd6d6b27785bb9602aa5e54631c17e26b12846b..e55ca53c9505770d9249ecfd0d8e2765a4e18ebe 100644 (file)
@@ -15,6 +15,7 @@
 
 #include "llvm/Analysis/ScalarEvolutionExpander.h"
 #include "llvm/Analysis/LoopInfo.h"
+#include "llvm/IntrinsicInst.h"
 #include "llvm/LLVMContext.h"
 #include "llvm/Target/TargetData.h"
 #include "llvm/ADT/STLExtras.h"
@@ -137,6 +138,10 @@ Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
   if (IP != BlockBegin) {
     --IP;
     for (; ScanLimit; --IP, --ScanLimit) {
+      // Don't count dbg.value against the ScanLimit, to avoid perturbing the
+      // generated code.
+      if (isa<DbgInfoIntrinsic>(IP))
+        ScanLimit++;
       if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
           IP->getOperand(1) == RHS)
         return IP;
@@ -144,15 +149,34 @@ Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
     }
   }
 
+  // Save the original insertion point so we can restore it when we're done.
+  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
+  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
+
+  // Move the insertion point out of as many loops as we can.
+  while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
+    if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
+    BasicBlock *Preheader = L->getLoopPreheader();
+    if (!Preheader) break;
+
+    // Ok, move up a level.
+    Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
+  }
+
   // If we haven't found this binop, insert it.
   Value *BO = Builder.CreateBinOp(Opcode, LHS, RHS, "tmp");
   rememberInstruction(BO);
+
+  // Restore the original insert point.
+  if (SaveInsertBB)
+    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
+
   return BO;
 }
 
 /// FactorOutConstant - Test if S is divisible by Factor, using signed
 /// division. If so, update S with Factor divided out and return true.
-/// S need not be evenly divisble if a reasonable remainder can be
+/// S need not be evenly divisible if a reasonable remainder can be
 /// computed.
 /// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
 /// unnecessary; in its place, just signed-divide Ops[i] by the scale and
@@ -208,9 +232,7 @@ static bool FactorOutConstant(const SCEV *&S,
       const SCEVConstant *FC = cast<SCEVConstant>(Factor);
       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
         if (!C->getValue()->getValue().srem(FC->getValue()->getValue())) {
-          const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands();
-          SmallVector<const SCEV *, 4> NewMulOps(MOperands.begin(),
-                                                 MOperands.end());
+          SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
           NewMulOps[0] =
             SE.getConstant(C->getValue()->getValue().sdiv(
                                                    FC->getValue()->getValue()));
@@ -225,9 +247,7 @@ static bool FactorOutConstant(const SCEV *&S,
         const SCEV *Remainder = SE.getIntegerSCEV(0, SOp->getType());
         if (FactorOutConstant(SOp, Remainder, Factor, SE, TD) &&
             Remainder->isZero()) {
-          const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands();
-          SmallVector<const SCEV *, 4> NewMulOps(MOperands.begin(),
-                                                 MOperands.end());
+          SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
           NewMulOps[i] = SOp;
           S = SE.getMulExpr(NewMulOps);
           return true;
@@ -273,13 +293,11 @@ static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
                     SE.getAddExpr(NoAddRecs);
   // If it returned an add, use the operands. Otherwise it simplified
   // the sum into a single value, so just use that.
+  Ops.clear();
   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
-    Ops = Add->getOperands();
-  else {
-    Ops.clear();
-    if (!Sum->isZero())
-      Ops.push_back(Sum);
-  }
+    Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
+  else if (!Sum->isZero())
+    Ops.push_back(Sum);
   // Then append the addrecs.
   Ops.insert(Ops.end(), AddRecs.begin(), AddRecs.end());
 }
@@ -462,7 +480,7 @@ Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
       break;
   }
 
-  // If none of the operands were convertable to proper GEP indices, cast
+  // If none of the operands were convertible to proper GEP indices, cast
   // the base to i8* and do an ugly getelementptr with that. It's still
   // better than ptrtoint+arithmetic+inttoptr at least.
   if (!AnyNonZeroIndices) {
@@ -486,6 +504,10 @@ Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
     if (IP != BlockBegin) {
       --IP;
       for (; ScanLimit; --IP, --ScanLimit) {
+        // Don't count dbg.value against the ScanLimit, to avoid perturbing the
+        // generated code.
+        if (isa<DbgInfoIntrinsic>(IP))
+          ScanLimit++;
         if (IP->getOpcode() == Instruction::GetElementPtr &&
             IP->getOperand(0) == V && IP->getOperand(1) == Idx)
           return IP;
@@ -493,12 +515,56 @@ Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
       }
     }
 
+    // Save the original insertion point so we can restore it when we're done.
+    BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
+    BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
+
+    // Move the insertion point out of as many loops as we can.
+    while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
+      if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
+      BasicBlock *Preheader = L->getLoopPreheader();
+      if (!Preheader) break;
+
+      // Ok, move up a level.
+      Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
+    }
+
     // Emit a GEP.
     Value *GEP = Builder.CreateGEP(V, Idx, "uglygep");
     rememberInstruction(GEP);
+
+    // Restore the original insert point.
+    if (SaveInsertBB)
+      restoreInsertPoint(SaveInsertBB, SaveInsertPt);
+
     return GEP;
   }
 
+  // Save the original insertion point so we can restore it when we're done.
+  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
+  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
+
+  // Move the insertion point out of as many loops as we can.
+  while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
+    if (!L->isLoopInvariant(V)) break;
+
+    bool AnyIndexNotLoopInvariant = false;
+    for (SmallVectorImpl<Value *>::const_iterator I = GepIndices.begin(),
+         E = GepIndices.end(); I != E; ++I)
+      if (!L->isLoopInvariant(*I)) {
+        AnyIndexNotLoopInvariant = true;
+        break;
+      }
+    if (AnyIndexNotLoopInvariant)
+      break;
+
+    BasicBlock *Preheader = L->getLoopPreheader();
+    if (!Preheader) break;
+
+    // Ok, move up a level.
+    Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
+  }
+
   // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
   // because ScalarEvolution may have changed the address arithmetic to
   // compute a value which is beyond the end of the allocated object.
@@ -511,6 +577,11 @@ Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
                                  "scevgep");
   Ops.push_back(SE.getUnknown(GEP));
   rememberInstruction(GEP);
+
+  // Restore the original insert point.
+  if (SaveInsertBB)
+    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
+
   return expand(SE.getAddExpr(Ops));
 }
 
@@ -528,70 +599,179 @@ static bool isNonConstantNegative(const SCEV *F) {
   return SC->getValue()->getValue().isNegative();
 }
 
-Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
-  int NumOperands = S->getNumOperands();
-  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
+/// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
+/// SCEV expansion. If they are nested, this is the most nested. If they are
+/// neighboring, pick the later.
+static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
+                                        DominatorTree &DT) {
+  if (!A) return B;
+  if (!B) return A;
+  if (A->contains(B)) return B;
+  if (B->contains(A)) return A;
+  if (DT.dominates(A->getHeader(), B->getHeader())) return B;
+  if (DT.dominates(B->getHeader(), A->getHeader())) return A;
+  return A; // Arbitrarily break the tie.
+}
 
-  // Find the index of an operand to start with. Choose the operand with
-  // pointer type, if there is one, or the last operand otherwise.
-  int PIdx = 0;
-  for (; PIdx != NumOperands - 1; ++PIdx)
-    if (S->getOperand(PIdx)->getType()->isPointerTy()) break;
-
-  // Expand code for the operand that we chose.
-  Value *V = expand(S->getOperand(PIdx));
-
-  // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
-  // comments on expandAddToGEP for details.
-  if (const PointerType *PTy = dyn_cast<PointerType>(V->getType())) {
-    // Take the operand at PIdx out of the list.
-    const SmallVectorImpl<const SCEV *> &Ops = S->getOperands();
-    SmallVector<const SCEV *, 8> NewOps;
-    NewOps.insert(NewOps.end(), Ops.begin(), Ops.begin() + PIdx);
-    NewOps.insert(NewOps.end(), Ops.begin() + PIdx + 1, Ops.end());
-    // Make a GEP.
-    return expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, V);
+/// GetRelevantLoop - Get the most relevant loop associated with the given
+/// expression, according to PickMostRelevantLoop.
+static const Loop *GetRelevantLoop(const SCEV *S, LoopInfo &LI,
+                                   DominatorTree &DT) {
+  if (isa<SCEVConstant>(S))
+    return 0;
+  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
+    if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
+      return LI.getLoopFor(I->getParent());
+    return 0;
+  }
+  if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
+    const Loop *L = 0;
+    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
+      L = AR->getLoop();
+    for (SCEVNAryExpr::op_iterator I = N->op_begin(), E = N->op_end();
+         I != E; ++I)
+      L = PickMostRelevantLoop(L, GetRelevantLoop(*I, LI, DT), DT);
+    return L;
   }
+  if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
+    return GetRelevantLoop(C->getOperand(), LI, DT);
+  if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S))
+    return PickMostRelevantLoop(GetRelevantLoop(D->getLHS(), LI, DT),
+                                GetRelevantLoop(D->getRHS(), LI, DT),
+                                DT);
+  llvm_unreachable("Unexpected SCEV type!");
+}
+
+/// LoopCompare - Compare loops by PickMostRelevantLoop.
+class LoopCompare {
+  DominatorTree &DT;
+public:
+  explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
+
+  bool operator()(std::pair<const Loop *, const SCEV *> LHS,
+                  std::pair<const Loop *, const SCEV *> RHS) const {
+    // Compare loops with PickMostRelevantLoop.
+    if (LHS.first != RHS.first)
+      return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
+
+    // If one operand is a non-constant negative and the other is not,
+    // put the non-constant negative on the right so that a sub can
+    // be used instead of a negate and add.
+    if (isNonConstantNegative(LHS.second)) {
+      if (!isNonConstantNegative(RHS.second))
+        return false;
+    } else if (isNonConstantNegative(RHS.second))
+      return true;
 
-  // Otherwise, we'll expand the rest of the SCEVAddExpr as plain integer
-  // arithmetic.
-  V = InsertNoopCastOfTo(V, Ty);
+    // Otherwise they are equivalent according to this comparison.
+    return false;
+  }
+};
 
-  // Emit a bunch of add instructions
-  for (int i = NumOperands-1; i >= 0; --i) {
-    if (i == PIdx) continue;
-    const SCEV *Op = S->getOperand(i);
-    if (isNonConstantNegative(Op)) {
+Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
+  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
+
+  // Collect all the add operands in a loop, along with their associated loops.
+  // Iterate in reverse so that constants are emitted last, all else equal, and
+  // so that pointer operands are inserted first, which the code below relies on
+  // to form more involved GEPs.
+  SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
+  for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
+       E(S->op_begin()); I != E; ++I)
+    OpsAndLoops.push_back(std::make_pair(GetRelevantLoop(*I, *SE.LI, *SE.DT),
+                                         *I));
+
+  // Sort by loop. Use a stable sort so that constants follow non-constants and
+  // pointer operands precede non-pointer operands.
+  std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
+
+  // Emit instructions to add all the operands. Hoist as much as possible
+  // out of loops, and form meaningful getelementptrs where possible.
+  Value *Sum = 0;
+  for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
+       I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
+    const Loop *CurLoop = I->first;
+    const SCEV *Op = I->second;
+    if (!Sum) {
+      // This is the first operand. Just expand it.
+      Sum = expand(Op);
+      ++I;
+    } else if (const PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
+      // The running sum expression is a pointer. Try to form a getelementptr
+      // at this level with that as the base.
+      SmallVector<const SCEV *, 4> NewOps;
+      for (; I != E && I->first == CurLoop; ++I)
+        NewOps.push_back(I->second);
+      Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
+    } else if (const PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
+      // The running sum is an integer, and there's a pointer at this level.
+      // Try to form a getelementptr.
+      SmallVector<const SCEV *, 4> NewOps;
+      NewOps.push_back(SE.getUnknown(Sum));
+      for (++I; I != E && I->first == CurLoop; ++I)
+        NewOps.push_back(I->second);
+      Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
+    } else if (isNonConstantNegative(Op)) {
+      // Instead of doing a negate and add, just do a subtract.
       Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty);
-      V = InsertBinop(Instruction::Sub, V, W);
+      Sum = InsertNoopCastOfTo(Sum, Ty);
+      Sum = InsertBinop(Instruction::Sub, Sum, W);
+      ++I;
     } else {
+      // A simple add.
       Value *W = expandCodeFor(Op, Ty);
-      V = InsertBinop(Instruction::Add, V, W);
+      Sum = InsertNoopCastOfTo(Sum, Ty);
+      // Canonicalize a constant to the RHS.
+      if (isa<Constant>(Sum)) std::swap(Sum, W);
+      Sum = InsertBinop(Instruction::Add, Sum, W);
+      ++I;
     }
   }
-  return V;
+
+  return Sum;
 }
 
 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
   const Type *Ty = SE.getEffectiveSCEVType(S->getType());
-  int FirstOp = 0;  // Set if we should emit a subtract.
-  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(0)))
-    if (SC->getValue()->isAllOnesValue())
-      FirstOp = 1;
-
-  int i = S->getNumOperands()-2;
-  Value *V = expandCodeFor(S->getOperand(i+1), Ty);
-
-  // Emit a bunch of multiply instructions
-  for (; i >= FirstOp; --i) {
-    Value *W = expandCodeFor(S->getOperand(i), Ty);
-    V = InsertBinop(Instruction::Mul, V, W);
+
+  // Collect all the mul operands in a loop, along with their associated loops.
+  // Iterate in reverse so that constants are emitted last, all else equal.
+  SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
+  for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
+       E(S->op_begin()); I != E; ++I)
+    OpsAndLoops.push_back(std::make_pair(GetRelevantLoop(*I, *SE.LI, *SE.DT),
+                                         *I));
+
+  // Sort by loop. Use a stable sort so that constants follow non-constants.
+  std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
+
+  // Emit instructions to mul all the operands. Hoist as much as possible
+  // out of loops.
+  Value *Prod = 0;
+  for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
+       I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
+    const SCEV *Op = I->second;
+    if (!Prod) {
+      // This is the first operand. Just expand it.
+      Prod = expand(Op);
+      ++I;
+    } else if (Op->isAllOnesValue()) {
+      // Instead of doing a multiply by negative one, just do a negate.
+      Prod = InsertNoopCastOfTo(Prod, Ty);
+      Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod);
+      ++I;
+    } else {
+      // A simple mul.
+      Value *W = expandCodeFor(Op, Ty);
+      Prod = InsertNoopCastOfTo(Prod, Ty);
+      // Canonicalize a constant to the RHS.
+      if (isa<Constant>(Prod)) std::swap(Prod, W);
+      Prod = InsertBinop(Instruction::Mul, Prod, W);
+      ++I;
+    }
   }
 
-  // -1 * ...  --->  0 - ...
-  if (FirstOp == 1)
-    V = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), V);
-  return V;
+  return Prod;
 }
 
 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
@@ -658,6 +838,19 @@ SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
             IncV = 0;
             break;
           }
+          // If any of the operands don't dominate the insert position, bail.
+          // Addrec operands are always loop-invariant, so this can only happen
+          // if there are instructions which haven't been hoisted.
+          for (User::op_iterator OI = IncV->op_begin()+1,
+               OE = IncV->op_end(); OI != OE; ++OI)
+            if (Instruction *OInst = dyn_cast<Instruction>(OI))
+              if (!SE.DT->dominates(OInst, IVIncInsertPos)) {
+                IncV = 0;
+                break;
+              }
+          if (!IncV)
+            break;
+          // Advance to the next instruction.
           IncV = dyn_cast<Instruction>(IncV->getOperand(0));
           if (!IncV)
             break;
@@ -807,7 +1000,7 @@ Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
   const Type *ExpandTy = PostLoopScale ? IntTy : STy;
   PHINode *PN = getAddRecExprPHILiterally(Normalized, L, ExpandTy, IntTy);
 
-  // Accomodate post-inc mode, if necessary.
+  // Accommodate post-inc mode, if necessary.
   Value *Result;
   if (L != PostIncLoop)
     Result = PN;
@@ -861,10 +1054,9 @@ Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
   if (CanonicalIV &&
       SE.getTypeSizeInBits(CanonicalIV->getType()) >
       SE.getTypeSizeInBits(Ty)) {
-    const SmallVectorImpl<const SCEV *> &Ops = S->getOperands();
-    SmallVector<const SCEV *, 4> NewOps(Ops.size());
-    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
-      NewOps[i] = SE.getAnyExtendExpr(Ops[i], CanonicalIV->getType());
+    SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
+    for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
+      NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
     Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop()));
     BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
     BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
@@ -879,8 +1071,7 @@ Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
 
   // {X,+,F} --> X + {0,+,F}
   if (!S->getStart()->isZero()) {
-    const SmallVectorImpl<const SCEV *> &SOperands = S->getOperands();
-    SmallVector<const SCEV *, 4> NewOps(SOperands.begin(), SOperands.end());
+    SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end());
     NewOps[0] = SE.getIntegerSCEV(0, Ty);
     const SCEV *Rest = SE.getAddRecExpr(NewOps, L);
 
@@ -1068,14 +1259,27 @@ Value *SCEVExpander::expand(const SCEV *S) {
        L = L->getParentLoop())
     if (S->isLoopInvariant(L)) {
       if (!L) break;
-      if (BasicBlock *Preheader = L->getLoopPreheader())
+      if (BasicBlock *Preheader = L->getLoopPreheader()) {
         InsertPt = Preheader->getTerminator();
+        BasicBlock::iterator IP = InsertPt;
+        // Back past any debug info instructions.  Sometimes we inserted
+        // something earlier before debug info but after any real instructions.
+        // This should behave the same as if debug info was not present.
+        while (IP != Preheader->begin()) {
+          --IP;
+          if (!isa<DbgInfoIntrinsic>(IP))
+            break;
+          InsertPt = IP;
+        }
+      }
     } else {
       // If the SCEV is computable at this level, insert it into the header
       // after the PHIs (and after any other instructions that we've inserted
       // there) so that it is guaranteed to dominate any user inside the loop.
-      if (L && S->hasComputableLoopEvolution(L))
+      if (L && S->hasComputableLoopEvolution(L) && L != PostIncLoop)
         InsertPt = L->getHeader()->getFirstNonPHI();
+      while (isa<DbgInfoIntrinsic>(InsertPt))
+        InsertPt = llvm::next(BasicBlock::iterator(InsertPt));
       while (isInsertedInstruction(InsertPt))
         InsertPt = llvm::next(BasicBlock::iterator(InsertPt));
       break;
@@ -1118,7 +1322,7 @@ void SCEVExpander::rememberInstruction(Value *I) {
 }
 
 void SCEVExpander::restoreInsertPoint(BasicBlock *BB, BasicBlock::iterator I) {
-  // If we aquired more instructions since the old insert point was saved,
+  // If we acquired more instructions since the old insert point was saved,
   // advance past them.
   while (isInsertedInstruction(I)) ++I;