Add bundle aware API for querying instruction properties and switch the code
[oota-llvm.git] / lib / CodeGen / LiveIntervalAnalysis.cpp
index 4ff888a7fd046d8823fc24dd2bcf36e5d2a5ff24..1e58173c186a417ef846af5e58a58ca263e3cb1e 100644 (file)
@@ -20,6 +20,7 @@
 #include "VirtRegMap.h"
 #include "llvm/Value.h"
 #include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/CodeGen/CalcSpillWeights.h"
 #include "llvm/CodeGen/LiveVariables.h"
 #include "llvm/CodeGen/MachineFrameInfo.h"
 #include "llvm/CodeGen/MachineInstr.h"
@@ -51,8 +52,6 @@ static cl::opt<bool> DisableReMat("disable-rematerialization",
                                   cl::init(false), cl::Hidden);
 
 STATISTIC(numIntervals , "Number of original intervals");
-STATISTIC(numFolds     , "Number of loads/stores folded into instructions");
-STATISTIC(numSplits    , "Number of intervals split");
 
 char LiveIntervals::ID = 0;
 INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
@@ -148,103 +147,6 @@ void LiveIntervals::dumpInstrs() const {
   printInstrs(dbgs());
 }
 
-bool LiveIntervals::conflictsWithPhysReg(const LiveInterval &li,
-                                         VirtRegMap &vrm, unsigned reg) {
-  // We don't handle fancy stuff crossing basic block boundaries
-  if (li.ranges.size() != 1)
-    return true;
-  const LiveRange &range = li.ranges.front();
-  SlotIndex idx = range.start.getBaseIndex();
-  SlotIndex end = range.end.getPrevSlot().getBaseIndex().getNextIndex();
-
-  // Skip deleted instructions
-  MachineInstr *firstMI = getInstructionFromIndex(idx);
-  while (!firstMI && idx != end) {
-    idx = idx.getNextIndex();
-    firstMI = getInstructionFromIndex(idx);
-  }
-  if (!firstMI)
-    return false;
-
-  // Find last instruction in range
-  SlotIndex lastIdx = end.getPrevIndex();
-  MachineInstr *lastMI = getInstructionFromIndex(lastIdx);
-  while (!lastMI && lastIdx != idx) {
-    lastIdx = lastIdx.getPrevIndex();
-    lastMI = getInstructionFromIndex(lastIdx);
-  }
-  if (!lastMI)
-    return false;
-
-  // Range cannot cross basic block boundaries or terminators
-  MachineBasicBlock *MBB = firstMI->getParent();
-  if (MBB != lastMI->getParent() || lastMI->getDesc().isTerminator())
-    return true;
-
-  MachineBasicBlock::const_iterator E = lastMI;
-  ++E;
-  for (MachineBasicBlock::const_iterator I = firstMI; I != E; ++I) {
-    const MachineInstr &MI = *I;
-
-    // Allow copies to and from li.reg
-    if (MI.isCopy())
-      if (MI.getOperand(0).getReg() == li.reg ||
-          MI.getOperand(1).getReg() == li.reg)
-        continue;
-
-    // Check for operands using reg
-    for (unsigned i = 0, e = MI.getNumOperands(); i != e;  ++i) {
-      const MachineOperand& mop = MI.getOperand(i);
-      if (!mop.isReg())
-        continue;
-      unsigned PhysReg = mop.getReg();
-      if (PhysReg == 0 || PhysReg == li.reg)
-        continue;
-      if (TargetRegisterInfo::isVirtualRegister(PhysReg)) {
-        if (!vrm.hasPhys(PhysReg))
-          continue;
-        PhysReg = vrm.getPhys(PhysReg);
-      }
-      if (PhysReg && tri_->regsOverlap(PhysReg, reg))
-        return true;
-    }
-  }
-
-  // No conflicts found.
-  return false;
-}
-
-bool LiveIntervals::conflictsWithAliasRef(LiveInterval &li, unsigned Reg,
-                                  SmallPtrSet<MachineInstr*,32> &JoinedCopies) {
-  for (LiveInterval::Ranges::const_iterator
-         I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
-    for (SlotIndex index = I->start.getBaseIndex(),
-           end = I->end.getPrevSlot().getBaseIndex().getNextIndex();
-           index != end;
-           index = index.getNextIndex()) {
-      MachineInstr *MI = getInstructionFromIndex(index);
-      if (!MI)
-        continue;               // skip deleted instructions
-
-      if (JoinedCopies.count(MI))
-        continue;
-      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
-        MachineOperand& MO = MI->getOperand(i);
-        if (!MO.isReg())
-          continue;
-        unsigned PhysReg = MO.getReg();
-        if (PhysReg == 0 || PhysReg == Reg ||
-            TargetRegisterInfo::isVirtualRegister(PhysReg))
-          continue;
-        if (tri_->regsOverlap(Reg, PhysReg))
-          return true;
-      }
-    }
-  }
-
-  return false;
-}
-
 static
 bool MultipleDefsBySameMI(const MachineInstr &MI, unsigned MOIdx) {
   unsigned Reg = MI.getOperand(MOIdx).getReg();
@@ -270,9 +172,9 @@ bool LiveIntervals::isPartialRedef(SlotIndex MIIdx, MachineOperand &MO,
   if (!MO.getSubReg() || MO.isEarlyClobber())
     return false;
 
-  SlotIndex RedefIndex = MIIdx.getDefIndex();
+  SlotIndex RedefIndex = MIIdx.getRegSlot();
   const LiveRange *OldLR =
-    interval.getLiveRangeContaining(RedefIndex.getUseIndex());
+    interval.getLiveRangeContaining(RedefIndex.getRegSlot(true));
   MachineInstr *DefMI = getInstructionFromIndex(OldLR->valno->def);
   if (DefMI != 0) {
     return DefMI->findRegisterDefOperandIdx(interval.reg) != -1;
@@ -295,16 +197,23 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
   LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
   if (interval.empty()) {
     // Get the Idx of the defining instructions.
-    SlotIndex defIndex = MIIdx.getDefIndex();
-    // Earlyclobbers move back one, so that they overlap the live range
-    // of inputs.
-    if (MO.isEarlyClobber())
-      defIndex = MIIdx.getUseIndex();
+    SlotIndex defIndex = MIIdx.getRegSlot(MO.isEarlyClobber());
 
     // Make sure the first definition is not a partial redefinition. Add an
     // <imp-def> of the full register.
-    if (MO.getSubReg())
+    // FIXME: LiveIntervals shouldn't modify the code like this.  Whoever
+    // created the machine instruction should annotate it with <undef> flags
+    // as needed.  Then we can simply assert here.  The REG_SEQUENCE lowering
+    // is the main suspect.
+    if (MO.getSubReg()) {
       mi->addRegisterDefined(interval.reg);
+      // Mark all defs of interval.reg on this instruction as reading <undef>.
+      for (unsigned i = MOIdx, e = mi->getNumOperands(); i != e; ++i) {
+        MachineOperand &MO2 = mi->getOperand(i);
+        if (MO2.isReg() && MO2.getReg() == interval.reg && MO2.getSubReg())
+          MO2.setIsUndef();
+      }
+    }
 
     MachineInstr *CopyMI = NULL;
     if (mi->isCopyLike()) {
@@ -322,9 +231,9 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
       // FIXME: what about dead vars?
       SlotIndex killIdx;
       if (vi.Kills[0] != mi)
-        killIdx = getInstructionIndex(vi.Kills[0]).getDefIndex();
+        killIdx = getInstructionIndex(vi.Kills[0]).getRegSlot();
       else
-        killIdx = defIndex.getStoreIndex();
+        killIdx = defIndex.getDeadSlot();
 
       // If the kill happens after the definition, we have an intra-block
       // live range.
@@ -372,7 +281,7 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
     for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
       MachineInstr *Kill = vi.Kills[i];
       SlotIndex Start = getMBBStartIdx(Kill->getParent());
-      SlotIndex killIdx = getInstructionIndex(Kill).getDefIndex();
+      SlotIndex killIdx = getInstructionIndex(Kill).getRegSlot();
 
       // Create interval with one of a NEW value number.  Note that this value
       // number isn't actually defined by an instruction, weird huh? :)
@@ -410,14 +319,12 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
       // are actually two values in the live interval.  Because of this we
       // need to take the LiveRegion that defines this register and split it
       // into two values.
-      SlotIndex RedefIndex = MIIdx.getDefIndex();
-      if (MO.isEarlyClobber())
-        RedefIndex = MIIdx.getUseIndex();
+      SlotIndex RedefIndex = MIIdx.getRegSlot(MO.isEarlyClobber());
 
       const LiveRange *OldLR =
-        interval.getLiveRangeContaining(RedefIndex.getUseIndex());
+        interval.getLiveRangeContaining(RedefIndex.getRegSlot(true));
       VNInfo *OldValNo = OldLR->valno;
-      SlotIndex DefIndex = OldValNo->def.getDefIndex();
+      SlotIndex DefIndex = OldValNo->def.getRegSlot();
 
       // Delete the previous value, which should be short and continuous,
       // because the 2-addr copy must be in the same MBB as the redef.
@@ -443,7 +350,7 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
       // If this redefinition is dead, we need to add a dummy unit live
       // range covering the def slot.
       if (MO.isDead())
-        interval.addRange(LiveRange(RedefIndex, RedefIndex.getStoreIndex(),
+        interval.addRange(LiveRange(RedefIndex, RedefIndex.getDeadSlot(),
                                     OldValNo));
 
       DEBUG({
@@ -455,9 +362,9 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
       // live until the end of the block.  We've already taken care of the
       // rest of the live range.
 
-      SlotIndex defIndex = MIIdx.getDefIndex();
+      SlotIndex defIndex = MIIdx.getRegSlot();
       if (MO.isEarlyClobber())
-        defIndex = MIIdx.getUseIndex();
+        defIndex = MIIdx.getRegSlot(true);
 
       VNInfo *ValNo;
       MachineInstr *CopyMI = NULL;
@@ -489,10 +396,7 @@ void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
   DEBUG(dbgs() << "\t\tregister: " << PrintReg(interval.reg, tri_));
 
   SlotIndex baseIndex = MIIdx;
-  SlotIndex start = baseIndex.getDefIndex();
-  // Earlyclobbers move back one.
-  if (MO.isEarlyClobber())
-    start = MIIdx.getUseIndex();
+  SlotIndex start = baseIndex.getRegSlot(MO.isEarlyClobber());
   SlotIndex end = start;
 
   // If it is not used after definition, it is considered dead at
@@ -502,7 +406,7 @@ void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
   // advance below compensates.
   if (MO.isDead()) {
     DEBUG(dbgs() << " dead");
-    end = start.getStoreIndex();
+    end = start.getDeadSlot();
     goto exit;
   }
 
@@ -519,21 +423,21 @@ void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
 
     if (mi->killsRegister(interval.reg, tri_)) {
       DEBUG(dbgs() << " killed");
-      end = baseIndex.getDefIndex();
+      end = baseIndex.getRegSlot();
       goto exit;
     } else {
       int DefIdx = mi->findRegisterDefOperandIdx(interval.reg,false,false,tri_);
       if (DefIdx != -1) {
         if (mi->isRegTiedToUseOperand(DefIdx)) {
           // Two-address instruction.
-          end = baseIndex.getDefIndex();
+          end = baseIndex.getRegSlot();
         } else {
           // Another instruction redefines the register before it is ever read.
           // Then the register is essentially dead at the instruction that
           // defines it. Hence its interval is:
           // [defSlot(def), defSlot(def)+1)
           DEBUG(dbgs() << " dead");
-          end = start.getStoreIndex();
+          end = start.getDeadSlot();
         }
         goto exit;
       }
@@ -546,7 +450,7 @@ void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
   // instruction where we know it's dead is if it is live-in to the function
   // and never used. Another possible case is the implicit use of the
   // physical register has been deleted by two-address pass.
-  end = start.getStoreIndex();
+  end = start.getDeadSlot();
 
 exit:
   assert(start < end && "did not find end of interval?");
@@ -571,19 +475,12 @@ void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
   if (TargetRegisterInfo::isVirtualRegister(MO.getReg()))
     handleVirtualRegisterDef(MBB, MI, MIIdx, MO, MOIdx,
                              getOrCreateInterval(MO.getReg()));
-  else if (allocatableRegs_[MO.getReg()]) {
+  else {
     MachineInstr *CopyMI = NULL;
     if (MI->isCopyLike())
       CopyMI = MI;
     handlePhysicalRegisterDef(MBB, MI, MIIdx, MO,
                               getOrCreateInterval(MO.getReg()), CopyMI);
-    // Def of a register also defines its sub-registers.
-    for (const unsigned* AS = tri_->getSubRegisters(MO.getReg()); *AS; ++AS)
-      // If MI also modifies the sub-register explicitly, avoid processing it
-      // more than once. Do not pass in TRI here so it checks for exact match.
-      if (!MI->definesRegister(*AS))
-        handlePhysicalRegisterDef(MBB, MI, MIIdx, MO,
-                                  getOrCreateInterval(*AS), 0);
   }
 }
 
@@ -616,7 +513,7 @@ void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
   while (mi != E) {
     if (mi->killsRegister(interval.reg, tri_)) {
       DEBUG(dbgs() << " killed");
-      end = baseIndex.getDefIndex();
+      end = baseIndex.getRegSlot();
       SeenDefUse = true;
       break;
     } else if (mi->definesRegister(interval.reg, tri_)) {
@@ -625,7 +522,7 @@ void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
       // it. Hence its interval is:
       // [defSlot(def), defSlot(def)+1)
       DEBUG(dbgs() << " dead");
-      end = start.getStoreIndex();
+      end = start.getDeadSlot();
       SeenDefUse = true;
       break;
     }
@@ -641,10 +538,10 @@ void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
   if (!SeenDefUse) {
     if (isAlias) {
       DEBUG(dbgs() << " dead");
-      end = MIIdx.getStoreIndex();
+      end = MIIdx.getDeadSlot();
     } else {
       DEBUG(dbgs() << " live through");
-      end = baseIndex;
+      end = getMBBEndIdx(MBB);
     }
   }
 
@@ -745,26 +642,41 @@ LiveInterval* LiveIntervals::dupInterval(LiveInterval *li) {
 /// shrinkToUses - After removing some uses of a register, shrink its live
 /// range to just the remaining uses. This method does not compute reaching
 /// defs for new uses, and it doesn't remove dead defs.
-void LiveIntervals::shrinkToUses(LiveInterval *li) {
+bool LiveIntervals::shrinkToUses(LiveInterval *li,
+                                 SmallVectorImpl<MachineInstr*> *dead) {
   DEBUG(dbgs() << "Shrink: " << *li << '\n');
   assert(TargetRegisterInfo::isVirtualRegister(li->reg)
          && "Can't only shrink physical registers");
   // Find all the values used, including PHI kills.
   SmallVector<std::pair<SlotIndex, VNInfo*>, 16> WorkList;
 
+  // Blocks that have already been added to WorkList as live-out.
+  SmallPtrSet<MachineBasicBlock*, 16> LiveOut;
+
   // Visit all instructions reading li->reg.
   for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(li->reg);
        MachineInstr *UseMI = I.skipInstruction();) {
     if (UseMI->isDebugValue() || !UseMI->readsVirtualRegister(li->reg))
       continue;
-    SlotIndex Idx = getInstructionIndex(UseMI).getUseIndex();
-    VNInfo *VNI = li->getVNInfoAt(Idx);
-    assert(VNI && "Live interval not live into reading instruction");
-    if (VNI->def == Idx) {
-      // Special case: An early-clobber tied operand reads and writes the
-      // register one slot early.
-      Idx = Idx.getPrevSlot();
-      VNI = li->getVNInfoAt(Idx);
+    SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
+    // Note: This intentionally picks up the wrong VNI in case of an EC redef.
+    // See below.
+    VNInfo *VNI = li->getVNInfoBefore(Idx);
+    if (!VNI) {
+      // This shouldn't happen: readsVirtualRegister returns true, but there is
+      // no live value. It is likely caused by a target getting <undef> flags
+      // wrong.
+      DEBUG(dbgs() << Idx << '\t' << *UseMI
+                   << "Warning: Instr claims to read non-existent value in "
+                    << *li << '\n');
+      continue;
+    }
+    // Special case: An early-clobber tied operand reads and writes the
+    // register one slot early.  The getVNInfoBefore call above would have
+    // picked up the value defined by UseMI.  Adjust the kill slot and value.
+    if (SlotIndex::isSameInstr(VNI->def, Idx)) {
+      Idx = VNI->def;
+      VNI = li->getVNInfoBefore(Idx);
       assert(VNI && "Early-clobber tied value not available");
     }
     WorkList.push_back(std::make_pair(Idx, VNI));
@@ -777,66 +689,58 @@ void LiveIntervals::shrinkToUses(LiveInterval *li) {
     VNInfo *VNI = *I;
     if (VNI->isUnused())
       continue;
-    NewLI.addRange(LiveRange(VNI->def, VNI->def.getNextSlot(), VNI));
+    NewLI.addRange(LiveRange(VNI->def, VNI->def.getDeadSlot(), VNI));
   }
 
+  // Keep track of the PHIs that are in use.
+  SmallPtrSet<VNInfo*, 8> UsedPHIs;
+
   // Extend intervals to reach all uses in WorkList.
   while (!WorkList.empty()) {
     SlotIndex Idx = WorkList.back().first;
     VNInfo *VNI = WorkList.back().second;
     WorkList.pop_back();
+    const MachineBasicBlock *MBB = getMBBFromIndex(Idx.getPrevSlot());
+    SlotIndex BlockStart = getMBBStartIdx(MBB);
 
     // Extend the live range for VNI to be live at Idx.
-    LiveInterval::iterator I = NewLI.find(Idx);
-
-    // Already got it?
-    if (I != NewLI.end() && I->start <= Idx) {
-      assert(I->valno == VNI && "Unexpected existing value number");
-      continue;
-    }
-
-    // Is there already a live range in the block containing Idx?
-    const MachineBasicBlock *MBB = getMBBFromIndex(Idx);
-    SlotIndex BlockStart = getMBBStartIdx(MBB);
-    DEBUG(dbgs() << "Shrink: Use val#" << VNI->id << " at " << Idx
-                 << " in BB#" << MBB->getNumber() << '@' << BlockStart);
-    if (I != NewLI.begin() && (--I)->end > BlockStart) {
-      assert(I->valno == VNI && "Wrong reaching def");
-      DEBUG(dbgs() << " extend [" << I->start << ';' << I->end << ")\n");
-      // Is this the first use of a PHIDef in its defining block?
-      if (VNI->isPHIDef() && I->end == VNI->def.getNextSlot()) {
-        // The PHI is live, make sure the predecessors are live-out.
-        for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
-             PE = MBB->pred_end(); PI != PE; ++PI) {
-          SlotIndex Stop = getMBBEndIdx(*PI).getPrevSlot();
-          VNInfo *PVNI = li->getVNInfoAt(Stop);
-          // A predecessor is not required to have a live-out value for a PHI.
-          if (PVNI) {
-            assert(PVNI->hasPHIKill() && "Missing hasPHIKill flag");
-            WorkList.push_back(std::make_pair(Stop, PVNI));
-          }
-        }
+    if (VNInfo *ExtVNI = NewLI.extendInBlock(BlockStart, Idx)) {
+      (void)ExtVNI;
+      assert(ExtVNI == VNI && "Unexpected existing value number");
+      // Is this a PHIDef we haven't seen before?
+      if (!VNI->isPHIDef() || VNI->def != BlockStart || !UsedPHIs.insert(VNI))
+        continue;
+      // The PHI is live, make sure the predecessors are live-out.
+      for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
+           PE = MBB->pred_end(); PI != PE; ++PI) {
+        if (!LiveOut.insert(*PI))
+          continue;
+        SlotIndex Stop = getMBBEndIdx(*PI);
+        // A predecessor is not required to have a live-out value for a PHI.
+        if (VNInfo *PVNI = li->getVNInfoBefore(Stop))
+          WorkList.push_back(std::make_pair(Stop, PVNI));
       }
-
-      // Extend the live range in the block to include Idx.
-      NewLI.addRange(LiveRange(I->end, Idx.getNextSlot(), VNI));
       continue;
     }
 
     // VNI is live-in to MBB.
     DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
-    NewLI.addRange(LiveRange(BlockStart, Idx.getNextSlot(), VNI));
+    NewLI.addRange(LiveRange(BlockStart, Idx, VNI));
 
     // Make sure VNI is live-out from the predecessors.
     for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
          PE = MBB->pred_end(); PI != PE; ++PI) {
-      SlotIndex Stop = getMBBEndIdx(*PI).getPrevSlot();
-      assert(li->getVNInfoAt(Stop) == VNI && "Wrong value out of predecessor");
+      if (!LiveOut.insert(*PI))
+        continue;
+      SlotIndex Stop = getMBBEndIdx(*PI);
+      assert(li->getVNInfoBefore(Stop) == VNI &&
+             "Wrong value out of predecessor");
       WorkList.push_back(std::make_pair(Stop, VNI));
     }
   }
 
   // Handle dead values.
+  bool CanSeparate = false;
   for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
        I != E; ++I) {
     VNInfo *VNI = *I;
@@ -844,23 +748,30 @@ void LiveIntervals::shrinkToUses(LiveInterval *li) {
       continue;
     LiveInterval::iterator LII = NewLI.FindLiveRangeContaining(VNI->def);
     assert(LII != NewLI.end() && "Missing live range for PHI");
-    if (LII->end != VNI->def.getNextSlot())
+    if (LII->end != VNI->def.getDeadSlot())
       continue;
-    if (!VNI->isPHIDef()) {
+    if (VNI->isPHIDef()) {
       // This is a dead PHI. Remove it.
       VNI->setIsUnused(true);
       NewLI.removeRange(*LII);
+      DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n");
+      CanSeparate = true;
     } else {
       // This is a dead def. Make sure the instruction knows.
       MachineInstr *MI = getInstructionFromIndex(VNI->def);
       assert(MI && "No instruction defining live value");
       MI->addRegisterDead(li->reg, tri_);
+      if (dead && MI->allDefsAreDead()) {
+        DEBUG(dbgs() << "All defs dead: " << VNI->def << '\t' << *MI);
+        dead->push_back(MI);
+      }
     }
   }
 
   // Move the trimmed ranges back.
   li->ranges.swap(NewLI.ranges);
-  DEBUG(dbgs() << "Shrink: " << *li << '\n');
+  DEBUG(dbgs() << "Shrunk: " << *li << '\n');
+  return CanSeparate;
 }
 
 
@@ -870,7 +781,7 @@ void LiveIntervals::shrinkToUses(LiveInterval *li) {
 
 MachineBasicBlock::iterator
 LiveIntervals::getLastSplitPoint(const LiveInterval &li,
-                                 MachineBasicBlock *mbb) {
+                                 MachineBasicBlock *mbb) const {
   const MachineBasicBlock *lpad = mbb->getLandingPadSuccessor();
 
   // If li is not live into a landing pad, we can insert spill code before the
@@ -883,13 +794,36 @@ LiveIntervals::getLastSplitPoint(const LiveInterval &li,
   MachineBasicBlock::iterator I = mbb->end(), B = mbb->begin();
   while (I != B) {
     --I;
-    if (I->getDesc().isCall())
+    if (I->isCall())
       return I;
   }
   // The block contains no calls that can throw, so use the first terminator.
   return mbb->getFirstTerminator();
 }
 
+void LiveIntervals::addKillFlags() {
+  for (iterator I = begin(), E = end(); I != E; ++I) {
+    unsigned Reg = I->first;
+    if (TargetRegisterInfo::isPhysicalRegister(Reg))
+      continue;
+    if (mri_->reg_nodbg_empty(Reg))
+      continue;
+    LiveInterval *LI = I->second;
+
+    // Every instruction that kills Reg corresponds to a live range end point.
+    for (LiveInterval::iterator RI = LI->begin(), RE = LI->end(); RI != RE;
+         ++RI) {
+      // A block index indicates an MBB edge.
+      if (RI->end.isBlock())
+        continue;
+      MachineInstr *MI = getInstructionFromIndex(RI->end);
+      if (!MI)
+        continue;
+      MI->addRegisterKilled(Reg, NULL);
+    }
+  }
+}
+
 /// getReMatImplicitUse - If the remat definition MI has one (for now, we only
 /// allow one) virtual register operand, then its uses are implicitly using
 /// the register. Returns the virtual register.
@@ -931,7 +865,7 @@ bool LiveIntervals::isValNoAvailableAt(const LiveInterval &li, MachineInstr *MI,
 bool
 LiveIntervals::isReMaterializable(const LiveInterval &li,
                                   const VNInfo *ValNo, MachineInstr *MI,
-                                  const SmallVectorImpl<LiveInterval*> &SpillIs,
+                                  const SmallVectorImpl<LiveInterval*> *SpillIs,
                                   bool &isLoad) {
   if (DisableReMat)
     return false;
@@ -958,27 +892,19 @@ LiveIntervals::isReMaterializable(const LiveInterval &li,
 
     // If a register operand of the re-materialized instruction is going to
     // be spilled next, then it's not legal to re-materialize this instruction.
-    for (unsigned i = 0, e = SpillIs.size(); i != e; ++i)
-      if (ImpUse == SpillIs[i]->reg)
-        return false;
+    if (SpillIs)
+      for (unsigned i = 0, e = SpillIs->size(); i != e; ++i)
+        if (ImpUse == (*SpillIs)[i]->reg)
+          return false;
   }
   return true;
 }
 
-/// isReMaterializable - Returns true if the definition MI of the specified
-/// val# of the specified interval is re-materializable.
-bool LiveIntervals::isReMaterializable(const LiveInterval &li,
-                                       const VNInfo *ValNo, MachineInstr *MI) {
-  SmallVector<LiveInterval*, 4> Dummy1;
-  bool Dummy2;
-  return isReMaterializable(li, ValNo, MI, Dummy1, Dummy2);
-}
-
 /// isReMaterializable - Returns true if every definition of MI of every
 /// val# of the specified interval is re-materializable.
 bool
 LiveIntervals::isReMaterializable(const LiveInterval &li,
-                                  const SmallVectorImpl<LiveInterval*> &SpillIs,
+                                  const SmallVectorImpl<LiveInterval*> *SpillIs,
                                   bool &isLoad) {
   isLoad = false;
   for (LiveInterval::const_vni_iterator i = li.vni_begin(), e = li.vni_end();
@@ -999,107 +925,6 @@ LiveIntervals::isReMaterializable(const LiveInterval &li,
   return true;
 }
 
-/// FilterFoldedOps - Filter out two-address use operands. Return
-/// true if it finds any issue with the operands that ought to prevent
-/// folding.
-static bool FilterFoldedOps(MachineInstr *MI,
-                            SmallVector<unsigned, 2> &Ops,
-                            unsigned &MRInfo,
-                            SmallVector<unsigned, 2> &FoldOps) {
-  MRInfo = 0;
-  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
-    unsigned OpIdx = Ops[i];
-    MachineOperand &MO = MI->getOperand(OpIdx);
-    // FIXME: fold subreg use.
-    if (MO.getSubReg())
-      return true;
-    if (MO.isDef())
-      MRInfo |= (unsigned)VirtRegMap::isMod;
-    else {
-      // Filter out two-address use operand(s).
-      if (MI->isRegTiedToDefOperand(OpIdx)) {
-        MRInfo = VirtRegMap::isModRef;
-        continue;
-      }
-      MRInfo |= (unsigned)VirtRegMap::isRef;
-    }
-    FoldOps.push_back(OpIdx);
-  }
-  return false;
-}
-
-
-/// tryFoldMemoryOperand - Attempts to fold either a spill / restore from
-/// slot / to reg or any rematerialized load into ith operand of specified
-/// MI. If it is successul, MI is updated with the newly created MI and
-/// returns true.
-bool LiveIntervals::tryFoldMemoryOperand(MachineInstr* &MI,
-                                         VirtRegMap &vrm, MachineInstr *DefMI,
-                                         SlotIndex InstrIdx,
-                                         SmallVector<unsigned, 2> &Ops,
-                                         bool isSS, int Slot, unsigned Reg) {
-  // If it is an implicit def instruction, just delete it.
-  if (MI->isImplicitDef()) {
-    RemoveMachineInstrFromMaps(MI);
-    vrm.RemoveMachineInstrFromMaps(MI);
-    MI->eraseFromParent();
-    ++numFolds;
-    return true;
-  }
-
-  // Filter the list of operand indexes that are to be folded. Abort if
-  // any operand will prevent folding.
-  unsigned MRInfo = 0;
-  SmallVector<unsigned, 2> FoldOps;
-  if (FilterFoldedOps(MI, Ops, MRInfo, FoldOps))
-    return false;
-
-  // The only time it's safe to fold into a two address instruction is when
-  // it's folding reload and spill from / into a spill stack slot.
-  if (DefMI && (MRInfo & VirtRegMap::isMod))
-    return false;
-
-  MachineInstr *fmi = isSS ? tii_->foldMemoryOperand(MI, FoldOps, Slot)
-                           : tii_->foldMemoryOperand(MI, FoldOps, DefMI);
-  if (fmi) {
-    // Remember this instruction uses the spill slot.
-    if (isSS) vrm.addSpillSlotUse(Slot, fmi);
-
-    // Attempt to fold the memory reference into the instruction. If
-    // we can do this, we don't need to insert spill code.
-    if (isSS && !mf_->getFrameInfo()->isImmutableObjectIndex(Slot))
-      vrm.virtFolded(Reg, MI, fmi, (VirtRegMap::ModRef)MRInfo);
-    vrm.transferSpillPts(MI, fmi);
-    vrm.transferRestorePts(MI, fmi);
-    vrm.transferEmergencySpills(MI, fmi);
-    ReplaceMachineInstrInMaps(MI, fmi);
-    MI->eraseFromParent();
-    MI = fmi;
-    ++numFolds;
-    return true;
-  }
-  return false;
-}
-
-/// canFoldMemoryOperand - Returns true if the specified load / store
-/// folding is possible.
-bool LiveIntervals::canFoldMemoryOperand(MachineInstr *MI,
-                                         SmallVector<unsigned, 2> &Ops,
-                                         bool ReMat) const {
-  // Filter the list of operand indexes that are to be folded. Abort if
-  // any operand will prevent folding.
-  unsigned MRInfo = 0;
-  SmallVector<unsigned, 2> FoldOps;
-  if (FilterFoldedOps(MI, Ops, MRInfo, FoldOps))
-    return false;
-
-  // It's only legal to remat for a use, not a def.
-  if (ReMat && (MRInfo & VirtRegMap::isMod))
-    return false;
-
-  return tii_->canFoldMemoryOperand(MI, FoldOps);
-}
-
 bool LiveIntervals::intervalIsInOneMBB(const LiveInterval &li) const {
   LiveInterval::Ranges::const_iterator itr = li.ranges.begin();
 
@@ -1119,554 +944,6 @@ bool LiveIntervals::intervalIsInOneMBB(const LiveInterval &li) const {
   return true;
 }
 
-/// rewriteImplicitOps - Rewrite implicit use operands of MI (i.e. uses of
-/// interval on to-be re-materialized operands of MI) with new register.
-void LiveIntervals::rewriteImplicitOps(const LiveInterval &li,
-                                       MachineInstr *MI, unsigned NewVReg,
-                                       VirtRegMap &vrm) {
-  // There is an implicit use. That means one of the other operand is
-  // being remat'ed and the remat'ed instruction has li.reg as an
-  // use operand. Make sure we rewrite that as well.
-  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
-    MachineOperand &MO = MI->getOperand(i);
-    if (!MO.isReg())
-      continue;
-    unsigned Reg = MO.getReg();
-    if (!TargetRegisterInfo::isVirtualRegister(Reg))
-      continue;
-    if (!vrm.isReMaterialized(Reg))
-      continue;
-    MachineInstr *ReMatMI = vrm.getReMaterializedMI(Reg);
-    MachineOperand *UseMO = ReMatMI->findRegisterUseOperand(li.reg);
-    if (UseMO)
-      UseMO->setReg(NewVReg);
-  }
-}
-
-/// rewriteInstructionForSpills, rewriteInstructionsForSpills - Helper functions
-/// for addIntervalsForSpills to rewrite uses / defs for the given live range.
-bool LiveIntervals::
-rewriteInstructionForSpills(const LiveInterval &li, const VNInfo *VNI,
-                 bool TrySplit, SlotIndex index, SlotIndex end,
-                 MachineInstr *MI,
-                 MachineInstr *ReMatOrigDefMI, MachineInstr *ReMatDefMI,
-                 unsigned Slot, int LdSlot,
-                 bool isLoad, bool isLoadSS, bool DefIsReMat, bool CanDelete,
-                 VirtRegMap &vrm,
-                 const TargetRegisterClass* rc,
-                 SmallVector<int, 4> &ReMatIds,
-                 const MachineLoopInfo *loopInfo,
-                 unsigned &NewVReg, unsigned ImpUse, bool &HasDef, bool &HasUse,
-                 DenseMap<unsigned,unsigned> &MBBVRegsMap,
-                 std::vector<LiveInterval*> &NewLIs) {
-  bool CanFold = false;
- RestartInstruction:
-  for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
-    MachineOperand& mop = MI->getOperand(i);
-    if (!mop.isReg())
-      continue;
-    unsigned Reg = mop.getReg();
-    if (!TargetRegisterInfo::isVirtualRegister(Reg))
-      continue;
-    if (Reg != li.reg)
-      continue;
-
-    bool TryFold = !DefIsReMat;
-    bool FoldSS = true; // Default behavior unless it's a remat.
-    int FoldSlot = Slot;
-    if (DefIsReMat) {
-      // If this is the rematerializable definition MI itself and
-      // all of its uses are rematerialized, simply delete it.
-      if (MI == ReMatOrigDefMI && CanDelete) {
-        DEBUG(dbgs() << "\t\t\t\tErasing re-materializable def: "
-                     << *MI << '\n');
-        RemoveMachineInstrFromMaps(MI);
-        vrm.RemoveMachineInstrFromMaps(MI);
-        MI->eraseFromParent();
-        break;
-      }
-
-      // If def for this use can't be rematerialized, then try folding.
-      // If def is rematerializable and it's a load, also try folding.
-      TryFold = !ReMatDefMI || (ReMatDefMI && (MI == ReMatOrigDefMI || isLoad));
-      if (isLoad) {
-        // Try fold loads (from stack slot, constant pool, etc.) into uses.
-        FoldSS = isLoadSS;
-        FoldSlot = LdSlot;
-      }
-    }
-
-    // Scan all of the operands of this instruction rewriting operands
-    // to use NewVReg instead of li.reg as appropriate.  We do this for
-    // two reasons:
-    //
-    //   1. If the instr reads the same spilled vreg multiple times, we
-    //      want to reuse the NewVReg.
-    //   2. If the instr is a two-addr instruction, we are required to
-    //      keep the src/dst regs pinned.
-    //
-    // Keep track of whether we replace a use and/or def so that we can
-    // create the spill interval with the appropriate range.
-    SmallVector<unsigned, 2> Ops;
-    tie(HasUse, HasDef) = MI->readsWritesVirtualRegister(Reg, &Ops);
-
-    // Create a new virtual register for the spill interval.
-    // Create the new register now so we can map the fold instruction
-    // to the new register so when it is unfolded we get the correct
-    // answer.
-    bool CreatedNewVReg = false;
-    if (NewVReg == 0) {
-      NewVReg = mri_->createVirtualRegister(rc);
-      vrm.grow();
-      CreatedNewVReg = true;
-
-      // The new virtual register should get the same allocation hints as the
-      // old one.
-      std::pair<unsigned, unsigned> Hint = mri_->getRegAllocationHint(Reg);
-      if (Hint.first || Hint.second)
-        mri_->setRegAllocationHint(NewVReg, Hint.first, Hint.second);
-    }
-
-    if (!TryFold)
-      CanFold = false;
-    else {
-      // Do not fold load / store here if we are splitting. We'll find an
-      // optimal point to insert a load / store later.
-      if (!TrySplit) {
-        if (tryFoldMemoryOperand(MI, vrm, ReMatDefMI, index,
-                                 Ops, FoldSS, FoldSlot, NewVReg)) {
-          // Folding the load/store can completely change the instruction in
-          // unpredictable ways, rescan it from the beginning.
-
-          if (FoldSS) {
-            // We need to give the new vreg the same stack slot as the
-            // spilled interval.
-            vrm.assignVirt2StackSlot(NewVReg, FoldSlot);
-          }
-
-          HasUse = false;
-          HasDef = false;
-          CanFold = false;
-          if (isNotInMIMap(MI))
-            break;
-          goto RestartInstruction;
-        }
-      } else {
-        // We'll try to fold it later if it's profitable.
-        CanFold = canFoldMemoryOperand(MI, Ops, DefIsReMat);
-      }
-    }
-
-    mop.setReg(NewVReg);
-    if (mop.isImplicit())
-      rewriteImplicitOps(li, MI, NewVReg, vrm);
-
-    // Reuse NewVReg for other reads.
-    bool HasEarlyClobber = false;
-    for (unsigned j = 0, e = Ops.size(); j != e; ++j) {
-      MachineOperand &mopj = MI->getOperand(Ops[j]);
-      mopj.setReg(NewVReg);
-      if (mopj.isImplicit())
-        rewriteImplicitOps(li, MI, NewVReg, vrm);
-      if (mopj.isEarlyClobber())
-        HasEarlyClobber = true;
-    }
-
-    if (CreatedNewVReg) {
-      if (DefIsReMat) {
-        vrm.setVirtIsReMaterialized(NewVReg, ReMatDefMI);
-        if (ReMatIds[VNI->id] == VirtRegMap::MAX_STACK_SLOT) {
-          // Each valnum may have its own remat id.
-          ReMatIds[VNI->id] = vrm.assignVirtReMatId(NewVReg);
-        } else {
-          vrm.assignVirtReMatId(NewVReg, ReMatIds[VNI->id]);
-        }
-        if (!CanDelete || (HasUse && HasDef)) {
-          // If this is a two-addr instruction then its use operands are
-          // rematerializable but its def is not. It should be assigned a
-          // stack slot.
-          vrm.assignVirt2StackSlot(NewVReg, Slot);
-        }
-      } else {
-        vrm.assignVirt2StackSlot(NewVReg, Slot);
-      }
-    } else if (HasUse && HasDef &&
-               vrm.getStackSlot(NewVReg) == VirtRegMap::NO_STACK_SLOT) {
-      // If this interval hasn't been assigned a stack slot (because earlier
-      // def is a deleted remat def), do it now.
-      assert(Slot != VirtRegMap::NO_STACK_SLOT);
-      vrm.assignVirt2StackSlot(NewVReg, Slot);
-    }
-
-    // Re-matting an instruction with virtual register use. Add the
-    // register as an implicit use on the use MI.
-    if (DefIsReMat && ImpUse)
-      MI->addOperand(MachineOperand::CreateReg(ImpUse, false, true));
-
-    // Create a new register interval for this spill / remat.
-    LiveInterval &nI = getOrCreateInterval(NewVReg);
-    if (CreatedNewVReg) {
-      NewLIs.push_back(&nI);
-      MBBVRegsMap.insert(std::make_pair(MI->getParent()->getNumber(), NewVReg));
-      if (TrySplit)
-        vrm.setIsSplitFromReg(NewVReg, li.reg);
-    }
-
-    if (HasUse) {
-      if (CreatedNewVReg) {
-        LiveRange LR(index.getLoadIndex(), index.getDefIndex(),
-                     nI.getNextValue(SlotIndex(), 0, VNInfoAllocator));
-        DEBUG(dbgs() << " +" << LR);
-        nI.addRange(LR);
-      } else {
-        // Extend the split live interval to this def / use.
-        SlotIndex End = index.getDefIndex();
-        LiveRange LR(nI.ranges[nI.ranges.size()-1].end, End,
-                     nI.getValNumInfo(nI.getNumValNums()-1));
-        DEBUG(dbgs() << " +" << LR);
-        nI.addRange(LR);
-      }
-    }
-    if (HasDef) {
-      // An early clobber starts at the use slot, except for an early clobber
-      // tied to a use operand (yes, that is a thing).
-      LiveRange LR(HasEarlyClobber && !HasUse ?
-                   index.getUseIndex() : index.getDefIndex(),
-                   index.getStoreIndex(),
-                   nI.getNextValue(SlotIndex(), 0, VNInfoAllocator));
-      DEBUG(dbgs() << " +" << LR);
-      nI.addRange(LR);
-    }
-
-    DEBUG({
-        dbgs() << "\t\t\t\tAdded new interval: ";
-        nI.print(dbgs(), tri_);
-        dbgs() << '\n';
-      });
-  }
-  return CanFold;
-}
-bool LiveIntervals::anyKillInMBBAfterIdx(const LiveInterval &li,
-                                   const VNInfo *VNI,
-                                   MachineBasicBlock *MBB,
-                                   SlotIndex Idx) const {
-  return li.killedInRange(Idx.getNextSlot(), getMBBEndIdx(MBB));
-}
-
-/// RewriteInfo - Keep track of machine instrs that will be rewritten
-/// during spilling.
-namespace {
-  struct RewriteInfo {
-    SlotIndex Index;
-    MachineInstr *MI;
-    RewriteInfo(SlotIndex i, MachineInstr *mi) : Index(i), MI(mi) {}
-  };
-
-  struct RewriteInfoCompare {
-    bool operator()(const RewriteInfo &LHS, const RewriteInfo &RHS) const {
-      return LHS.Index < RHS.Index;
-    }
-  };
-}
-
-void LiveIntervals::
-rewriteInstructionsForSpills(const LiveInterval &li, bool TrySplit,
-                    LiveInterval::Ranges::const_iterator &I,
-                    MachineInstr *ReMatOrigDefMI, MachineInstr *ReMatDefMI,
-                    unsigned Slot, int LdSlot,
-                    bool isLoad, bool isLoadSS, bool DefIsReMat, bool CanDelete,
-                    VirtRegMap &vrm,
-                    const TargetRegisterClass* rc,
-                    SmallVector<int, 4> &ReMatIds,
-                    const MachineLoopInfo *loopInfo,
-                    BitVector &SpillMBBs,
-                    DenseMap<unsigned, std::vector<SRInfo> > &SpillIdxes,
-                    BitVector &RestoreMBBs,
-                    DenseMap<unsigned, std::vector<SRInfo> > &RestoreIdxes,
-                    DenseMap<unsigned,unsigned> &MBBVRegsMap,
-                    std::vector<LiveInterval*> &NewLIs) {
-  bool AllCanFold = true;
-  unsigned NewVReg = 0;
-  SlotIndex start = I->start.getBaseIndex();
-  SlotIndex end = I->end.getPrevSlot().getBaseIndex().getNextIndex();
-
-  // First collect all the def / use in this live range that will be rewritten.
-  // Make sure they are sorted according to instruction index.
-  std::vector<RewriteInfo> RewriteMIs;
-  for (MachineRegisterInfo::reg_iterator ri = mri_->reg_begin(li.reg),
-         re = mri_->reg_end(); ri != re; ) {
-    MachineInstr *MI = &*ri;
-    MachineOperand &O = ri.getOperand();
-    ++ri;
-    if (MI->isDebugValue()) {
-      // Modify DBG_VALUE now that the value is in a spill slot.
-      if (Slot != VirtRegMap::MAX_STACK_SLOT || isLoadSS) {
-        uint64_t Offset = MI->getOperand(1).getImm();
-        const MDNode *MDPtr = MI->getOperand(2).getMetadata();
-        DebugLoc DL = MI->getDebugLoc();
-        int FI = isLoadSS ? LdSlot : (int)Slot;
-        if (MachineInstr *NewDV = tii_->emitFrameIndexDebugValue(*mf_, FI,
-                                                           Offset, MDPtr, DL)) {
-          DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << *MI);
-          ReplaceMachineInstrInMaps(MI, NewDV);
-          MachineBasicBlock *MBB = MI->getParent();
-          MBB->insert(MBB->erase(MI), NewDV);
-          continue;
-        }
-      }
-
-      DEBUG(dbgs() << "Removing debug info due to spill:" << "\t" << *MI);
-      RemoveMachineInstrFromMaps(MI);
-      vrm.RemoveMachineInstrFromMaps(MI);
-      MI->eraseFromParent();
-      continue;
-    }
-    assert(!(O.isImplicit() && O.isUse()) &&
-           "Spilling register that's used as implicit use?");
-    SlotIndex index = getInstructionIndex(MI);
-    if (index < start || index >= end)
-      continue;
-
-    if (O.isUndef())
-      // Must be defined by an implicit def. It should not be spilled. Note,
-      // this is for correctness reason. e.g.
-      // 8   %reg1024<def> = IMPLICIT_DEF
-      // 12  %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2
-      // The live range [12, 14) are not part of the r1024 live interval since
-      // it's defined by an implicit def. It will not conflicts with live
-      // interval of r1025. Now suppose both registers are spilled, you can
-      // easily see a situation where both registers are reloaded before
-      // the INSERT_SUBREG and both target registers that would overlap.
-      continue;
-    RewriteMIs.push_back(RewriteInfo(index, MI));
-  }
-  std::sort(RewriteMIs.begin(), RewriteMIs.end(), RewriteInfoCompare());
-
-  unsigned ImpUse = DefIsReMat ? getReMatImplicitUse(li, ReMatDefMI) : 0;
-  // Now rewrite the defs and uses.
-  for (unsigned i = 0, e = RewriteMIs.size(); i != e; ) {
-    RewriteInfo &rwi = RewriteMIs[i];
-    ++i;
-    SlotIndex index = rwi.Index;
-    MachineInstr *MI = rwi.MI;
-    // If MI def and/or use the same register multiple times, then there
-    // are multiple entries.
-    while (i != e && RewriteMIs[i].MI == MI) {
-      assert(RewriteMIs[i].Index == index);
-      ++i;
-    }
-    MachineBasicBlock *MBB = MI->getParent();
-
-    if (ImpUse && MI != ReMatDefMI) {
-      // Re-matting an instruction with virtual register use. Prevent interval
-      // from being spilled.
-      getInterval(ImpUse).markNotSpillable();
-    }
-
-    unsigned MBBId = MBB->getNumber();
-    unsigned ThisVReg = 0;
-    if (TrySplit) {
-      DenseMap<unsigned,unsigned>::iterator NVI = MBBVRegsMap.find(MBBId);
-      if (NVI != MBBVRegsMap.end()) {
-        ThisVReg = NVI->second;
-        // One common case:
-        // x = use
-        // ...
-        // ...
-        // def = ...
-        //     = use
-        // It's better to start a new interval to avoid artifically
-        // extend the new interval.
-        if (MI->readsWritesVirtualRegister(li.reg) ==
-            std::make_pair(false,true)) {
-          MBBVRegsMap.erase(MBB->getNumber());
-          ThisVReg = 0;
-        }
-      }
-    }
-
-    bool IsNew = ThisVReg == 0;
-    if (IsNew) {
-      // This ends the previous live interval. If all of its def / use
-      // can be folded, give it a low spill weight.
-      if (NewVReg && TrySplit && AllCanFold) {
-        LiveInterval &nI = getOrCreateInterval(NewVReg);
-        nI.weight /= 10.0F;
-      }
-      AllCanFold = true;
-    }
-    NewVReg = ThisVReg;
-
-    bool HasDef = false;
-    bool HasUse = false;
-    bool CanFold = rewriteInstructionForSpills(li, I->valno, TrySplit,
-                         index, end, MI, ReMatOrigDefMI, ReMatDefMI,
-                         Slot, LdSlot, isLoad, isLoadSS, DefIsReMat,
-                         CanDelete, vrm, rc, ReMatIds, loopInfo, NewVReg,
-                         ImpUse, HasDef, HasUse, MBBVRegsMap, NewLIs);
-    if (!HasDef && !HasUse)
-      continue;
-
-    AllCanFold &= CanFold;
-
-    // Update weight of spill interval.
-    LiveInterval &nI = getOrCreateInterval(NewVReg);
-    if (!TrySplit) {
-      // The spill weight is now infinity as it cannot be spilled again.
-      nI.markNotSpillable();
-      continue;
-    }
-
-    // Keep track of the last def and first use in each MBB.
-    if (HasDef) {
-      if (MI != ReMatOrigDefMI || !CanDelete) {
-        bool HasKill = false;
-        if (!HasUse)
-          HasKill = anyKillInMBBAfterIdx(li, I->valno, MBB, index.getDefIndex());
-        else {
-          // If this is a two-address code, then this index starts a new VNInfo.
-          const VNInfo *VNI = li.findDefinedVNInfoForRegInt(index.getDefIndex());
-          if (VNI)
-            HasKill = anyKillInMBBAfterIdx(li, VNI, MBB, index.getDefIndex());
-        }
-        DenseMap<unsigned, std::vector<SRInfo> >::iterator SII =
-          SpillIdxes.find(MBBId);
-        if (!HasKill) {
-          if (SII == SpillIdxes.end()) {
-            std::vector<SRInfo> S;
-            S.push_back(SRInfo(index, NewVReg, true));
-            SpillIdxes.insert(std::make_pair(MBBId, S));
-          } else if (SII->second.back().vreg != NewVReg) {
-            SII->second.push_back(SRInfo(index, NewVReg, true));
-          } else if (index > SII->second.back().index) {
-            // If there is an earlier def and this is a two-address
-            // instruction, then it's not possible to fold the store (which
-            // would also fold the load).
-            SRInfo &Info = SII->second.back();
-            Info.index = index;
-            Info.canFold = !HasUse;
-          }
-          SpillMBBs.set(MBBId);
-        } else if (SII != SpillIdxes.end() &&
-                   SII->second.back().vreg == NewVReg &&
-                   index > SII->second.back().index) {
-          // There is an earlier def that's not killed (must be two-address).
-          // The spill is no longer needed.
-          SII->second.pop_back();
-          if (SII->second.empty()) {
-            SpillIdxes.erase(MBBId);
-            SpillMBBs.reset(MBBId);
-          }
-        }
-      }
-    }
-
-    if (HasUse) {
-      DenseMap<unsigned, std::vector<SRInfo> >::iterator SII =
-        SpillIdxes.find(MBBId);
-      if (SII != SpillIdxes.end() &&
-          SII->second.back().vreg == NewVReg &&
-          index > SII->second.back().index)
-        // Use(s) following the last def, it's not safe to fold the spill.
-        SII->second.back().canFold = false;
-      DenseMap<unsigned, std::vector<SRInfo> >::iterator RII =
-        RestoreIdxes.find(MBBId);
-      if (RII != RestoreIdxes.end() && RII->second.back().vreg == NewVReg)
-        // If we are splitting live intervals, only fold if it's the first
-        // use and there isn't another use later in the MBB.
-        RII->second.back().canFold = false;
-      else if (IsNew) {
-        // Only need a reload if there isn't an earlier def / use.
-        if (RII == RestoreIdxes.end()) {
-          std::vector<SRInfo> Infos;
-          Infos.push_back(SRInfo(index, NewVReg, true));
-          RestoreIdxes.insert(std::make_pair(MBBId, Infos));
-        } else {
-          RII->second.push_back(SRInfo(index, NewVReg, true));
-        }
-        RestoreMBBs.set(MBBId);
-      }
-    }
-
-    // Update spill weight.
-    unsigned loopDepth = loopInfo->getLoopDepth(MBB);
-    nI.weight += getSpillWeight(HasDef, HasUse, loopDepth);
-  }
-
-  if (NewVReg && TrySplit && AllCanFold) {
-    // If all of its def / use can be folded, give it a low spill weight.
-    LiveInterval &nI = getOrCreateInterval(NewVReg);
-    nI.weight /= 10.0F;
-  }
-}
-
-bool LiveIntervals::alsoFoldARestore(int Id, SlotIndex index,
-                        unsigned vr, BitVector &RestoreMBBs,
-                        DenseMap<unsigned,std::vector<SRInfo> > &RestoreIdxes) {
-  if (!RestoreMBBs[Id])
-    return false;
-  std::vector<SRInfo> &Restores = RestoreIdxes[Id];
-  for (unsigned i = 0, e = Restores.size(); i != e; ++i)
-    if (Restores[i].index == index &&
-        Restores[i].vreg == vr &&
-        Restores[i].canFold)
-      return true;
-  return false;
-}
-
-void LiveIntervals::eraseRestoreInfo(int Id, SlotIndex index,
-                        unsigned vr, BitVector &RestoreMBBs,
-                        DenseMap<unsigned,std::vector<SRInfo> > &RestoreIdxes) {
-  if (!RestoreMBBs[Id])
-    return;
-  std::vector<SRInfo> &Restores = RestoreIdxes[Id];
-  for (unsigned i = 0, e = Restores.size(); i != e; ++i)
-    if (Restores[i].index == index && Restores[i].vreg)
-      Restores[i].index = SlotIndex();
-}
-
-/// handleSpilledImpDefs - Remove IMPLICIT_DEF instructions which are being
-/// spilled and create empty intervals for their uses.
-void
-LiveIntervals::handleSpilledImpDefs(const LiveInterval &li, VirtRegMap &vrm,
-                                    const TargetRegisterClass* rc,
-                                    std::vector<LiveInterval*> &NewLIs) {
-  for (MachineRegisterInfo::reg_iterator ri = mri_->reg_begin(li.reg),
-         re = mri_->reg_end(); ri != re; ) {
-    MachineOperand &O = ri.getOperand();
-    MachineInstr *MI = &*ri;
-    ++ri;
-    if (MI->isDebugValue()) {
-      // Remove debug info for now.
-      O.setReg(0U);
-      DEBUG(dbgs() << "Removing debug info due to spill:" << "\t" << *MI);
-      continue;
-    }
-    if (O.isDef()) {
-      assert(MI->isImplicitDef() &&
-             "Register def was not rewritten?");
-      RemoveMachineInstrFromMaps(MI);
-      vrm.RemoveMachineInstrFromMaps(MI);
-      MI->eraseFromParent();
-    } else {
-      // This must be an use of an implicit_def so it's not part of the live
-      // interval. Create a new empty live interval for it.
-      // FIXME: Can we simply erase some of the instructions? e.g. Stores?
-      unsigned NewVReg = mri_->createVirtualRegister(rc);
-      vrm.grow();
-      vrm.setIsImplicitlyDefined(NewVReg);
-      NewLIs.push_back(&getOrCreateInterval(NewVReg));
-      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
-        MachineOperand &MO = MI->getOperand(i);
-        if (MO.isReg() && MO.getReg() == li.reg) {
-          MO.setReg(NewVReg);
-          MO.setIsUndef();
-        }
-      }
-    }
-  }
-}
-
 float
 LiveIntervals::getSpillWeight(bool isDef, bool isUse, unsigned loopDepth) {
   // Limit the loop depth ridiculousness.
@@ -1678,457 +955,22 @@ LiveIntervals::getSpillWeight(bool isDef, bool isUse, unsigned loopDepth) {
   // overflow a float. This expression behaves like 10^d for small d, but is
   // more tempered for large d. At d=200 we get 6.7e33 which leaves a bit of
   // headroom before overflow.
-  float lc = std::pow(1 + (100.0f / (loopDepth+10)), (float)loopDepth);
+  // By the way, powf() might be unavailable here. For consistency,
+  // We may take pow(double,double).
+  float lc = std::pow(1 + (100.0 / (loopDepth + 10)), (double)loopDepth);
 
   return (isDef + isUse) * lc;
 }
 
-void
-LiveIntervals::normalizeSpillWeights(std::vector<LiveInterval*> &NewLIs) {
-  for (unsigned i = 0, e = NewLIs.size(); i != e; ++i)
-    normalizeSpillWeight(*NewLIs[i]);
-}
-
-std::vector<LiveInterval*> LiveIntervals::
-addIntervalsForSpills(const LiveInterval &li,
-                      const SmallVectorImpl<LiveInterval*> &SpillIs,
-                      const MachineLoopInfo *loopInfo, VirtRegMap &vrm) {
-  assert(li.isSpillable() && "attempt to spill already spilled interval!");
-
-  DEBUG({
-      dbgs() << "\t\t\t\tadding intervals for spills for interval: ";
-      li.print(dbgs(), tri_);
-      dbgs() << '\n';
-    });
-
-  // Each bit specify whether a spill is required in the MBB.
-  BitVector SpillMBBs(mf_->getNumBlockIDs());
-  DenseMap<unsigned, std::vector<SRInfo> > SpillIdxes;
-  BitVector RestoreMBBs(mf_->getNumBlockIDs());
-  DenseMap<unsigned, std::vector<SRInfo> > RestoreIdxes;
-  DenseMap<unsigned,unsigned> MBBVRegsMap;
-  std::vector<LiveInterval*> NewLIs;
-  const TargetRegisterClass* rc = mri_->getRegClass(li.reg);
-
-  unsigned NumValNums = li.getNumValNums();
-  SmallVector<MachineInstr*, 4> ReMatDefs;
-  ReMatDefs.resize(NumValNums, NULL);
-  SmallVector<MachineInstr*, 4> ReMatOrigDefs;
-  ReMatOrigDefs.resize(NumValNums, NULL);
-  SmallVector<int, 4> ReMatIds;
-  ReMatIds.resize(NumValNums, VirtRegMap::MAX_STACK_SLOT);
-  BitVector ReMatDelete(NumValNums);
-  unsigned Slot = VirtRegMap::MAX_STACK_SLOT;
-
-  // Spilling a split live interval. It cannot be split any further. Also,
-  // it's also guaranteed to be a single val# / range interval.
-  if (vrm.getPreSplitReg(li.reg)) {
-    vrm.setIsSplitFromReg(li.reg, 0);
-    // Unset the split kill marker on the last use.
-    SlotIndex KillIdx = vrm.getKillPoint(li.reg);
-    if (KillIdx != SlotIndex()) {
-      MachineInstr *KillMI = getInstructionFromIndex(KillIdx);
-      assert(KillMI && "Last use disappeared?");
-      int KillOp = KillMI->findRegisterUseOperandIdx(li.reg, true);
-      assert(KillOp != -1 && "Last use disappeared?");
-      KillMI->getOperand(KillOp).setIsKill(false);
-    }
-    vrm.removeKillPoint(li.reg);
-    bool DefIsReMat = vrm.isReMaterialized(li.reg);
-    Slot = vrm.getStackSlot(li.reg);
-    assert(Slot != VirtRegMap::MAX_STACK_SLOT);
-    MachineInstr *ReMatDefMI = DefIsReMat ?
-      vrm.getReMaterializedMI(li.reg) : NULL;
-    int LdSlot = 0;
-    bool isLoadSS = DefIsReMat && tii_->isLoadFromStackSlot(ReMatDefMI, LdSlot);
-    bool isLoad = isLoadSS ||
-      (DefIsReMat && (ReMatDefMI->getDesc().canFoldAsLoad()));
-    bool IsFirstRange = true;
-    for (LiveInterval::Ranges::const_iterator
-           I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
-      // If this is a split live interval with multiple ranges, it means there
-      // are two-address instructions that re-defined the value. Only the
-      // first def can be rematerialized!
-      if (IsFirstRange) {
-        // Note ReMatOrigDefMI has already been deleted.
-        rewriteInstructionsForSpills(li, false, I, NULL, ReMatDefMI,
-                             Slot, LdSlot, isLoad, isLoadSS, DefIsReMat,
-                             false, vrm, rc, ReMatIds, loopInfo,
-                             SpillMBBs, SpillIdxes, RestoreMBBs, RestoreIdxes,
-                             MBBVRegsMap, NewLIs);
-      } else {
-        rewriteInstructionsForSpills(li, false, I, NULL, 0,
-                             Slot, 0, false, false, false,
-                             false, vrm, rc, ReMatIds, loopInfo,
-                             SpillMBBs, SpillIdxes, RestoreMBBs, RestoreIdxes,
-                             MBBVRegsMap, NewLIs);
-      }
-      IsFirstRange = false;
-    }
-
-    handleSpilledImpDefs(li, vrm, rc, NewLIs);
-    normalizeSpillWeights(NewLIs);
-    return NewLIs;
-  }
-
-  bool TrySplit = !intervalIsInOneMBB(li);
-  if (TrySplit)
-    ++numSplits;
-  bool NeedStackSlot = false;
-  for (LiveInterval::const_vni_iterator i = li.vni_begin(), e = li.vni_end();
-       i != e; ++i) {
-    const VNInfo *VNI = *i;
-    unsigned VN = VNI->id;
-    if (VNI->isUnused())
-      continue; // Dead val#.
-    // Is the def for the val# rematerializable?
-    MachineInstr *ReMatDefMI = getInstructionFromIndex(VNI->def);
-    bool dummy;
-    if (ReMatDefMI && isReMaterializable(li, VNI, ReMatDefMI, SpillIs, dummy)) {
-      // Remember how to remat the def of this val#.
-      ReMatOrigDefs[VN] = ReMatDefMI;
-      // Original def may be modified so we have to make a copy here.
-      MachineInstr *Clone = mf_->CloneMachineInstr(ReMatDefMI);
-      CloneMIs.push_back(Clone);
-      ReMatDefs[VN] = Clone;
-
-      bool CanDelete = true;
-      if (VNI->hasPHIKill()) {
-        // A kill is a phi node, not all of its uses can be rematerialized.
-        // It must not be deleted.
-        CanDelete = false;
-        // Need a stack slot if there is any live range where uses cannot be
-        // rematerialized.
-        NeedStackSlot = true;
-      }
-      if (CanDelete)
-        ReMatDelete.set(VN);
-    } else {
-      // Need a stack slot if there is any live range where uses cannot be
-      // rematerialized.
-      NeedStackSlot = true;
-    }
-  }
-
-  // One stack slot per live interval.
-  if (NeedStackSlot && vrm.getPreSplitReg(li.reg) == 0) {
-    if (vrm.getStackSlot(li.reg) == VirtRegMap::NO_STACK_SLOT)
-      Slot = vrm.assignVirt2StackSlot(li.reg);
-
-    // This case only occurs when the prealloc splitter has already assigned
-    // a stack slot to this vreg.
-    else
-      Slot = vrm.getStackSlot(li.reg);
-  }
-
-  // Create new intervals and rewrite defs and uses.
-  for (LiveInterval::Ranges::const_iterator
-         I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
-    MachineInstr *ReMatDefMI = ReMatDefs[I->valno->id];
-    MachineInstr *ReMatOrigDefMI = ReMatOrigDefs[I->valno->id];
-    bool DefIsReMat = ReMatDefMI != NULL;
-    bool CanDelete = ReMatDelete[I->valno->id];
-    int LdSlot = 0;
-    bool isLoadSS = DefIsReMat && tii_->isLoadFromStackSlot(ReMatDefMI, LdSlot);
-    bool isLoad = isLoadSS ||
-      (DefIsReMat && ReMatDefMI->getDesc().canFoldAsLoad());
-    rewriteInstructionsForSpills(li, TrySplit, I, ReMatOrigDefMI, ReMatDefMI,
-                               Slot, LdSlot, isLoad, isLoadSS, DefIsReMat,
-                               CanDelete, vrm, rc, ReMatIds, loopInfo,
-                               SpillMBBs, SpillIdxes, RestoreMBBs, RestoreIdxes,
-                               MBBVRegsMap, NewLIs);
-  }
-
-  // Insert spills / restores if we are splitting.
-  if (!TrySplit) {
-    handleSpilledImpDefs(li, vrm, rc, NewLIs);
-    normalizeSpillWeights(NewLIs);
-    return NewLIs;
-  }
-
-  SmallPtrSet<LiveInterval*, 4> AddedKill;
-  SmallVector<unsigned, 2> Ops;
-  if (NeedStackSlot) {
-    int Id = SpillMBBs.find_first();
-    while (Id != -1) {
-      std::vector<SRInfo> &spills = SpillIdxes[Id];
-      for (unsigned i = 0, e = spills.size(); i != e; ++i) {
-        SlotIndex index = spills[i].index;
-        unsigned VReg = spills[i].vreg;
-        LiveInterval &nI = getOrCreateInterval(VReg);
-        bool isReMat = vrm.isReMaterialized(VReg);
-        MachineInstr *MI = getInstructionFromIndex(index);
-        bool CanFold = false;
-        bool FoundUse = false;
-        Ops.clear();
-        if (spills[i].canFold) {
-          CanFold = true;
-          for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) {
-            MachineOperand &MO = MI->getOperand(j);
-            if (!MO.isReg() || MO.getReg() != VReg)
-              continue;
-
-            Ops.push_back(j);
-            if (MO.isDef())
-              continue;
-            if (isReMat ||
-                (!FoundUse && !alsoFoldARestore(Id, index, VReg,
-                                                RestoreMBBs, RestoreIdxes))) {
-              // MI has two-address uses of the same register. If the use
-              // isn't the first and only use in the BB, then we can't fold
-              // it. FIXME: Move this to rewriteInstructionsForSpills.
-              CanFold = false;
-              break;
-            }
-            FoundUse = true;
-          }
-        }
-        // Fold the store into the def if possible.
-        bool Folded = false;
-        if (CanFold && !Ops.empty()) {
-          if (tryFoldMemoryOperand(MI, vrm, NULL, index, Ops, true, Slot,VReg)){
-            Folded = true;
-            if (FoundUse) {
-              // Also folded uses, do not issue a load.
-              eraseRestoreInfo(Id, index, VReg, RestoreMBBs, RestoreIdxes);
-              nI.removeRange(index.getLoadIndex(), index.getDefIndex());
-            }
-            nI.removeRange(index.getDefIndex(), index.getStoreIndex());
-          }
-        }
-
-        // Otherwise tell the spiller to issue a spill.
-        if (!Folded) {
-          LiveRange *LR = &nI.ranges[nI.ranges.size()-1];
-          bool isKill = LR->end == index.getStoreIndex();
-          if (!MI->registerDefIsDead(nI.reg))
-            // No need to spill a dead def.
-            vrm.addSpillPoint(VReg, isKill, MI);
-          if (isKill)
-            AddedKill.insert(&nI);
-        }
-      }
-      Id = SpillMBBs.find_next(Id);
-    }
-  }
-
-  int Id = RestoreMBBs.find_first();
-  while (Id != -1) {
-    std::vector<SRInfo> &restores = RestoreIdxes[Id];
-    for (unsigned i = 0, e = restores.size(); i != e; ++i) {
-      SlotIndex index = restores[i].index;
-      if (index == SlotIndex())
-        continue;
-      unsigned VReg = restores[i].vreg;
-      LiveInterval &nI = getOrCreateInterval(VReg);
-      bool isReMat = vrm.isReMaterialized(VReg);
-      MachineInstr *MI = getInstructionFromIndex(index);
-      bool CanFold = false;
-      Ops.clear();
-      if (restores[i].canFold) {
-        CanFold = true;
-        for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) {
-          MachineOperand &MO = MI->getOperand(j);
-          if (!MO.isReg() || MO.getReg() != VReg)
-            continue;
-
-          if (MO.isDef()) {
-            // If this restore were to be folded, it would have been folded
-            // already.
-            CanFold = false;
-            break;
-          }
-          Ops.push_back(j);
-        }
-      }
-
-      // Fold the load into the use if possible.
-      bool Folded = false;
-      if (CanFold && !Ops.empty()) {
-        if (!isReMat)
-          Folded = tryFoldMemoryOperand(MI, vrm, NULL,index,Ops,true,Slot,VReg);
-        else {
-          MachineInstr *ReMatDefMI = vrm.getReMaterializedMI(VReg);
-          int LdSlot = 0;
-          bool isLoadSS = tii_->isLoadFromStackSlot(ReMatDefMI, LdSlot);
-          // If the rematerializable def is a load, also try to fold it.
-          if (isLoadSS || ReMatDefMI->getDesc().canFoldAsLoad())
-            Folded = tryFoldMemoryOperand(MI, vrm, ReMatDefMI, index,
-                                          Ops, isLoadSS, LdSlot, VReg);
-          if (!Folded) {
-            unsigned ImpUse = getReMatImplicitUse(li, ReMatDefMI);
-            if (ImpUse) {
-              // Re-matting an instruction with virtual register use. Add the
-              // register as an implicit use on the use MI and mark the register
-              // interval as unspillable.
-              LiveInterval &ImpLi = getInterval(ImpUse);
-              ImpLi.markNotSpillable();
-              MI->addOperand(MachineOperand::CreateReg(ImpUse, false, true));
-            }
-          }
-        }
-      }
-      // If folding is not possible / failed, then tell the spiller to issue a
-      // load / rematerialization for us.
-      if (Folded)
-        nI.removeRange(index.getLoadIndex(), index.getDefIndex());
-      else
-        vrm.addRestorePoint(VReg, MI);
-    }
-    Id = RestoreMBBs.find_next(Id);
-  }
-
-  // Finalize intervals: add kills, finalize spill weights, and filter out
-  // dead intervals.
-  std::vector<LiveInterval*> RetNewLIs;
-  for (unsigned i = 0, e = NewLIs.size(); i != e; ++i) {
-    LiveInterval *LI = NewLIs[i];
-    if (!LI->empty()) {
-      if (!AddedKill.count(LI)) {
-        LiveRange *LR = &LI->ranges[LI->ranges.size()-1];
-        SlotIndex LastUseIdx = LR->end.getBaseIndex();
-        MachineInstr *LastUse = getInstructionFromIndex(LastUseIdx);
-        int UseIdx = LastUse->findRegisterUseOperandIdx(LI->reg, false);
-        assert(UseIdx != -1);
-        if (!LastUse->isRegTiedToDefOperand(UseIdx)) {
-          LastUse->getOperand(UseIdx).setIsKill();
-          vrm.addKillPoint(LI->reg, LastUseIdx);
-        }
-      }
-      RetNewLIs.push_back(LI);
-    }
-  }
-
-  handleSpilledImpDefs(li, vrm, rc, RetNewLIs);
-  normalizeSpillWeights(RetNewLIs);
-  return RetNewLIs;
-}
-
-/// hasAllocatableSuperReg - Return true if the specified physical register has
-/// any super register that's allocatable.
-bool LiveIntervals::hasAllocatableSuperReg(unsigned Reg) const {
-  for (const unsigned* AS = tri_->getSuperRegisters(Reg); *AS; ++AS)
-    if (allocatableRegs_[*AS] && hasInterval(*AS))
-      return true;
-  return false;
-}
-
-/// getRepresentativeReg - Find the largest super register of the specified
-/// physical register.
-unsigned LiveIntervals::getRepresentativeReg(unsigned Reg) const {
-  // Find the largest super-register that is allocatable.
-  unsigned BestReg = Reg;
-  for (const unsigned* AS = tri_->getSuperRegisters(Reg); *AS; ++AS) {
-    unsigned SuperReg = *AS;
-    if (!hasAllocatableSuperReg(SuperReg) && hasInterval(SuperReg)) {
-      BestReg = SuperReg;
-      break;
-    }
-  }
-  return BestReg;
-}
-
-/// getNumConflictsWithPhysReg - Return the number of uses and defs of the
-/// specified interval that conflicts with the specified physical register.
-unsigned LiveIntervals::getNumConflictsWithPhysReg(const LiveInterval &li,
-                                                   unsigned PhysReg) const {
-  unsigned NumConflicts = 0;
-  const LiveInterval &pli = getInterval(getRepresentativeReg(PhysReg));
-  for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(li.reg),
-         E = mri_->reg_end(); I != E; ++I) {
-    MachineOperand &O = I.getOperand();
-    MachineInstr *MI = O.getParent();
-    if (MI->isDebugValue())
-      continue;
-    SlotIndex Index = getInstructionIndex(MI);
-    if (pli.liveAt(Index))
-      ++NumConflicts;
-  }
-  return NumConflicts;
-}
-
-/// spillPhysRegAroundRegDefsUses - Spill the specified physical register
-/// around all defs and uses of the specified interval. Return true if it
-/// was able to cut its interval.
-bool LiveIntervals::spillPhysRegAroundRegDefsUses(const LiveInterval &li,
-                                            unsigned PhysReg, VirtRegMap &vrm) {
-  unsigned SpillReg = getRepresentativeReg(PhysReg);
-
-  DEBUG(dbgs() << "spillPhysRegAroundRegDefsUses " << tri_->getName(PhysReg)
-               << " represented by " << tri_->getName(SpillReg) << '\n');
-
-  for (const unsigned *AS = tri_->getAliasSet(PhysReg); *AS; ++AS)
-    // If there are registers which alias PhysReg, but which are not a
-    // sub-register of the chosen representative super register. Assert
-    // since we can't handle it yet.
-    assert(*AS == SpillReg || !allocatableRegs_[*AS] || !hasInterval(*AS) ||
-           tri_->isSuperRegister(*AS, SpillReg));
-
-  bool Cut = false;
-  SmallVector<unsigned, 4> PRegs;
-  if (hasInterval(SpillReg))
-    PRegs.push_back(SpillReg);
-  for (const unsigned *SR = tri_->getSubRegisters(SpillReg); *SR; ++SR)
-    if (hasInterval(*SR))
-      PRegs.push_back(*SR);
-
-  DEBUG({
-    dbgs() << "Trying to spill:";
-    for (unsigned i = 0, e = PRegs.size(); i != e; ++i)
-      dbgs() << ' ' << tri_->getName(PRegs[i]);
-    dbgs() << '\n';
-  });
-
-  SmallPtrSet<MachineInstr*, 8> SeenMIs;
-  for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(li.reg),
-         E = mri_->reg_end(); I != E; ++I) {
-    MachineOperand &O = I.getOperand();
-    MachineInstr *MI = O.getParent();
-    if (MI->isDebugValue() || SeenMIs.count(MI))
-      continue;
-    SeenMIs.insert(MI);
-    SlotIndex Index = getInstructionIndex(MI);
-    bool LiveReg = false;
-    for (unsigned i = 0, e = PRegs.size(); i != e; ++i) {
-      unsigned PReg = PRegs[i];
-      LiveInterval &pli = getInterval(PReg);
-      if (!pli.liveAt(Index))
-        continue;
-      LiveReg = true;
-      SlotIndex StartIdx = Index.getLoadIndex();
-      SlotIndex EndIdx = Index.getNextIndex().getBaseIndex();
-      if (!pli.isInOneLiveRange(StartIdx, EndIdx)) {
-        std::string msg;
-        raw_string_ostream Msg(msg);
-        Msg << "Ran out of registers during register allocation!";
-        if (MI->isInlineAsm()) {
-          Msg << "\nPlease check your inline asm statement for invalid "
-              << "constraints:\n";
-          MI->print(Msg, tm_);
-        }
-        report_fatal_error(Msg.str());
-      }
-      pli.removeRange(StartIdx, EndIdx);
-      LiveReg = true;
-    }
-    if (!LiveReg)
-      continue;
-    DEBUG(dbgs() << "Emergency spill around " << Index << '\t' << *MI);
-    vrm.addEmergencySpill(SpillReg, MI);
-    Cut = true;
-  }
-  return Cut;
-}
-
 LiveRange LiveIntervals::addLiveRangeToEndOfBlock(unsigned reg,
                                                   MachineInstr* startInst) {
   LiveInterval& Interval = getOrCreateInterval(reg);
   VNInfo* VN = Interval.getNextValue(
-    SlotIndex(getInstructionIndex(startInst).getDefIndex()),
+    SlotIndex(getInstructionIndex(startInst).getRegSlot()),
     startInst, getVNInfoAllocator());
   VN->setHasPHIKill(true);
   LiveRange LR(
-     SlotIndex(getInstructionIndex(startInst).getDefIndex()),
+     SlotIndex(getInstructionIndex(startInst).getRegSlot()),
      getMBBEndIdx(startInst->getParent()), VN);
   Interval.addRange(LR);