Optimize Thumb2 jumptable to use tbb / tbh when all the offsets fit in byte / halfword.
[oota-llvm.git] / lib / CodeGen / PreAllocSplitting.cpp
index 7b4ec8efbcf364d9edc036ad68d7e0f37aee042a..580a6d1d9d8e6605f3cf04f9cfe90503d27015fd 100644 (file)
 //===----------------------------------------------------------------------===//
 
 #define DEBUG_TYPE "pre-alloc-split"
+#include "VirtRegMap.h"
 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/CodeGen/LiveStackAnalysis.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
 #include "llvm/CodeGen/MachineFunctionPass.h"
 #include "llvm/CodeGen/MachineLoopInfo.h"
 #include "llvm/CodeGen/MachineRegisterInfo.h"
 #include "llvm/CodeGen/Passes.h"
 #include "llvm/CodeGen/RegisterCoalescer.h"
+#include "llvm/Target/TargetInstrInfo.h"
 #include "llvm/Target/TargetMachine.h"
 #include "llvm/Target/TargetOptions.h"
 #include "llvm/Target/TargetRegisterInfo.h"
 #include "llvm/Support/CommandLine.h"
 #include "llvm/Support/Debug.h"
-#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DepthFirstIterator.h"
 #include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/Statistic.h"
 using namespace llvm;
 
+static cl::opt<int> PreSplitLimit("pre-split-limit", cl::init(-1), cl::Hidden);
+static cl::opt<int> DeadSplitLimit("dead-split-limit", cl::init(-1), cl::Hidden);
+static cl::opt<int> RestoreFoldLimit("restore-fold-limit", cl::init(-1), cl::Hidden);
+
+STATISTIC(NumSplits, "Number of intervals split");
+STATISTIC(NumRemats, "Number of intervals split by rematerialization");
+STATISTIC(NumFolds, "Number of intervals split with spill folding");
+STATISTIC(NumRestoreFolds, "Number of intervals split with restore folding");
+STATISTIC(NumRenumbers, "Number of intervals renumbered into new registers");
+STATISTIC(NumDeadSpills, "Number of dead spills removed");
+
 namespace {
   class VISIBILITY_HIDDEN PreAllocSplitting : public MachineFunctionPass {
-    // ProcessedBarriers - Register live interval barriers that have already
-    // been processed.
-    SmallPtrSet<MachineInstr*, 16> ProcessedBarriers;
+    MachineFunction       *CurrMF;
+    const TargetMachine   *TM;
+    const TargetInstrInfo *TII;
+    const TargetRegisterInfo* TRI;
+    MachineFrameInfo      *MFI;
+    MachineRegisterInfo   *MRI;
+    LiveIntervals         *LIs;
+    LiveStacks            *LSs;
+    VirtRegMap            *VRM;
+
+    // Barrier - Current barrier being processed.
+    MachineInstr          *Barrier;
+
+    // BarrierMBB - Basic block where the barrier resides in.
+    MachineBasicBlock     *BarrierMBB;
+
+    // Barrier - Current barrier index.
+    unsigned              BarrierIdx;
+
+    // CurrLI - Current live interval being split.
+    LiveInterval          *CurrLI;
+
+    // CurrSLI - Current stack slot live interval.
+    LiveInterval          *CurrSLI;
+
+    // CurrSValNo - Current val# for the stack slot live interval.
+    VNInfo                *CurrSValNo;
+
+    // IntervalSSMap - A map from live interval to spill slots.
+    DenseMap<unsigned, int> IntervalSSMap;
+
+    // Def2SpillMap - A map from a def instruction index to spill index.
+    DenseMap<unsigned, unsigned> Def2SpillMap;
 
-    // ActiveBarriers - Register live interval barriers that are currently
-    // being processed.
-    SmallSet<unsigned, 16> ActiveBarriers;
   public:
     static char ID;
     PreAllocSplitting() : MachineFunctionPass(&ID) {}
@@ -48,25 +94,108 @@ namespace {
     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
       AU.addRequired<LiveIntervals>();
       AU.addPreserved<LiveIntervals>();
-      AU.addPreserved<MachineLoopInfo>();
+      AU.addRequired<LiveStacks>();
+      AU.addPreserved<LiveStacks>();
       AU.addPreserved<RegisterCoalescer>();
       if (StrongPHIElim)
         AU.addPreservedID(StrongPHIEliminationID);
       else
         AU.addPreservedID(PHIEliminationID);
-      AU.addPreservedID(TwoAddressInstructionPassID);
+      AU.addRequired<MachineDominatorTree>();
+      AU.addRequired<MachineLoopInfo>();
+      AU.addRequired<VirtRegMap>();
+      AU.addPreserved<MachineDominatorTree>();
+      AU.addPreserved<MachineLoopInfo>();
+      AU.addPreserved<VirtRegMap>();
       MachineFunctionPass::getAnalysisUsage(AU);
     }
     
     virtual void releaseMemory() {
-      ProcessedBarriers.clear();
-      ActiveBarriers.clear();
+      IntervalSSMap.clear();
+      Def2SpillMap.clear();
     }
 
     virtual const char *getPassName() const {
       return "Pre-Register Allocaton Live Interval Splitting";
     }
-  };
+
+    /// print - Implement the dump method.
+    virtual void print(std::ostream &O, const Module* M = 0) const {
+      LIs->print(O, M);
+    }
+
+    void print(std::ostream *O, const Module* M = 0) const {
+      if (O) print(*O, M);
+    }
+
+  private:
+    MachineBasicBlock::iterator
+      findNextEmptySlot(MachineBasicBlock*, MachineInstr*,
+                        unsigned&);
+
+    MachineBasicBlock::iterator
+      findSpillPoint(MachineBasicBlock*, MachineInstr*, MachineInstr*,
+                     SmallPtrSet<MachineInstr*, 4>&, unsigned&);
+
+    MachineBasicBlock::iterator
+      findRestorePoint(MachineBasicBlock*, MachineInstr*, unsigned,
+                     SmallPtrSet<MachineInstr*, 4>&, unsigned&);
+
+    int CreateSpillStackSlot(unsigned, const TargetRegisterClass *);
+
+    bool IsAvailableInStack(MachineBasicBlock*, unsigned, unsigned, unsigned,
+                            unsigned&, int&) const;
+
+    void UpdateSpillSlotInterval(VNInfo*, unsigned, unsigned);
+
+    bool SplitRegLiveInterval(LiveInterval*);
+
+    bool SplitRegLiveIntervals(const TargetRegisterClass **,
+                               SmallPtrSet<LiveInterval*, 8>&);
+    
+    bool createsNewJoin(LiveRange* LR, MachineBasicBlock* DefMBB,
+                        MachineBasicBlock* BarrierMBB);
+    bool Rematerialize(unsigned vreg, VNInfo* ValNo,
+                       MachineInstr* DefMI,
+                       MachineBasicBlock::iterator RestorePt,
+                       unsigned RestoreIdx,
+                       SmallPtrSet<MachineInstr*, 4>& RefsInMBB);
+    MachineInstr* FoldSpill(unsigned vreg, const TargetRegisterClass* RC,
+                            MachineInstr* DefMI,
+                            MachineInstr* Barrier,
+                            MachineBasicBlock* MBB,
+                            int& SS,
+                            SmallPtrSet<MachineInstr*, 4>& RefsInMBB);
+    MachineInstr* FoldRestore(unsigned vreg, 
+                              const TargetRegisterClass* RC,
+                              MachineInstr* Barrier,
+                              MachineBasicBlock* MBB,
+                              int SS,
+                              SmallPtrSet<MachineInstr*, 4>& RefsInMBB);
+    void RenumberValno(VNInfo* VN);
+    void ReconstructLiveInterval(LiveInterval* LI);
+    bool removeDeadSpills(SmallPtrSet<LiveInterval*, 8>& split);
+    unsigned getNumberOfNonSpills(SmallPtrSet<MachineInstr*, 4>& MIs,
+                               unsigned Reg, int FrameIndex, bool& TwoAddr);
+    VNInfo* PerformPHIConstruction(MachineBasicBlock::iterator Use,
+                                   MachineBasicBlock* MBB, LiveInterval* LI,
+                                   SmallPtrSet<MachineInstr*, 4>& Visited,
+            DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
+            DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
+                                      DenseMap<MachineInstr*, VNInfo*>& NewVNs,
+                                DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
+                                DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
+                                        bool IsTopLevel, bool IsIntraBlock);
+    VNInfo* PerformPHIConstructionFallBack(MachineBasicBlock::iterator Use,
+                                   MachineBasicBlock* MBB, LiveInterval* LI,
+                                   SmallPtrSet<MachineInstr*, 4>& Visited,
+            DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
+            DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
+                                      DenseMap<MachineInstr*, VNInfo*>& NewVNs,
+                                DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
+                                DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
+                                        bool IsTopLevel, bool IsIntraBlock);
+};
 } // end anonymous namespace
 
 char PreAllocSplitting::ID = 0;
@@ -76,6 +205,1279 @@ X("pre-alloc-splitting", "Pre-Register Allocation Live Interval Splitting");
 
 const PassInfo *const llvm::PreAllocSplittingID = &X;
 
-bool PreAllocSplitting::runOnMachineFunction(MachineFunction &MF) {
+
+/// findNextEmptySlot - Find a gap after the given machine instruction in the
+/// instruction index map. If there isn't one, return end().
+MachineBasicBlock::iterator
+PreAllocSplitting::findNextEmptySlot(MachineBasicBlock *MBB, MachineInstr *MI,
+                                     unsigned &SpotIndex) {
+  MachineBasicBlock::iterator MII = MI;
+  if (++MII != MBB->end()) {
+    unsigned Index = LIs->findGapBeforeInstr(LIs->getInstructionIndex(MII));
+    if (Index) {
+      SpotIndex = Index;
+      return MII;
+    }
+  }
+  return MBB->end();
+}
+
+/// findSpillPoint - Find a gap as far away from the given MI that's suitable
+/// for spilling the current live interval. The index must be before any
+/// defs and uses of the live interval register in the mbb. Return begin() if
+/// none is found.
+MachineBasicBlock::iterator
+PreAllocSplitting::findSpillPoint(MachineBasicBlock *MBB, MachineInstr *MI,
+                                  MachineInstr *DefMI,
+                                  SmallPtrSet<MachineInstr*, 4> &RefsInMBB,
+                                  unsigned &SpillIndex) {
+  MachineBasicBlock::iterator Pt = MBB->begin();
+
+  MachineBasicBlock::iterator MII = MI;
+  MachineBasicBlock::iterator EndPt = DefMI
+    ? MachineBasicBlock::iterator(DefMI) : MBB->begin();
+    
+  while (MII != EndPt && !RefsInMBB.count(MII) &&
+         MII->getOpcode() != TRI->getCallFrameSetupOpcode())
+    --MII;
+  if (MII == EndPt || RefsInMBB.count(MII)) return Pt;
+    
+  while (MII != EndPt && !RefsInMBB.count(MII)) {
+    unsigned Index = LIs->getInstructionIndex(MII);
+    
+    // We can't insert the spill between the barrier (a call), and its
+    // corresponding call frame setup.
+    if (MII->getOpcode() == TRI->getCallFrameDestroyOpcode()) {
+      while (MII->getOpcode() != TRI->getCallFrameSetupOpcode()) {
+        --MII;
+        if (MII == EndPt) {
+          return Pt;
+        }
+      }
+      continue;
+    } else if (LIs->hasGapBeforeInstr(Index)) {
+      Pt = MII;
+      SpillIndex = LIs->findGapBeforeInstr(Index, true);
+    }
+    
+    if (RefsInMBB.count(MII))
+      return Pt;
+    
+    
+    --MII;
+  }
+
+  return Pt;
+}
+
+/// findRestorePoint - Find a gap in the instruction index map that's suitable
+/// for restoring the current live interval value. The index must be before any
+/// uses of the live interval register in the mbb. Return end() if none is
+/// found.
+MachineBasicBlock::iterator
+PreAllocSplitting::findRestorePoint(MachineBasicBlock *MBB, MachineInstr *MI,
+                                    unsigned LastIdx,
+                                    SmallPtrSet<MachineInstr*, 4> &RefsInMBB,
+                                    unsigned &RestoreIndex) {
+  // FIXME: Allow spill to be inserted to the beginning of the mbb. Update mbb
+  // begin index accordingly.
+  MachineBasicBlock::iterator Pt = MBB->end();
+  MachineBasicBlock::iterator EndPt = MBB->getFirstTerminator();
+
+  // We start at the call, so walk forward until we find the call frame teardown
+  // since we can't insert restores before that.  Bail if we encounter a use
+  // during this time.
+  MachineBasicBlock::iterator MII = MI;
+  if (MII == EndPt) return Pt;
+  
+  while (MII != EndPt && !RefsInMBB.count(MII) &&
+         MII->getOpcode() != TRI->getCallFrameDestroyOpcode())
+    ++MII;
+  if (MII == EndPt || RefsInMBB.count(MII)) return Pt;
+  ++MII;
+  
+  // FIXME: Limit the number of instructions to examine to reduce
+  // compile time?
+  while (MII != EndPt) {
+    unsigned Index = LIs->getInstructionIndex(MII);
+    if (Index > LastIdx)
+      break;
+    unsigned Gap = LIs->findGapBeforeInstr(Index);
+      
+    // We can't insert a restore between the barrier (a call) and its 
+    // corresponding call frame teardown.
+    if (MII->getOpcode() == TRI->getCallFrameSetupOpcode()) {
+      do {
+        if (MII == EndPt || RefsInMBB.count(MII)) return Pt;
+        ++MII;
+      } while (MII->getOpcode() != TRI->getCallFrameDestroyOpcode());
+    } else if (Gap) {
+      Pt = MII;
+      RestoreIndex = Gap;
+    }
+    
+    if (RefsInMBB.count(MII))
+      return Pt;
+    
+    ++MII;
+  }
+
+  return Pt;
+}
+
+/// CreateSpillStackSlot - Create a stack slot for the live interval being
+/// split. If the live interval was previously split, just reuse the same
+/// slot.
+int PreAllocSplitting::CreateSpillStackSlot(unsigned Reg,
+                                            const TargetRegisterClass *RC) {
+  int SS;
+  DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(Reg);
+  if (I != IntervalSSMap.end()) {
+    SS = I->second;
+  } else {
+    SS = MFI->CreateStackObject(RC->getSize(), RC->getAlignment());
+    IntervalSSMap[Reg] = SS;
+  }
+
+  // Create live interval for stack slot.
+  CurrSLI = &LSs->getOrCreateInterval(SS, RC);
+  if (CurrSLI->hasAtLeastOneValue())
+    CurrSValNo = CurrSLI->getValNumInfo(0);
+  else
+    CurrSValNo = CurrSLI->getNextValue(0, 0, false, LSs->getVNInfoAllocator());
+  return SS;
+}
+
+/// IsAvailableInStack - Return true if register is available in a split stack
+/// slot at the specified index.
+bool
+PreAllocSplitting::IsAvailableInStack(MachineBasicBlock *DefMBB,
+                                    unsigned Reg, unsigned DefIndex,
+                                    unsigned RestoreIndex, unsigned &SpillIndex,
+                                    int& SS) const {
+  if (!DefMBB)
+    return false;
+
+  DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(Reg);
+  if (I == IntervalSSMap.end())
+    return false;
+  DenseMap<unsigned, unsigned>::iterator II = Def2SpillMap.find(DefIndex);
+  if (II == Def2SpillMap.end())
+    return false;
+
+  // If last spill of def is in the same mbb as barrier mbb (where restore will
+  // be), make sure it's not below the intended restore index.
+  // FIXME: Undo the previous spill?
+  assert(LIs->getMBBFromIndex(II->second) == DefMBB);
+  if (DefMBB == BarrierMBB && II->second >= RestoreIndex)
+    return false;
+
+  SS = I->second;
+  SpillIndex = II->second;
+  return true;
+}
+
+/// UpdateSpillSlotInterval - Given the specified val# of the register live
+/// interval being split, and the spill and restore indicies, update the live
+/// interval of the spill stack slot.
+void
+PreAllocSplitting::UpdateSpillSlotInterval(VNInfo *ValNo, unsigned SpillIndex,
+                                           unsigned RestoreIndex) {
+  assert(LIs->getMBBFromIndex(RestoreIndex) == BarrierMBB &&
+         "Expect restore in the barrier mbb");
+
+  MachineBasicBlock *MBB = LIs->getMBBFromIndex(SpillIndex);
+  if (MBB == BarrierMBB) {
+    // Intra-block spill + restore. We are done.
+    LiveRange SLR(SpillIndex, RestoreIndex, CurrSValNo);
+    CurrSLI->addRange(SLR);
+    return;
+  }
+
+  SmallPtrSet<MachineBasicBlock*, 4> Processed;
+  unsigned EndIdx = LIs->getMBBEndIdx(MBB);
+  LiveRange SLR(SpillIndex, EndIdx+1, CurrSValNo);
+  CurrSLI->addRange(SLR);
+  Processed.insert(MBB);
+
+  // Start from the spill mbb, figure out the extend of the spill slot's
+  // live interval.
+  SmallVector<MachineBasicBlock*, 4> WorkList;
+  const LiveRange *LR = CurrLI->getLiveRangeContaining(SpillIndex);
+  if (LR->end > EndIdx)
+    // If live range extend beyond end of mbb, add successors to work list.
+    for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
+           SE = MBB->succ_end(); SI != SE; ++SI)
+      WorkList.push_back(*SI);
+
+  while (!WorkList.empty()) {
+    MachineBasicBlock *MBB = WorkList.back();
+    WorkList.pop_back();
+    if (Processed.count(MBB))
+      continue;
+    unsigned Idx = LIs->getMBBStartIdx(MBB);
+    LR = CurrLI->getLiveRangeContaining(Idx);
+    if (LR && LR->valno == ValNo) {
+      EndIdx = LIs->getMBBEndIdx(MBB);
+      if (Idx <= RestoreIndex && RestoreIndex < EndIdx) {
+        // Spill slot live interval stops at the restore.
+        LiveRange SLR(Idx, RestoreIndex, CurrSValNo);
+        CurrSLI->addRange(SLR);
+      } else if (LR->end > EndIdx) {
+        // Live range extends beyond end of mbb, process successors.
+        LiveRange SLR(Idx, EndIdx+1, CurrSValNo);
+        CurrSLI->addRange(SLR);
+        for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
+               SE = MBB->succ_end(); SI != SE; ++SI)
+          WorkList.push_back(*SI);
+      } else {
+        LiveRange SLR(Idx, LR->end, CurrSValNo);
+        CurrSLI->addRange(SLR);
+      }
+      Processed.insert(MBB);
+    }
+  }
+}
+
+/// PerformPHIConstruction - From properly set up use and def lists, use a PHI
+/// construction algorithm to compute the ranges and valnos for an interval.
+VNInfo*
+PreAllocSplitting::PerformPHIConstruction(MachineBasicBlock::iterator UseI,
+                                       MachineBasicBlock* MBB, LiveInterval* LI,
+                                       SmallPtrSet<MachineInstr*, 4>& Visited,
+             DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
+             DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
+                                       DenseMap<MachineInstr*, VNInfo*>& NewVNs,
+                                 DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
+                                 DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
+                                           bool IsTopLevel, bool IsIntraBlock) {
+  // Return memoized result if it's available.
+  if (IsTopLevel && Visited.count(UseI) && NewVNs.count(UseI))
+    return NewVNs[UseI];
+  else if (!IsTopLevel && IsIntraBlock && NewVNs.count(UseI))
+    return NewVNs[UseI];
+  else if (!IsIntraBlock && LiveOut.count(MBB))
+    return LiveOut[MBB];
+  
+  // Check if our block contains any uses or defs.
+  bool ContainsDefs = Defs.count(MBB);
+  bool ContainsUses = Uses.count(MBB);
+  
+  VNInfo* RetVNI = 0;
+  
+  // Enumerate the cases of use/def contaning blocks.
+  if (!ContainsDefs && !ContainsUses) {
+    return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs, Uses,
+                                          NewVNs, LiveOut, Phis,
+                                          IsTopLevel, IsIntraBlock);
+  } else if (ContainsDefs && !ContainsUses) {
+    SmallPtrSet<MachineInstr*, 2>& BlockDefs = Defs[MBB];
+
+    // Search for the def in this block.  If we don't find it before the
+    // instruction we care about, go to the fallback case.  Note that that
+    // should never happen: this cannot be intrablock, so use should
+    // always be an end() iterator.
+    assert(UseI == MBB->end() && "No use marked in intrablock");
+    
+    MachineBasicBlock::iterator Walker = UseI;
+    --Walker;
+    while (Walker != MBB->begin()) {
+      if (BlockDefs.count(Walker))
+        break;
+      --Walker;
+    }
+    
+    // Once we've found it, extend its VNInfo to our instruction.
+    unsigned DefIndex = LIs->getInstructionIndex(Walker);
+    DefIndex = LiveIntervals::getDefIndex(DefIndex);
+    unsigned EndIndex = LIs->getMBBEndIdx(MBB);
+    
+    RetVNI = NewVNs[Walker];
+    LI->addRange(LiveRange(DefIndex, EndIndex+1, RetVNI));
+  } else if (!ContainsDefs && ContainsUses) {
+    SmallPtrSet<MachineInstr*, 2>& BlockUses = Uses[MBB];
+    
+    // Search for the use in this block that precedes the instruction we care 
+    // about, going to the fallback case if we don't find it.    
+    if (UseI == MBB->begin())
+      return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs,
+                                            Uses, NewVNs, LiveOut, Phis,
+                                            IsTopLevel, IsIntraBlock);
+    
+    MachineBasicBlock::iterator Walker = UseI;
+    --Walker;
+    bool found = false;
+    while (Walker != MBB->begin()) {
+      if (BlockUses.count(Walker)) {
+        found = true;
+        break;
+      }
+      --Walker;
+    }
+        
+    // Must check begin() too.
+    if (!found) {
+      if (BlockUses.count(Walker))
+        found = true;
+      else
+        return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs,
+                                              Uses, NewVNs, LiveOut, Phis,
+                                              IsTopLevel, IsIntraBlock);
+    }
+
+    unsigned UseIndex = LIs->getInstructionIndex(Walker);
+    UseIndex = LiveIntervals::getUseIndex(UseIndex);
+    unsigned EndIndex = 0;
+    if (IsIntraBlock) {
+      EndIndex = LIs->getInstructionIndex(UseI);
+      EndIndex = LiveIntervals::getUseIndex(EndIndex);
+    } else
+      EndIndex = LIs->getMBBEndIdx(MBB);
+
+    // Now, recursively phi construct the VNInfo for the use we found,
+    // and then extend it to include the instruction we care about
+    RetVNI = PerformPHIConstruction(Walker, MBB, LI, Visited, Defs, Uses,
+                                    NewVNs, LiveOut, Phis, false, true);
+    
+    LI->addRange(LiveRange(UseIndex, EndIndex+1, RetVNI));
+    
+    // FIXME: Need to set kills properly for inter-block stuff.
+    if (LI->isKill(RetVNI, UseIndex)) LI->removeKill(RetVNI, UseIndex);
+    if (IsIntraBlock)
+      LI->addKill(RetVNI, EndIndex, false);
+  } else if (ContainsDefs && ContainsUses) {
+    SmallPtrSet<MachineInstr*, 2>& BlockDefs = Defs[MBB];
+    SmallPtrSet<MachineInstr*, 2>& BlockUses = Uses[MBB];
+    
+    // This case is basically a merging of the two preceding case, with the
+    // special note that checking for defs must take precedence over checking
+    // for uses, because of two-address instructions.
+    
+    if (UseI == MBB->begin())
+      return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs, Uses,
+                                            NewVNs, LiveOut, Phis,
+                                            IsTopLevel, IsIntraBlock);
+    
+    MachineBasicBlock::iterator Walker = UseI;
+    --Walker;
+    bool foundDef = false;
+    bool foundUse = false;
+    while (Walker != MBB->begin()) {
+      if (BlockDefs.count(Walker)) {
+        foundDef = true;
+        break;
+      } else if (BlockUses.count(Walker)) {
+        foundUse = true;
+        break;
+      }
+      --Walker;
+    }
+        
+    // Must check begin() too.
+    if (!foundDef && !foundUse) {
+      if (BlockDefs.count(Walker))
+        foundDef = true;
+      else if (BlockUses.count(Walker))
+        foundUse = true;
+      else
+        return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs,
+                                              Uses, NewVNs, LiveOut, Phis,
+                                              IsTopLevel, IsIntraBlock);
+    }
+
+    unsigned StartIndex = LIs->getInstructionIndex(Walker);
+    StartIndex = foundDef ? LiveIntervals::getDefIndex(StartIndex) :
+                            LiveIntervals::getUseIndex(StartIndex);
+    unsigned EndIndex = 0;
+    if (IsIntraBlock) {
+      EndIndex = LIs->getInstructionIndex(UseI);
+      EndIndex = LiveIntervals::getUseIndex(EndIndex);
+    } else
+      EndIndex = LIs->getMBBEndIdx(MBB);
+
+    if (foundDef)
+      RetVNI = NewVNs[Walker];
+    else
+      RetVNI = PerformPHIConstruction(Walker, MBB, LI, Visited, Defs, Uses,
+                                      NewVNs, LiveOut, Phis, false, true);
+
+    LI->addRange(LiveRange(StartIndex, EndIndex+1, RetVNI));
+    
+    if (foundUse && LI->isKill(RetVNI, StartIndex))
+      LI->removeKill(RetVNI, StartIndex);
+    if (IsIntraBlock) {
+      LI->addKill(RetVNI, EndIndex, false);
+    }
+  }
+  
+  // Memoize results so we don't have to recompute them.
+  if (!IsIntraBlock) LiveOut[MBB] = RetVNI;
+  else {
+    if (!NewVNs.count(UseI))
+      NewVNs[UseI] = RetVNI;
+    Visited.insert(UseI);
+  }
+
+  return RetVNI;
+}
+
+/// PerformPHIConstructionFallBack - PerformPHIConstruction fall back path.
+///
+VNInfo*
+PreAllocSplitting::PerformPHIConstructionFallBack(MachineBasicBlock::iterator UseI,
+                                       MachineBasicBlock* MBB, LiveInterval* LI,
+                                       SmallPtrSet<MachineInstr*, 4>& Visited,
+             DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
+             DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
+                                       DenseMap<MachineInstr*, VNInfo*>& NewVNs,
+                                 DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
+                                 DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
+                                           bool IsTopLevel, bool IsIntraBlock) {
+  // NOTE: Because this is the fallback case from other cases, we do NOT
+  // assume that we are not intrablock here.
+  if (Phis.count(MBB)) return Phis[MBB]; 
+
+  unsigned StartIndex = LIs->getMBBStartIdx(MBB);
+  VNInfo *RetVNI = Phis[MBB] =
+    LI->getNextValue(0, /*FIXME*/ 0, false, LIs->getVNInfoAllocator());
+
+  if (!IsIntraBlock) LiveOut[MBB] = RetVNI;
+    
+  // If there are no uses or defs between our starting point and the
+  // beginning of the block, then recursive perform phi construction
+  // on our predecessors.
+  DenseMap<MachineBasicBlock*, VNInfo*> IncomingVNs;
+  for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
+         PE = MBB->pred_end(); PI != PE; ++PI) {
+    VNInfo* Incoming = PerformPHIConstruction((*PI)->end(), *PI, LI, 
+                                              Visited, Defs, Uses, NewVNs,
+                                              LiveOut, Phis, false, false);
+    if (Incoming != 0)
+      IncomingVNs[*PI] = Incoming;
+  }
+    
+  if (MBB->pred_size() == 1 && !RetVNI->hasPHIKill()) {
+    VNInfo* OldVN = RetVNI;
+    VNInfo* NewVN = IncomingVNs.begin()->second;
+    VNInfo* MergedVN = LI->MergeValueNumberInto(OldVN, NewVN);
+    if (MergedVN == OldVN) std::swap(OldVN, NewVN);
+    
+    for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator LOI = LiveOut.begin(),
+         LOE = LiveOut.end(); LOI != LOE; ++LOI)
+      if (LOI->second == OldVN)
+        LOI->second = MergedVN;
+    for (DenseMap<MachineInstr*, VNInfo*>::iterator NVI = NewVNs.begin(),
+         NVE = NewVNs.end(); NVI != NVE; ++NVI)
+      if (NVI->second == OldVN)
+        NVI->second = MergedVN;
+    for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator PI = Phis.begin(),
+         PE = Phis.end(); PI != PE; ++PI)
+      if (PI->second == OldVN)
+        PI->second = MergedVN;
+    RetVNI = MergedVN;
+  } else {
+    // Otherwise, merge the incoming VNInfos with a phi join.  Create a new
+    // VNInfo to represent the joined value.
+    for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator I =
+           IncomingVNs.begin(), E = IncomingVNs.end(); I != E; ++I) {
+      I->second->setHasPHIKill(true);
+      unsigned KillIndex = LIs->getMBBEndIdx(I->first);
+      if (!LiveInterval::isKill(I->second, KillIndex))
+        LI->addKill(I->second, KillIndex, false);
+    }
+  }
+      
+  unsigned EndIndex = 0;
+  if (IsIntraBlock) {
+    EndIndex = LIs->getInstructionIndex(UseI);
+    EndIndex = LiveIntervals::getUseIndex(EndIndex);
+  } else
+    EndIndex = LIs->getMBBEndIdx(MBB);
+  LI->addRange(LiveRange(StartIndex, EndIndex+1, RetVNI));
+  if (IsIntraBlock)
+    LI->addKill(RetVNI, EndIndex, false);
+
+  // Memoize results so we don't have to recompute them.
+  if (!IsIntraBlock)
+    LiveOut[MBB] = RetVNI;
+  else {
+    if (!NewVNs.count(UseI))
+      NewVNs[UseI] = RetVNI;
+    Visited.insert(UseI);
+  }
+
+  return RetVNI;
+}
+
+/// ReconstructLiveInterval - Recompute a live interval from scratch.
+void PreAllocSplitting::ReconstructLiveInterval(LiveInterval* LI) {
+  BumpPtrAllocator& Alloc = LIs->getVNInfoAllocator();
+  
+  // Clear the old ranges and valnos;
+  LI->clear();
+  
+  // Cache the uses and defs of the register
+  typedef DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> > RegMap;
+  RegMap Defs, Uses;
+  
+  // Keep track of the new VNs we're creating.
+  DenseMap<MachineInstr*, VNInfo*> NewVNs;
+  SmallPtrSet<VNInfo*, 2> PhiVNs;
+  
+  // Cache defs, and create a new VNInfo for each def.
+  for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(LI->reg),
+       DE = MRI->def_end(); DI != DE; ++DI) {
+    Defs[(*DI).getParent()].insert(&*DI);
+    
+    unsigned DefIdx = LIs->getInstructionIndex(&*DI);
+    DefIdx = LiveIntervals::getDefIndex(DefIdx);
+    
+    assert(DI->getOpcode() != TargetInstrInfo::PHI &&
+           "Following NewVN isPHIDef flag incorrect. Fix me!");
+    VNInfo* NewVN = LI->getNextValue(DefIdx, 0, true, Alloc);
+    
+    // If the def is a move, set the copy field.
+    unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
+    if (TII->isMoveInstr(*DI, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
+      if (DstReg == LI->reg)
+        NewVN->copy = &*DI;
+    
+    NewVNs[&*DI] = NewVN;
+  }
+  
+  // Cache uses as a separate pass from actually processing them.
+  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(LI->reg),
+       UE = MRI->use_end(); UI != UE; ++UI)
+    Uses[(*UI).getParent()].insert(&*UI);
+    
+  // Now, actually process every use and use a phi construction algorithm
+  // to walk from it to its reaching definitions, building VNInfos along
+  // the way.
+  DenseMap<MachineBasicBlock*, VNInfo*> LiveOut;
+  DenseMap<MachineBasicBlock*, VNInfo*> Phis;
+  SmallPtrSet<MachineInstr*, 4> Visited;
+  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(LI->reg),
+       UE = MRI->use_end(); UI != UE; ++UI) {
+    PerformPHIConstruction(&*UI, UI->getParent(), LI, Visited, Defs,
+                           Uses, NewVNs, LiveOut, Phis, true, true); 
+  }
+  
+  // Add ranges for dead defs
+  for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(LI->reg),
+       DE = MRI->def_end(); DI != DE; ++DI) {
+    unsigned DefIdx = LIs->getInstructionIndex(&*DI);
+    DefIdx = LiveIntervals::getDefIndex(DefIdx);
+    
+    if (LI->liveAt(DefIdx)) continue;
+    
+    VNInfo* DeadVN = NewVNs[&*DI];
+    LI->addRange(LiveRange(DefIdx, DefIdx+1, DeadVN));
+    LI->addKill(DeadVN, DefIdx, false);
+  }
+}
+
+/// RenumberValno - Split the given valno out into a new vreg, allowing it to
+/// be allocated to a different register.  This function creates a new vreg,
+/// copies the valno and its live ranges over to the new vreg's interval,
+/// removes them from the old interval, and rewrites all uses and defs of
+/// the original reg to the new vreg within those ranges.
+void PreAllocSplitting::RenumberValno(VNInfo* VN) {
+  SmallVector<VNInfo*, 4> Stack;
+  SmallVector<VNInfo*, 4> VNsToCopy;
+  Stack.push_back(VN);
+
+  // Walk through and copy the valno we care about, and any other valnos
+  // that are two-address redefinitions of the one we care about.  These
+  // will need to be rewritten as well.  We also check for safety of the 
+  // renumbering here, by making sure that none of the valno involved has
+  // phi kills.
+  while (!Stack.empty()) {
+    VNInfo* OldVN = Stack.back();
+    Stack.pop_back();
+    
+    // Bail out if we ever encounter a valno that has a PHI kill.  We can't
+    // renumber these.
+    if (OldVN->hasPHIKill()) return;
+    
+    VNsToCopy.push_back(OldVN);
+    
+    // Locate two-address redefinitions
+    for (VNInfo::KillSet::iterator KI = OldVN->kills.begin(),
+         KE = OldVN->kills.end(); KI != KE; ++KI) {
+      assert(!KI->isPHIKill && "VN previously reported having no PHI kills.");
+      MachineInstr* MI = LIs->getInstructionFromIndex(KI->killIdx);
+      unsigned DefIdx = MI->findRegisterDefOperandIdx(CurrLI->reg);
+      if (DefIdx == ~0U) continue;
+      if (MI->isRegTiedToUseOperand(DefIdx)) {
+        VNInfo* NextVN =
+          CurrLI->findDefinedVNInfo(LiveIntervals::getDefIndex(KI->killIdx));
+        if (NextVN == OldVN) continue;
+        Stack.push_back(NextVN);
+      }
+    }
+  }
+  
+  // Create the new vreg
+  unsigned NewVReg = MRI->createVirtualRegister(MRI->getRegClass(CurrLI->reg));
+  
+  // Create the new live interval
+  LiveInterval& NewLI = LIs->getOrCreateInterval(NewVReg);
+  
+  for (SmallVector<VNInfo*, 4>::iterator OI = VNsToCopy.begin(), OE = 
+       VNsToCopy.end(); OI != OE; ++OI) {
+    VNInfo* OldVN = *OI;
+    
+    // Copy the valno over
+    VNInfo* NewVN = NewLI.createValueCopy(OldVN, LIs->getVNInfoAllocator());
+    NewLI.MergeValueInAsValue(*CurrLI, OldVN, NewVN);
+
+    // Remove the valno from the old interval
+    CurrLI->removeValNo(OldVN);
+  }
+  
+  // Rewrite defs and uses.  This is done in two stages to avoid invalidating
+  // the reg_iterator.
+  SmallVector<std::pair<MachineInstr*, unsigned>, 8> OpsToChange;
+  
+  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(CurrLI->reg),
+         E = MRI->reg_end(); I != E; ++I) {
+    MachineOperand& MO = I.getOperand();
+    unsigned InstrIdx = LIs->getInstructionIndex(&*I);
+    
+    if ((MO.isUse() && NewLI.liveAt(LiveIntervals::getUseIndex(InstrIdx))) ||
+        (MO.isDef() && NewLI.liveAt(LiveIntervals::getDefIndex(InstrIdx))))
+      OpsToChange.push_back(std::make_pair(&*I, I.getOperandNo()));
+  }
+  
+  for (SmallVector<std::pair<MachineInstr*, unsigned>, 8>::iterator I =
+       OpsToChange.begin(), E = OpsToChange.end(); I != E; ++I) {
+    MachineInstr* Inst = I->first;
+    unsigned OpIdx = I->second;
+    MachineOperand& MO = Inst->getOperand(OpIdx);
+    MO.setReg(NewVReg);
+  }
+  
+  // Grow the VirtRegMap, since we've created a new vreg.
+  VRM->grow();
+  
+  // The renumbered vreg shares a stack slot with the old register.
+  if (IntervalSSMap.count(CurrLI->reg))
+    IntervalSSMap[NewVReg] = IntervalSSMap[CurrLI->reg];
+  
+  NumRenumbers++;
+}
+
+bool PreAllocSplitting::Rematerialize(unsigned VReg, VNInfo* ValNo,
+                                      MachineInstr* DefMI,
+                                      MachineBasicBlock::iterator RestorePt,
+                                      unsigned RestoreIdx,
+                                    SmallPtrSet<MachineInstr*, 4>& RefsInMBB) {
+  MachineBasicBlock& MBB = *RestorePt->getParent();
+  
+  MachineBasicBlock::iterator KillPt = BarrierMBB->end();
+  unsigned KillIdx = 0;
+  if (!ValNo->isDefAccurate() || DefMI->getParent() == BarrierMBB)
+    KillPt = findSpillPoint(BarrierMBB, Barrier, NULL, RefsInMBB, KillIdx);
+  else
+    KillPt = findNextEmptySlot(DefMI->getParent(), DefMI, KillIdx);
+  
+  if (KillPt == DefMI->getParent()->end())
+    return false;
+  
+  TII->reMaterialize(MBB, RestorePt, VReg, 0, DefMI);
+  LIs->InsertMachineInstrInMaps(prior(RestorePt), RestoreIdx);
+  
+  ReconstructLiveInterval(CurrLI);
+  unsigned RematIdx = LIs->getInstructionIndex(prior(RestorePt));
+  RematIdx = LiveIntervals::getDefIndex(RematIdx);
+  RenumberValno(CurrLI->findDefinedVNInfo(RematIdx));
+  
+  ++NumSplits;
+  ++NumRemats;
+  return true;  
+}
+
+MachineInstr* PreAllocSplitting::FoldSpill(unsigned vreg, 
+                                           const TargetRegisterClass* RC,
+                                           MachineInstr* DefMI,
+                                           MachineInstr* Barrier,
+                                           MachineBasicBlock* MBB,
+                                           int& SS,
+                                    SmallPtrSet<MachineInstr*, 4>& RefsInMBB) {
+  MachineBasicBlock::iterator Pt = MBB->begin();
+
+  // Go top down if RefsInMBB is empty.
+  if (RefsInMBB.empty())
+    return 0;
+  
+  MachineBasicBlock::iterator FoldPt = Barrier;
+  while (&*FoldPt != DefMI && FoldPt != MBB->begin() &&
+         !RefsInMBB.count(FoldPt))
+    --FoldPt;
+  
+  int OpIdx = FoldPt->findRegisterDefOperandIdx(vreg, false);
+  if (OpIdx == -1)
+    return 0;
+  
+  SmallVector<unsigned, 1> Ops;
+  Ops.push_back(OpIdx);
+  
+  if (!TII->canFoldMemoryOperand(FoldPt, Ops))
+    return 0;
+  
+  DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(vreg);
+  if (I != IntervalSSMap.end()) {
+    SS = I->second;
+  } else {
+    SS = MFI->CreateStackObject(RC->getSize(), RC->getAlignment());    
+  }
+  
+  MachineInstr* FMI = TII->foldMemoryOperand(*MBB->getParent(),
+                                             FoldPt, Ops, SS);
+  
+  if (FMI) {
+    LIs->ReplaceMachineInstrInMaps(FoldPt, FMI);
+    FMI = MBB->insert(MBB->erase(FoldPt), FMI);
+    ++NumFolds;
+    
+    IntervalSSMap[vreg] = SS;
+    CurrSLI = &LSs->getOrCreateInterval(SS, RC);
+    if (CurrSLI->hasAtLeastOneValue())
+      CurrSValNo = CurrSLI->getValNumInfo(0);
+    else
+      CurrSValNo = CurrSLI->getNextValue(0, 0, false, LSs->getVNInfoAllocator());
+  }
+  
+  return FMI;
+}
+
+MachineInstr* PreAllocSplitting::FoldRestore(unsigned vreg, 
+                                             const TargetRegisterClass* RC,
+                                             MachineInstr* Barrier,
+                                             MachineBasicBlock* MBB,
+                                             int SS,
+                                     SmallPtrSet<MachineInstr*, 4>& RefsInMBB) {
+  if ((int)RestoreFoldLimit != -1 && RestoreFoldLimit == (int)NumRestoreFolds)
+    return 0;
+                                       
+  // Go top down if RefsInMBB is empty.
+  if (RefsInMBB.empty())
+    return 0;
+  
+  // Can't fold a restore between a call stack setup and teardown.
+  MachineBasicBlock::iterator FoldPt = Barrier;
+  
+  // Advance from barrier to call frame teardown.
+  while (FoldPt != MBB->getFirstTerminator() &&
+         FoldPt->getOpcode() != TRI->getCallFrameDestroyOpcode()) {
+    if (RefsInMBB.count(FoldPt))
+      return 0;
+    
+    ++FoldPt;
+  }
+  
+  if (FoldPt == MBB->getFirstTerminator())
+    return 0;
+  else
+    ++FoldPt;
+  
+  // Now find the restore point.
+  while (FoldPt != MBB->getFirstTerminator() && !RefsInMBB.count(FoldPt)) {
+    if (FoldPt->getOpcode() == TRI->getCallFrameSetupOpcode()) {
+      while (FoldPt != MBB->getFirstTerminator() &&
+             FoldPt->getOpcode() != TRI->getCallFrameDestroyOpcode()) {
+        if (RefsInMBB.count(FoldPt))
+          return 0;
+        
+        ++FoldPt;
+      }
+      
+      if (FoldPt == MBB->getFirstTerminator())
+        return 0;
+    } 
+    
+    ++FoldPt;
+  }
+  
+  if (FoldPt == MBB->getFirstTerminator())
+    return 0;
+  
+  int OpIdx = FoldPt->findRegisterUseOperandIdx(vreg, true);
+  if (OpIdx == -1)
+    return 0;
+  
+  SmallVector<unsigned, 1> Ops;
+  Ops.push_back(OpIdx);
+  
+  if (!TII->canFoldMemoryOperand(FoldPt, Ops))
+    return 0;
+  
+  MachineInstr* FMI = TII->foldMemoryOperand(*MBB->getParent(),
+                                             FoldPt, Ops, SS);
+  
+  if (FMI) {
+    LIs->ReplaceMachineInstrInMaps(FoldPt, FMI);
+    FMI = MBB->insert(MBB->erase(FoldPt), FMI);
+    ++NumRestoreFolds;
+  }
+  
+  return FMI;
+}
+
+/// SplitRegLiveInterval - Split (spill and restore) the given live interval
+/// so it would not cross the barrier that's being processed. Shrink wrap
+/// (minimize) the live interval to the last uses.
+bool PreAllocSplitting::SplitRegLiveInterval(LiveInterval *LI) {
+  CurrLI = LI;
+
+  // Find live range where current interval cross the barrier.
+  LiveInterval::iterator LR =
+    CurrLI->FindLiveRangeContaining(LIs->getUseIndex(BarrierIdx));
+  VNInfo *ValNo = LR->valno;
+
+  assert(!ValNo->isUnused() && "Val# is defined by a dead def?");
+
+  MachineInstr *DefMI = ValNo->isDefAccurate()
+    ? LIs->getInstructionFromIndex(ValNo->def) : NULL;
+
+  // If this would create a new join point, do not split.
+  if (DefMI && createsNewJoin(LR, DefMI->getParent(), Barrier->getParent()))
+    return false;
+
+  // Find all references in the barrier mbb.
+  SmallPtrSet<MachineInstr*, 4> RefsInMBB;
+  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(CurrLI->reg),
+         E = MRI->reg_end(); I != E; ++I) {
+    MachineInstr *RefMI = &*I;
+    if (RefMI->getParent() == BarrierMBB)
+      RefsInMBB.insert(RefMI);
+  }
+
+  // Find a point to restore the value after the barrier.
+  unsigned RestoreIndex = 0;
+  MachineBasicBlock::iterator RestorePt =
+    findRestorePoint(BarrierMBB, Barrier, LR->end, RefsInMBB, RestoreIndex);
+  if (RestorePt == BarrierMBB->end())
+    return false;
+
+  if (DefMI && LIs->isReMaterializable(*LI, ValNo, DefMI))
+    if (Rematerialize(LI->reg, ValNo, DefMI, RestorePt,
+                      RestoreIndex, RefsInMBB))
+    return true;
+
+  // Add a spill either before the barrier or after the definition.
+  MachineBasicBlock *DefMBB = DefMI ? DefMI->getParent() : NULL;
+  const TargetRegisterClass *RC = MRI->getRegClass(CurrLI->reg);
+  unsigned SpillIndex = 0;
+  MachineInstr *SpillMI = NULL;
+  int SS = -1;
+  if (!ValNo->isDefAccurate()) {
+    // If we don't know where the def is we must split just before the barrier.
+    if ((SpillMI = FoldSpill(LI->reg, RC, 0, Barrier,
+                            BarrierMBB, SS, RefsInMBB))) {
+      SpillIndex = LIs->getInstructionIndex(SpillMI);
+    } else {
+      MachineBasicBlock::iterator SpillPt = 
+        findSpillPoint(BarrierMBB, Barrier, NULL, RefsInMBB, SpillIndex);
+      if (SpillPt == BarrierMBB->begin())
+        return false; // No gap to insert spill.
+      // Add spill.
+    
+      SS = CreateSpillStackSlot(CurrLI->reg, RC);
+      TII->storeRegToStackSlot(*BarrierMBB, SpillPt, CurrLI->reg, true, SS, RC);
+      SpillMI = prior(SpillPt);
+      LIs->InsertMachineInstrInMaps(SpillMI, SpillIndex);
+    }
+  } else if (!IsAvailableInStack(DefMBB, CurrLI->reg, ValNo->def,
+                                 RestoreIndex, SpillIndex, SS)) {
+    // If it's already split, just restore the value. There is no need to spill
+    // the def again.
+    if (!DefMI)
+      return false; // Def is dead. Do nothing.
+    
+    if ((SpillMI = FoldSpill(LI->reg, RC, DefMI, Barrier,
+                            BarrierMBB, SS, RefsInMBB))) {
+      SpillIndex = LIs->getInstructionIndex(SpillMI);
+    } else {
+      // Check if it's possible to insert a spill after the def MI.
+      MachineBasicBlock::iterator SpillPt;
+      if (DefMBB == BarrierMBB) {
+        // Add spill after the def and the last use before the barrier.
+        SpillPt = findSpillPoint(BarrierMBB, Barrier, DefMI,
+                                 RefsInMBB, SpillIndex);
+        if (SpillPt == DefMBB->begin())
+          return false; // No gap to insert spill.
+      } else {
+        SpillPt = findNextEmptySlot(DefMBB, DefMI, SpillIndex);
+        if (SpillPt == DefMBB->end())
+          return false; // No gap to insert spill.
+      }
+      // Add spill. The store instruction kills the register if def is before
+      // the barrier in the barrier block.
+      SS = CreateSpillStackSlot(CurrLI->reg, RC);
+      TII->storeRegToStackSlot(*DefMBB, SpillPt, CurrLI->reg,
+                               DefMBB == BarrierMBB, SS, RC);
+      SpillMI = prior(SpillPt);
+      LIs->InsertMachineInstrInMaps(SpillMI, SpillIndex);
+    }
+  }
+
+  // Remember def instruction index to spill index mapping.
+  if (DefMI && SpillMI)
+    Def2SpillMap[ValNo->def] = SpillIndex;
+
+  // Add restore.
+  bool FoldedRestore = false;
+  if (MachineInstr* LMI = FoldRestore(CurrLI->reg, RC, Barrier,
+                                      BarrierMBB, SS, RefsInMBB)) {
+    RestorePt = LMI;
+    RestoreIndex = LIs->getInstructionIndex(RestorePt);
+    FoldedRestore = true;
+  } else {
+    TII->loadRegFromStackSlot(*BarrierMBB, RestorePt, CurrLI->reg, SS, RC);
+    MachineInstr *LoadMI = prior(RestorePt);
+    LIs->InsertMachineInstrInMaps(LoadMI, RestoreIndex);
+  }
+
+  // Update spill stack slot live interval.
+  UpdateSpillSlotInterval(ValNo, LIs->getUseIndex(SpillIndex)+1,
+                          LIs->getDefIndex(RestoreIndex));
+
+  ReconstructLiveInterval(CurrLI);
+  
+  if (!FoldedRestore) {
+    unsigned RestoreIdx = LIs->getInstructionIndex(prior(RestorePt));
+    RestoreIdx = LiveIntervals::getDefIndex(RestoreIdx);
+    RenumberValno(CurrLI->findDefinedVNInfo(RestoreIdx));
+  }
+  
+  ++NumSplits;
+  return true;
+}
+
+/// SplitRegLiveIntervals - Split all register live intervals that cross the
+/// barrier that's being processed.
+bool
+PreAllocSplitting::SplitRegLiveIntervals(const TargetRegisterClass **RCs,
+                                         SmallPtrSet<LiveInterval*, 8>& Split) {
+  // First find all the virtual registers whose live intervals are intercepted
+  // by the current barrier.
+  SmallVector<LiveInterval*, 8> Intervals;
+  for (const TargetRegisterClass **RC = RCs; *RC; ++RC) {
+    // FIXME: If it's not safe to move any instruction that defines the barrier
+    // register class, then it means there are some special dependencies which
+    // codegen is not modelling. Ignore these barriers for now.
+    if (!TII->isSafeToMoveRegClassDefs(*RC))
+      continue;
+    std::vector<unsigned> &VRs = MRI->getRegClassVirtRegs(*RC);
+    for (unsigned i = 0, e = VRs.size(); i != e; ++i) {
+      unsigned Reg = VRs[i];
+      if (!LIs->hasInterval(Reg))
+        continue;
+      LiveInterval *LI = &LIs->getInterval(Reg);
+      if (LI->liveAt(BarrierIdx) && !Barrier->readsRegister(Reg))
+        // Virtual register live interval is intercepted by the barrier. We
+        // should split and shrink wrap its interval if possible.
+        Intervals.push_back(LI);
+    }
+  }
+
+  // Process the affected live intervals.
+  bool Change = false;
+  while (!Intervals.empty()) {
+    if (PreSplitLimit != -1 && (int)NumSplits == PreSplitLimit)
+      break;
+    else if (NumSplits == 4)
+      Change |= Change;
+    LiveInterval *LI = Intervals.back();
+    Intervals.pop_back();
+    bool result = SplitRegLiveInterval(LI);
+    if (result) Split.insert(LI);
+    Change |= result;
+  }
+
+  return Change;
+}
+
+unsigned PreAllocSplitting::getNumberOfNonSpills(
+                                  SmallPtrSet<MachineInstr*, 4>& MIs,
+                                  unsigned Reg, int FrameIndex,
+                                  bool& FeedsTwoAddr) {
+  unsigned NonSpills = 0;
+  for (SmallPtrSet<MachineInstr*, 4>::iterator UI = MIs.begin(), UE = MIs.end();
+       UI != UE; ++UI) {
+    int StoreFrameIndex;
+    unsigned StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex);
+    if (StoreVReg != Reg || StoreFrameIndex != FrameIndex)
+      NonSpills++;
+    
+    int DefIdx = (*UI)->findRegisterDefOperandIdx(Reg);
+    if (DefIdx != -1 && (*UI)->isRegTiedToUseOperand(DefIdx))
+      FeedsTwoAddr = true;
+  }
+  
+  return NonSpills;
+}
+
+/// removeDeadSpills - After doing splitting, filter through all intervals we've
+/// split, and see if any of the spills are unnecessary.  If so, remove them.
+bool PreAllocSplitting::removeDeadSpills(SmallPtrSet<LiveInterval*, 8>& split) {
+  bool changed = false;
+  
+  // Walk over all of the live intervals that were touched by the splitter,
+  // and see if we can do any DCE and/or folding.
+  for (SmallPtrSet<LiveInterval*, 8>::iterator LI = split.begin(),
+       LE = split.end(); LI != LE; ++LI) {
+    DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> > VNUseCount;
+    
+    // First, collect all the uses of the vreg, and sort them by their
+    // reaching definition (VNInfo).
+    for (MachineRegisterInfo::use_iterator UI = MRI->use_begin((*LI)->reg),
+         UE = MRI->use_end(); UI != UE; ++UI) {
+      unsigned index = LIs->getInstructionIndex(&*UI);
+      index = LiveIntervals::getUseIndex(index);
+      
+      const LiveRange* LR = (*LI)->getLiveRangeContaining(index);
+      VNUseCount[LR->valno].insert(&*UI);
+    }
+    
+    // Now, take the definitions (VNInfo's) one at a time and try to DCE 
+    // and/or fold them away.
+    for (LiveInterval::vni_iterator VI = (*LI)->vni_begin(),
+         VE = (*LI)->vni_end(); VI != VE; ++VI) {
+      
+      if (DeadSplitLimit != -1 && (int)NumDeadSpills == DeadSplitLimit) 
+        return changed;
+      
+      VNInfo* CurrVN = *VI;
+      
+      // We don't currently try to handle definitions with PHI kills, because
+      // it would involve processing more than one VNInfo at once.
+      if (CurrVN->hasPHIKill()) continue;
+      
+      // We also don't try to handle the results of PHI joins, since there's
+      // no defining instruction to analyze.
+      if (!CurrVN->isDefAccurate() || CurrVN->isUnused()) continue;
+    
+      // We're only interested in eliminating cruft introduced by the splitter,
+      // is of the form load-use or load-use-store.  First, check that the
+      // definition is a load, and remember what stack slot we loaded it from.
+      MachineInstr* DefMI = LIs->getInstructionFromIndex(CurrVN->def);
+      int FrameIndex;
+      if (!TII->isLoadFromStackSlot(DefMI, FrameIndex)) continue;
+      
+      // If the definition has no uses at all, just DCE it.
+      if (VNUseCount[CurrVN].size() == 0) {
+        LIs->RemoveMachineInstrFromMaps(DefMI);
+        (*LI)->removeValNo(CurrVN);
+        DefMI->eraseFromParent();
+        VNUseCount.erase(CurrVN);
+        NumDeadSpills++;
+        changed = true;
+        continue;
+      }
+      
+      // Second, get the number of non-store uses of the definition, as well as
+      // a flag indicating whether it feeds into a later two-address definition.
+      bool FeedsTwoAddr = false;
+      unsigned NonSpillCount = getNumberOfNonSpills(VNUseCount[CurrVN],
+                                                    (*LI)->reg, FrameIndex,
+                                                    FeedsTwoAddr);
+      
+      // If there's one non-store use and it doesn't feed a two-addr, then
+      // this is a load-use-store case that we can try to fold.
+      if (NonSpillCount == 1 && !FeedsTwoAddr) {
+        // Start by finding the non-store use MachineInstr.
+        SmallPtrSet<MachineInstr*, 4>::iterator UI = VNUseCount[CurrVN].begin();
+        int StoreFrameIndex;
+        unsigned StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex);
+        while (UI != VNUseCount[CurrVN].end() &&
+               (StoreVReg == (*LI)->reg && StoreFrameIndex == FrameIndex)) {
+          ++UI;
+          if (UI != VNUseCount[CurrVN].end())
+            StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex);
+        }
+        if (UI == VNUseCount[CurrVN].end()) continue;
+        
+        MachineInstr* use = *UI;
+        
+        // Attempt to fold it away!
+        int OpIdx = use->findRegisterUseOperandIdx((*LI)->reg, false);
+        if (OpIdx == -1) continue;
+        SmallVector<unsigned, 1> Ops;
+        Ops.push_back(OpIdx);
+        if (!TII->canFoldMemoryOperand(use, Ops)) continue;
+
+        MachineInstr* NewMI =
+                          TII->foldMemoryOperand(*use->getParent()->getParent(),  
+                                                 use, Ops, FrameIndex);
+
+        if (!NewMI) continue;
+
+        // Update relevant analyses.
+        LIs->RemoveMachineInstrFromMaps(DefMI);
+        LIs->ReplaceMachineInstrInMaps(use, NewMI);
+        (*LI)->removeValNo(CurrVN);
+
+        DefMI->eraseFromParent();
+        MachineBasicBlock* MBB = use->getParent();
+        NewMI = MBB->insert(MBB->erase(use), NewMI);
+        VNUseCount[CurrVN].erase(use);
+        
+        // Remove deleted instructions.  Note that we need to remove them from 
+        // the VNInfo->use map as well, just to be safe.
+        for (SmallPtrSet<MachineInstr*, 4>::iterator II = 
+             VNUseCount[CurrVN].begin(), IE = VNUseCount[CurrVN].end();
+             II != IE; ++II) {
+          for (DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> >::iterator
+               VNI = VNUseCount.begin(), VNE = VNUseCount.end(); VNI != VNE; 
+               ++VNI)
+            if (VNI->first != CurrVN)
+              VNI->second.erase(*II);
+          LIs->RemoveMachineInstrFromMaps(*II);
+          (*II)->eraseFromParent();
+        }
+        
+        VNUseCount.erase(CurrVN);
+
+        for (DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> >::iterator
+             VI = VNUseCount.begin(), VE = VNUseCount.end(); VI != VE; ++VI)
+          if (VI->second.erase(use))
+            VI->second.insert(NewMI);
+
+        NumDeadSpills++;
+        changed = true;
+        continue;
+      }
+      
+      // If there's more than one non-store instruction, we can't profitably
+      // fold it, so bail.
+      if (NonSpillCount) continue;
+        
+      // Otherwise, this is a load-store case, so DCE them.
+      for (SmallPtrSet<MachineInstr*, 4>::iterator UI = 
+           VNUseCount[CurrVN].begin(), UE = VNUseCount[CurrVN].end();
+           UI != UI; ++UI) {
+        LIs->RemoveMachineInstrFromMaps(*UI);
+        (*UI)->eraseFromParent();
+      }
+        
+      VNUseCount.erase(CurrVN);
+        
+      LIs->RemoveMachineInstrFromMaps(DefMI);
+      (*LI)->removeValNo(CurrVN);
+      DefMI->eraseFromParent();
+      NumDeadSpills++;
+      changed = true;
+    }
+  }
+  
+  return changed;
+}
+
+bool PreAllocSplitting::createsNewJoin(LiveRange* LR,
+                                       MachineBasicBlock* DefMBB,
+                                       MachineBasicBlock* BarrierMBB) {
+  if (DefMBB == BarrierMBB)
+    return false;
+  
+  if (LR->valno->hasPHIKill())
+    return false;
+  
+  unsigned MBBEnd = LIs->getMBBEndIdx(BarrierMBB);
+  if (LR->end < MBBEnd)
+    return false;
+  
+  MachineLoopInfo& MLI = getAnalysis<MachineLoopInfo>();
+  if (MLI.getLoopFor(DefMBB) != MLI.getLoopFor(BarrierMBB))
+    return true;
+  
+  MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>();
+  SmallPtrSet<MachineBasicBlock*, 4> Visited;
+  typedef std::pair<MachineBasicBlock*,
+                    MachineBasicBlock::succ_iterator> ItPair;
+  SmallVector<ItPair, 4> Stack;
+  Stack.push_back(std::make_pair(BarrierMBB, BarrierMBB->succ_begin()));
+  
+  while (!Stack.empty()) {
+    ItPair P = Stack.back();
+    Stack.pop_back();
+    
+    MachineBasicBlock* PredMBB = P.first;
+    MachineBasicBlock::succ_iterator S = P.second;
+    
+    if (S == PredMBB->succ_end())
+      continue;
+    else if (Visited.count(*S)) {
+      Stack.push_back(std::make_pair(PredMBB, ++S));
+      continue;
+    } else
+      Stack.push_back(std::make_pair(PredMBB, S+1));
+    
+    MachineBasicBlock* MBB = *S;
+    Visited.insert(MBB);
+    
+    if (MBB == BarrierMBB)
+      return true;
+    
+    MachineDomTreeNode* DefMDTN = MDT.getNode(DefMBB);
+    MachineDomTreeNode* BarrierMDTN = MDT.getNode(BarrierMBB);
+    MachineDomTreeNode* MDTN = MDT.getNode(MBB)->getIDom();
+    while (MDTN) {
+      if (MDTN == DefMDTN)
+        return true;
+      else if (MDTN == BarrierMDTN)
+        break;
+      MDTN = MDTN->getIDom();
+    }
+    
+    MBBEnd = LIs->getMBBEndIdx(MBB);
+    if (LR->end > MBBEnd)
+      Stack.push_back(std::make_pair(MBB, MBB->succ_begin()));
+  }
+  
   return false;
+} 
+  
+
+bool PreAllocSplitting::runOnMachineFunction(MachineFunction &MF) {
+  CurrMF = &MF;
+  TM     = &MF.getTarget();
+  TRI    = TM->getRegisterInfo();
+  TII    = TM->getInstrInfo();
+  MFI    = MF.getFrameInfo();
+  MRI    = &MF.getRegInfo();
+  LIs    = &getAnalysis<LiveIntervals>();
+  LSs    = &getAnalysis<LiveStacks>();
+  VRM    = &getAnalysis<VirtRegMap>();
+
+  bool MadeChange = false;
+
+  // Make sure blocks are numbered in order.
+  MF.RenumberBlocks();
+
+  MachineBasicBlock *Entry = MF.begin();
+  SmallPtrSet<MachineBasicBlock*,16> Visited;
+
+  SmallPtrSet<LiveInterval*, 8> Split;
+
+  for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> >
+         DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
+       DFI != E; ++DFI) {
+    BarrierMBB = *DFI;
+    for (MachineBasicBlock::iterator I = BarrierMBB->begin(),
+           E = BarrierMBB->end(); I != E; ++I) {
+      Barrier = &*I;
+      const TargetRegisterClass **BarrierRCs =
+        Barrier->getDesc().getRegClassBarriers();
+      if (!BarrierRCs)
+        continue;
+      BarrierIdx = LIs->getInstructionIndex(Barrier);
+      MadeChange |= SplitRegLiveIntervals(BarrierRCs, Split);
+    }
+  }
+
+  MadeChange |= removeDeadSpills(Split);
+
+  return MadeChange;
 }