Reduce indentation and fix the count of how many PHIs we have inserted.
[oota-llvm.git] / lib / CodeGen / RegAllocGreedy.cpp
index 178d468c572ce7af36e3d8421bfcd9b7f2aadc08..acf7f95182f720f045299970d56f77b537c53a2f 100644 (file)
 
 #define DEBUG_TYPE "regalloc"
 #include "AllocationOrder.h"
-#include "LiveIntervalUnion.h"
+#include "InterferenceCache.h"
+#include "LiveDebugVariables.h"
 #include "LiveRangeEdit.h"
 #include "RegAllocBase.h"
 #include "Spiller.h"
+#include "SpillPlacement.h"
 #include "SplitKit.h"
 #include "VirtRegMap.h"
-#include "VirtRegRewriter.h"
+#include "RegisterCoalescer.h"
+#include "llvm/ADT/Statistic.h"
 #include "llvm/Analysis/AliasAnalysis.h"
 #include "llvm/Function.h"
 #include "llvm/PassAnalysisSupport.h"
 #include "llvm/CodeGen/CalcSpillWeights.h"
+#include "llvm/CodeGen/EdgeBundles.h"
 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
 #include "llvm/CodeGen/LiveStackAnalysis.h"
 #include "llvm/CodeGen/MachineDominators.h"
 #include "llvm/CodeGen/MachineRegisterInfo.h"
 #include "llvm/CodeGen/Passes.h"
 #include "llvm/CodeGen/RegAllocRegistry.h"
-#include "llvm/CodeGen/RegisterCoalescer.h"
 #include "llvm/Target/TargetOptions.h"
 #include "llvm/Support/Debug.h"
 #include "llvm/Support/ErrorHandling.h"
 #include "llvm/Support/raw_ostream.h"
 #include "llvm/Support/Timer.h"
 
+#include <queue>
+
 using namespace llvm;
 
+STATISTIC(NumGlobalSplits, "Number of split global live ranges");
+STATISTIC(NumLocalSplits,  "Number of split local live ranges");
+STATISTIC(NumEvicted,      "Number of interferences evicted");
+
 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
                                        createGreedyRegisterAllocator);
 
 namespace {
-class RAGreedy : public MachineFunctionPass, public RegAllocBase {
+class RAGreedy : public MachineFunctionPass,
+                 public RegAllocBase,
+                 private LiveRangeEdit::Delegate {
+
   // context
   MachineFunction *MF;
-  BitVector ReservedRegs;
 
   // analyses
+  SlotIndexes *Indexes;
   LiveStacks *LS;
   MachineDominatorTree *DomTree;
   MachineLoopInfo *Loops;
   MachineLoopRanges *LoopRanges;
+  EdgeBundles *Bundles;
+  SpillPlacement *SpillPlacer;
+  LiveDebugVariables *DebugVars;
 
   // state
   std::auto_ptr<Spiller> SpillerInstance;
+  std::priority_queue<std::pair<unsigned, unsigned> > Queue;
+  unsigned NextCascade;
+
+  // Live ranges pass through a number of stages as we try to allocate them.
+  // Some of the stages may also create new live ranges:
+  //
+  // - Region splitting.
+  // - Per-block splitting.
+  // - Local splitting.
+  // - Spilling.
+  //
+  // Ranges produced by one of the stages skip the previous stages when they are
+  // dequeued. This improves performance because we can skip interference checks
+  // that are unlikely to give any results. It also guarantees that the live
+  // range splitting algorithm terminates, something that is otherwise hard to
+  // ensure.
+  enum LiveRangeStage {
+    RS_New,      ///< Never seen before.
+    RS_First,    ///< First time in the queue.
+    RS_Second,   ///< Second time in the queue.
+    RS_Global,   ///< Produced by global splitting.
+    RS_Local,    ///< Produced by local splitting.
+    RS_Spill     ///< Produced by spilling.
+  };
+
+  static const char *const StageName[];
+
+  // RegInfo - Keep additional information about each live range.
+  struct RegInfo {
+    LiveRangeStage Stage;
+
+    // Cascade - Eviction loop prevention. See canEvictInterference().
+    unsigned Cascade;
+
+    RegInfo() : Stage(RS_New), Cascade(0) {}
+  };
+
+  IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
+
+  LiveRangeStage getStage(const LiveInterval &VirtReg) const {
+    return ExtraRegInfo[VirtReg.reg].Stage;
+  }
+
+  void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
+    ExtraRegInfo.resize(MRI->getNumVirtRegs());
+    ExtraRegInfo[VirtReg.reg].Stage = Stage;
+  }
+
+  template<typename Iterator>
+  void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
+    ExtraRegInfo.resize(MRI->getNumVirtRegs());
+    for (;Begin != End; ++Begin) {
+      unsigned Reg = (*Begin)->reg;
+      if (ExtraRegInfo[Reg].Stage == RS_New)
+        ExtraRegInfo[Reg].Stage = NewStage;
+    }
+  }
+
+  // splitting state.
   std::auto_ptr<SplitAnalysis> SA;
+  std::auto_ptr<SplitEditor> SE;
+
+  /// Cached per-block interference maps
+  InterferenceCache IntfCache;
+
+  /// All basic blocks where the current register has uses.
+  SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
+
+  /// Global live range splitting candidate info.
+  struct GlobalSplitCandidate {
+    unsigned PhysReg;
+    BitVector LiveBundles;
+    SmallVector<unsigned, 8> ActiveBlocks;
+
+    void reset(unsigned Reg) {
+      PhysReg = Reg;
+      LiveBundles.clear();
+      ActiveBlocks.clear();
+    }
+  };
+
+  /// Candidate info for for each PhysReg in AllocationOrder.
+  /// This vector never shrinks, but grows to the size of the largest register
+  /// class.
+  SmallVector<GlobalSplitCandidate, 32> GlobalCand;
 
 public:
   RAGreedy();
@@ -72,15 +171,12 @@ public:
 
   /// RAGreedy analysis usage.
   virtual void getAnalysisUsage(AnalysisUsage &AU) const;
-
   virtual void releaseMemory();
-
   virtual Spiller &spiller() { return *SpillerInstance; }
-
-  virtual float getPriority(LiveInterval *LI);
-
-  virtual unsigned selectOrSplit(LiveInterval &VirtReg,
-                                 SmallVectorImpl<LiveInterval*> &SplitVRegs);
+  virtual void enqueue(LiveInterval *LI);
+  virtual LiveInterval *dequeue();
+  virtual unsigned selectOrSplit(LiveInterval&,
+                                 SmallVectorImpl<LiveInterval*>&);
 
   /// Perform register allocation.
   virtual bool runOnMachineFunction(MachineFunction &mf);
@@ -88,39 +184,72 @@ public:
   static char ID;
 
 private:
-  bool checkUncachedInterference(LiveInterval&, unsigned);
-  LiveInterval *getSingleInterference(LiveInterval&, unsigned);
-  bool reassignVReg(LiveInterval &InterferingVReg, unsigned OldPhysReg);
-  bool reassignInterferences(LiveInterval &VirtReg, unsigned PhysReg);
-  unsigned findInterferenceFreeReg(MachineLoopRange*,
-                                   LiveInterval&, AllocationOrder&);
-  float calcInterferenceWeight(LiveInterval&, unsigned);
-
-  unsigned tryReassign(LiveInterval&, AllocationOrder&);
+  void LRE_WillEraseInstruction(MachineInstr*);
+  bool LRE_CanEraseVirtReg(unsigned);
+  void LRE_WillShrinkVirtReg(unsigned);
+  void LRE_DidCloneVirtReg(unsigned, unsigned);
+
+  float calcSpillCost();
+  bool addSplitConstraints(InterferenceCache::Cursor, float&);
+  void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
+  void growRegion(GlobalSplitCandidate &Cand, InterferenceCache::Cursor);
+  float calcGlobalSplitCost(GlobalSplitCandidate&, InterferenceCache::Cursor);
+  void splitAroundRegion(LiveInterval&, GlobalSplitCandidate&,
+                         SmallVectorImpl<LiveInterval*>&);
+  void calcGapWeights(unsigned, SmallVectorImpl<float>&);
+  bool canEvict(LiveInterval &A, LiveInterval &B);
+  bool canEvictInterference(LiveInterval&, unsigned, float&);
+
+  unsigned tryAssign(LiveInterval&, AllocationOrder&,
+                     SmallVectorImpl<LiveInterval*>&);
+  unsigned tryEvict(LiveInterval&, AllocationOrder&,
+                    SmallVectorImpl<LiveInterval*>&, unsigned = ~0u);
+  unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
+                          SmallVectorImpl<LiveInterval*>&);
+  unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
+    SmallVectorImpl<LiveInterval*>&);
   unsigned trySplit(LiveInterval&, AllocationOrder&,
                     SmallVectorImpl<LiveInterval*>&);
-  unsigned trySpillInterferences(LiveInterval&, AllocationOrder&,
-                                 SmallVectorImpl<LiveInterval*>&);
 };
 } // end anonymous namespace
 
 char RAGreedy::ID = 0;
 
+#ifndef NDEBUG
+const char *const RAGreedy::StageName[] = {
+  "RS_New",
+  "RS_First",
+  "RS_Second",
+  "RS_Global",
+  "RS_Local",
+  "RS_Spill"
+};
+#endif
+
+// Hysteresis to use when comparing floats.
+// This helps stabilize decisions based on float comparisons.
+const float Hysteresis = 0.98f;
+
+
 FunctionPass* llvm::createGreedyRegisterAllocator() {
   return new RAGreedy();
 }
 
 RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
+  initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
+  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
   initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
   initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
   initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
-  initializeRegisterCoalescerAnalysisGroup(*PassRegistry::getPassRegistry());
+  initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
   initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
   initializeLiveStacksPass(*PassRegistry::getPassRegistry());
   initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
   initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
   initializeMachineLoopRangesPass(*PassRegistry::getPassRegistry());
   initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
+  initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
+  initializeSpillPlacementPass(*PassRegistry::getPassRegistry());
 }
 
 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
@@ -128,7 +257,10 @@ void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
   AU.addRequired<AliasAnalysis>();
   AU.addPreserved<AliasAnalysis>();
   AU.addRequired<LiveIntervals>();
+  AU.addRequired<SlotIndexes>();
   AU.addPreserved<SlotIndexes>();
+  AU.addRequired<LiveDebugVariables>();
+  AU.addPreserved<LiveDebugVariables>();
   if (StrongPHIElim)
     AU.addRequiredID(StrongPHIEliminationID);
   AU.addRequiredTransitive<RegisterCoalescer>();
@@ -143,275 +275,1245 @@ void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
   AU.addPreserved<MachineLoopRanges>();
   AU.addRequired<VirtRegMap>();
   AU.addPreserved<VirtRegMap>();
+  AU.addRequired<EdgeBundles>();
+  AU.addRequired<SpillPlacement>();
   MachineFunctionPass::getAnalysisUsage(AU);
 }
 
+
+//===----------------------------------------------------------------------===//
+//                     LiveRangeEdit delegate methods
+//===----------------------------------------------------------------------===//
+
+void RAGreedy::LRE_WillEraseInstruction(MachineInstr *MI) {
+  // LRE itself will remove from SlotIndexes and parent basic block.
+  VRM->RemoveMachineInstrFromMaps(MI);
+}
+
+bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
+  if (unsigned PhysReg = VRM->getPhys(VirtReg)) {
+    unassign(LIS->getInterval(VirtReg), PhysReg);
+    return true;
+  }
+  // Unassigned virtreg is probably in the priority queue.
+  // RegAllocBase will erase it after dequeueing.
+  return false;
+}
+
+void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
+  unsigned PhysReg = VRM->getPhys(VirtReg);
+  if (!PhysReg)
+    return;
+
+  // Register is assigned, put it back on the queue for reassignment.
+  LiveInterval &LI = LIS->getInterval(VirtReg);
+  unassign(LI, PhysReg);
+  enqueue(&LI);
+}
+
+void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
+  // LRE may clone a virtual register because dead code elimination causes it to
+  // be split into connected components. Ensure that the new register gets the
+  // same stage as the parent.
+  ExtraRegInfo.grow(New);
+  ExtraRegInfo[New] = ExtraRegInfo[Old];
+}
+
 void RAGreedy::releaseMemory() {
   SpillerInstance.reset(0);
+  ExtraRegInfo.clear();
+  GlobalCand.clear();
   RegAllocBase::releaseMemory();
 }
 
-float RAGreedy::getPriority(LiveInterval *LI) {
-  float Priority = LI->weight;
+void RAGreedy::enqueue(LiveInterval *LI) {
+  // Prioritize live ranges by size, assigning larger ranges first.
+  // The queue holds (size, reg) pairs.
+  const unsigned Size = LI->getSize();
+  const unsigned Reg = LI->reg;
+  assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
+         "Can only enqueue virtual registers");
+  unsigned Prio;
+
+  ExtraRegInfo.grow(Reg);
+  if (ExtraRegInfo[Reg].Stage == RS_New)
+    ExtraRegInfo[Reg].Stage = RS_First;
+
+  if (ExtraRegInfo[Reg].Stage == RS_Second)
+    // Unsplit ranges that couldn't be allocated immediately are deferred until
+    // everything else has been allocated. Long ranges are allocated last so
+    // they are split against realistic interference.
+    Prio = (1u << 31) - Size;
+  else {
+    // Everything else is allocated in long->short order. Long ranges that don't
+    // fit should be spilled ASAP so they don't create interference.
+    Prio = (1u << 31) + Size;
+
+    // Boost ranges that have a physical register hint.
+    if (TargetRegisterInfo::isPhysicalRegister(VRM->getRegAllocPref(Reg)))
+      Prio |= (1u << 30);
+  }
 
-  // Prioritize hinted registers so they are allocated first.
-  std::pair<unsigned, unsigned> Hint;
-  if (Hint.first || Hint.second) {
-    // The hint can be target specific, a virtual register, or a physreg.
-    Priority *= 2;
+  Queue.push(std::make_pair(Prio, Reg));
+}
 
-    // Prefer physreg hints above anything else.
-    if (Hint.first == 0 && TargetRegisterInfo::isPhysicalRegister(Hint.second))
-      Priority *= 2;
-  }
-  return Priority;
+LiveInterval *RAGreedy::dequeue() {
+  if (Queue.empty())
+    return 0;
+  LiveInterval *LI = &LIS->getInterval(Queue.top().second);
+  Queue.pop();
+  return LI;
 }
 
 
 //===----------------------------------------------------------------------===//
-//                         Register Reassignment
+//                            Direct Assignment
 //===----------------------------------------------------------------------===//
 
-// Check interference without using the cache.
-bool RAGreedy::checkUncachedInterference(LiveInterval &VirtReg,
-                                         unsigned PhysReg) {
-  for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
-    LiveIntervalUnion::Query subQ(&VirtReg, &PhysReg2LiveUnion[*AliasI]);
-    if (subQ.checkInterference())
-      return true;
-  }
-  return false;
+/// tryAssign - Try to assign VirtReg to an available register.
+unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
+                             AllocationOrder &Order,
+                             SmallVectorImpl<LiveInterval*> &NewVRegs) {
+  Order.rewind();
+  unsigned PhysReg;
+  while ((PhysReg = Order.next()))
+    if (!checkPhysRegInterference(VirtReg, PhysReg))
+      break;
+  if (!PhysReg || Order.isHint(PhysReg))
+    return PhysReg;
+
+  // PhysReg is available. Try to evict interference from a cheaper alternative.
+  unsigned Cost = TRI->getCostPerUse(PhysReg);
+
+  // Most registers have 0 additional cost.
+  if (!Cost)
+    return PhysReg;
+
+  DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost
+               << '\n');
+  unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost);
+  return CheapReg ? CheapReg : PhysReg;
 }
 
-/// getSingleInterference - Return the single interfering virtual register
-/// assigned to PhysReg. Return 0 if more than one virtual register is
-/// interfering.
-LiveInterval *RAGreedy::getSingleInterference(LiveInterval &VirtReg,
-                                              unsigned PhysReg) {
-  // Check physreg and aliases.
-  LiveInterval *Interference = 0;
+
+//===----------------------------------------------------------------------===//
+//                         Interference eviction
+//===----------------------------------------------------------------------===//
+
+/// canEvict - determine if A can evict the assigned live range B. The eviction
+/// policy defined by this function together with the allocation order defined
+/// by enqueue() decides which registers ultimately end up being split and
+/// spilled.
+///
+/// Cascade numbers are used to prevent infinite loops if this function is a
+/// cyclic relation.
+bool RAGreedy::canEvict(LiveInterval &A, LiveInterval &B) {
+  return A.weight > B.weight;
+}
+
+/// canEvict - Return true if all interferences between VirtReg and PhysReg can
+/// be evicted.
+/// Return false if any interference is heavier than MaxWeight.
+/// On return, set MaxWeight to the maximal spill weight of an interference.
+bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
+                                    float &MaxWeight) {
+  // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
+  // involved in an eviction before. If a cascade number was assigned, deny
+  // evicting anything with the same or a newer cascade number. This prevents
+  // infinite eviction loops.
+  //
+  // This works out so a register without a cascade number is allowed to evict
+  // anything, and it can be evicted by anything.
+  unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
+  if (!Cascade)
+    Cascade = NextCascade;
+
+  float Weight = 0;
   for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
     LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
-    if (Q.checkInterference()) {
-      if (Interference)
-        return 0;
-      Q.collectInterferingVRegs(1);
-      if (!Q.seenAllInterferences())
-        return 0;
-      Interference = Q.interferingVRegs().front();
+    // If there is 10 or more interferences, chances are one is heavier.
+    if (Q.collectInterferingVRegs(10, MaxWeight) >= 10)
+      return false;
+
+    // Check if any interfering live range is heavier than MaxWeight.
+    for (unsigned i = Q.interferingVRegs().size(); i; --i) {
+      LiveInterval *Intf = Q.interferingVRegs()[i - 1];
+      if (TargetRegisterInfo::isPhysicalRegister(Intf->reg))
+        return false;
+      if (Cascade <= ExtraRegInfo[Intf->reg].Cascade)
+        return false;
+      if (Intf->weight >= MaxWeight)
+        return false;
+      if (!canEvict(VirtReg, *Intf))
+        return false;
+      Weight = std::max(Weight, Intf->weight);
     }
   }
-  return Interference;
+  MaxWeight = Weight;
+  return true;
 }
 
-// Attempt to reassign this virtual register to a different physical register.
-//
-// FIXME: we are not yet caching these "second-level" interferences discovered
-// in the sub-queries. These interferences can change with each call to
-// selectOrSplit. However, we could implement a "may-interfere" cache that
-// could be conservatively dirtied when we reassign or split.
-//
-// FIXME: This may result in a lot of alias queries. We could summarize alias
-// live intervals in their parent register's live union, but it's messy.
-bool RAGreedy::reassignVReg(LiveInterval &InterferingVReg,
-                            unsigned WantedPhysReg) {
-  assert(TargetRegisterInfo::isVirtualRegister(InterferingVReg.reg) &&
-         "Can only reassign virtual registers");
-  assert(TRI->regsOverlap(WantedPhysReg, VRM->getPhys(InterferingVReg.reg)) &&
-         "inconsistent phys reg assigment");
-
-  AllocationOrder Order(InterferingVReg.reg, *VRM, ReservedRegs);
+/// tryEvict - Try to evict all interferences for a physreg.
+/// @param  VirtReg Currently unassigned virtual register.
+/// @param  Order   Physregs to try.
+/// @return         Physreg to assign VirtReg, or 0.
+unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
+                            AllocationOrder &Order,
+                            SmallVectorImpl<LiveInterval*> &NewVRegs,
+                            unsigned CostPerUseLimit) {
+  NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled);
+
+  // Keep track of the lightest single interference seen so far.
+  float BestWeight = HUGE_VALF;
+  unsigned BestPhys = 0;
+
+  Order.rewind();
   while (unsigned PhysReg = Order.next()) {
-    // Don't reassign to a WantedPhysReg alias.
-    if (TRI->regsOverlap(PhysReg, WantedPhysReg))
+    if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
+      continue;
+    // The first use of a register in a function has cost 1.
+    if (CostPerUseLimit == 1 && !MRI->isPhysRegUsed(PhysReg))
       continue;
 
-    if (checkUncachedInterference(InterferingVReg, PhysReg))
+    float Weight = BestWeight;
+    if (!canEvictInterference(VirtReg, PhysReg, Weight))
       continue;
 
-    // Reassign the interfering virtual reg to this physical reg.
-    unsigned OldAssign = VRM->getPhys(InterferingVReg.reg);
-    DEBUG(dbgs() << "reassigning: " << InterferingVReg << " from " <<
-          TRI->getName(OldAssign) << " to " << TRI->getName(PhysReg) << '\n');
-    PhysReg2LiveUnion[OldAssign].extract(InterferingVReg);
-    VRM->clearVirt(InterferingVReg.reg);
-    VRM->assignVirt2Phys(InterferingVReg.reg, PhysReg);
-    PhysReg2LiveUnion[PhysReg].unify(InterferingVReg);
+    // This is an eviction candidate.
+    DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " interference = "
+                 << Weight << '\n');
+    if (BestPhys && Weight >= BestWeight)
+      continue;
 
-    return true;
+    // Best so far.
+    BestPhys = PhysReg;
+    BestWeight = Weight;
+    // Stop if the hint can be used.
+    if (Order.isHint(PhysReg))
+      break;
   }
-  return false;
-}
 
-/// reassignInterferences - Reassign all interferences to different physical
-/// registers such that Virtreg can be assigned to PhysReg.
-/// Currently this only works with a single interference.
-/// @param  VirtReg Currently unassigned virtual register.
-/// @param  PhysReg Physical register to be cleared.
-/// @return True on success, false if nothing was changed.
-bool RAGreedy::reassignInterferences(LiveInterval &VirtReg, unsigned PhysReg) {
-  LiveInterval *InterferingVReg = getSingleInterference(VirtReg, PhysReg);
-  if (!InterferingVReg)
-    return false;
-  if (TargetRegisterInfo::isPhysicalRegister(InterferingVReg->reg))
-    return false;
-  return reassignVReg(*InterferingVReg, PhysReg);
-}
+  if (!BestPhys)
+    return 0;
 
-/// tryReassign - Try to reassign interferences to different physregs.
-/// @param  VirtReg Currently unassigned virtual register.
-/// @param  Order   Physregs to try.
-/// @return         Physreg to assign VirtReg, or 0.
-unsigned RAGreedy::tryReassign(LiveInterval &VirtReg, AllocationOrder &Order) {
-  NamedRegionTimer T("Reassign", TimerGroupName, TimePassesIsEnabled);
-  Order.rewind();
-  while (unsigned PhysReg = Order.next())
-    if (reassignInterferences(VirtReg, PhysReg))
-      return PhysReg;
-  return 0;
+  // We will evict interference. Make sure that VirtReg has a cascade number,
+  // and assign that cascade number to every evicted register. These live
+  // ranges than then only be evicted by a newer cascade, preventing infinite
+  // loops.
+  unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
+  if (!Cascade)
+    Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++;
+
+  DEBUG(dbgs() << "evicting " << PrintReg(BestPhys, TRI)
+               << " interference: Cascade " << Cascade << '\n');
+  for (const unsigned *AliasI = TRI->getOverlaps(BestPhys); *AliasI; ++AliasI) {
+    LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
+    assert(Q.seenAllInterferences() && "Didn't check all interfererences.");
+    for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i) {
+      LiveInterval *Intf = Q.interferingVRegs()[i];
+      unassign(*Intf, VRM->getPhys(Intf->reg));
+      assert(ExtraRegInfo[Intf->reg].Cascade < Cascade &&
+             "Cannot decrease cascade number, illegal eviction");
+      ExtraRegInfo[Intf->reg].Cascade = Cascade;
+      ++NumEvicted;
+      NewVRegs.push_back(Intf);
+    }
+  }
+  return BestPhys;
 }
 
 
 //===----------------------------------------------------------------------===//
-//                              Loop Splitting
+//                              Region Splitting
 //===----------------------------------------------------------------------===//
 
-/// findInterferenceFreeReg - Find a physical register in Order where Loop has
-/// no interferences with VirtReg.
-unsigned RAGreedy::findInterferenceFreeReg(MachineLoopRange *Loop,
-                                           LiveInterval &VirtReg,
-                                           AllocationOrder &Order) {
-  Order.rewind();
-  while (unsigned PhysReg = Order.next()) {
-    bool interference = false;
-    for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) {
-      if (query(VirtReg, *AI).checkLoopInterference(Loop)) {
-        interference = true;
-        break;
-      }
+/// addSplitConstraints - Fill out the SplitConstraints vector based on the
+/// interference pattern in Physreg and its aliases. Add the constraints to
+/// SpillPlacement and return the static cost of this split in Cost, assuming
+/// that all preferences in SplitConstraints are met.
+/// Return false if there are no bundles with positive bias.
+bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
+                                   float &Cost) {
+  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
+
+  // Reset interference dependent info.
+  SplitConstraints.resize(UseBlocks.size());
+  float StaticCost = 0;
+  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
+    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
+    SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
+
+    BC.Number = BI.MBB->getNumber();
+    Intf.moveToBlock(BC.Number);
+    BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
+    BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
+
+    if (!Intf.hasInterference())
+      continue;
+
+    // Number of spill code instructions to insert.
+    unsigned Ins = 0;
+
+    // Interference for the live-in value.
+    if (BI.LiveIn) {
+      if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number))
+        BC.Entry = SpillPlacement::MustSpill, ++Ins;
+      else if (Intf.first() < BI.FirstUse)
+        BC.Entry = SpillPlacement::PrefSpill, ++Ins;
+      else if (Intf.first() < BI.LastUse)
+        ++Ins;
     }
-    if (!interference)
-      return PhysReg;
+
+    // Interference for the live-out value.
+    if (BI.LiveOut) {
+      if (Intf.last() >= SA->getLastSplitPoint(BC.Number))
+        BC.Exit = SpillPlacement::MustSpill, ++Ins;
+      else if (Intf.last() > BI.LastUse)
+        BC.Exit = SpillPlacement::PrefSpill, ++Ins;
+      else if (Intf.last() > BI.FirstUse)
+        ++Ins;
+    }
+
+    // Accumulate the total frequency of inserted spill code.
+    if (Ins)
+      StaticCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
   }
-  // No physreg found.
-  return 0;
+  Cost = StaticCost;
+
+  // Add constraints for use-blocks. Note that these are the only constraints
+  // that may add a positive bias, it is downhill from here.
+  SpillPlacer->addConstraints(SplitConstraints);
+  return SpillPlacer->scanActiveBundles();
 }
 
-/// trySplit - Try to split VirtReg or one of its interferences, making it
-/// assignable.
-/// @return Physreg when VirtReg may be assigned and/or new SplitVRegs.
-unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
-                            SmallVectorImpl<LiveInterval*>&SplitVRegs) {
-  NamedRegionTimer T("Splitter", TimerGroupName, TimePassesIsEnabled);
-  SA->analyze(&VirtReg);
 
-  // Get the set of loops that have VirtReg uses and are splittable.
-  SplitAnalysis::LoopPtrSet SplitLoopSet;
-  SA->getSplitLoops(SplitLoopSet);
-
-  // Order loops by descending area.
-  SmallVector<MachineLoopRange*, 8> SplitLoops;
-  for (SplitAnalysis::LoopPtrSet::const_iterator I = SplitLoopSet.begin(),
-         E = SplitLoopSet.end(); I != E; ++I)
-    SplitLoops.push_back(LoopRanges->getLoopRange(*I));
-  array_pod_sort(SplitLoops.begin(), SplitLoops.end(),
-                 MachineLoopRange::byAreaDesc);
-
-  // Find the first loop that is interference-free for some register in the
-  // allocation order.
-  MachineLoopRange *Loop = 0;
-  for (unsigned i = 0, e = SplitLoops.size(); i != e; ++i) {
-    DEBUG(dbgs() << "  Checking " << *SplitLoops[i]);
-    if (unsigned PhysReg = findInterferenceFreeReg(SplitLoops[i],
-                                                   VirtReg, Order)) {
-      (void)PhysReg;
-      Loop = SplitLoops[i];
-      DEBUG(dbgs() << ": Use %" << TRI->getName(PhysReg) << '\n');
+/// addThroughConstraints - Add constraints and links to SpillPlacer from the
+/// live-through blocks in Blocks.
+void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
+                                     ArrayRef<unsigned> Blocks) {
+  const unsigned GroupSize = 8;
+  SpillPlacement::BlockConstraint BCS[GroupSize];
+  unsigned TBS[GroupSize];
+  unsigned B = 0, T = 0;
+
+  for (unsigned i = 0; i != Blocks.size(); ++i) {
+    unsigned Number = Blocks[i];
+    Intf.moveToBlock(Number);
+
+    if (!Intf.hasInterference()) {
+      assert(T < GroupSize && "Array overflow");
+      TBS[T] = Number;
+      if (++T == GroupSize) {
+        SpillPlacer->addLinks(ArrayRef<unsigned>(TBS, T));
+        T = 0;
+      }
+      continue;
+    }
+
+    assert(B < GroupSize && "Array overflow");
+    BCS[B].Number = Number;
+
+    // Interference for the live-in value.
+    if (Intf.first() <= Indexes->getMBBStartIdx(Number))
+      BCS[B].Entry = SpillPlacement::MustSpill;
+    else
+      BCS[B].Entry = SpillPlacement::PrefSpill;
+
+    // Interference for the live-out value.
+    if (Intf.last() >= SA->getLastSplitPoint(Number))
+      BCS[B].Exit = SpillPlacement::MustSpill;
+    else
+      BCS[B].Exit = SpillPlacement::PrefSpill;
+
+    if (++B == GroupSize) {
+      ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
+      SpillPlacer->addConstraints(Array);
+      B = 0;
+    }
+  }
+
+  ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
+  SpillPlacer->addConstraints(Array);
+  SpillPlacer->addLinks(ArrayRef<unsigned>(TBS, T));
+}
+
+void RAGreedy::growRegion(GlobalSplitCandidate &Cand,
+                          InterferenceCache::Cursor Intf) {
+  // Keep track of through blocks that have not been added to SpillPlacer.
+  BitVector Todo = SA->getThroughBlocks();
+  SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
+  unsigned AddedTo = 0;
+#ifndef NDEBUG
+  unsigned Visited = 0;
+#endif
+
+  for (;;) {
+    ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
+    if (NewBundles.empty())
       break;
+    // Find new through blocks in the periphery of PrefRegBundles.
+    for (int i = 0, e = NewBundles.size(); i != e; ++i) {
+      unsigned Bundle = NewBundles[i];
+      // Look at all blocks connected to Bundle in the full graph.
+      ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
+      for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
+           I != E; ++I) {
+        unsigned Block = *I;
+        if (!Todo.test(Block))
+          continue;
+        Todo.reset(Block);
+        // This is a new through block. Add it to SpillPlacer later.
+        ActiveBlocks.push_back(Block);
+#ifndef NDEBUG
+        ++Visited;
+#endif
+      }
+    }
+    // Any new blocks to add?
+    if (ActiveBlocks.size() > AddedTo) {
+      ArrayRef<unsigned> Add(&ActiveBlocks[AddedTo],
+                             ActiveBlocks.size() - AddedTo);
+      addThroughConstraints(Intf, Add);
+      AddedTo = ActiveBlocks.size();
+    }
+    // Perhaps iterating can enable more bundles?
+    SpillPlacer->iterate();
+  }
+  DEBUG(dbgs() << ", v=" << Visited);
+}
+
+/// calcSpillCost - Compute how expensive it would be to split the live range in
+/// SA around all use blocks instead of forming bundle regions.
+float RAGreedy::calcSpillCost() {
+  float Cost = 0;
+  const LiveInterval &LI = SA->getParent();
+  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
+  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
+    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
+    unsigned Number = BI.MBB->getNumber();
+    // We normally only need one spill instruction - a load or a store.
+    Cost += SpillPlacer->getBlockFrequency(Number);
+
+    // Unless the value is redefined in the block.
+    if (BI.LiveIn && BI.LiveOut) {
+      SlotIndex Start, Stop;
+      tie(Start, Stop) = Indexes->getMBBRange(Number);
+      LiveInterval::const_iterator I = LI.find(Start);
+      assert(I != LI.end() && "Expected live-in value");
+      // Is there a different live-out value? If so, we need an extra spill
+      // instruction.
+      if (I->end < Stop)
+        Cost += SpillPlacer->getBlockFrequency(Number);
+    }
+  }
+  return Cost;
+}
+
+/// calcGlobalSplitCost - Return the global split cost of following the split
+/// pattern in LiveBundles. This cost should be added to the local cost of the
+/// interference pattern in SplitConstraints.
+///
+float RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
+                                    InterferenceCache::Cursor Intf) {
+  float GlobalCost = 0;
+  const BitVector &LiveBundles = Cand.LiveBundles;
+  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
+  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
+    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
+    SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
+    bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, 0)];
+    bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)];
+    unsigned Ins = 0;
+
+    if (BI.LiveIn)
+      Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
+    if (BI.LiveOut)
+      Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
+    if (Ins)
+      GlobalCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
+  }
+
+  for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
+    unsigned Number = Cand.ActiveBlocks[i];
+    bool RegIn  = LiveBundles[Bundles->getBundle(Number, 0)];
+    bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
+    if (!RegIn && !RegOut)
+      continue;
+    if (RegIn && RegOut) {
+      // We need double spill code if this block has interference.
+      Intf.moveToBlock(Number);
+      if (Intf.hasInterference())
+        GlobalCost += 2*SpillPlacer->getBlockFrequency(Number);
+      continue;
+    }
+    // live-in / stack-out or stack-in live-out.
+    GlobalCost += SpillPlacer->getBlockFrequency(Number);
+  }
+  return GlobalCost;
+}
+
+/// splitAroundRegion - Split VirtReg around the region determined by
+/// LiveBundles. Make an effort to avoid interference from PhysReg.
+///
+/// The 'register' interval is going to contain as many uses as possible while
+/// avoiding interference. The 'stack' interval is the complement constructed by
+/// SplitEditor. It will contain the rest.
+///
+void RAGreedy::splitAroundRegion(LiveInterval &VirtReg,
+                                 GlobalSplitCandidate &Cand,
+                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
+  const BitVector &LiveBundles = Cand.LiveBundles;
+
+  DEBUG({
+    dbgs() << "Splitting around region for " << PrintReg(Cand.PhysReg, TRI)
+           << " with bundles";
+    for (int i = LiveBundles.find_first(); i>=0; i = LiveBundles.find_next(i))
+      dbgs() << " EB#" << i;
+    dbgs() << ".\n";
+  });
+
+  InterferenceCache::Cursor Intf(IntfCache, Cand.PhysReg);
+  LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
+  SE->reset(LREdit);
+
+  // Create the main cross-block interval.
+  const unsigned MainIntv = SE->openIntv();
+
+  // First handle all the blocks with uses.
+  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
+  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
+    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
+    bool RegIn  = BI.LiveIn &&
+                  LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 0)];
+    bool RegOut = BI.LiveOut &&
+                  LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 1)];
+
+    // Create separate intervals for isolated blocks with multiple uses.
+    //
+    //     |---o---o---|    Enter and leave on the stack.
+    //     ____-----____    Create local interval for uses.
+    //
+    //     |   o---o---|    Defined in block, leave on stack.
+    //         -----____    Create local interval for uses.
+    //
+    //     |---o---x   |    Enter on stack, killed in block.
+    //     ____-----        Create local interval for uses.
+    //
+    if (!RegIn && !RegOut) {
+      DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n");
+      if (!BI.isOneInstr()) {
+        SE->splitSingleBlock(BI);
+        SE->selectIntv(MainIntv);
+      }
+      continue;
+    }
+
+    SlotIndex Start, Stop;
+    tie(Start, Stop) = Indexes->getMBBRange(BI.MBB);
+    Intf.moveToBlock(BI.MBB->getNumber());
+    DEBUG(dbgs() << "EB#" << Bundles->getBundle(BI.MBB->getNumber(), 0)
+                 << (BI.LiveIn ? (RegIn ? " => " : " -> ") : "    ")
+                 << "BB#" << BI.MBB->getNumber()
+                 << (BI.LiveOut ? (RegOut ? " => " : " -> ") : "    ")
+                 << " EB#" << Bundles->getBundle(BI.MBB->getNumber(), 1)
+                 << " [" << Start << ';'
+                 << SA->getLastSplitPoint(BI.MBB->getNumber()) << '-' << Stop
+                 << ") uses [" << BI.FirstUse << ';' << BI.LastUse
+                 << ") intf [" << Intf.first() << ';' << Intf.last() << ')');
+
+    // The interference interval should either be invalid or overlap MBB.
+    assert((!Intf.hasInterference() || Intf.first() < Stop)
+           && "Bad interference");
+    assert((!Intf.hasInterference() || Intf.last() > Start)
+           && "Bad interference");
+
+    // We are now ready to decide where to split in the current block.  There
+    // are many variables guiding the decision:
+    //
+    // - RegIn / RegOut: The global splitting algorithm's decisions for our
+    //   ingoing and outgoing bundles.
+    //
+    // - BI.BlockIn / BI.BlockOut: Is the live range live-in and/or live-out
+    //   from this block.
+    //
+    // - Intf.hasInterference(): Is there interference in this block.
+    //
+    // - Intf.first() / Inft.last(): The range of interference.
+    //
+    // The live range should be split such that MainIntv is live-in when RegIn
+    // is set, and live-out when RegOut is set.  MainIntv should never overlap
+    // the interference, and the stack interval should never have more than one
+    // use per block.
+
+    // No splits can be inserted after LastSplitPoint, overlap instead.
+    SlotIndex LastSplitPoint = Stop;
+    if (BI.LiveOut)
+      LastSplitPoint = SA->getLastSplitPoint(BI.MBB->getNumber());
+
+    // At this point, we know that either RegIn or RegOut is set. We dealt with
+    // the all-stack case above.
+
+    // Blocks without interference are relatively easy.
+    if (!Intf.hasInterference()) {
+      DEBUG(dbgs() << ", no interference.\n");
+      SE->selectIntv(MainIntv);
+      // The easiest case has MainIntv live through.
+      //
+      //     |---o---o---|    Live-in, live-out.
+      //     =============    Use MainIntv everywhere.
+      //
+      SlotIndex From = Start, To = Stop;
+
+      // Block entry. Reload before the first use if MainIntv is not live-in.
+      //
+      //     |---o--    Enter on stack.
+      //     ____===    Reload before first use.
+      //
+      //     |   o--    Defined in block.
+      //         ===    Use MainIntv from def.
+      //
+      if (!RegIn)
+        From = SE->enterIntvBefore(BI.FirstUse);
+
+      // Block exit. Handle cases where MainIntv is not live-out.
+      if (!BI.LiveOut)
+        //
+        //     --x   |    Killed in block.
+        //     ===        Use MainIntv up to kill.
+        //
+        To = SE->leaveIntvAfter(BI.LastUse);
+      else if (!RegOut) {
+        //
+        //     --o---|    Live-out on stack.
+        //     ===____    Use MainIntv up to last use, switch to stack.
+        //
+        //     -----o|    Live-out on stack, last use after last split point.
+        //     ======     Extend MainIntv to last use, overlapping.
+        //       \____    Copy to stack interval before last split point.
+        //
+        if (BI.LastUse < LastSplitPoint)
+          To = SE->leaveIntvAfter(BI.LastUse);
+        else {
+          // The last use is after the last split point, it is probably an
+          // indirect branch.
+          To = SE->leaveIntvBefore(LastSplitPoint);
+          // Run a double interval from the split to the last use.  This makes
+          // it possible to spill the complement without affecting the indirect
+          // branch.
+          SE->overlapIntv(To, BI.LastUse);
+        }
+      }
+
+      // Paint in MainIntv liveness for this block.
+      SE->useIntv(From, To);
+      continue;
+    }
+
+    // We are now looking at a block with interference, and we know that either
+    // RegIn or RegOut is set.
+    assert(Intf.hasInterference() && (RegIn || RegOut) && "Bad invariant");
+
+    // If the live range is not live through the block, it is possible that the
+    // interference doesn't even overlap.  Deal with those cases first.  Since
+    // no copy instructions are required, we can tolerate interference starting
+    // or ending at the same instruction that kills or defines our live range.
+
+    // Live-in, killed before interference.
+    //
+    //               ~~~    Interference after kill.
+    //     |---o---x   |    Killed in block.
+    //     =========        Use MainIntv everywhere.
+    //
+    if (RegIn && !BI.LiveOut && BI.LastUse <= Intf.first()) {
+      DEBUG(dbgs() << ", live-in, killed before interference.\n");
+      SE->selectIntv(MainIntv);
+      SlotIndex To = SE->leaveIntvAfter(BI.LastUse);
+      SE->useIntv(Start, To);
+      continue;
+    }
+
+    // Live-out, defined after interference.
+    //
+    //     ~~~              Interference before def.
+    //     |   o---o---|    Defined in block.
+    //         =========    Use MainIntv everywhere.
+    //
+    if (RegOut && !BI.LiveIn && BI.FirstUse >= Intf.last()) {
+      DEBUG(dbgs() << ", live-out, defined after interference.\n");
+      SE->selectIntv(MainIntv);
+      SlotIndex From = SE->enterIntvBefore(BI.FirstUse);
+      SE->useIntv(From, Stop);
+      continue;
+    }
+
+    // The interference is now known to overlap the live range, but it may
+    // still be easy to avoid if all the interference is on one side of the
+    // uses, and we enter or leave on the stack.
+
+    // Live-out on stack, interference after last use.
+    //
+    //               ~~~    Interference after last use.
+    //     |---o---o---|    Live-out on stack.
+    //     =========____    Leave MainIntv after last use.
+    //
+    //                 ~    Interference after last use.
+    //     |---o---o--o|    Live-out on stack, late last use.
+    //     =========____    Copy to stack after LSP, overlap MainIntv.
+    //
+    if (!RegOut && Intf.first() > BI.LastUse.getBoundaryIndex()) {
+      assert(RegIn && "Stack-in, stack-out should already be handled");
+      if (BI.LastUse < LastSplitPoint) {
+        DEBUG(dbgs() << ", live-in, stack-out, interference after last use.\n");
+        SE->selectIntv(MainIntv);
+        SlotIndex To = SE->leaveIntvAfter(BI.LastUse);
+        assert(To <= Intf.first() && "Expected to avoid interference");
+        SE->useIntv(Start, To);
+      } else {
+        DEBUG(dbgs() << ", live-in, stack-out, avoid last split point\n");
+        SE->selectIntv(MainIntv);
+        SlotIndex To = SE->leaveIntvBefore(LastSplitPoint);
+        assert(To <= Intf.first() && "Expected to avoid interference");
+        SE->overlapIntv(To, BI.LastUse);
+        SE->useIntv(Start, To);
+      }
+      continue;
+    }
+
+    // Live-in on stack, interference before first use.
+    //
+    //     ~~~              Interference before first use.
+    //     |---o---o---|    Live-in on stack.
+    //     ____=========    Enter MainIntv before first use.
+    //
+    if (!RegIn && Intf.last() < BI.FirstUse.getBaseIndex()) {
+      assert(RegOut && "Stack-in, stack-out should already be handled");
+      DEBUG(dbgs() << ", stack-in, interference before first use.\n");
+      SE->selectIntv(MainIntv);
+      SlotIndex From = SE->enterIntvBefore(BI.FirstUse);
+      assert(From >= Intf.last() && "Expected to avoid interference");
+      SE->useIntv(From, Stop);
+      continue;
+    }
+
+    // The interference is overlapping somewhere we wanted to use MainIntv. That
+    // means we need to create a local interval that can be allocated a
+    // different register.
+    DEBUG(dbgs() << ", creating local interval.\n");
+    unsigned LocalIntv = SE->openIntv();
+
+    // We may be creating copies directly between MainIntv and LocalIntv,
+    // bypassing the stack interval. When we do that, we should never use the
+    // leaveIntv* methods as they define values in the stack interval. By
+    // starting from the end of the block and working our way backwards, we can
+    // get by with only enterIntv* methods.
+    //
+    // When selecting split points, we generally try to maximize the stack
+    // interval as long at it contains no uses, maximize the main interval as
+    // long as it doesn't overlap interference, and minimize the local interval
+    // that we don't know how to allocate yet.
+
+    // Handle the block exit, set Pos to the first handled slot.
+    SlotIndex Pos = BI.LastUse;
+    if (RegOut) {
+      assert(Intf.last() < LastSplitPoint && "Cannot be live-out in register");
+      // Create a snippet of MainIntv that is live-out.
+      //
+      //     ~~~        Interference overlapping uses.
+      //     --o---|    Live-out in MainIntv.
+      //     ----===    Switch from LocalIntv to MainIntv after interference.
+      //
+      SE->selectIntv(MainIntv);
+      Pos = SE->enterIntvAfter(Intf.last());
+      assert(Pos >= Intf.last() && "Expected to avoid interference");
+      SE->useIntv(Pos, Stop);
+      SE->selectIntv(LocalIntv);
+    } else if (BI.LiveOut) {
+      if (BI.LastUse < LastSplitPoint) {
+        // Live-out on the stack.
+        //
+        //     ~~~        Interference overlapping uses.
+        //     --o---|    Live-out on stack.
+        //     ---____    Switch from LocalIntv to stack after last use.
+        //
+        Pos = SE->leaveIntvAfter(BI.LastUse);
+      } else {
+        // Live-out on the stack, last use after last split point.
+        //
+        //     ~~~        Interference overlapping uses.
+        //     --o--o|    Live-out on stack, late use.
+        //     ------     Copy to stack before LSP, overlap LocalIntv.
+        //         \__
+        //
+        Pos = SE->leaveIntvBefore(LastSplitPoint);
+        // We need to overlap LocalIntv so it can reach LastUse.
+        SE->overlapIntv(Pos, BI.LastUse);
+      }
+    }
+
+    // When not live-out, leave Pos at LastUse. We have handled everything from
+    // Pos to Stop. Find the starting point for LocalIntv.
+    assert(SE->currentIntv() == LocalIntv && "Expecting local interval");
+
+    if (RegIn) {
+      assert(Start < Intf.first() && "Cannot be live-in with interference");
+      // Live-in in MainIntv, only use LocalIntv for interference.
+      //
+      //         ~~~    Interference overlapping uses.
+      //     |---o--    Live-in in MainIntv.
+      //     ====---    Switch to LocalIntv before interference.
+      //
+      SlotIndex Switch = SE->enterIntvBefore(std::min(Pos, Intf.first()));
+      assert(Switch <= Intf.first() && "Expected to avoid interference");
+      SE->useIntv(Switch, Pos);
+      SE->selectIntv(MainIntv);
+      SE->useIntv(Start, Switch);
     } else {
-      DEBUG(dbgs() << ": Interference.\n");
+      // Live-in on stack, enter LocalIntv before first use.
+      //
+      //         ~~~    Interference overlapping uses.
+      //     |---o--    Live-in in MainIntv.
+      //     ____---    Reload to LocalIntv before interference.
+      //
+      // Defined in block.
+      //
+      //         ~~~    Interference overlapping uses.
+      //     |   o--    Defined in block.
+      //         ---    Begin LocalIntv at first use.
+      //
+      SlotIndex Switch = SE->enterIntvBefore(std::min(Pos, BI.FirstUse));
+      SE->useIntv(Switch, Pos);
     }
   }
 
-  if (!Loop) {
-    DEBUG(dbgs() << "  All candidate loops have interference.\n");
-    return 0;
+  // Handle live-through blocks.
+  SE->selectIntv(MainIntv);
+  for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
+    unsigned Number = Cand.ActiveBlocks[i];
+    bool RegIn  = LiveBundles[Bundles->getBundle(Number, 0)];
+    bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
+    DEBUG(dbgs() << "Live through BB#" << Number << '\n');
+    if (RegIn && RegOut) {
+      Intf.moveToBlock(Number);
+      if (!Intf.hasInterference()) {
+        SE->useIntv(Indexes->getMBBStartIdx(Number),
+                    Indexes->getMBBEndIdx(Number));
+        continue;
+      }
+    }
+    MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
+    if (RegIn)
+      SE->leaveIntvAtTop(*MBB);
+    if (RegOut)
+      SE->enterIntvAtEnd(*MBB);
   }
 
-  // Execute the split around Loop.
-  SmallVector<LiveInterval*, 4> SpillRegs;
-  LiveRangeEdit LREdit(VirtReg, SplitVRegs, SpillRegs);
-  SplitEditor(*SA, *LIS, *VRM, *DomTree, LREdit)
-    .splitAroundLoop(Loop->getLoop());
+  ++NumGlobalSplits;
+
+  SmallVector<unsigned, 8> IntvMap;
+  SE->finish(&IntvMap);
+  DebugVars->splitRegister(VirtReg.reg, LREdit.regs());
+
+  ExtraRegInfo.resize(MRI->getNumVirtRegs());
+  unsigned OrigBlocks = SA->getNumLiveBlocks();
+
+  // Sort out the new intervals created by splitting. We get four kinds:
+  // - Remainder intervals should not be split again.
+  // - Candidate intervals can be assigned to Cand.PhysReg.
+  // - Block-local splits are candidates for local splitting.
+  // - DCE leftovers should go back on the queue.
+  for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
+    LiveInterval &Reg = *LREdit.get(i);
+
+    // Ignore old intervals from DCE.
+    if (getStage(Reg) != RS_New)
+      continue;
+
+    // Remainder interval. Don't try splitting again, spill if it doesn't
+    // allocate.
+    if (IntvMap[i] == 0) {
+      setStage(Reg, RS_Global);
+      continue;
+    }
+
+    // Main interval. Allow repeated splitting as long as the number of live
+    // blocks is strictly decreasing.
+    if (IntvMap[i] == MainIntv) {
+      if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
+        DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
+                     << " blocks as original.\n");
+        // Don't allow repeated splitting as a safe guard against looping.
+        setStage(Reg, RS_Global);
+      }
+      continue;
+    }
+
+    // Other intervals are treated as new. This includes local intervals created
+    // for blocks with multiple uses, and anything created by DCE.
+  }
 
   if (VerifyEnabled)
-    MF->verify(this, "After splitting live range around loop");
+    MF->verify(this, "After splitting live range around region");
+}
+
+unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
+                                  SmallVectorImpl<LiveInterval*> &NewVRegs) {
+  float BestCost = Hysteresis * calcSpillCost();
+  DEBUG(dbgs() << "Cost of isolating all blocks = " << BestCost << '\n');
+  const unsigned NoCand = ~0u;
+  unsigned BestCand = NoCand;
+
+  Order.rewind();
+  for (unsigned Cand = 0; unsigned PhysReg = Order.next(); ++Cand) {
+    if (GlobalCand.size() <= Cand)
+      GlobalCand.resize(Cand+1);
+    GlobalCand[Cand].reset(PhysReg);
+
+    SpillPlacer->prepare(GlobalCand[Cand].LiveBundles);
+    float Cost;
+    InterferenceCache::Cursor Intf(IntfCache, PhysReg);
+    if (!addSplitConstraints(Intf, Cost)) {
+      DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n");
+      continue;
+    }
+    DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = " << Cost);
+    if (Cost >= BestCost) {
+      DEBUG({
+        if (BestCand == NoCand)
+          dbgs() << " worse than no bundles\n";
+        else
+          dbgs() << " worse than "
+                 << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
+      });
+      continue;
+    }
+    growRegion(GlobalCand[Cand], Intf);
+
+    SpillPlacer->finish();
+
+    // No live bundles, defer to splitSingleBlocks().
+    if (!GlobalCand[Cand].LiveBundles.any()) {
+      DEBUG(dbgs() << " no bundles.\n");
+      continue;
+    }
 
-  // We have new split regs, don't assign anything.
+    Cost += calcGlobalSplitCost(GlobalCand[Cand], Intf);
+    DEBUG({
+      dbgs() << ", total = " << Cost << " with bundles";
+      for (int i = GlobalCand[Cand].LiveBundles.find_first(); i>=0;
+           i = GlobalCand[Cand].LiveBundles.find_next(i))
+        dbgs() << " EB#" << i;
+      dbgs() << ".\n";
+    });
+    if (Cost < BestCost) {
+      BestCand = Cand;
+      BestCost = Hysteresis * Cost; // Prevent rounding effects.
+    }
+  }
+
+  if (BestCand == NoCand)
+    return 0;
+
+  splitAroundRegion(VirtReg, GlobalCand[BestCand], NewVRegs);
   return 0;
 }
 
 
 //===----------------------------------------------------------------------===//
-//                                Spilling
+//                             Local Splitting
 //===----------------------------------------------------------------------===//
 
-/// calcInterferenceWeight - Calculate the combined spill weight of
-/// interferences when assigning VirtReg to PhysReg.
-float RAGreedy::calcInterferenceWeight(LiveInterval &VirtReg, unsigned PhysReg){
-  float Sum = 0;
+
+/// calcGapWeights - Compute the maximum spill weight that needs to be evicted
+/// in order to use PhysReg between two entries in SA->UseSlots.
+///
+/// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
+///
+void RAGreedy::calcGapWeights(unsigned PhysReg,
+                              SmallVectorImpl<float> &GapWeight) {
+  assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
+  const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
+  const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
+  const unsigned NumGaps = Uses.size()-1;
+
+  // Start and end points for the interference check.
+  SlotIndex StartIdx = BI.LiveIn ? BI.FirstUse.getBaseIndex() : BI.FirstUse;
+  SlotIndex StopIdx = BI.LiveOut ? BI.LastUse.getBoundaryIndex() : BI.LastUse;
+
+  GapWeight.assign(NumGaps, 0.0f);
+
+  // Add interference from each overlapping register.
   for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) {
-    LiveIntervalUnion::Query &Q = query(VirtReg, *AI);
-    Q.collectInterferingVRegs();
-    if (Q.seenUnspillableVReg())
-      return HUGE_VALF;
-    for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i)
-      Sum += Q.interferingVRegs()[i]->weight;
+    if (!query(const_cast<LiveInterval&>(SA->getParent()), *AI)
+           .checkInterference())
+      continue;
+
+    // We know that VirtReg is a continuous interval from FirstUse to LastUse,
+    // so we don't need InterferenceQuery.
+    //
+    // Interference that overlaps an instruction is counted in both gaps
+    // surrounding the instruction. The exception is interference before
+    // StartIdx and after StopIdx.
+    //
+    LiveIntervalUnion::SegmentIter IntI = PhysReg2LiveUnion[*AI].find(StartIdx);
+    for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
+      // Skip the gaps before IntI.
+      while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
+        if (++Gap == NumGaps)
+          break;
+      if (Gap == NumGaps)
+        break;
+
+      // Update the gaps covered by IntI.
+      const float weight = IntI.value()->weight;
+      for (; Gap != NumGaps; ++Gap) {
+        GapWeight[Gap] = std::max(GapWeight[Gap], weight);
+        if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
+          break;
+      }
+      if (Gap == NumGaps)
+        break;
+    }
   }
-  return Sum;
 }
 
-/// trySpillInterferences - Try to spill interfering registers instead of the
-/// current one. Only do it if the accumulated spill weight is smaller than the
-/// current spill weight.
-unsigned RAGreedy::trySpillInterferences(LiveInterval &VirtReg,
-                                         AllocationOrder &Order,
-                                     SmallVectorImpl<LiveInterval*> &NewVRegs) {
-  NamedRegionTimer T("Spill Interference", TimerGroupName, TimePassesIsEnabled);
-  unsigned BestPhys = 0;
-  float BestWeight = 0;
+/// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
+/// basic block.
+///
+unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
+                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
+  assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
+  const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
+
+  // Note that it is possible to have an interval that is live-in or live-out
+  // while only covering a single block - A phi-def can use undef values from
+  // predecessors, and the block could be a single-block loop.
+  // We don't bother doing anything clever about such a case, we simply assume
+  // that the interval is continuous from FirstUse to LastUse. We should make
+  // sure that we don't do anything illegal to such an interval, though.
+
+  const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
+  if (Uses.size() <= 2)
+    return 0;
+  const unsigned NumGaps = Uses.size()-1;
+
+  DEBUG({
+    dbgs() << "tryLocalSplit: ";
+    for (unsigned i = 0, e = Uses.size(); i != e; ++i)
+      dbgs() << ' ' << SA->UseSlots[i];
+    dbgs() << '\n';
+  });
+
+  // Since we allow local split results to be split again, there is a risk of
+  // creating infinite loops. It is tempting to require that the new live
+  // ranges have less instructions than the original. That would guarantee
+  // convergence, but it is too strict. A live range with 3 instructions can be
+  // split 2+3 (including the COPY), and we want to allow that.
+  //
+  // Instead we use these rules:
+  //
+  // 1. Allow any split for ranges with getStage() < RS_Local. (Except for the
+  //    noop split, of course).
+  // 2. Require progress be made for ranges with getStage() >= RS_Local. All
+  //    the new ranges must have fewer instructions than before the split.
+  // 3. New ranges with the same number of instructions are marked RS_Local,
+  //    smaller ranges are marked RS_New.
+  //
+  // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
+  // excessive splitting and infinite loops.
+  //
+  bool ProgressRequired = getStage(VirtReg) >= RS_Local;
+
+  // Best split candidate.
+  unsigned BestBefore = NumGaps;
+  unsigned BestAfter = 0;
+  float BestDiff = 0;
+
+  const float blockFreq = SpillPlacer->getBlockFrequency(BI.MBB->getNumber());
+  SmallVector<float, 8> GapWeight;
 
   Order.rewind();
   while (unsigned PhysReg = Order.next()) {
-    float Weight = calcInterferenceWeight(VirtReg, PhysReg);
-    if (Weight == HUGE_VALF || Weight >= VirtReg.weight)
-      continue;
-    if (!BestPhys || Weight < BestWeight)
-      BestPhys = PhysReg, BestWeight = Weight;
+    // Keep track of the largest spill weight that would need to be evicted in
+    // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
+    calcGapWeights(PhysReg, GapWeight);
+
+    // Try to find the best sequence of gaps to close.
+    // The new spill weight must be larger than any gap interference.
+
+    // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
+    unsigned SplitBefore = 0, SplitAfter = 1;
+
+    // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
+    // It is the spill weight that needs to be evicted.
+    float MaxGap = GapWeight[0];
+
+    for (;;) {
+      // Live before/after split?
+      const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
+      const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
+
+      DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' '
+                   << Uses[SplitBefore] << '-' << Uses[SplitAfter]
+                   << " i=" << MaxGap);
+
+      // Stop before the interval gets so big we wouldn't be making progress.
+      if (!LiveBefore && !LiveAfter) {
+        DEBUG(dbgs() << " all\n");
+        break;
+      }
+      // Should the interval be extended or shrunk?
+      bool Shrink = true;
+
+      // How many gaps would the new range have?
+      unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
+
+      // Legally, without causing looping?
+      bool Legal = !ProgressRequired || NewGaps < NumGaps;
+
+      if (Legal && MaxGap < HUGE_VALF) {
+        // Estimate the new spill weight. Each instruction reads or writes the
+        // register. Conservatively assume there are no read-modify-write
+        // instructions.
+        //
+        // Try to guess the size of the new interval.
+        const float EstWeight = normalizeSpillWeight(blockFreq * (NewGaps + 1),
+                                 Uses[SplitBefore].distance(Uses[SplitAfter]) +
+                                 (LiveBefore + LiveAfter)*SlotIndex::InstrDist);
+        // Would this split be possible to allocate?
+        // Never allocate all gaps, we wouldn't be making progress.
+        DEBUG(dbgs() << " w=" << EstWeight);
+        if (EstWeight * Hysteresis >= MaxGap) {
+          Shrink = false;
+          float Diff = EstWeight - MaxGap;
+          if (Diff > BestDiff) {
+            DEBUG(dbgs() << " (best)");
+            BestDiff = Hysteresis * Diff;
+            BestBefore = SplitBefore;
+            BestAfter = SplitAfter;
+          }
+        }
+      }
+
+      // Try to shrink.
+      if (Shrink) {
+        if (++SplitBefore < SplitAfter) {
+          DEBUG(dbgs() << " shrink\n");
+          // Recompute the max when necessary.
+          if (GapWeight[SplitBefore - 1] >= MaxGap) {
+            MaxGap = GapWeight[SplitBefore];
+            for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
+              MaxGap = std::max(MaxGap, GapWeight[i]);
+          }
+          continue;
+        }
+        MaxGap = 0;
+      }
+
+      // Try to extend the interval.
+      if (SplitAfter >= NumGaps) {
+        DEBUG(dbgs() << " end\n");
+        break;
+      }
+
+      DEBUG(dbgs() << " extend\n");
+      MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
+    }
   }
 
-  // No candidates found.
-  if (!BestPhys)
+  // Didn't find any candidates?
+  if (BestBefore == NumGaps)
     return 0;
 
-  // Collect all interfering registers.
-  SmallVector<LiveInterval*, 8> Spills;
-  for (const unsigned *AI = TRI->getOverlaps(BestPhys); *AI; ++AI) {
-    LiveIntervalUnion::Query &Q = query(VirtReg, *AI);
-    Spills.append(Q.interferingVRegs().begin(), Q.interferingVRegs().end());
-    for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i) {
-      LiveInterval *VReg = Q.interferingVRegs()[i];
-      PhysReg2LiveUnion[*AI].extract(*VReg);
-      VRM->clearVirt(VReg->reg);
-    }
+  DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore]
+               << '-' << Uses[BestAfter] << ", " << BestDiff
+               << ", " << (BestAfter - BestBefore + 1) << " instrs\n");
+
+  LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
+  SE->reset(LREdit);
+
+  SE->openIntv();
+  SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
+  SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
+  SE->useIntv(SegStart, SegStop);
+  SmallVector<unsigned, 8> IntvMap;
+  SE->finish(&IntvMap);
+  DebugVars->splitRegister(VirtReg.reg, LREdit.regs());
+
+  // If the new range has the same number of instructions as before, mark it as
+  // RS_Local so the next split will be forced to make progress. Otherwise,
+  // leave the new intervals as RS_New so they can compete.
+  bool LiveBefore = BestBefore != 0 || BI.LiveIn;
+  bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
+  unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
+  if (NewGaps >= NumGaps) {
+    DEBUG(dbgs() << "Tagging non-progress ranges: ");
+    assert(!ProgressRequired && "Didn't make progress when it was required.");
+    for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
+      if (IntvMap[i] == 1) {
+        setStage(*LREdit.get(i), RS_Local);
+        DEBUG(dbgs() << PrintReg(LREdit.get(i)->reg));
+      }
+    DEBUG(dbgs() << '\n');
   }
+  ++NumLocalSplits;
 
-  // Spill them all.
-  DEBUG(dbgs() << "spilling " << Spills.size() << " interferences with weight "
-               << BestWeight << '\n');
-  for (unsigned i = 0, e = Spills.size(); i != e; ++i)
-    spiller().spill(Spills[i], NewVRegs, Spills);
-  return BestPhys;
+  return 0;
+}
+
+//===----------------------------------------------------------------------===//
+//                          Live Range Splitting
+//===----------------------------------------------------------------------===//
+
+/// trySplit - Try to split VirtReg or one of its interferences, making it
+/// assignable.
+/// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
+unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
+                            SmallVectorImpl<LiveInterval*>&NewVRegs) {
+  // Local intervals are handled separately.
+  if (LIS->intervalIsInOneMBB(VirtReg)) {
+    NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled);
+    SA->analyze(&VirtReg);
+    return tryLocalSplit(VirtReg, Order, NewVRegs);
+  }
+
+  NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled);
+
+  // Don't iterate global splitting.
+  // Move straight to spilling if this range was produced by a global split.
+  if (getStage(VirtReg) >= RS_Global)
+    return 0;
+
+  SA->analyze(&VirtReg);
+
+  // FIXME: SplitAnalysis may repair broken live ranges coming from the
+  // coalescer. That may cause the range to become allocatable which means that
+  // tryRegionSplit won't be making progress. This check should be replaced with
+  // an assertion when the coalescer is fixed.
+  if (SA->didRepairRange()) {
+    // VirtReg has changed, so all cached queries are invalid.
+    invalidateVirtRegs();
+    if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
+      return PhysReg;
+  }
+
+  // First try to split around a region spanning multiple blocks.
+  unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
+  if (PhysReg || !NewVRegs.empty())
+    return PhysReg;
+
+  // Then isolate blocks with multiple uses.
+  SplitAnalysis::BlockPtrSet Blocks;
+  if (SA->getMultiUseBlocks(Blocks)) {
+    LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
+    SE->reset(LREdit);
+    SE->splitSingleBlocks(Blocks);
+    setStage(NewVRegs.begin(), NewVRegs.end(), RS_Global);
+    if (VerifyEnabled)
+      MF->verify(this, "After splitting live range around basic blocks");
+  }
+
+  // Don't assign any physregs.
+  return 0;
 }
 
 
@@ -420,32 +1522,53 @@ unsigned RAGreedy::trySpillInterferences(LiveInterval &VirtReg,
 //===----------------------------------------------------------------------===//
 
 unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
-                                 SmallVectorImpl<LiveInterval*> &SplitVRegs) {
+                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
   // First try assigning a free register.
-  AllocationOrder Order(VirtReg.reg, *VRM, ReservedRegs);
-  while (unsigned PhysReg = Order.next()) {
-    if (!checkPhysRegInterference(VirtReg, PhysReg))
+  AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo);
+  if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
+    return PhysReg;
+
+  LiveRangeStage Stage = getStage(VirtReg);
+  DEBUG(dbgs() << StageName[Stage]
+               << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n');
+
+  // Try to evict a less worthy live range, but only for ranges from the primary
+  // queue. The RS_Second ranges already failed to do this, and they should not
+  // get a second chance until they have been split.
+  if (Stage != RS_Second)
+    if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs))
       return PhysReg;
+
+  assert(NewVRegs.empty() && "Cannot append to existing NewVRegs");
+
+  // The first time we see a live range, don't try to split or spill.
+  // Wait until the second time, when all smaller ranges have been allocated.
+  // This gives a better picture of the interference to split around.
+  if (Stage == RS_First) {
+    setStage(VirtReg, RS_Second);
+    DEBUG(dbgs() << "wait for second round\n");
+    NewVRegs.push_back(&VirtReg);
+    return 0;
   }
 
-  // Try to reassign interferences.
-  if (unsigned PhysReg = tryReassign(VirtReg, Order))
-    return PhysReg;
+  // If we couldn't allocate a register from spilling, there is probably some
+  // invalid inline assembly. The base class wil report it.
+  if (Stage >= RS_Spill)
+    return ~0u;
 
   // Try splitting VirtReg or interferences.
-  unsigned PhysReg = trySplit(VirtReg, Order, SplitVRegs);
-  if (PhysReg || !SplitVRegs.empty())
-    return PhysReg;
-
-  // Try to spill another interfering reg with less spill weight.
-  PhysReg = trySpillInterferences(VirtReg, Order, SplitVRegs);
-  if (PhysReg)
+  unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
+  if (PhysReg || !NewVRegs.empty())
     return PhysReg;
 
   // Finally spill VirtReg itself.
   NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
-  SmallVector<LiveInterval*, 1> pendingSpills;
-  spiller().spill(&VirtReg, SplitVRegs, pendingSpills);
+  LiveRangeEdit LRE(VirtReg, NewVRegs, this);
+  spiller().spill(LRE);
+  setStage(NewVRegs.begin(), NewVRegs.end(), RS_Spill);
+
+  if (VerifyEnabled)
+    MF->verify(this, "After spilling");
 
   // The live virtual register requesting allocation was spilled, so tell
   // the caller not to allocate anything during this round.
@@ -462,23 +1585,35 @@ bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
     MF->verify(this, "Before greedy register allocator");
 
   RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>());
+  Indexes = &getAnalysis<SlotIndexes>();
   DomTree = &getAnalysis<MachineDominatorTree>();
-  ReservedRegs = TRI->getReservedRegs(*MF);
   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
   Loops = &getAnalysis<MachineLoopInfo>();
   LoopRanges = &getAnalysis<MachineLoopRanges>();
-  SA.reset(new SplitAnalysis(*MF, *LIS, *Loops));
+  Bundles = &getAnalysis<EdgeBundles>();
+  SpillPlacer = &getAnalysis<SpillPlacement>();
+  DebugVars = &getAnalysis<LiveDebugVariables>();
+
+  SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
+  SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree));
+  ExtraRegInfo.clear();
+  ExtraRegInfo.resize(MRI->getNumVirtRegs());
+  NextCascade = 1;
+  IntfCache.init(MF, &PhysReg2LiveUnion[0], Indexes, TRI);
 
   allocatePhysRegs();
   addMBBLiveIns(MF);
+  LIS->addKillFlags();
 
   // Run rewriter
   {
     NamedRegionTimer T("Rewriter", TimerGroupName, TimePassesIsEnabled);
-    std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter());
-    rewriter->runOnMachineFunction(*MF, *VRM, LIS);
+    VRM->rewrite(Indexes);
   }
 
+  // Write out new DBG_VALUE instructions.
+  DebugVars->emitDebugValues(VRM);
+
   // The pass output is in VirtRegMap. Release all the transient data.
   releaseMemory();