misched: ILP scheduler for experimental heuristics.
[oota-llvm.git] / lib / CodeGen / RegisterCoalescer.cpp
index 9d25d2af890b353f39292d3a03558c51ef006cae..ad515c10643dbe352c820bcfb4a2457556334733 100644 (file)
 //
 //===----------------------------------------------------------------------===//
 
-#include "llvm/CodeGen/RegisterCoalescer.h"
+#define DEBUG_TYPE "regalloc"
+#include "RegisterCoalescer.h"
+#include "LiveDebugVariables.h"
+#include "VirtRegMap.h"
+
+#include "llvm/Pass.h"
+#include "llvm/Value.h"
+#include "llvm/ADT/OwningPtr.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/CodeGen/LiveRangeEdit.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
 #include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/RegisterClassInfo.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
 #include "llvm/Target/TargetRegisterInfo.h"
-#include "llvm/Pass.h"
-
+#include <algorithm>
+#include <cmath>
 using namespace llvm;
 
-// Register the RegisterCoalescer interface, providing a nice name to refer to.
+STATISTIC(numJoins    , "Number of interval joins performed");
+STATISTIC(numCrossRCs , "Number of cross class joins performed");
+STATISTIC(numCommutes , "Number of instruction commuting performed");
+STATISTIC(numExtends  , "Number of copies extended");
+STATISTIC(NumReMats   , "Number of instructions re-materialized");
+STATISTIC(NumInflated , "Number of register classes inflated");
+STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested");
+STATISTIC(NumLaneResolves,  "Number of dead lane conflicts resolved");
+
+static cl::opt<bool>
+EnableJoining("join-liveintervals",
+              cl::desc("Coalesce copies (default=true)"),
+              cl::init(true));
+
+static cl::opt<bool>
+VerifyCoalescing("verify-coalescing",
+         cl::desc("Verify machine instrs before and after register coalescing"),
+         cl::Hidden);
+
 namespace {
-  RegisterAnalysisGroup<RegisterCoalescer> Z("Register Coalescer");
-}
+  class RegisterCoalescer : public MachineFunctionPass,
+                            private LiveRangeEdit::Delegate {
+    MachineFunction* MF;
+    MachineRegisterInfo* MRI;
+    const TargetMachine* TM;
+    const TargetRegisterInfo* TRI;
+    const TargetInstrInfo* TII;
+    LiveIntervals *LIS;
+    LiveDebugVariables *LDV;
+    const MachineLoopInfo* Loops;
+    AliasAnalysis *AA;
+    RegisterClassInfo RegClassInfo;
+
+    /// WorkList - Copy instructions yet to be coalesced.
+    SmallVector<MachineInstr*, 8> WorkList;
+
+    /// ErasedInstrs - Set of instruction pointers that have been erased, and
+    /// that may be present in WorkList.
+    SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
+
+    /// Dead instructions that are about to be deleted.
+    SmallVector<MachineInstr*, 8> DeadDefs;
+
+    /// Virtual registers to be considered for register class inflation.
+    SmallVector<unsigned, 8> InflateRegs;
+
+    /// Recursively eliminate dead defs in DeadDefs.
+    void eliminateDeadDefs();
+
+    /// LiveRangeEdit callback.
+    void LRE_WillEraseInstruction(MachineInstr *MI);
+
+    /// joinAllIntervals - join compatible live intervals
+    void joinAllIntervals();
+
+    /// copyCoalesceInMBB - Coalesce copies in the specified MBB, putting
+    /// copies that cannot yet be coalesced into WorkList.
+    void copyCoalesceInMBB(MachineBasicBlock *MBB);
+
+    /// copyCoalesceWorkList - Try to coalesce all copies in WorkList after
+    /// position From. Return true if any progress was made.
+    bool copyCoalesceWorkList(unsigned From = 0);
+
+    /// joinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
+    /// which are the src/dst of the copy instruction CopyMI.  This returns
+    /// true if the copy was successfully coalesced away. If it is not
+    /// currently possible to coalesce this interval, but it may be possible if
+    /// other things get coalesced, then it returns true by reference in
+    /// 'Again'.
+    bool joinCopy(MachineInstr *TheCopy, bool &Again);
+
+    /// joinIntervals - Attempt to join these two intervals.  On failure, this
+    /// returns false.  The output "SrcInt" will not have been modified, so we
+    /// can use this information below to update aliases.
+    bool joinIntervals(CoalescerPair &CP);
+
+    /// Attempt joining two virtual registers. Return true on success.
+    bool joinVirtRegs(CoalescerPair &CP);
+
+    /// Attempt joining with a reserved physreg.
+    bool joinReservedPhysReg(CoalescerPair &CP);
+
+    /// adjustCopiesBackFrom - We found a non-trivially-coalescable copy. If
+    /// the source value number is defined by a copy from the destination reg
+    /// see if we can merge these two destination reg valno# into a single
+    /// value number, eliminating a copy.
+    bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
+
+    /// hasOtherReachingDefs - Return true if there are definitions of IntB
+    /// other than BValNo val# that can reach uses of AValno val# of IntA.
+    bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
+                              VNInfo *AValNo, VNInfo *BValNo);
+
+    /// removeCopyByCommutingDef - We found a non-trivially-coalescable copy.
+    /// If the source value number is defined by a commutable instruction and
+    /// its other operand is coalesced to the copy dest register, see if we
+    /// can transform the copy into a noop by commuting the definition.
+    bool removeCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI);
+
+    /// reMaterializeTrivialDef - If the source of a copy is defined by a
+    /// trivial computation, replace the copy by rematerialize the definition.
+    bool reMaterializeTrivialDef(LiveInterval &SrcInt, unsigned DstReg,
+                                 MachineInstr *CopyMI);
+
+    /// canJoinPhys - Return true if a physreg copy should be joined.
+    bool canJoinPhys(CoalescerPair &CP);
+
+    /// updateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
+    /// update the subregister number if it is not zero. If DstReg is a
+    /// physical register and the existing subregister number of the def / use
+    /// being updated is not zero, make sure to set it to the correct physical
+    /// subregister.
+    void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx);
+
+    /// eliminateUndefCopy - Handle copies of undef values.
+    bool eliminateUndefCopy(MachineInstr *CopyMI, const CoalescerPair &CP);
+
+  public:
+    static char ID; // Class identification, replacement for typeinfo
+    RegisterCoalescer() : MachineFunctionPass(ID) {
+      initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
+    }
+
+    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
+
+    virtual void releaseMemory();
+
+    /// runOnMachineFunction - pass entry point
+    virtual bool runOnMachineFunction(MachineFunction&);
+
+    /// print - Implement the dump method.
+    virtual void print(raw_ostream &O, const Module* = 0) const;
+  };
+} /// end anonymous namespace
+
+char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
+
+INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
+                      "Simple Register Coalescing", false, false)
+INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
+INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
+INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
+INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
+INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
+INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
+                    "Simple Register Coalescing", false, false)
+
 char RegisterCoalescer::ID = 0;
 
-// RegisterCoalescer destructor: DO NOT move this to the header file
-// for RegisterCoalescer or else clients of the RegisterCoalescer
-// class may not depend on the RegisterCoalescer.o file in the current
-// .a file, causing alias analysis support to not be included in the
-// tool correctly!
+static unsigned compose(const TargetRegisterInfo &tri, unsigned a, unsigned b) {
+  if (!a) return b;
+  if (!b) return a;
+  return tri.composeSubRegIndices(a, b);
+}
+
+static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI,
+                        unsigned &Src, unsigned &Dst,
+                        unsigned &SrcSub, unsigned &DstSub) {
+  if (MI->isCopy()) {
+    Dst = MI->getOperand(0).getReg();
+    DstSub = MI->getOperand(0).getSubReg();
+    Src = MI->getOperand(1).getReg();
+    SrcSub = MI->getOperand(1).getSubReg();
+  } else if (MI->isSubregToReg()) {
+    Dst = MI->getOperand(0).getReg();
+    DstSub = compose(tri, MI->getOperand(0).getSubReg(),
+                     MI->getOperand(3).getImm());
+    Src = MI->getOperand(2).getReg();
+    SrcSub = MI->getOperand(2).getSubReg();
+  } else
+    return false;
+  return true;
+}
+
+bool CoalescerPair::setRegisters(const MachineInstr *MI) {
+  SrcReg = DstReg = 0;
+  SrcIdx = DstIdx = 0;
+  NewRC = 0;
+  Flipped = CrossClass = false;
+
+  unsigned Src, Dst, SrcSub, DstSub;
+  if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
+    return false;
+  Partial = SrcSub || DstSub;
+
+  // If one register is a physreg, it must be Dst.
+  if (TargetRegisterInfo::isPhysicalRegister(Src)) {
+    if (TargetRegisterInfo::isPhysicalRegister(Dst))
+      return false;
+    std::swap(Src, Dst);
+    std::swap(SrcSub, DstSub);
+    Flipped = true;
+  }
+
+  const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
+
+  if (TargetRegisterInfo::isPhysicalRegister(Dst)) {
+    // Eliminate DstSub on a physreg.
+    if (DstSub) {
+      Dst = TRI.getSubReg(Dst, DstSub);
+      if (!Dst) return false;
+      DstSub = 0;
+    }
+
+    // Eliminate SrcSub by picking a corresponding Dst superregister.
+    if (SrcSub) {
+      Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
+      if (!Dst) return false;
+      SrcSub = 0;
+    } else if (!MRI.getRegClass(Src)->contains(Dst)) {
+      return false;
+    }
+  } else {
+    // Both registers are virtual.
+    const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
+    const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
+
+    // Both registers have subreg indices.
+    if (SrcSub && DstSub) {
+      // Copies between different sub-registers are never coalescable.
+      if (Src == Dst && SrcSub != DstSub)
+        return false;
+
+      NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
+                                         SrcIdx, DstIdx);
+      if (!NewRC)
+        return false;
+    } else if (DstSub) {
+      // SrcReg will be merged with a sub-register of DstReg.
+      SrcIdx = DstSub;
+      NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
+    } else if (SrcSub) {
+      // DstReg will be merged with a sub-register of SrcReg.
+      DstIdx = SrcSub;
+      NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
+    } else {
+      // This is a straight copy without sub-registers.
+      NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
+    }
+
+    // The combined constraint may be impossible to satisfy.
+    if (!NewRC)
+      return false;
+
+    // Prefer SrcReg to be a sub-register of DstReg.
+    // FIXME: Coalescer should support subregs symmetrically.
+    if (DstIdx && !SrcIdx) {
+      std::swap(Src, Dst);
+      std::swap(SrcIdx, DstIdx);
+      Flipped = !Flipped;
+    }
+
+    CrossClass = NewRC != DstRC || NewRC != SrcRC;
+  }
+  // Check our invariants
+  assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual");
+  assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) &&
+         "Cannot have a physical SubIdx");
+  SrcReg = Src;
+  DstReg = Dst;
+  return true;
+}
+
+bool CoalescerPair::flip() {
+  if (TargetRegisterInfo::isPhysicalRegister(DstReg))
+    return false;
+  std::swap(SrcReg, DstReg);
+  std::swap(SrcIdx, DstIdx);
+  Flipped = !Flipped;
+  return true;
+}
+
+bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
+  if (!MI)
+    return false;
+  unsigned Src, Dst, SrcSub, DstSub;
+  if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
+    return false;
+
+  // Find the virtual register that is SrcReg.
+  if (Dst == SrcReg) {
+    std::swap(Src, Dst);
+    std::swap(SrcSub, DstSub);
+  } else if (Src != SrcReg) {
+    return false;
+  }
+
+  // Now check that Dst matches DstReg.
+  if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
+    if (!TargetRegisterInfo::isPhysicalRegister(Dst))
+      return false;
+    assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
+    // DstSub could be set for a physreg from INSERT_SUBREG.
+    if (DstSub)
+      Dst = TRI.getSubReg(Dst, DstSub);
+    // Full copy of Src.
+    if (!SrcSub)
+      return DstReg == Dst;
+    // This is a partial register copy. Check that the parts match.
+    return TRI.getSubReg(DstReg, SrcSub) == Dst;
+  } else {
+    // DstReg is virtual.
+    if (DstReg != Dst)
+      return false;
+    // Registers match, do the subregisters line up?
+    return compose(TRI, SrcIdx, SrcSub) == compose(TRI, DstIdx, DstSub);
+  }
+}
+
+void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
+  AU.setPreservesCFG();
+  AU.addRequired<AliasAnalysis>();
+  AU.addRequired<LiveIntervals>();
+  AU.addPreserved<LiveIntervals>();
+  AU.addRequired<LiveDebugVariables>();
+  AU.addPreserved<LiveDebugVariables>();
+  AU.addPreserved<SlotIndexes>();
+  AU.addRequired<MachineLoopInfo>();
+  AU.addPreserved<MachineLoopInfo>();
+  AU.addPreservedID(MachineDominatorsID);
+  MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+void RegisterCoalescer::eliminateDeadDefs() {
+  SmallVector<LiveInterval*, 8> NewRegs;
+  LiveRangeEdit(0, NewRegs, *MF, *LIS, 0, this).eliminateDeadDefs(DeadDefs);
+}
+
+// Callback from eliminateDeadDefs().
+void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
+  // MI may be in WorkList. Make sure we don't visit it.
+  ErasedInstrs.insert(MI);
+}
+
+/// adjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
+/// being the source and IntB being the dest, thus this defines a value number
+/// in IntB.  If the source value number (in IntA) is defined by a copy from B,
+/// see if we can merge these two pieces of B into a single value number,
+/// eliminating a copy.  For example:
+///
+///  A3 = B0
+///    ...
+///  B1 = A3      <- this copy
+///
+/// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
+/// value number to be replaced with B0 (which simplifies the B liveinterval).
+///
+/// This returns true if an interval was modified.
+///
+bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
+                                             MachineInstr *CopyMI) {
+  assert(!CP.isPartial() && "This doesn't work for partial copies.");
+  assert(!CP.isPhys() && "This doesn't work for physreg copies.");
+
+  LiveInterval &IntA =
+    LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
+  LiveInterval &IntB =
+    LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
+  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
+
+  // BValNo is a value number in B that is defined by a copy from A.  'B3' in
+  // the example above.
+  LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
+  if (BLR == IntB.end()) return false;
+  VNInfo *BValNo = BLR->valno;
+
+  // Get the location that B is defined at.  Two options: either this value has
+  // an unknown definition point or it is defined at CopyIdx.  If unknown, we
+  // can't process it.
+  if (BValNo->def != CopyIdx) return false;
+
+  // AValNo is the value number in A that defines the copy, A3 in the example.
+  SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
+  LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyUseIdx);
+  // The live range might not exist after fun with physreg coalescing.
+  if (ALR == IntA.end()) return false;
+  VNInfo *AValNo = ALR->valno;
+
+  // If AValNo is defined as a copy from IntB, we can potentially process this.
+  // Get the instruction that defines this value number.
+  MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
+  if (!CP.isCoalescable(ACopyMI))
+    return false;
+
+  // Get the LiveRange in IntB that this value number starts with.
+  LiveInterval::iterator ValLR =
+    IntB.FindLiveRangeContaining(AValNo->def.getPrevSlot());
+  if (ValLR == IntB.end())
+    return false;
+
+  // Make sure that the end of the live range is inside the same block as
+  // CopyMI.
+  MachineInstr *ValLREndInst =
+    LIS->getInstructionFromIndex(ValLR->end.getPrevSlot());
+  if (!ValLREndInst || ValLREndInst->getParent() != CopyMI->getParent())
+    return false;
+
+  // Okay, we now know that ValLR ends in the same block that the CopyMI
+  // live-range starts.  If there are no intervening live ranges between them in
+  // IntB, we can merge them.
+  if (ValLR+1 != BLR) return false;
+
+  DEBUG(dbgs() << "Extending: " << PrintReg(IntB.reg, TRI));
+
+  SlotIndex FillerStart = ValLR->end, FillerEnd = BLR->start;
+  // We are about to delete CopyMI, so need to remove it as the 'instruction
+  // that defines this value #'. Update the valnum with the new defining
+  // instruction #.
+  BValNo->def = FillerStart;
+
+  // Okay, we can merge them.  We need to insert a new liverange:
+  // [ValLR.end, BLR.begin) of either value number, then we merge the
+  // two value numbers.
+  IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
+
+  // Okay, merge "B1" into the same value number as "B0".
+  if (BValNo != ValLR->valno)
+    IntB.MergeValueNumberInto(BValNo, ValLR->valno);
+  DEBUG(dbgs() << "   result = " << IntB << '\n');
+
+  // If the source instruction was killing the source register before the
+  // merge, unset the isKill marker given the live range has been extended.
+  int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
+  if (UIdx != -1) {
+    ValLREndInst->getOperand(UIdx).setIsKill(false);
+  }
+
+  // Rewrite the copy. If the copy instruction was killing the destination
+  // register before the merge, find the last use and trim the live range. That
+  // will also add the isKill marker.
+  CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI);
+  if (ALR->end == CopyIdx)
+    LIS->shrinkToUses(&IntA);
+
+  ++numExtends;
+  return true;
+}
+
+/// hasOtherReachingDefs - Return true if there are definitions of IntB
+/// other than BValNo val# that can reach uses of AValno val# of IntA.
+bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
+                                             LiveInterval &IntB,
+                                             VNInfo *AValNo,
+                                             VNInfo *BValNo) {
+  // If AValNo has PHI kills, conservatively assume that IntB defs can reach
+  // the PHI values.
+  if (LIS->hasPHIKill(IntA, AValNo))
+    return true;
+
+  for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
+       AI != AE; ++AI) {
+    if (AI->valno != AValNo) continue;
+    LiveInterval::Ranges::iterator BI =
+      std::upper_bound(IntB.ranges.begin(), IntB.ranges.end(), AI->start);
+    if (BI != IntB.ranges.begin())
+      --BI;
+    for (; BI != IntB.ranges.end() && AI->end >= BI->start; ++BI) {
+      if (BI->valno == BValNo)
+        continue;
+      if (BI->start <= AI->start && BI->end > AI->start)
+        return true;
+      if (BI->start > AI->start && BI->start < AI->end)
+        return true;
+    }
+  }
+  return false;
+}
+
+/// removeCopyByCommutingDef - We found a non-trivially-coalescable copy with
+/// IntA being the source and IntB being the dest, thus this defines a value
+/// number in IntB.  If the source value number (in IntA) is defined by a
+/// commutable instruction and its other operand is coalesced to the copy dest
+/// register, see if we can transform the copy into a noop by commuting the
+/// definition. For example,
+///
+///  A3 = op A2 B0<kill>
+///    ...
+///  B1 = A3      <- this copy
+///    ...
+///     = op A3   <- more uses
+///
+/// ==>
+///
+///  B2 = op B0 A2<kill>
+///    ...
+///  B1 = B2      <- now an identify copy
+///    ...
+///     = op B2   <- more uses
+///
+/// This returns true if an interval was modified.
+///
+bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
+                                                 MachineInstr *CopyMI) {
+  assert (!CP.isPhys());
+
+  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
+
+  LiveInterval &IntA =
+    LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
+  LiveInterval &IntB =
+    LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
+
+  // BValNo is a value number in B that is defined by a copy from A. 'B3' in
+  // the example above.
+  VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
+  if (!BValNo || BValNo->def != CopyIdx)
+    return false;
+
+  assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
+
+  // AValNo is the value number in A that defines the copy, A3 in the example.
+  VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
+  assert(AValNo && "COPY source not live");
+  if (AValNo->isPHIDef() || AValNo->isUnused())
+    return false;
+  MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
+  if (!DefMI)
+    return false;
+  if (!DefMI->isCommutable())
+    return false;
+  // If DefMI is a two-address instruction then commuting it will change the
+  // destination register.
+  int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
+  assert(DefIdx != -1);
+  unsigned UseOpIdx;
+  if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
+    return false;
+  unsigned Op1, Op2, NewDstIdx;
+  if (!TII->findCommutedOpIndices(DefMI, Op1, Op2))
+    return false;
+  if (Op1 == UseOpIdx)
+    NewDstIdx = Op2;
+  else if (Op2 == UseOpIdx)
+    NewDstIdx = Op1;
+  else
+    return false;
+
+  MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
+  unsigned NewReg = NewDstMO.getReg();
+  if (NewReg != IntB.reg || !LiveRangeQuery(IntB, AValNo->def).isKill())
+    return false;
+
+  // Make sure there are no other definitions of IntB that would reach the
+  // uses which the new definition can reach.
+  if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
+    return false;
+
+  // If some of the uses of IntA.reg is already coalesced away, return false.
+  // It's not possible to determine whether it's safe to perform the coalescing.
+  for (MachineRegisterInfo::use_nodbg_iterator UI =
+         MRI->use_nodbg_begin(IntA.reg),
+       UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
+    MachineInstr *UseMI = &*UI;
+    SlotIndex UseIdx = LIS->getInstructionIndex(UseMI);
+    LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
+    if (ULR == IntA.end() || ULR->valno != AValNo)
+      continue;
+    // If this use is tied to a def, we can't rewrite the register.
+    if (UseMI->isRegTiedToDefOperand(UI.getOperandNo()))
+      return false;
+  }
+
+  DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
+               << *DefMI);
+
+  // At this point we have decided that it is legal to do this
+  // transformation.  Start by commuting the instruction.
+  MachineBasicBlock *MBB = DefMI->getParent();
+  MachineInstr *NewMI = TII->commuteInstruction(DefMI);
+  if (!NewMI)
+    return false;
+  if (TargetRegisterInfo::isVirtualRegister(IntA.reg) &&
+      TargetRegisterInfo::isVirtualRegister(IntB.reg) &&
+      !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg)))
+    return false;
+  if (NewMI != DefMI) {
+    LIS->ReplaceMachineInstrInMaps(DefMI, NewMI);
+    MachineBasicBlock::iterator Pos = DefMI;
+    MBB->insert(Pos, NewMI);
+    MBB->erase(DefMI);
+  }
+  unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false);
+  NewMI->getOperand(OpIdx).setIsKill();
+
+  // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
+  // A = or A, B
+  // ...
+  // B = A
+  // ...
+  // C = A<kill>
+  // ...
+  //   = B
+
+  // Update uses of IntA of the specific Val# with IntB.
+  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg),
+         UE = MRI->use_end(); UI != UE;) {
+    MachineOperand &UseMO = UI.getOperand();
+    MachineInstr *UseMI = &*UI;
+    ++UI;
+    if (UseMI->isDebugValue()) {
+      // FIXME These don't have an instruction index.  Not clear we have enough
+      // info to decide whether to do this replacement or not.  For now do it.
+      UseMO.setReg(NewReg);
+      continue;
+    }
+    SlotIndex UseIdx = LIS->getInstructionIndex(UseMI).getRegSlot(true);
+    LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
+    if (ULR == IntA.end() || ULR->valno != AValNo)
+      continue;
+    // Kill flags are no longer accurate. They are recomputed after RA.
+    UseMO.setIsKill(false);
+    if (TargetRegisterInfo::isPhysicalRegister(NewReg))
+      UseMO.substPhysReg(NewReg, *TRI);
+    else
+      UseMO.setReg(NewReg);
+    if (UseMI == CopyMI)
+      continue;
+    if (!UseMI->isCopy())
+      continue;
+    if (UseMI->getOperand(0).getReg() != IntB.reg ||
+        UseMI->getOperand(0).getSubReg())
+      continue;
+
+    // This copy will become a noop. If it's defining a new val#, merge it into
+    // BValNo.
+    SlotIndex DefIdx = UseIdx.getRegSlot();
+    VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
+    if (!DVNI)
+      continue;
+    DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
+    assert(DVNI->def == DefIdx);
+    BValNo = IntB.MergeValueNumberInto(BValNo, DVNI);
+    ErasedInstrs.insert(UseMI);
+    LIS->RemoveMachineInstrFromMaps(UseMI);
+    UseMI->eraseFromParent();
+  }
+
+  // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
+  // is updated.
+  VNInfo *ValNo = BValNo;
+  ValNo->def = AValNo->def;
+  for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
+       AI != AE; ++AI) {
+    if (AI->valno != AValNo) continue;
+    IntB.addRange(LiveRange(AI->start, AI->end, ValNo));
+  }
+  DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
+
+  IntA.removeValNo(AValNo);
+  DEBUG(dbgs() << "\t\ttrimmed:  " << IntA << '\n');
+  ++numCommutes;
+  return true;
+}
+
+/// reMaterializeTrivialDef - If the source of a copy is defined by a trivial
+/// computation, replace the copy by rematerialize the definition.
+bool RegisterCoalescer::reMaterializeTrivialDef(LiveInterval &SrcInt,
+                                                unsigned DstReg,
+                                                MachineInstr *CopyMI) {
+  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true);
+  LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(CopyIdx);
+  assert(SrcLR != SrcInt.end() && "Live range not found!");
+  VNInfo *ValNo = SrcLR->valno;
+  if (ValNo->isPHIDef() || ValNo->isUnused())
+    return false;
+  MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
+  if (!DefMI)
+    return false;
+  assert(DefMI && "Defining instruction disappeared");
+  if (!DefMI->isAsCheapAsAMove())
+    return false;
+  if (!TII->isTriviallyReMaterializable(DefMI, AA))
+    return false;
+  bool SawStore = false;
+  if (!DefMI->isSafeToMove(TII, AA, SawStore))
+    return false;
+  const MCInstrDesc &MCID = DefMI->getDesc();
+  if (MCID.getNumDefs() != 1)
+    return false;
+  if (!DefMI->isImplicitDef()) {
+    // Make sure the copy destination register class fits the instruction
+    // definition register class. The mismatch can happen as a result of earlier
+    // extract_subreg, insert_subreg, subreg_to_reg coalescing.
+    const TargetRegisterClass *RC = TII->getRegClass(MCID, 0, TRI, *MF);
+    if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
+      if (MRI->getRegClass(DstReg) != RC)
+        return false;
+    } else if (!RC->contains(DstReg))
+      return false;
+  }
+
+  MachineBasicBlock *MBB = CopyMI->getParent();
+  MachineBasicBlock::iterator MII =
+    llvm::next(MachineBasicBlock::iterator(CopyMI));
+  TII->reMaterialize(*MBB, MII, DstReg, 0, DefMI, *TRI);
+  MachineInstr *NewMI = prior(MII);
+
+  // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
+  // We need to remember these so we can add intervals once we insert
+  // NewMI into SlotIndexes.
+  SmallVector<unsigned, 4> NewMIImplDefs;
+  for (unsigned i = NewMI->getDesc().getNumOperands(),
+         e = NewMI->getNumOperands(); i != e; ++i) {
+    MachineOperand &MO = NewMI->getOperand(i);
+    if (MO.isReg()) {
+      assert(MO.isDef() && MO.isImplicit() && MO.isDead() &&
+             TargetRegisterInfo::isPhysicalRegister(MO.getReg()));
+      NewMIImplDefs.push_back(MO.getReg());
+    }
+  }
+
+  // CopyMI may have implicit operands, transfer them over to the newly
+  // rematerialized instruction. And update implicit def interval valnos.
+  for (unsigned i = CopyMI->getDesc().getNumOperands(),
+         e = CopyMI->getNumOperands(); i != e; ++i) {
+    MachineOperand &MO = CopyMI->getOperand(i);
+    if (MO.isReg()) {
+      assert(MO.isImplicit() && "No explicit operands after implict operands.");
+      // Discard VReg implicit defs.
+      if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
+        NewMI->addOperand(MO);
+      }
+    }
+  }
+
+  LIS->ReplaceMachineInstrInMaps(CopyMI, NewMI);
+
+  SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
+  for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
+    unsigned Reg = NewMIImplDefs[i];
+    for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
+      if (LiveInterval *LI = LIS->getCachedRegUnit(*Units))
+        LI->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
+  }
+
+  CopyMI->eraseFromParent();
+  ErasedInstrs.insert(CopyMI);
+  DEBUG(dbgs() << "Remat: " << *NewMI);
+  ++NumReMats;
+
+  // The source interval can become smaller because we removed a use.
+  LIS->shrinkToUses(&SrcInt, &DeadDefs);
+  if (!DeadDefs.empty())
+    eliminateDeadDefs();
+
+  return true;
+}
+
+/// eliminateUndefCopy - ProcessImpicitDefs may leave some copies of <undef>
+/// values, it only removes local variables. When we have a copy like:
+///
+///   %vreg1 = COPY %vreg2<undef>
+///
+/// We delete the copy and remove the corresponding value number from %vreg1.
+/// Any uses of that value number are marked as <undef>.
+bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI,
+                                           const CoalescerPair &CP) {
+  SlotIndex Idx = LIS->getInstructionIndex(CopyMI);
+  LiveInterval *SrcInt = &LIS->getInterval(CP.getSrcReg());
+  if (SrcInt->liveAt(Idx))
+    return false;
+  LiveInterval *DstInt = &LIS->getInterval(CP.getDstReg());
+  if (DstInt->liveAt(Idx))
+    return false;
+
+  // No intervals are live-in to CopyMI - it is undef.
+  if (CP.isFlipped())
+    DstInt = SrcInt;
+  SrcInt = 0;
+
+  VNInfo *DeadVNI = DstInt->getVNInfoAt(Idx.getRegSlot());
+  assert(DeadVNI && "No value defined in DstInt");
+  DstInt->removeValNo(DeadVNI);
+
+  // Find new undef uses.
+  for (MachineRegisterInfo::reg_nodbg_iterator
+         I = MRI->reg_nodbg_begin(DstInt->reg), E = MRI->reg_nodbg_end();
+       I != E; ++I) {
+    MachineOperand &MO = I.getOperand();
+    if (MO.isDef() || MO.isUndef())
+      continue;
+    MachineInstr *MI = MO.getParent();
+    SlotIndex Idx = LIS->getInstructionIndex(MI);
+    if (DstInt->liveAt(Idx))
+      continue;
+    MO.setIsUndef(true);
+    DEBUG(dbgs() << "\tnew undef: " << Idx << '\t' << *MI);
+  }
+  return true;
+}
+
+/// updateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
+/// update the subregister number if it is not zero. If DstReg is a
+/// physical register and the existing subregister number of the def / use
+/// being updated is not zero, make sure to set it to the correct physical
+/// subregister.
+void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg,
+                                          unsigned DstReg,
+                                          unsigned SubIdx) {
+  bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
+  LiveInterval *DstInt = DstIsPhys ? 0 : &LIS->getInterval(DstReg);
+
+  // Update LiveDebugVariables.
+  LDV->renameRegister(SrcReg, DstReg, SubIdx);
+
+  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(SrcReg);
+       MachineInstr *UseMI = I.skipInstruction();) {
+    SmallVector<unsigned,8> Ops;
+    bool Reads, Writes;
+    tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
+
+    // If SrcReg wasn't read, it may still be the case that DstReg is live-in
+    // because SrcReg is a sub-register.
+    if (DstInt && !Reads && SubIdx)
+      Reads = DstInt->liveAt(LIS->getInstructionIndex(UseMI));
+
+    // Replace SrcReg with DstReg in all UseMI operands.
+    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
+      MachineOperand &MO = UseMI->getOperand(Ops[i]);
+
+      // Adjust <undef> flags in case of sub-register joins. We don't want to
+      // turn a full def into a read-modify-write sub-register def and vice
+      // versa.
+      if (SubIdx && MO.isDef())
+        MO.setIsUndef(!Reads);
+
+      if (DstIsPhys)
+        MO.substPhysReg(DstReg, *TRI);
+      else
+        MO.substVirtReg(DstReg, SubIdx, *TRI);
+    }
+
+    DEBUG({
+        dbgs() << "\t\tupdated: ";
+        if (!UseMI->isDebugValue())
+          dbgs() << LIS->getInstructionIndex(UseMI) << "\t";
+        dbgs() << *UseMI;
+      });
+  }
+}
+
+/// canJoinPhys - Return true if a copy involving a physreg should be joined.
+bool RegisterCoalescer::canJoinPhys(CoalescerPair &CP) {
+  /// Always join simple intervals that are defined by a single copy from a
+  /// reserved register. This doesn't increase register pressure, so it is
+  /// always beneficial.
+  if (!RegClassInfo.isReserved(CP.getDstReg())) {
+    DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
+    return false;
+  }
+
+  LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
+  if (CP.isFlipped() && JoinVInt.containsOneValue())
+    return true;
+
+  DEBUG(dbgs() << "\tCannot join defs into reserved register.\n");
+  return false;
+}
+
+/// joinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
+/// which are the src/dst of the copy instruction CopyMI.  This returns true
+/// if the copy was successfully coalesced away. If it is not currently
+/// possible to coalesce this interval, but it may be possible if other
+/// things get coalesced, then it returns true by reference in 'Again'.
+bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
+
+  Again = false;
+  DEBUG(dbgs() << LIS->getInstructionIndex(CopyMI) << '\t' << *CopyMI);
+
+  CoalescerPair CP(*TRI);
+  if (!CP.setRegisters(CopyMI)) {
+    DEBUG(dbgs() << "\tNot coalescable.\n");
+    return false;
+  }
+
+  // Dead code elimination. This really should be handled by MachineDCE, but
+  // sometimes dead copies slip through, and we can't generate invalid live
+  // ranges.
+  if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
+    DEBUG(dbgs() << "\tCopy is dead.\n");
+    DeadDefs.push_back(CopyMI);
+    eliminateDeadDefs();
+    return true;
+  }
+
+  // Eliminate undefs.
+  if (!CP.isPhys() && eliminateUndefCopy(CopyMI, CP)) {
+    DEBUG(dbgs() << "\tEliminated copy of <undef> value.\n");
+    LIS->RemoveMachineInstrFromMaps(CopyMI);
+    CopyMI->eraseFromParent();
+    return false;  // Not coalescable.
+  }
+
+  // Coalesced copies are normally removed immediately, but transformations
+  // like removeCopyByCommutingDef() can inadvertently create identity copies.
+  // When that happens, just join the values and remove the copy.
+  if (CP.getSrcReg() == CP.getDstReg()) {
+    LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
+    DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
+    LiveRangeQuery LRQ(LI, LIS->getInstructionIndex(CopyMI));
+    if (VNInfo *DefVNI = LRQ.valueDefined()) {
+      VNInfo *ReadVNI = LRQ.valueIn();
+      assert(ReadVNI && "No value before copy and no <undef> flag.");
+      assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
+      LI.MergeValueNumberInto(DefVNI, ReadVNI);
+      DEBUG(dbgs() << "\tMerged values:          " << LI << '\n');
+    }
+    LIS->RemoveMachineInstrFromMaps(CopyMI);
+    CopyMI->eraseFromParent();
+    return true;
+  }
+
+  // Enforce policies.
+  if (CP.isPhys()) {
+    DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), TRI)
+                 << " with " << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx())
+                 << '\n');
+    if (!canJoinPhys(CP)) {
+      // Before giving up coalescing, if definition of source is defined by
+      // trivial computation, try rematerializing it.
+      if (!CP.isFlipped() &&
+          reMaterializeTrivialDef(LIS->getInterval(CP.getSrcReg()),
+                                  CP.getDstReg(), CopyMI))
+        return true;
+      return false;
+    }
+  } else {
+    DEBUG({
+      dbgs() << "\tConsidering merging to " << CP.getNewRC()->getName()
+             << " with ";
+      if (CP.getDstIdx() && CP.getSrcIdx())
+        dbgs() << PrintReg(CP.getDstReg()) << " in "
+               << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
+               << PrintReg(CP.getSrcReg()) << " in "
+               << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
+      else
+        dbgs() << PrintReg(CP.getSrcReg(), TRI) << " in "
+               << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
+    });
+
+    // When possible, let DstReg be the larger interval.
+    if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).ranges.size() >
+                           LIS->getInterval(CP.getDstReg()).ranges.size())
+      CP.flip();
+  }
+
+  // Okay, attempt to join these two intervals.  On failure, this returns false.
+  // Otherwise, if one of the intervals being joined is a physreg, this method
+  // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
+  // been modified, so we can use this information below to update aliases.
+  if (!joinIntervals(CP)) {
+    // Coalescing failed.
+
+    // If definition of source is defined by trivial computation, try
+    // rematerializing it.
+    if (!CP.isFlipped() &&
+        reMaterializeTrivialDef(LIS->getInterval(CP.getSrcReg()),
+                                CP.getDstReg(), CopyMI))
+      return true;
+
+    // If we can eliminate the copy without merging the live ranges, do so now.
+    if (!CP.isPartial() && !CP.isPhys()) {
+      if (adjustCopiesBackFrom(CP, CopyMI) ||
+          removeCopyByCommutingDef(CP, CopyMI)) {
+        LIS->RemoveMachineInstrFromMaps(CopyMI);
+        CopyMI->eraseFromParent();
+        DEBUG(dbgs() << "\tTrivial!\n");
+        return true;
+      }
+    }
+
+    // Otherwise, we are unable to join the intervals.
+    DEBUG(dbgs() << "\tInterference!\n");
+    Again = true;  // May be possible to coalesce later.
+    return false;
+  }
+
+  // Coalescing to a virtual register that is of a sub-register class of the
+  // other. Make sure the resulting register is set to the right register class.
+  if (CP.isCrossClass()) {
+    ++numCrossRCs;
+    MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
+  }
+
+  // Removing sub-register copies can ease the register class constraints.
+  // Make sure we attempt to inflate the register class of DstReg.
+  if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
+    InflateRegs.push_back(CP.getDstReg());
+
+  // CopyMI has been erased by joinIntervals at this point. Remove it from
+  // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
+  // to the work list. This keeps ErasedInstrs from growing needlessly.
+  ErasedInstrs.erase(CopyMI);
+
+  // Rewrite all SrcReg operands to DstReg.
+  // Also update DstReg operands to include DstIdx if it is set.
+  if (CP.getDstIdx())
+    updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
+  updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
+
+  // SrcReg is guaranteed to be the register whose live interval that is
+  // being merged.
+  LIS->removeInterval(CP.getSrcReg());
+
+  // Update regalloc hint.
+  TRI->UpdateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
+
+  DEBUG({
+    dbgs() << "\tJoined. Result = " << PrintReg(CP.getDstReg(), TRI);
+    if (!CP.isPhys())
+      dbgs() << LIS->getInterval(CP.getDstReg());
+     dbgs() << '\n';
+  });
+
+  ++numJoins;
+  return true;
+}
+
+/// Attempt joining with a reserved physreg.
+bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
+  assert(CP.isPhys() && "Must be a physreg copy");
+  assert(RegClassInfo.isReserved(CP.getDstReg()) && "Not a reserved register");
+  LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
+  DEBUG(dbgs() << "\t\tRHS = " << PrintReg(CP.getSrcReg()) << ' ' << RHS
+               << '\n');
+
+  assert(CP.isFlipped() && RHS.containsOneValue() &&
+         "Invalid join with reserved register");
+
+  // Optimization for reserved registers like ESP. We can only merge with a
+  // reserved physreg if RHS has a single value that is a copy of CP.DstReg().
+  // The live range of the reserved register will look like a set of dead defs
+  // - we don't properly track the live range of reserved registers.
+
+  // Deny any overlapping intervals.  This depends on all the reserved
+  // register live ranges to look like dead defs.
+  for (MCRegUnitIterator UI(CP.getDstReg(), TRI); UI.isValid(); ++UI)
+    if (RHS.overlaps(LIS->getRegUnit(*UI))) {
+      DEBUG(dbgs() << "\t\tInterference: " << PrintRegUnit(*UI, TRI) << '\n');
+      return false;
+    }
+
+  // Skip any value computations, we are not adding new values to the
+  // reserved register.  Also skip merging the live ranges, the reserved
+  // register live range doesn't need to be accurate as long as all the
+  // defs are there.
+
+  // Delete the identity copy.
+  MachineInstr *CopyMI = MRI->getVRegDef(RHS.reg);
+  LIS->RemoveMachineInstrFromMaps(CopyMI);
+  CopyMI->eraseFromParent();
+
+  // We don't track kills for reserved registers.
+  MRI->clearKillFlags(CP.getSrcReg());
+
+  return true;
+}
+
+//===----------------------------------------------------------------------===//
+//                 Interference checking and interval joining
+//===----------------------------------------------------------------------===//
+//
+// In the easiest case, the two live ranges being joined are disjoint, and
+// there is no interference to consider. It is quite common, though, to have
+// overlapping live ranges, and we need to check if the interference can be
+// resolved.
+//
+// The live range of a single SSA value forms a sub-tree of the dominator tree.
+// This means that two SSA values overlap if and only if the def of one value
+// is contained in the live range of the other value. As a special case, the
+// overlapping values can be defined at the same index.
+//
+// The interference from an overlapping def can be resolved in these cases:
+//
+// 1. Coalescable copies. The value is defined by a copy that would become an
+//    identity copy after joining SrcReg and DstReg. The copy instruction will
+//    be removed, and the value will be merged with the source value.
+//
+//    There can be several copies back and forth, causing many values to be
+//    merged into one. We compute a list of ultimate values in the joined live
+//    range as well as a mappings from the old value numbers.
+//
+// 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
+//    predecessors have a live out value. It doesn't cause real interference,
+//    and can be merged into the value it overlaps. Like a coalescable copy, it
+//    can be erased after joining.
+//
+// 3. Copy of external value. The overlapping def may be a copy of a value that
+//    is already in the other register. This is like a coalescable copy, but
+//    the live range of the source register must be trimmed after erasing the
+//    copy instruction:
 //
-RegisterCoalescer::~RegisterCoalescer() {}
+//      %src = COPY %ext
+//      %dst = COPY %ext  <-- Remove this COPY, trim the live range of %ext.
+//
+// 4. Clobbering undefined lanes. Vector registers are sometimes built by
+//    defining one lane at a time:
+//
+//      %dst:ssub0<def,read-undef> = FOO
+//      %src = BAR
+//      %dst:ssub1<def> = COPY %src
+//
+//    The live range of %src overlaps the %dst value defined by FOO, but
+//    merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
+//    which was undef anyway.
+//
+//    The value mapping is more complicated in this case. The final live range
+//    will have different value numbers for both FOO and BAR, but there is no
+//    simple mapping from old to new values. It may even be necessary to add
+//    new PHI values.
+//
+// 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
+//    is live, but never read. This can happen because we don't compute
+//    individual live ranges per lane.
+//
+//      %dst<def> = FOO
+//      %src = BAR
+//      %dst:ssub1<def> = COPY %src
+//
+//    This kind of interference is only resolved locally. If the clobbered
+//    lane value escapes the block, the join is aborted.
+
+namespace {
+/// Track information about values in a single virtual register about to be
+/// joined. Objects of this class are always created in pairs - one for each
+/// side of the CoalescerPair.
+class JoinVals {
+  LiveInterval &LI;
+
+  // Location of this register in the final joined register.
+  // Either CP.DstIdx or CP.SrcIdx.
+  unsigned SubIdx;
+
+  // Values that will be present in the final live range.
+  SmallVectorImpl<VNInfo*> &NewVNInfo;
+
+  const CoalescerPair &CP;
+  LiveIntervals *LIS;
+  SlotIndexes *Indexes;
+  const TargetRegisterInfo *TRI;
+
+  // Value number assignments. Maps value numbers in LI to entries in NewVNInfo.
+  // This is suitable for passing to LiveInterval::join().
+  SmallVector<int, 8> Assignments;
+
+  // Conflict resolution for overlapping values.
+  enum ConflictResolution {
+    // No overlap, simply keep this value.
+    CR_Keep,
+
+    // Merge this value into OtherVNI and erase the defining instruction.
+    // Used for IMPLICIT_DEF, coalescable copies, and copies from external
+    // values.
+    CR_Erase,
+
+    // Merge this value into OtherVNI but keep the defining instruction.
+    // This is for the special case where OtherVNI is defined by the same
+    // instruction.
+    CR_Merge,
+
+    // Keep this value, and have it replace OtherVNI where possible. This
+    // complicates value mapping since OtherVNI maps to two different values
+    // before and after this def.
+    // Used when clobbering undefined or dead lanes.
+    CR_Replace,
+
+    // Unresolved conflict. Visit later when all values have been mapped.
+    CR_Unresolved,
+
+    // Unresolvable conflict. Abort the join.
+    CR_Impossible
+  };
+
+  // Per-value info for LI. The lane bit masks are all relative to the final
+  // joined register, so they can be compared directly between SrcReg and
+  // DstReg.
+  struct Val {
+    ConflictResolution Resolution;
+
+    // Lanes written by this def, 0 for unanalyzed values.
+    unsigned WriteLanes;
+
+    // Lanes with defined values in this register. Other lanes are undef and
+    // safe to clobber.
+    unsigned ValidLanes;
+
+    // Value in LI being redefined by this def.
+    VNInfo *RedefVNI;
+
+    // Value in the other live range that overlaps this def, if any.
+    VNInfo *OtherVNI;
+
+    // Is this value an IMPLICIT_DEF?
+    bool IsImplicitDef;
+
+    // True when the live range of this value will be pruned because of an
+    // overlapping CR_Replace value in the other live range.
+    bool Pruned;
+
+    // True once Pruned above has been computed.
+    bool PrunedComputed;
+
+    Val() : Resolution(CR_Keep), WriteLanes(0), ValidLanes(0),
+            RedefVNI(0), OtherVNI(0), IsImplicitDef(false), Pruned(false),
+            PrunedComputed(false) {}
+
+    bool isAnalyzed() const { return WriteLanes != 0; }
+  };
+
+  // One entry per value number in LI.
+  SmallVector<Val, 8> Vals;
+
+  unsigned computeWriteLanes(const MachineInstr *DefMI, bool &Redef);
+  VNInfo *stripCopies(VNInfo *VNI);
+  ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
+  void computeAssignment(unsigned ValNo, JoinVals &Other);
+  bool taintExtent(unsigned, unsigned, JoinVals&,
+                   SmallVectorImpl<std::pair<SlotIndex, unsigned> >&);
+  bool usesLanes(MachineInstr *MI, unsigned, unsigned, unsigned);
+  bool isPrunedValue(unsigned ValNo, JoinVals &Other);
+
+public:
+  JoinVals(LiveInterval &li, unsigned subIdx,
+           SmallVectorImpl<VNInfo*> &newVNInfo,
+           const CoalescerPair &cp,
+           LiveIntervals *lis,
+           const TargetRegisterInfo *tri)
+    : LI(li), SubIdx(subIdx), NewVNInfo(newVNInfo), CP(cp), LIS(lis),
+      Indexes(LIS->getSlotIndexes()), TRI(tri),
+      Assignments(LI.getNumValNums(), -1), Vals(LI.getNumValNums())
+  {}
+
+  /// Analyze defs in LI and compute a value mapping in NewVNInfo.
+  /// Returns false if any conflicts were impossible to resolve.
+  bool mapValues(JoinVals &Other);
+
+  /// Try to resolve conflicts that require all values to be mapped.
+  /// Returns false if any conflicts were impossible to resolve.
+  bool resolveConflicts(JoinVals &Other);
+
+  /// Prune the live range of values in Other.LI where they would conflict with
+  /// CR_Replace values in LI. Collect end points for restoring the live range
+  /// after joining.
+  void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints);
+
+  /// Erase any machine instructions that have been coalesced away.
+  /// Add erased instructions to ErasedInstrs.
+  /// Add foreign virtual registers to ShrinkRegs if their live range ended at
+  /// the erased instrs.
+  void eraseInstrs(SmallPtrSet<MachineInstr*, 8> &ErasedInstrs,
+                   SmallVectorImpl<unsigned> &ShrinkRegs);
+
+  /// Get the value assignments suitable for passing to LiveInterval::join.
+  const int *getAssignments() const { return &Assignments[0]; }
+};
+} // end anonymous namespace
+
+/// Compute the bitmask of lanes actually written by DefMI.
+/// Set Redef if there are any partial register definitions that depend on the
+/// previous value of the register.
+unsigned JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef) {
+  unsigned L = 0;
+  for (ConstMIOperands MO(DefMI); MO.isValid(); ++MO) {
+    if (!MO->isReg() || MO->getReg() != LI.reg || !MO->isDef())
+      continue;
+    L |= TRI->getSubRegIndexLaneMask(compose(*TRI, SubIdx, MO->getSubReg()));
+    if (MO->readsReg())
+      Redef = true;
+  }
+  return L;
+}
+
+/// Find the ultimate value that VNI was copied from.
+VNInfo *JoinVals::stripCopies(VNInfo *VNI) {
+  while (!VNI->isPHIDef()) {
+    MachineInstr *MI = Indexes->getInstructionFromIndex(VNI->def);
+    assert(MI && "No defining instruction");
+    if (!MI->isFullCopy())
+      break;
+    unsigned Reg = MI->getOperand(1).getReg();
+    if (!TargetRegisterInfo::isVirtualRegister(Reg))
+      break;
+    LiveRangeQuery LRQ(LIS->getInterval(Reg), VNI->def);
+    if (!LRQ.valueIn())
+      break;
+    VNI = LRQ.valueIn();
+  }
+  return VNI;
+}
+
+/// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
+/// Return a conflict resolution when possible, but leave the hard cases as
+/// CR_Unresolved.
+/// Recursively calls computeAssignment() on this and Other, guaranteeing that
+/// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
+/// The recursion always goes upwards in the dominator tree, making loops
+/// impossible.
+JoinVals::ConflictResolution
+JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
+  Val &V = Vals[ValNo];
+  assert(!V.isAnalyzed() && "Value has already been analyzed!");
+  VNInfo *VNI = LI.getValNumInfo(ValNo);
+  if (VNI->isUnused()) {
+    V.WriteLanes = ~0u;
+    return CR_Keep;
+  }
+
+  // Get the instruction defining this value, compute the lanes written.
+  const MachineInstr *DefMI = 0;
+  if (VNI->isPHIDef()) {
+    // Conservatively assume that all lanes in a PHI are valid.
+    V.ValidLanes = V.WriteLanes = TRI->getSubRegIndexLaneMask(SubIdx);
+  } else {
+    DefMI = Indexes->getInstructionFromIndex(VNI->def);
+    bool Redef = false;
+    V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
+
+    // If this is a read-modify-write instruction, there may be more valid
+    // lanes than the ones written by this instruction.
+    // This only covers partial redef operands. DefMI may have normal use
+    // operands reading the register. They don't contribute valid lanes.
+    //
+    // This adds ssub1 to the set of valid lanes in %src:
+    //
+    //   %src:ssub1<def> = FOO
+    //
+    // This leaves only ssub1 valid, making any other lanes undef:
+    //
+    //   %src:ssub1<def,read-undef> = FOO %src:ssub2
+    //
+    // The <read-undef> flag on the def operand means that old lane values are
+    // not important.
+    if (Redef) {
+      V.RedefVNI = LiveRangeQuery(LI, VNI->def).valueIn();
+      assert(V.RedefVNI && "Instruction is reading nonexistent value");
+      computeAssignment(V.RedefVNI->id, Other);
+      V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
+    }
+
+    // An IMPLICIT_DEF writes undef values.
+    if (DefMI->isImplicitDef()) {
+      V.IsImplicitDef = true;
+      V.ValidLanes &= ~V.WriteLanes;
+    }
+  }
+
+  // Find the value in Other that overlaps VNI->def, if any.
+  LiveRangeQuery OtherLRQ(Other.LI, VNI->def);
+
+  // It is possible that both values are defined by the same instruction, or
+  // the values are PHIs defined in the same block. When that happens, the two
+  // values should be merged into one, but not into any preceding value.
+  // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
+  if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
+    assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ");
+
+    // One value stays, the other is merged. Keep the earlier one, or the first
+    // one we see.
+    if (OtherVNI->def < VNI->def)
+      Other.computeAssignment(OtherVNI->id, *this);
+    else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
+      // This is an early-clobber def overlapping a live-in value in the other
+      // register. Not mergeable.
+      V.OtherVNI = OtherLRQ.valueIn();
+      return CR_Impossible;
+    }
+    V.OtherVNI = OtherVNI;
+    Val &OtherV = Other.Vals[OtherVNI->id];
+    // Keep this value, check for conflicts when analyzing OtherVNI.
+    if (!OtherV.isAnalyzed())
+      return CR_Keep;
+    // Both sides have been analyzed now.
+    // Allow overlapping PHI values. Any real interference would show up in a
+    // predecessor, the PHI itself can't introduce any conflicts.
+    if (VNI->isPHIDef())
+      return CR_Merge;
+    if (V.ValidLanes & OtherV.ValidLanes)
+      // Overlapping lanes can't be resolved.
+      return CR_Impossible;
+    else
+      return CR_Merge;
+  }
+
+  // No simultaneous def. Is Other live at the def?
+  V.OtherVNI = OtherLRQ.valueIn();
+  if (!V.OtherVNI)
+    // No overlap, no conflict.
+    return CR_Keep;
+
+  assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ");
+
+  // We have overlapping values, or possibly a kill of Other.
+  // Recursively compute assignments up the dominator tree.
+  Other.computeAssignment(V.OtherVNI->id, *this);
+  const Val &OtherV = Other.Vals[V.OtherVNI->id];
+
+  // Allow overlapping PHI values. Any real interference would show up in a
+  // predecessor, the PHI itself can't introduce any conflicts.
+  if (VNI->isPHIDef())
+    return CR_Replace;
+
+  // Check for simple erasable conflicts.
+  if (DefMI->isImplicitDef())
+    return CR_Erase;
+
+  // Include the non-conflict where DefMI is a coalescable copy that kills
+  // OtherVNI. We still want the copy erased and value numbers merged.
+  if (CP.isCoalescable(DefMI)) {
+    // Some of the lanes copied from OtherVNI may be undef, making them undef
+    // here too.
+    V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
+    return CR_Erase;
+  }
+
+  // This may not be a real conflict if DefMI simply kills Other and defines
+  // VNI.
+  if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
+    return CR_Keep;
+
+  // Handle the case where VNI and OtherVNI can be proven to be identical:
+  //
+  //   %other = COPY %ext
+  //   %this  = COPY %ext <-- Erase this copy
+  //
+  if (DefMI->isFullCopy() && !CP.isPartial() &&
+      stripCopies(VNI) == stripCopies(V.OtherVNI))
+    return CR_Erase;
+
+  // If the lanes written by this instruction were all undef in OtherVNI, it is
+  // still safe to join the live ranges. This can't be done with a simple value
+  // mapping, though - OtherVNI will map to multiple values:
+  //
+  //   1 %dst:ssub0 = FOO                <-- OtherVNI
+  //   2 %src = BAR                      <-- VNI
+  //   3 %dst:ssub1 = COPY %src<kill>    <-- Eliminate this copy.
+  //   4 BAZ %dst<kill>
+  //   5 QUUX %src<kill>
+  //
+  // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
+  // handles this complex value mapping.
+  if ((V.WriteLanes & OtherV.ValidLanes) == 0)
+    return CR_Replace;
 
-// Because of the way .a files work, we must force the SimpleRC
-// implementation to be pulled in if the RegisterCoalescer classes are
-// pulled in.  Otherwise we run the risk of RegisterCoalescer being
-// used, but the default implementation not being linked into the tool
-// that uses it.
-DEFINING_FILE_FOR(RegisterCoalescer)
+  // VNI is clobbering live lanes in OtherVNI, but there is still the
+  // possibility that no instructions actually read the clobbered lanes.
+  // If we're clobbering all the lanes in OtherVNI, at least one must be read.
+  // Otherwise Other.LI wouldn't be live here.
+  if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes) == 0)
+    return CR_Impossible;
+
+  // We need to verify that no instructions are reading the clobbered lanes. To
+  // save compile time, we'll only check that locally. Don't allow the tainted
+  // value to escape the basic block.
+  MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
+  if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB))
+    return CR_Impossible;
+
+  // There are still some things that could go wrong besides clobbered lanes
+  // being read, for example OtherVNI may be only partially redefined in MBB,
+  // and some clobbered lanes could escape the block. Save this analysis for
+  // resolveConflicts() when all values have been mapped. We need to know
+  // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
+  // that now - the recursive analyzeValue() calls must go upwards in the
+  // dominator tree.
+  return CR_Unresolved;
+}
+
+/// Compute the value assignment for ValNo in LI.
+/// This may be called recursively by analyzeValue(), but never for a ValNo on
+/// the stack.
+void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
+  Val &V = Vals[ValNo];
+  if (V.isAnalyzed()) {
+    // Recursion should always move up the dominator tree, so ValNo is not
+    // supposed to reappear before it has been assigned.
+    assert(Assignments[ValNo] != -1 && "Bad recursion?");
+    return;
+  }
+  switch ((V.Resolution = analyzeValue(ValNo, Other))) {
+  case CR_Erase:
+  case CR_Merge:
+    // Merge this ValNo into OtherVNI.
+    assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
+    assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
+    Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
+    DEBUG(dbgs() << "\t\tmerge " << PrintReg(LI.reg) << ':' << ValNo << '@'
+                 << LI.getValNumInfo(ValNo)->def << " into "
+                 << PrintReg(Other.LI.reg) << ':' << V.OtherVNI->id << '@'
+                 << V.OtherVNI->def << " --> @"
+                 << NewVNInfo[Assignments[ValNo]]->def << '\n');
+    break;
+  case CR_Replace:
+  case CR_Unresolved:
+    // The other value is going to be pruned if this join is successful.
+    assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
+    Other.Vals[V.OtherVNI->id].Pruned = true;
+    // Fall through.
+  default:
+    // This value number needs to go in the final joined live range.
+    Assignments[ValNo] = NewVNInfo.size();
+    NewVNInfo.push_back(LI.getValNumInfo(ValNo));
+    break;
+  }
+}
+
+bool JoinVals::mapValues(JoinVals &Other) {
+  for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
+    computeAssignment(i, Other);
+    if (Vals[i].Resolution == CR_Impossible) {
+      DEBUG(dbgs() << "\t\tinterference at " << PrintReg(LI.reg) << ':' << i
+                   << '@' << LI.getValNumInfo(i)->def << '\n');
+      return false;
+    }
+  }
+  return true;
+}
+
+/// Assuming ValNo is going to clobber some valid lanes in Other.LI, compute
+/// the extent of the tainted lanes in the block.
+///
+/// Multiple values in Other.LI can be affected since partial redefinitions can
+/// preserve previously tainted lanes.
+///
+///   1 %dst = VLOAD           <-- Define all lanes in %dst
+///   2 %src = FOO             <-- ValNo to be joined with %dst:ssub0
+///   3 %dst:ssub1 = BAR       <-- Partial redef doesn't clear taint in ssub0
+///   4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
+///
+/// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
+/// entry to TaintedVals.
+///
+/// Returns false if the tainted lanes extend beyond the basic block.
+bool JoinVals::
+taintExtent(unsigned ValNo, unsigned TaintedLanes, JoinVals &Other,
+            SmallVectorImpl<std::pair<SlotIndex, unsigned> > &TaintExtent) {
+  VNInfo *VNI = LI.getValNumInfo(ValNo);
+  MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
+  SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
+
+  // Scan Other.LI from VNI.def to MBBEnd.
+  LiveInterval::iterator OtherI = Other.LI.find(VNI->def);
+  assert(OtherI != Other.LI.end() && "No conflict?");
+  do {
+    // OtherI is pointing to a tainted value. Abort the join if the tainted
+    // lanes escape the block.
+    SlotIndex End = OtherI->end;
+    if (End >= MBBEnd) {
+      DEBUG(dbgs() << "\t\ttaints global " << PrintReg(Other.LI.reg) << ':'
+                   << OtherI->valno->id << '@' << OtherI->start << '\n');
+      return false;
+    }
+    DEBUG(dbgs() << "\t\ttaints local " << PrintReg(Other.LI.reg) << ':'
+                 << OtherI->valno->id << '@' << OtherI->start
+                 << " to " << End << '\n');
+    // A dead def is not a problem.
+    if (End.isDead())
+      break;
+    TaintExtent.push_back(std::make_pair(End, TaintedLanes));
+
+    // Check for another def in the MBB.
+    if (++OtherI == Other.LI.end() || OtherI->start >= MBBEnd)
+      break;
+
+    // Lanes written by the new def are no longer tainted.
+    const Val &OV = Other.Vals[OtherI->valno->id];
+    TaintedLanes &= ~OV.WriteLanes;
+    if (!OV.RedefVNI)
+      break;
+  } while (TaintedLanes);
+  return true;
+}
+
+/// Return true if MI uses any of the given Lanes from Reg.
+/// This does not include partial redefinitions of Reg.
+bool JoinVals::usesLanes(MachineInstr *MI, unsigned Reg, unsigned SubIdx,
+                         unsigned Lanes) {
+  if (MI->isDebugValue())
+    return false;
+  for (ConstMIOperands MO(MI); MO.isValid(); ++MO) {
+    if (!MO->isReg() || MO->isDef() || MO->getReg() != Reg)
+      continue;
+    if (!MO->readsReg())
+      continue;
+    if (Lanes &
+        TRI->getSubRegIndexLaneMask(compose(*TRI, SubIdx, MO->getSubReg())))
+      return true;
+  }
+  return false;
+}
+
+bool JoinVals::resolveConflicts(JoinVals &Other) {
+  for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
+    Val &V = Vals[i];
+    assert (V.Resolution != CR_Impossible && "Unresolvable conflict");
+    if (V.Resolution != CR_Unresolved)
+      continue;
+    DEBUG(dbgs() << "\t\tconflict at " << PrintReg(LI.reg) << ':' << i
+                 << '@' << LI.getValNumInfo(i)->def << '\n');
+    ++NumLaneConflicts;
+    assert(V.OtherVNI && "Inconsistent conflict resolution.");
+    VNInfo *VNI = LI.getValNumInfo(i);
+    const Val &OtherV = Other.Vals[V.OtherVNI->id];
+
+    // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
+    // join, those lanes will be tainted with a wrong value. Get the extent of
+    // the tainted lanes.
+    unsigned TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
+    SmallVector<std::pair<SlotIndex, unsigned>, 8> TaintExtent;
+    if (!taintExtent(i, TaintedLanes, Other, TaintExtent))
+      // Tainted lanes would extend beyond the basic block.
+      return false;
+
+    assert(!TaintExtent.empty() && "There should be at least one conflict.");
+
+    // Now look at the instructions from VNI->def to TaintExtent (inclusive).
+    MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
+    MachineBasicBlock::iterator MI = MBB->begin();
+    if (!VNI->isPHIDef()) {
+      MI = Indexes->getInstructionFromIndex(VNI->def);
+      // No need to check the instruction defining VNI for reads.
+      ++MI;
+    }
+    assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&
+           "Interference ends on VNI->def. Should have been handled earlier");
+    MachineInstr *LastMI =
+      Indexes->getInstructionFromIndex(TaintExtent.front().first);
+    assert(LastMI && "Range must end at a proper instruction");
+    unsigned TaintNum = 0;
+    for(;;) {
+      assert(MI != MBB->end() && "Bad LastMI");
+      if (usesLanes(MI, Other.LI.reg, Other.SubIdx, TaintedLanes)) {
+        DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
+        return false;
+      }
+      // LastMI is the last instruction to use the current value.
+      if (&*MI == LastMI) {
+        if (++TaintNum == TaintExtent.size())
+          break;
+        LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first);
+        assert(LastMI && "Range must end at a proper instruction");
+        TaintedLanes = TaintExtent[TaintNum].second;
+      }
+      ++MI;
+    }
+
+    // The tainted lanes are unused.
+    V.Resolution = CR_Replace;
+    ++NumLaneResolves;
+  }
+  return true;
+}
+
+// Determine if ValNo is a copy of a value number in LI or Other.LI that will
+// be pruned:
+//
+//   %dst = COPY %src
+//   %src = COPY %dst  <-- This value to be pruned.
+//   %dst = COPY %src  <-- This value is a copy of a pruned value.
+//
+bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
+  Val &V = Vals[ValNo];
+  if (V.Pruned || V.PrunedComputed)
+    return V.Pruned;
+
+  if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
+    return V.Pruned;
+
+  // Follow copies up the dominator tree and check if any intermediate value
+  // has been pruned.
+  V.PrunedComputed = true;
+  V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this);
+  return V.Pruned;
+}
+
+void JoinVals::pruneValues(JoinVals &Other,
+                           SmallVectorImpl<SlotIndex> &EndPoints) {
+  for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
+    SlotIndex Def = LI.getValNumInfo(i)->def;
+    switch (Vals[i].Resolution) {
+    case CR_Keep:
+      break;
+    case CR_Replace: {
+      // This value takes precedence over the value in Other.LI.
+      LIS->pruneValue(&Other.LI, Def, &EndPoints);
+      // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
+      // instructions are only inserted to provide a live-out value for PHI
+      // predecessors, so the instruction should simply go away once its value
+      // has been replaced.
+      Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
+      bool EraseImpDef = OtherV.IsImplicitDef && OtherV.Resolution == CR_Keep;
+      if (!Def.isBlock()) {
+        // Remove <def,read-undef> flags. This def is now a partial redef.
+        // Also remove <def,dead> flags since the joined live range will
+        // continue past this instruction.
+        for (MIOperands MO(Indexes->getInstructionFromIndex(Def));
+             MO.isValid(); ++MO)
+          if (MO->isReg() && MO->isDef() && MO->getReg() == LI.reg) {
+            MO->setIsUndef(EraseImpDef);
+            MO->setIsDead(false);
+          }
+        // This value will reach instructions below, but we need to make sure
+        // the live range also reaches the instruction at Def.
+        if (!EraseImpDef)
+          EndPoints.push_back(Def);
+      }
+      DEBUG(dbgs() << "\t\tpruned " << PrintReg(Other.LI.reg) << " at " << Def
+                   << ": " << Other.LI << '\n');
+      break;
+    }
+    case CR_Erase:
+    case CR_Merge:
+      if (isPrunedValue(i, Other)) {
+        // This value is ultimately a copy of a pruned value in LI or Other.LI.
+        // We can no longer trust the value mapping computed by
+        // computeAssignment(), the value that was originally copied could have
+        // been replaced.
+        LIS->pruneValue(&LI, Def, &EndPoints);
+        DEBUG(dbgs() << "\t\tpruned all of " << PrintReg(LI.reg) << " at "
+                     << Def << ": " << LI << '\n');
+      }
+      break;
+    case CR_Unresolved:
+    case CR_Impossible:
+      llvm_unreachable("Unresolved conflicts");
+    }
+  }
+}
+
+void JoinVals::eraseInstrs(SmallPtrSet<MachineInstr*, 8> &ErasedInstrs,
+                           SmallVectorImpl<unsigned> &ShrinkRegs) {
+  for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
+    // Get the def location before markUnused() below invalidates it.
+    SlotIndex Def = LI.getValNumInfo(i)->def;
+    switch (Vals[i].Resolution) {
+    case CR_Keep:
+      // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
+      // longer. The IMPLICIT_DEF instructions are only inserted by
+      // PHIElimination to guarantee that all PHI predecessors have a value.
+      if (!Vals[i].IsImplicitDef || !Vals[i].Pruned)
+        break;
+      // Remove value number i from LI. Note that this VNInfo is still present
+      // in NewVNInfo, so it will appear as an unused value number in the final
+      // joined interval.
+      LI.getValNumInfo(i)->markUnused();
+      LI.removeValNo(LI.getValNumInfo(i));
+      DEBUG(dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LI << '\n');
+      // FALL THROUGH.
+
+    case CR_Erase: {
+      MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
+      assert(MI && "No instruction to erase");
+      if (MI->isCopy()) {
+        unsigned Reg = MI->getOperand(1).getReg();
+        if (TargetRegisterInfo::isVirtualRegister(Reg) &&
+            Reg != CP.getSrcReg() && Reg != CP.getDstReg())
+          ShrinkRegs.push_back(Reg);
+      }
+      ErasedInstrs.insert(MI);
+      DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI);
+      LIS->RemoveMachineInstrFromMaps(MI);
+      MI->eraseFromParent();
+      break;
+    }
+    default:
+      break;
+    }
+  }
+}
+
+bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
+  SmallVector<VNInfo*, 16> NewVNInfo;
+  LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
+  LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
+  JoinVals RHSVals(RHS, CP.getSrcIdx(), NewVNInfo, CP, LIS, TRI);
+  JoinVals LHSVals(LHS, CP.getDstIdx(), NewVNInfo, CP, LIS, TRI);
+
+  DEBUG(dbgs() << "\t\tRHS = " << PrintReg(CP.getSrcReg()) << ' ' << RHS
+               << "\n\t\tLHS = " << PrintReg(CP.getDstReg()) << ' ' << LHS
+               << '\n');
+
+  // First compute NewVNInfo and the simple value mappings.
+  // Detect impossible conflicts early.
+  if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
+    return false;
+
+  // Some conflicts can only be resolved after all values have been mapped.
+  if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
+    return false;
+
+  // All clear, the live ranges can be merged.
+
+  // The merging algorithm in LiveInterval::join() can't handle conflicting
+  // value mappings, so we need to remove any live ranges that overlap a
+  // CR_Replace resolution. Collect a set of end points that can be used to
+  // restore the live range after joining.
+  SmallVector<SlotIndex, 8> EndPoints;
+  LHSVals.pruneValues(RHSVals, EndPoints);
+  RHSVals.pruneValues(LHSVals, EndPoints);
+
+  // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
+  // registers to require trimming.
+  SmallVector<unsigned, 8> ShrinkRegs;
+  LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
+  RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
+  while (!ShrinkRegs.empty())
+    LIS->shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
+
+  // Join RHS into LHS.
+  LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo,
+           MRI);
+
+  // Kill flags are going to be wrong if the live ranges were overlapping.
+  // Eventually, we should simply clear all kill flags when computing live
+  // ranges. They are reinserted after register allocation.
+  MRI->clearKillFlags(LHS.reg);
+  MRI->clearKillFlags(RHS.reg);
+
+  if (EndPoints.empty())
+    return true;
+
+  // Recompute the parts of the live range we had to remove because of
+  // CR_Replace conflicts.
+  DEBUG(dbgs() << "\t\trestoring liveness to " << EndPoints.size()
+               << " points: " << LHS << '\n');
+  LIS->extendToIndices(&LHS, EndPoints);
+  return true;
+}
+
+/// joinIntervals - Attempt to join these two intervals.  On failure, this
+/// returns false.
+bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
+  return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
+}
+
+namespace {
+  // DepthMBBCompare - Comparison predicate that sort first based on the loop
+  // depth of the basic block (the unsigned), and then on the MBB number.
+  struct DepthMBBCompare {
+    typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
+    bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
+      // Deeper loops first
+      if (LHS.first != RHS.first)
+        return LHS.first > RHS.first;
+
+      // Prefer blocks that are more connected in the CFG. This takes care of
+      // the most difficult copies first while intervals are short.
+      unsigned cl = LHS.second->pred_size() + LHS.second->succ_size();
+      unsigned cr = RHS.second->pred_size() + RHS.second->succ_size();
+      if (cl != cr)
+        return cl > cr;
+
+      // As a last resort, sort by block number.
+      return LHS.second->getNumber() < RHS.second->getNumber();
+    }
+  };
+}
+
+// Try joining WorkList copies starting from index From.
+// Null out any successful joins.
+bool RegisterCoalescer::copyCoalesceWorkList(unsigned From) {
+  assert(From <= WorkList.size() && "Out of range");
+  bool Progress = false;
+  for (unsigned i = From, e = WorkList.size(); i != e; ++i) {
+    if (!WorkList[i])
+      continue;
+    // Skip instruction pointers that have already been erased, for example by
+    // dead code elimination.
+    if (ErasedInstrs.erase(WorkList[i])) {
+      WorkList[i] = 0;
+      continue;
+    }
+    bool Again = false;
+    bool Success = joinCopy(WorkList[i], Again);
+    Progress |= Success;
+    if (Success || !Again)
+      WorkList[i] = 0;
+  }
+  return Progress;
+}
+
+void
+RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
+  DEBUG(dbgs() << MBB->getName() << ":\n");
+
+  // Collect all copy-like instructions in MBB. Don't start coalescing anything
+  // yet, it might invalidate the iterator.
+  const unsigned PrevSize = WorkList.size();
+  for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
+       MII != E; ++MII)
+    if (MII->isCopyLike())
+      WorkList.push_back(MII);
+
+  // Try coalescing the collected copies immediately, and remove the nulls.
+  // This prevents the WorkList from getting too large since most copies are
+  // joinable on the first attempt.
+  if (copyCoalesceWorkList(PrevSize))
+    WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
+                               (MachineInstr*)0), WorkList.end());
+}
+
+void RegisterCoalescer::joinAllIntervals() {
+  DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
+  assert(WorkList.empty() && "Old data still around.");
+
+  if (Loops->empty()) {
+    // If there are no loops in the function, join intervals in function order.
+    for (MachineFunction::iterator I = MF->begin(), E = MF->end();
+         I != E; ++I)
+      copyCoalesceInMBB(I);
+  } else {
+    // Otherwise, join intervals in inner loops before other intervals.
+    // Unfortunately we can't just iterate over loop hierarchy here because
+    // there may be more MBB's than BB's.  Collect MBB's for sorting.
+
+    // Join intervals in the function prolog first. We want to join physical
+    // registers with virtual registers before the intervals got too long.
+    std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
+    for (MachineFunction::iterator I = MF->begin(), E = MF->end();I != E;++I){
+      MachineBasicBlock *MBB = I;
+      MBBs.push_back(std::make_pair(Loops->getLoopDepth(MBB), I));
+    }
+
+    // Sort by loop depth.
+    std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
+
+    // Finally, join intervals in loop nest order.
+    for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
+      copyCoalesceInMBB(MBBs[i].second);
+  }
+
+  // Joining intervals can allow other intervals to be joined.  Iteratively join
+  // until we make no progress.
+  while (copyCoalesceWorkList())
+    /* empty */ ;
+}
+
+void RegisterCoalescer::releaseMemory() {
+  ErasedInstrs.clear();
+  WorkList.clear();
+  DeadDefs.clear();
+  InflateRegs.clear();
+}
+
+bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
+  MF = &fn;
+  MRI = &fn.getRegInfo();
+  TM = &fn.getTarget();
+  TRI = TM->getRegisterInfo();
+  TII = TM->getInstrInfo();
+  LIS = &getAnalysis<LiveIntervals>();
+  LDV = &getAnalysis<LiveDebugVariables>();
+  AA = &getAnalysis<AliasAnalysis>();
+  Loops = &getAnalysis<MachineLoopInfo>();
+
+  DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
+               << "********** Function: " << MF->getName() << '\n');
+
+  if (VerifyCoalescing)
+    MF->verify(this, "Before register coalescing");
+
+  RegClassInfo.runOnMachineFunction(fn);
+
+  // Join (coalesce) intervals if requested.
+  if (EnableJoining)
+    joinAllIntervals();
+
+  // After deleting a lot of copies, register classes may be less constrained.
+  // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
+  // DPR inflation.
+  array_pod_sort(InflateRegs.begin(), InflateRegs.end());
+  InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
+                    InflateRegs.end());
+  DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n");
+  for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
+    unsigned Reg = InflateRegs[i];
+    if (MRI->reg_nodbg_empty(Reg))
+      continue;
+    if (MRI->recomputeRegClass(Reg, *TM)) {
+      DEBUG(dbgs() << PrintReg(Reg) << " inflated to "
+                   << MRI->getRegClass(Reg)->getName() << '\n');
+      ++NumInflated;
+    }
+  }
+
+  DEBUG(dump());
+  DEBUG(LDV->dump());
+  if (VerifyCoalescing)
+    MF->verify(this, "After register coalescing");
+  return true;
+}
+
+/// print - Implement the dump method.
+void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
+   LIS->print(O, m);
+}