Remove the two-argument (inferred cast) form of ConstantExpr::getCast now
[oota-llvm.git] / lib / CodeGen / SelectionDAG / TargetLowering.cpp
index 2ab2074bd18fae870f0445ebdf9e100859274214..79e8013e4f585e3fc1c349f6e788a3b07e2a6abc 100644 (file)
 //===----------------------------------------------------------------------===//
 
 #include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetData.h"
 #include "llvm/Target/TargetMachine.h"
 #include "llvm/Target/MRegisterInfo.h"
+#include "llvm/DerivedTypes.h"
 #include "llvm/CodeGen/SelectionDAG.h"
 #include "llvm/ADT/StringExtras.h"
 #include "llvm/Support/MathExtras.h"
@@ -21,22 +23,38 @@ using namespace llvm;
 
 TargetLowering::TargetLowering(TargetMachine &tm)
   : TM(tm), TD(TM.getTargetData()) {
-  assert(ISD::BUILTIN_OP_END <= 128 &&
+  assert(ISD::BUILTIN_OP_END <= 156 &&
          "Fixed size array in TargetLowering is not large enough!");
   // All operations default to being supported.
   memset(OpActions, 0, sizeof(OpActions));
+  memset(LoadXActions, 0, sizeof(LoadXActions));
+  memset(&StoreXActions, 0, sizeof(StoreXActions));
+  // Initialize all indexed load / store to expand.
+  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
+    for (unsigned IM = (unsigned)ISD::PRE_INC;
+         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
+      setIndexedLoadAction(IM, (MVT::ValueType)VT, Expand);
+      setIndexedStoreAction(IM, (MVT::ValueType)VT, Expand);
+    }
+  }
 
-  IsLittleEndian = TD.isLittleEndian();
-  ShiftAmountTy = SetCCResultTy = PointerTy = getValueType(TD.getIntPtrType());
+  IsLittleEndian = TD->isLittleEndian();
+  UsesGlobalOffsetTable = false;
+  ShiftAmountTy = SetCCResultTy = PointerTy = getValueType(TD->getIntPtrType());
   ShiftAmtHandling = Undefined;
   memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
+  memset(TargetDAGCombineArray, 0, 
+         sizeof(TargetDAGCombineArray)/sizeof(TargetDAGCombineArray[0]));
   maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
   allowUnalignedMemoryAccesses = false;
-  UseUnderscoreSetJmpLongJmp = false;
+  UseUnderscoreSetJmp = false;
+  UseUnderscoreLongJmp = false;
   IntDivIsCheap = false;
   Pow2DivIsCheap = false;
   StackPointerRegisterToSaveRestore = 0;
   SchedPreferenceInfo = SchedulingForLatency;
+  JumpBufSize = 0;
+  JumpBufAlignment = 0;
 }
 
 TargetLowering::~TargetLowering() {}
@@ -69,10 +87,17 @@ static void SetValueTypeAction(MVT::ValueType VT,
     assert(VT < PromoteTo && "Must promote to a larger type!");
     TransformToType[VT] = PromoteTo;
   } else if (Action == TargetLowering::Expand) {
-    assert((VT == MVT::Vector || MVT::isInteger(VT)) && VT > MVT::i8 &&
-           "Cannot expand this type: target must support SOME integer reg!");
-    // Expand to the next smaller integer type!
-    TransformToType[VT] = (MVT::ValueType)(VT-1);
+    // f32 and f64 is each expanded to corresponding integer type of same size.
+    if (VT == MVT::f32)
+      TransformToType[VT] = MVT::i32;
+    else if (VT == MVT::f64)
+      TransformToType[VT] = MVT::i64;
+    else {
+      assert((VT == MVT::Vector || MVT::isInteger(VT)) && VT > MVT::i8 &&
+             "Cannot expand this type: target must support SOME integer reg!");
+      // Expand to the next smaller integer type!
+      TransformToType[VT] = (MVT::ValueType)(VT-1);
+    }
   }
 }
 
@@ -112,25 +137,89 @@ void TargetLowering::computeRegisterProperties() {
     else
       TransformToType[(MVT::ValueType)IntReg] = (MVT::ValueType)IntReg;
 
-  // If the target does not have native support for F32, promote it to F64.
-  if (!isTypeLegal(MVT::f32))
-    SetValueTypeAction(MVT::f32, Promote, *this,
-                       TransformToType, ValueTypeActions);
-  else
+  // If the target does not have native F64 support, expand it to I64. We will
+  // be generating soft float library calls. If the target does not have native
+  // support for F32, promote it to F64 if it is legal. Otherwise, expand it to
+  // I32.
+  if (isTypeLegal(MVT::f64))
+    TransformToType[MVT::f64] = MVT::f64;  
+  else {
+    NumElementsForVT[MVT::f64] = NumElementsForVT[MVT::i64];
+    SetValueTypeAction(MVT::f64, Expand, *this, TransformToType,
+                       ValueTypeActions);
+  }
+  if (isTypeLegal(MVT::f32))
     TransformToType[MVT::f32] = MVT::f32;
+  else if (isTypeLegal(MVT::f64))
+    SetValueTypeAction(MVT::f32, Promote, *this, TransformToType,
+                       ValueTypeActions);
+  else {
+    NumElementsForVT[MVT::f32] = NumElementsForVT[MVT::i32];
+    SetValueTypeAction(MVT::f32, Expand, *this, TransformToType,
+                       ValueTypeActions);
+  }
   
   // Set MVT::Vector to always be Expanded
   SetValueTypeAction(MVT::Vector, Expand, *this, TransformToType, 
                      ValueTypeActions);
-
-  assert(isTypeLegal(MVT::f64) && "Target does not support FP?");
-  TransformToType[MVT::f64] = MVT::f64;
+  
+  // Loop over all of the legal vector value types, specifying an identity type
+  // transformation.
+  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
+       i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
+    if (isTypeLegal((MVT::ValueType)i))
+      TransformToType[i] = (MVT::ValueType)i;
+  }
 }
 
 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
   return NULL;
 }
 
+/// getPackedTypeBreakdown - Packed types are broken down into some number of
+/// legal first class types. For example, <8 x float> maps to 2 MVT::v4f32
+/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
+///
+/// This method returns the number and type of the resultant breakdown.
+///
+unsigned TargetLowering::getPackedTypeBreakdown(const PackedType *PTy, 
+                                                MVT::ValueType &PTyElementVT,
+                                      MVT::ValueType &PTyLegalElementVT) const {
+  // Figure out the right, legal destination reg to copy into.
+  unsigned NumElts = PTy->getNumElements();
+  MVT::ValueType EltTy = getValueType(PTy->getElementType());
+  
+  unsigned NumVectorRegs = 1;
+  
+  // Divide the input until we get to a supported size.  This will always
+  // end with a scalar if the target doesn't support vectors.
+  while (NumElts > 1 && !isTypeLegal(getVectorType(EltTy, NumElts))) {
+    NumElts >>= 1;
+    NumVectorRegs <<= 1;
+  }
+  
+  MVT::ValueType VT;
+  if (NumElts == 1) {
+    VT = EltTy;
+  } else {
+    VT = getVectorType(EltTy, NumElts); 
+  }
+  PTyElementVT = VT;
+
+  MVT::ValueType DestVT = getTypeToTransformTo(VT);
+  PTyLegalElementVT = DestVT;
+  if (DestVT < VT) {
+    // Value is expanded, e.g. i64 -> i16.
+    return NumVectorRegs*(MVT::getSizeInBits(VT)/MVT::getSizeInBits(DestVT));
+  } else {
+    // Otherwise, promotion or legal types use the same number of registers as
+    // the vector decimated to the appropriate level.
+    return NumVectorRegs;
+  }
+  
+  return 1;
+}
+
 //===----------------------------------------------------------------------===//
 //  Optimization Methods
 //===----------------------------------------------------------------------===//
@@ -201,7 +290,23 @@ bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
     KnownZero = ~KnownOne & DemandedMask;
     return false;   // Don't fall through, will infinitely loop.
   case ISD::AND:
-    // If either the LHS or the RHS are Zero, the result is zero.
+    // If the RHS is a constant, check to see if the LHS would be zero without
+    // using the bits from the RHS.  Below, we use knowledge about the RHS to
+    // simplify the LHS, here we're using information from the LHS to simplify
+    // the RHS.
+    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+      uint64_t LHSZero, LHSOne;
+      ComputeMaskedBits(Op.getOperand(0), DemandedMask,
+                        LHSZero, LHSOne, Depth+1);
+      // If the LHS already has zeros where RHSC does, this and is dead.
+      if ((LHSZero & DemandedMask) == (~RHSC->getValue() & DemandedMask))
+        return TLO.CombineTo(Op, Op.getOperand(0));
+      // If any of the set bits in the RHS are known zero on the LHS, shrink
+      // the constant.
+      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & DemandedMask))
+        return true;
+    }
+    
     if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
                              KnownOne, TLO, Depth+1))
       return true;
@@ -223,7 +328,7 @@ bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
     // If the RHS is a constant, see if we can simplify it.
     if (TLO.ShrinkDemandedConstant(Op, DemandedMask & ~KnownZero2))
       return true;
-        
+      
     // Output known-1 bits are only known if set in both the LHS & RHS.
     KnownOne &= KnownOne2;
     // Output known-0 are known to be clear if zero in either the LHS | RHS.
@@ -278,20 +383,20 @@ bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
       return TLO.CombineTo(Op, Op.getOperand(0));
     if ((DemandedMask & KnownZero2) == DemandedMask)
       return TLO.CombineTo(Op, Op.getOperand(1));
+      
+    // If all of the unknown bits are known to be zero on one side or the other
+    // (but not both) turn this into an *inclusive* or.
+    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
+    if ((DemandedMask & ~KnownZero & ~KnownZero2) == 0)
+      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
+                                               Op.getOperand(0),
+                                               Op.getOperand(1)));
     
     // Output known-0 bits are known if clear or set in both the LHS & RHS.
     KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
     // Output known-1 are known to be set if set in only one of the LHS, RHS.
     KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
     
-    // If all of the unknown bits are known to be zero on one side or the other
-    // (but not both) turn this into an *inclusive* or.
-    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
-    if (uint64_t UnknownBits = DemandedMask & ~(KnownZeroOut|KnownOneOut))
-      if ((UnknownBits & (KnownZero|KnownZero2)) == UnknownBits)
-        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
-                                                 Op.getOperand(0),
-                                                 Op.getOperand(1)));
     // If all of the demanded bits on one side are known, and all of the set
     // bits on that side are also known to be set on the other side, turn this
     // into an AND, as we know the bits will be cleared.
@@ -370,10 +475,7 @@ bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
       unsigned ShAmt = SA->getValue();
       
       // Compute the new bits that are at the top now.
-      uint64_t HighBits = (1ULL << ShAmt)-1;
-      HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
       uint64_t TypeMask = MVT::getIntVTBitMask(VT);
-      
       if (SimplifyDemandedBits(Op.getOperand(0), 
                                (DemandedMask << ShAmt) & TypeMask,
                                KnownZero, KnownOne, TLO, Depth+1))
@@ -383,7 +485,10 @@ bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
       KnownOne  &= TypeMask;
       KnownZero >>= ShAmt;
       KnownOne  >>= ShAmt;
-      KnownZero |= HighBits;  // high bits known zero.
+
+      uint64_t HighBits = (1ULL << ShAmt)-1;
+      HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
+      KnownZero |= HighBits;  // High bits known zero.
     }
     break;
   case ISD::SRA:
@@ -392,23 +497,29 @@ bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
       unsigned ShAmt = SA->getValue();
       
       // Compute the new bits that are at the top now.
+      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
+      
+      uint64_t InDemandedMask = (DemandedMask << ShAmt) & TypeMask;
+
+      // If any of the demanded bits are produced by the sign extension, we also
+      // demand the input sign bit.
       uint64_t HighBits = (1ULL << ShAmt)-1;
       HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
-      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
+      if (HighBits & DemandedMask)
+        InDemandedMask |= MVT::getIntVTSignBit(VT);
       
-      if (SimplifyDemandedBits(Op.getOperand(0),
-                               (DemandedMask << ShAmt) & TypeMask,
+      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
                                KnownZero, KnownOne, TLO, Depth+1))
         return true;
       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
       KnownZero &= TypeMask;
       KnownOne  &= TypeMask;
-      KnownZero >>= SA->getValue();
-      KnownOne  >>= SA->getValue();
+      KnownZero >>= ShAmt;
+      KnownOne  >>= ShAmt;
       
       // Handle the sign bits.
       uint64_t SignBit = MVT::getIntVTSignBit(VT);
-      SignBit >>= SA->getValue();  // Adjust to where it is now in the mask.
+      SignBit >>= ShAmt;  // Adjust to where it is now in the mask.
       
       // If the input sign bit is known to be zero, or if none of the top bits
       // are demanded, turn this into an unsigned shift right.
@@ -421,7 +532,6 @@ bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
     }
     break;
   case ISD::SIGN_EXTEND_INREG: {
-    MVT::ValueType  VT = Op.getValueType();
     MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
 
     // Sign extension.  Compute the demanded bits in the result that are not 
@@ -470,9 +580,12 @@ bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
     KnownOne  = 0;
     break;
   }
-  case ISD::ZEXTLOAD: {
-    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(3))->getVT();
-    KnownZero |= ~MVT::getIntVTBitMask(VT) & DemandedMask;
+  case ISD::LOAD: {
+    if (ISD::isZEXTLoad(Op.Val)) {
+      LoadSDNode *LD = cast<LoadSDNode>(Op);
+      MVT::ValueType VT = LD->getLoadedVT();
+      KnownZero |= ~MVT::getIntVTBitMask(VT) & DemandedMask;
+    }
     break;
   }
   case ISD::ZERO_EXTEND: {
@@ -536,6 +649,48 @@ bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
     break;
   }
+  case ISD::TRUNCATE: {
+    // Simplify the input, using demanded bit information, and compute the known
+    // zero/one bits live out.
+    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask,
+                             KnownZero, KnownOne, TLO, Depth+1))
+      return true;
+    
+    // If the input is only used by this truncate, see if we can shrink it based
+    // on the known demanded bits.
+    if (Op.getOperand(0).Val->hasOneUse()) {
+      SDOperand In = Op.getOperand(0);
+      switch (In.getOpcode()) {
+      default: break;
+      case ISD::SRL:
+        // Shrink SRL by a constant if none of the high bits shifted in are
+        // demanded.
+        if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
+          uint64_t HighBits = MVT::getIntVTBitMask(In.getValueType());
+          HighBits &= ~MVT::getIntVTBitMask(Op.getValueType());
+          HighBits >>= ShAmt->getValue();
+          
+          if (ShAmt->getValue() < MVT::getSizeInBits(Op.getValueType()) &&
+              (DemandedMask & HighBits) == 0) {
+            // None of the shifted in bits are needed.  Add a truncate of the
+            // shift input, then shift it.
+            SDOperand NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, 
+                                                 Op.getValueType(), 
+                                                 In.getOperand(0));
+            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(),
+                                                   NewTrunc, In.getOperand(1)));
+          }
+        }
+        break;
+      }
+    }
+    
+    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
+    uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
+    KnownZero &= OutMask;
+    KnownOne &= OutMask;
+    break;
+  }
   case ISD::AssertZext: {
     MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
     uint64_t InMask = MVT::getIntVTBitMask(VT);
@@ -547,40 +702,12 @@ bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
     break;
   }
   case ISD::ADD:
-    if (ConstantSDNode *AA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
-      if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero, 
-                               KnownOne, TLO, Depth+1))
-        return true;
-      // Compute the KnownOne/KnownZero masks for the constant, so we can set
-      // KnownZero appropriately if we're adding a constant that has all low
-      // bits cleared.
-      ComputeMaskedBits(Op.getOperand(1), 
-                        MVT::getIntVTBitMask(Op.getValueType()), 
-                        KnownZero2, KnownOne2, Depth+1);
-      
-      uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero), 
-                                       CountTrailingZeros_64(~KnownZero2));
-      KnownZero = (1ULL << KnownZeroOut) - 1;
-      KnownOne = 0;
-      
-      SDOperand SH = Op.getOperand(0);
-      // fold (add (shl x, c1), (shl c2, c1)) -> (shl (add x, c2), c1)
-      if (KnownZero && SH.getOpcode() == ISD::SHL && SH.Val->hasOneUse() &&
-          Op.Val->hasOneUse()) {
-        if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(SH.getOperand(1))) {
-          MVT::ValueType VT = Op.getValueType();
-          unsigned ShiftAmt = SA->getValue();
-          uint64_t AddAmt = AA->getValue();
-          uint64_t AddShr = AddAmt >> ShiftAmt;
-          if (AddAmt == (AddShr << ShiftAmt)) {
-            SDOperand ADD = TLO.DAG.getNode(ISD::ADD, VT, SH.getOperand(0),
-                                            TLO.DAG.getConstant(AddShr, VT));
-            SDOperand SHL = TLO.DAG.getNode(ISD::SHL, VT, ADD,SH.getOperand(1));
-            return TLO.CombineTo(Op, SHL);
-          }
-        }
-      }
-    }
+  case ISD::SUB:
+  case ISD::INTRINSIC_WO_CHAIN:
+  case ISD::INTRINSIC_W_CHAIN:
+  case ISD::INTRINSIC_VOID:
+    // Just use ComputeMaskedBits to compute output bits.
+    ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
     break;
   }
   
@@ -688,8 +815,8 @@ void TargetLowering::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
   case ISD::SHL:
     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
-      Mask >>= SA->getValue();
-      ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
+      ComputeMaskedBits(Op.getOperand(0), Mask >> SA->getValue(),
+                        KnownZero, KnownOne, Depth+1);
       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
       KnownZero <<= SA->getValue();
       KnownOne  <<= SA->getValue();
@@ -699,39 +826,59 @@ void TargetLowering::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
   case ISD::SRL:
     // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
-      uint64_t HighBits = (1ULL << SA->getValue())-1;
-      HighBits <<= MVT::getSizeInBits(Op.getValueType())-SA->getValue();
-      Mask <<= SA->getValue();
-      ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
+      MVT::ValueType VT = Op.getValueType();
+      unsigned ShAmt = SA->getValue();
+
+      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
+      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt) & TypeMask,
+                        KnownZero, KnownOne, Depth+1);
       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
-      KnownZero >>= SA->getValue();
-      KnownOne  >>= SA->getValue();
-      KnownZero |= HighBits;  // high bits known zero.
+      KnownZero &= TypeMask;
+      KnownOne  &= TypeMask;
+      KnownZero >>= ShAmt;
+      KnownOne  >>= ShAmt;
+
+      uint64_t HighBits = (1ULL << ShAmt)-1;
+      HighBits <<= MVT::getSizeInBits(VT)-ShAmt;
+      KnownZero |= HighBits;  // High bits known zero.
     }
     return;
   case ISD::SRA:
     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
-      uint64_t HighBits = (1ULL << SA->getValue())-1;
-      HighBits <<= MVT::getSizeInBits(Op.getValueType())-SA->getValue();
-      Mask <<= SA->getValue();
-      ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
-      assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); 
-      KnownZero >>= SA->getValue();
-      KnownOne  >>= SA->getValue();
+      MVT::ValueType VT = Op.getValueType();
+      unsigned ShAmt = SA->getValue();
+
+      // Compute the new bits that are at the top now.
+      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
+
+      uint64_t InDemandedMask = (Mask << ShAmt) & TypeMask;
+      // If any of the demanded bits are produced by the sign extension, we also
+      // demand the input sign bit.
+      uint64_t HighBits = (1ULL << ShAmt)-1;
+      HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
+      if (HighBits & Mask)
+        InDemandedMask |= MVT::getIntVTSignBit(VT);
+      
+      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
+                        Depth+1);
+      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
+      KnownZero &= TypeMask;
+      KnownOne  &= TypeMask;
+      KnownZero >>= ShAmt;
+      KnownOne  >>= ShAmt;
       
       // Handle the sign bits.
-      uint64_t SignBit = 1ULL << (MVT::getSizeInBits(Op.getValueType())-1);
-      SignBit >>= SA->getValue();  // Adjust to where it is now in the mask.
+      uint64_t SignBit = MVT::getIntVTSignBit(VT);
+      SignBit >>= ShAmt;  // Adjust to where it is now in the mask.
       
-      if (KnownZero & SignBit) {       // New bits are known zero.
-        KnownZero |= HighBits;
-      } else if (KnownOne & SignBit) { // New bits are known one.
-        KnownOne |= HighBits;
+      if (KnownZero & SignBit) {       
+        KnownZero |= HighBits;  // New bits are known zero.
+      } else if (KnownOne & SignBit) {
+        KnownOne  |= HighBits;  // New bits are known one.
       }
     }
     return;
   case ISD::SIGN_EXTEND_INREG: {
-    MVT::ValueType  VT = Op.getValueType();
     MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
     
     // Sign extension.  Compute the demanded bits in the result that are not 
@@ -773,9 +920,12 @@ void TargetLowering::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
     KnownOne  = 0;
     return;
   }
-  case ISD::ZEXTLOAD: {
-    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(3))->getVT();
-    KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask;
+  case ISD::LOAD: {
+    if (ISD::isZEXTLoad(Op.Val)) {
+      LoadSDNode *LD = cast<LoadSDNode>(Op);
+      MVT::ValueType VT = LD->getLoadedVT();
+      KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask;
+    }
     return;
   }
   case ISD::ZERO_EXTEND: {
@@ -821,6 +971,14 @@ void TargetLowering::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
                       KnownZero, KnownOne, Depth+1);
     return;
   }
+  case ISD::TRUNCATE: {
+    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
+    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
+    uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
+    KnownZero &= OutMask;
+    KnownOne &= OutMask;
+    break;
+  }
   case ISD::AssertZext: {
     MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
     uint64_t InMask = MVT::getIntVTBitMask(VT);
@@ -837,7 +995,8 @@ void TargetLowering::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
     
     // Output known-0 bits are known if clear or set in both the low clear bits
-    // common to both LHS & RHS;
+    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
+    // low 3 bits clear.
     uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero), 
                                      CountTrailingZeros_64(~KnownZero2));
     
@@ -845,16 +1004,40 @@ void TargetLowering::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
     KnownOne = 0;
     return;
   }
-  case ISD::SUB:
+  case ISD::SUB: {
+    ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
+    if (!CLHS) return;
+
     // We know that the top bits of C-X are clear if X contains less bits
     // than C (i.e. no wrap-around can happen).  For example, 20-X is
-    // positive if we can prove that X is >= 0 and < 16.  Remember to update 
-    // SimplifyDemandedBits if/when this is implemented.
+    // positive if we can prove that X is >= 0 and < 16.
+    MVT::ValueType VT = CLHS->getValueType(0);
+    if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) {  // sign bit clear
+      unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1);
+      uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit
+      MaskV = ~MaskV & MVT::getIntVTBitMask(VT);
+      ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
+
+      // If all of the MaskV bits are known to be zero, then we know the output
+      // top bits are zero, because we now know that the output is from [0-C].
+      if ((KnownZero & MaskV) == MaskV) {
+        unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue());
+        KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask;  // Top bits known zero.
+        KnownOne = 0;   // No one bits known.
+      } else {
+        KnownZero = KnownOne = 0;  // Otherwise, nothing known.
+      }
+    }
     return;
+  }
   default:
     // Allow the target to implement this method for its nodes.
-    if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
+    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
+  case ISD::INTRINSIC_WO_CHAIN:
+  case ISD::INTRINSIC_W_CHAIN:
+  case ISD::INTRINSIC_VOID:
       computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne);
+    }
     return;
   }
 }
@@ -867,13 +1050,253 @@ void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
                                                     uint64_t &KnownZero, 
                                                     uint64_t &KnownOne,
                                                     unsigned Depth) const {
-  assert(Op.getOpcode() >= ISD::BUILTIN_OP_END &&
+  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
+          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
+          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
+          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
          "Should use MaskedValueIsZero if you don't know whether Op"
          " is a target node!");
   KnownZero = 0;
   KnownOne = 0;
 }
 
+/// ComputeNumSignBits - Return the number of times the sign bit of the
+/// register is replicated into the other bits.  We know that at least 1 bit
+/// is always equal to the sign bit (itself), but other cases can give us
+/// information.  For example, immediately after an "SRA X, 2", we know that
+/// the top 3 bits are all equal to each other, so we return 3.
+unsigned TargetLowering::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
+  MVT::ValueType VT = Op.getValueType();
+  assert(MVT::isInteger(VT) && "Invalid VT!");
+  unsigned VTBits = MVT::getSizeInBits(VT);
+  unsigned Tmp, Tmp2;
+  
+  if (Depth == 6)
+    return 1;  // Limit search depth.
+
+  switch (Op.getOpcode()) {
+  default: break;
+  case ISD::AssertSext:
+    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
+    return VTBits-Tmp+1;
+  case ISD::AssertZext:
+    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
+    return VTBits-Tmp;
+    
+  case ISD::Constant: {
+    uint64_t Val = cast<ConstantSDNode>(Op)->getValue();
+    // If negative, invert the bits, then look at it.
+    if (Val & MVT::getIntVTSignBit(VT))
+      Val = ~Val;
+    
+    // Shift the bits so they are the leading bits in the int64_t.
+    Val <<= 64-VTBits;
+    
+    // Return # leading zeros.  We use 'min' here in case Val was zero before
+    // shifting.  We don't want to return '64' as for an i32 "0".
+    return std::min(VTBits, CountLeadingZeros_64(Val));
+  }
+    
+  case ISD::SIGN_EXTEND:
+    Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
+    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
+    
+  case ISD::SIGN_EXTEND_INREG:
+    // Max of the input and what this extends.
+    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
+    Tmp = VTBits-Tmp+1;
+    
+    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
+    return std::max(Tmp, Tmp2);
+
+  case ISD::SRA:
+    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
+    // SRA X, C   -> adds C sign bits.
+    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+      Tmp += C->getValue();
+      if (Tmp > VTBits) Tmp = VTBits;
+    }
+    return Tmp;
+  case ISD::SHL:
+    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+      // shl destroys sign bits.
+      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
+      if (C->getValue() >= VTBits ||      // Bad shift.
+          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
+      return Tmp - C->getValue();
+    }
+    break;
+  case ISD::AND:
+  case ISD::OR:
+  case ISD::XOR:    // NOT is handled here.
+    // Logical binary ops preserve the number of sign bits.
+    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
+    if (Tmp == 1) return 1;  // Early out.
+    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
+    return std::min(Tmp, Tmp2);
+
+  case ISD::SELECT:
+    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
+    if (Tmp == 1) return 1;  // Early out.
+    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
+    return std::min(Tmp, Tmp2);
+    
+  case ISD::SETCC:
+    // If setcc returns 0/-1, all bits are sign bits.
+    if (getSetCCResultContents() == ZeroOrNegativeOneSetCCResult)
+      return VTBits;
+    break;
+  case ISD::ROTL:
+  case ISD::ROTR:
+    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+      unsigned RotAmt = C->getValue() & (VTBits-1);
+      
+      // Handle rotate right by N like a rotate left by 32-N.
+      if (Op.getOpcode() == ISD::ROTR)
+        RotAmt = (VTBits-RotAmt) & (VTBits-1);
+
+      // If we aren't rotating out all of the known-in sign bits, return the
+      // number that are left.  This handles rotl(sext(x), 1) for example.
+      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
+      if (Tmp > RotAmt+1) return Tmp-RotAmt;
+    }
+    break;
+  case ISD::ADD:
+    // Add can have at most one carry bit.  Thus we know that the output
+    // is, at worst, one more bit than the inputs.
+    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
+    if (Tmp == 1) return 1;  // Early out.
+      
+    // Special case decrementing a value (ADD X, -1):
+    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
+      if (CRHS->isAllOnesValue()) {
+        uint64_t KnownZero, KnownOne;
+        uint64_t Mask = MVT::getIntVTBitMask(VT);
+        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
+        
+        // If the input is known to be 0 or 1, the output is 0/-1, which is all
+        // sign bits set.
+        if ((KnownZero|1) == Mask)
+          return VTBits;
+        
+        // If we are subtracting one from a positive number, there is no carry
+        // out of the result.
+        if (KnownZero & MVT::getIntVTSignBit(VT))
+          return Tmp;
+      }
+      
+    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
+    if (Tmp2 == 1) return 1;
+      return std::min(Tmp, Tmp2)-1;
+    break;
+    
+  case ISD::SUB:
+    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
+    if (Tmp2 == 1) return 1;
+      
+    // Handle NEG.
+    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
+      if (CLHS->getValue() == 0) {
+        uint64_t KnownZero, KnownOne;
+        uint64_t Mask = MVT::getIntVTBitMask(VT);
+        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
+        // If the input is known to be 0 or 1, the output is 0/-1, which is all
+        // sign bits set.
+        if ((KnownZero|1) == Mask)
+          return VTBits;
+        
+        // If the input is known to be positive (the sign bit is known clear),
+        // the output of the NEG has the same number of sign bits as the input.
+        if (KnownZero & MVT::getIntVTSignBit(VT))
+          return Tmp2;
+        
+        // Otherwise, we treat this like a SUB.
+      }
+    
+    // Sub can have at most one carry bit.  Thus we know that the output
+    // is, at worst, one more bit than the inputs.
+    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
+    if (Tmp == 1) return 1;  // Early out.
+      return std::min(Tmp, Tmp2)-1;
+    break;
+  case ISD::TRUNCATE:
+    // FIXME: it's tricky to do anything useful for this, but it is an important
+    // case for targets like X86.
+    break;
+  }
+  
+  // Handle LOADX separately here. EXTLOAD case will fallthrough.
+  if (Op.getOpcode() == ISD::LOAD) {
+    LoadSDNode *LD = cast<LoadSDNode>(Op);
+    unsigned ExtType = LD->getExtensionType();
+    switch (ExtType) {
+    default: break;
+    case ISD::SEXTLOAD:    // '17' bits known
+      Tmp = MVT::getSizeInBits(LD->getLoadedVT());
+      return VTBits-Tmp+1;
+    case ISD::ZEXTLOAD:    // '16' bits known
+      Tmp = MVT::getSizeInBits(LD->getLoadedVT());
+      return VTBits-Tmp;
+    }
+  }
+
+  // Allow the target to implement this method for its nodes.
+  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
+      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 
+      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
+      Op.getOpcode() == ISD::INTRINSIC_VOID) {
+    unsigned NumBits = ComputeNumSignBitsForTargetNode(Op, Depth);
+    if (NumBits > 1) return NumBits;
+  }
+  
+  // Finally, if we can prove that the top bits of the result are 0's or 1's,
+  // use this information.
+  uint64_t KnownZero, KnownOne;
+  uint64_t Mask = MVT::getIntVTBitMask(VT);
+  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
+  
+  uint64_t SignBit = MVT::getIntVTSignBit(VT);
+  if (KnownZero & SignBit) {        // SignBit is 0
+    Mask = KnownZero;
+  } else if (KnownOne & SignBit) {  // SignBit is 1;
+    Mask = KnownOne;
+  } else {
+    // Nothing known.
+    return 1;
+  }
+  
+  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
+  // the number of identical bits in the top of the input value.
+  Mask ^= ~0ULL;
+  Mask <<= 64-VTBits;
+  // Return # leading zeros.  We use 'min' here in case Val was zero before
+  // shifting.  We don't want to return '64' as for an i32 "0".
+  return std::min(VTBits, CountLeadingZeros_64(Mask));
+}
+
+
+
+/// ComputeNumSignBitsForTargetNode - This method can be implemented by
+/// targets that want to expose additional information about sign bits to the
+/// DAG Combiner.
+unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDOperand Op,
+                                                         unsigned Depth) const {
+  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
+          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
+          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
+          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
+         "Should use ComputeNumSignBits if you don't know whether Op"
+         " is a target node!");
+  return 1;
+}
+
+
+SDOperand TargetLowering::
+PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
+  // Default implementation: no optimization.
+  return SDOperand();
+}
+
 //===----------------------------------------------------------------------===//
 //  Inline Assembler Implementation Methods
 //===----------------------------------------------------------------------===//
@@ -903,18 +1326,21 @@ TargetLowering::getConstraintType(char ConstraintLetter) const {
   }
 }
 
-bool TargetLowering::isOperandValidForConstraint(SDOperand Op, 
-                                                 char ConstraintLetter) {
+/// isOperandValidForConstraint - Return the specified operand (possibly
+/// modified) if the specified SDOperand is valid for the specified target
+/// constraint letter, otherwise return null.
+SDOperand TargetLowering::isOperandValidForConstraint(SDOperand Op,
+                                                      char ConstraintLetter,
+                                                      SelectionDAG &DAG) {
   switch (ConstraintLetter) {
-  default: return false;
+  default: return SDOperand(0,0);
   case 'i':    // Simple Integer or Relocatable Constant
   case 'n':    // Simple Integer
   case 's':    // Relocatable Constant
-    return true;   // FIXME: not right.
+    return Op;   // FIXME: not right.
   }
 }
 
-
 std::vector<unsigned> TargetLowering::
 getRegClassForInlineAsmConstraint(const std::string &Constraint,
                                   MVT::ValueType VT) const {
@@ -960,3 +1386,281 @@ getRegForInlineAsmConstraint(const std::string &Constraint,
   
   return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
 }
+
+//===----------------------------------------------------------------------===//
+//  Loop Strength Reduction hooks
+//===----------------------------------------------------------------------===//
+
+/// isLegalAddressImmediate - Return true if the integer value or
+/// GlobalValue can be used as the offset of the target addressing mode.
+bool TargetLowering::isLegalAddressImmediate(int64_t V) const {
+  return false;
+}
+bool TargetLowering::isLegalAddressImmediate(GlobalValue *GV) const {
+  return false;
+}
+
+
+// Magic for divide replacement
+
+struct ms {
+  int64_t m;  // magic number
+  int64_t s;  // shift amount
+};
+
+struct mu {
+  uint64_t m; // magic number
+  int64_t a;  // add indicator
+  int64_t s;  // shift amount
+};
+
+/// magic - calculate the magic numbers required to codegen an integer sdiv as
+/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
+/// or -1.
+static ms magic32(int32_t d) {
+  int32_t p;
+  uint32_t ad, anc, delta, q1, r1, q2, r2, t;
+  const uint32_t two31 = 0x80000000U;
+  struct ms mag;
+  
+  ad = abs(d);
+  t = two31 + ((uint32_t)d >> 31);
+  anc = t - 1 - t%ad;   // absolute value of nc
+  p = 31;               // initialize p
+  q1 = two31/anc;       // initialize q1 = 2p/abs(nc)
+  r1 = two31 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
+  q2 = two31/ad;        // initialize q2 = 2p/abs(d)
+  r2 = two31 - q2*ad;   // initialize r2 = rem(2p,abs(d))
+  do {
+    p = p + 1;
+    q1 = 2*q1;        // update q1 = 2p/abs(nc)
+    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
+    if (r1 >= anc) {  // must be unsigned comparison
+      q1 = q1 + 1;
+      r1 = r1 - anc;
+    }
+    q2 = 2*q2;        // update q2 = 2p/abs(d)
+    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
+    if (r2 >= ad) {   // must be unsigned comparison
+      q2 = q2 + 1;
+      r2 = r2 - ad;
+    }
+    delta = ad - r2;
+  } while (q1 < delta || (q1 == delta && r1 == 0));
+  
+  mag.m = (int32_t)(q2 + 1); // make sure to sign extend
+  if (d < 0) mag.m = -mag.m; // resulting magic number
+  mag.s = p - 32;            // resulting shift
+  return mag;
+}
+
+/// magicu - calculate the magic numbers required to codegen an integer udiv as
+/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
+static mu magicu32(uint32_t d) {
+  int32_t p;
+  uint32_t nc, delta, q1, r1, q2, r2;
+  struct mu magu;
+  magu.a = 0;               // initialize "add" indicator
+  nc = - 1 - (-d)%d;
+  p = 31;                   // initialize p
+  q1 = 0x80000000/nc;       // initialize q1 = 2p/nc
+  r1 = 0x80000000 - q1*nc;  // initialize r1 = rem(2p,nc)
+  q2 = 0x7FFFFFFF/d;        // initialize q2 = (2p-1)/d
+  r2 = 0x7FFFFFFF - q2*d;   // initialize r2 = rem((2p-1),d)
+  do {
+    p = p + 1;
+    if (r1 >= nc - r1 ) {
+      q1 = 2*q1 + 1;  // update q1
+      r1 = 2*r1 - nc; // update r1
+    }
+    else {
+      q1 = 2*q1; // update q1
+      r1 = 2*r1; // update r1
+    }
+    if (r2 + 1 >= d - r2) {
+      if (q2 >= 0x7FFFFFFF) magu.a = 1;
+      q2 = 2*q2 + 1;     // update q2
+      r2 = 2*r2 + 1 - d; // update r2
+    }
+    else {
+      if (q2 >= 0x80000000) magu.a = 1;
+      q2 = 2*q2;     // update q2
+      r2 = 2*r2 + 1; // update r2
+    }
+    delta = d - 1 - r2;
+  } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
+  magu.m = q2 + 1; // resulting magic number
+  magu.s = p - 32;  // resulting shift
+  return magu;
+}
+
+/// magic - calculate the magic numbers required to codegen an integer sdiv as
+/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
+/// or -1.
+static ms magic64(int64_t d) {
+  int64_t p;
+  uint64_t ad, anc, delta, q1, r1, q2, r2, t;
+  const uint64_t two63 = 9223372036854775808ULL; // 2^63
+  struct ms mag;
+  
+  ad = d >= 0 ? d : -d;
+  t = two63 + ((uint64_t)d >> 63);
+  anc = t - 1 - t%ad;   // absolute value of nc
+  p = 63;               // initialize p
+  q1 = two63/anc;       // initialize q1 = 2p/abs(nc)
+  r1 = two63 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
+  q2 = two63/ad;        // initialize q2 = 2p/abs(d)
+  r2 = two63 - q2*ad;   // initialize r2 = rem(2p,abs(d))
+  do {
+    p = p + 1;
+    q1 = 2*q1;        // update q1 = 2p/abs(nc)
+    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
+    if (r1 >= anc) {  // must be unsigned comparison
+      q1 = q1 + 1;
+      r1 = r1 - anc;
+    }
+    q2 = 2*q2;        // update q2 = 2p/abs(d)
+    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
+    if (r2 >= ad) {   // must be unsigned comparison
+      q2 = q2 + 1;
+      r2 = r2 - ad;
+    }
+    delta = ad - r2;
+  } while (q1 < delta || (q1 == delta && r1 == 0));
+  
+  mag.m = q2 + 1;
+  if (d < 0) mag.m = -mag.m; // resulting magic number
+  mag.s = p - 64;            // resulting shift
+  return mag;
+}
+
+/// magicu - calculate the magic numbers required to codegen an integer udiv as
+/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
+static mu magicu64(uint64_t d)
+{
+  int64_t p;
+  uint64_t nc, delta, q1, r1, q2, r2;
+  struct mu magu;
+  magu.a = 0;               // initialize "add" indicator
+  nc = - 1 - (-d)%d;
+  p = 63;                   // initialize p
+  q1 = 0x8000000000000000ull/nc;       // initialize q1 = 2p/nc
+  r1 = 0x8000000000000000ull - q1*nc;  // initialize r1 = rem(2p,nc)
+  q2 = 0x7FFFFFFFFFFFFFFFull/d;        // initialize q2 = (2p-1)/d
+  r2 = 0x7FFFFFFFFFFFFFFFull - q2*d;   // initialize r2 = rem((2p-1),d)
+  do {
+    p = p + 1;
+    if (r1 >= nc - r1 ) {
+      q1 = 2*q1 + 1;  // update q1
+      r1 = 2*r1 - nc; // update r1
+    }
+    else {
+      q1 = 2*q1; // update q1
+      r1 = 2*r1; // update r1
+    }
+    if (r2 + 1 >= d - r2) {
+      if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
+      q2 = 2*q2 + 1;     // update q2
+      r2 = 2*r2 + 1 - d; // update r2
+    }
+    else {
+      if (q2 >= 0x8000000000000000ull) magu.a = 1;
+      q2 = 2*q2;     // update q2
+      r2 = 2*r2 + 1; // update r2
+    }
+    delta = d - 1 - r2;
+  } while (p < 128 && (q1 < delta || (q1 == delta && r1 == 0)));
+  magu.m = q2 + 1; // resulting magic number
+  magu.s = p - 64;  // resulting shift
+  return magu;
+}
+
+/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
+/// return a DAG expression to select that will generate the same value by
+/// multiplying by a magic number.  See:
+/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
+SDOperand TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 
+                                   std::vector<SDNode*>* Created) const {
+  MVT::ValueType VT = N->getValueType(0);
+  
+  // Check to see if we can do this.
+  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
+    return SDOperand();       // BuildSDIV only operates on i32 or i64
+  if (!isOperationLegal(ISD::MULHS, VT))
+    return SDOperand();       // Make sure the target supports MULHS.
+  
+  int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended();
+  ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
+  
+  // Multiply the numerator (operand 0) by the magic value
+  SDOperand Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
+                            DAG.getConstant(magics.m, VT));
+  // If d > 0 and m < 0, add the numerator
+  if (d > 0 && magics.m < 0) { 
+    Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
+    if (Created)
+      Created->push_back(Q.Val);
+  }
+  // If d < 0 and m > 0, subtract the numerator.
+  if (d < 0 && magics.m > 0) {
+    Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
+    if (Created)
+      Created->push_back(Q.Val);
+  }
+  // Shift right algebraic if shift value is nonzero
+  if (magics.s > 0) {
+    Q = DAG.getNode(ISD::SRA, VT, Q, 
+                    DAG.getConstant(magics.s, getShiftAmountTy()));
+    if (Created)
+      Created->push_back(Q.Val);
+  }
+  // Extract the sign bit and add it to the quotient
+  SDOperand T =
+    DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(MVT::getSizeInBits(VT)-1,
+                                                 getShiftAmountTy()));
+  if (Created)
+    Created->push_back(T.Val);
+  return DAG.getNode(ISD::ADD, VT, Q, T);
+}
+
+/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
+/// return a DAG expression to select that will generate the same value by
+/// multiplying by a magic number.  See:
+/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
+SDOperand TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
+                                   std::vector<SDNode*>* Created) const {
+  MVT::ValueType VT = N->getValueType(0);
+  
+  // Check to see if we can do this.
+  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
+    return SDOperand();       // BuildUDIV only operates on i32 or i64
+  if (!isOperationLegal(ISD::MULHU, VT))
+    return SDOperand();       // Make sure the target supports MULHU.
+  
+  uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue();
+  mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
+  
+  // Multiply the numerator (operand 0) by the magic value
+  SDOperand Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
+                            DAG.getConstant(magics.m, VT));
+  if (Created)
+    Created->push_back(Q.Val);
+
+  if (magics.a == 0) {
+    return DAG.getNode(ISD::SRL, VT, Q, 
+                       DAG.getConstant(magics.s, getShiftAmountTy()));
+  } else {
+    SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
+    if (Created)
+      Created->push_back(NPQ.Val);
+    NPQ = DAG.getNode(ISD::SRL, VT, NPQ, 
+                      DAG.getConstant(1, getShiftAmountTy()));
+    if (Created)
+      Created->push_back(NPQ.Val);
+    NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
+    if (Created)
+      Created->push_back(NPQ.Val);
+    return DAG.getNode(ISD::SRL, VT, NPQ, 
+                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
+  }
+}