remove a noop function.
[oota-llvm.git] / lib / CodeGen / Spiller.cpp
index 237d0b5f4658a773b07d6727872600e604b6e07e..7ba44031714bcf6bd3b63a65b690c170051fbb34 100644 (file)
 #include "llvm/Support/CommandLine.h"
 #include "llvm/Support/Debug.h"
 #include "llvm/Support/raw_ostream.h"
+#include <set>
 
 using namespace llvm;
 
 namespace {
-  enum SpillerName { trivial, standard };
+  enum SpillerName { trivial, standard, splitting };
 }
 
 static cl::opt<SpillerName>
 spillerOpt("spiller",
            cl::desc("Spiller to use: (default: standard)"),
            cl::Prefix,
-           cl::values(clEnumVal(trivial, "trivial spiller"),
-                      clEnumVal(standard, "default spiller"),
+           cl::values(clEnumVal(trivial,   "trivial spiller"),
+                      clEnumVal(standard,  "default spiller"),
+                      clEnumVal(splitting, "splitting spiller"),
                       clEnumValEnd),
            cl::init(standard));
 
+// Spiller virtual destructor implementation.
 Spiller::~Spiller() {}
 
 namespace {
@@ -64,7 +67,7 @@ protected:
   /// immediately before each use, and stores after each def. No folding or
   /// remat is attempted.
   std::vector<LiveInterval*> trivialSpillEverywhere(LiveInterval *li) {
-    DEBUG(errs() << "Spilling everywhere " << *li << "\n");
+    DEBUG(dbgs() << "Spilling everywhere " << *li << "\n");
 
     assert(li->weight != HUGE_VALF &&
            "Attempting to spill already spilled value.");
@@ -72,7 +75,7 @@ protected:
     assert(!li->isStackSlot() &&
            "Trying to spill a stack slot.");
 
-    DEBUG(errs() << "Trivial spill everywhere of reg" << li->reg << "\n");
+    DEBUG(dbgs() << "Trivial spill everywhere of reg" << li->reg << "\n");
 
     std::vector<LiveInterval*> added;
     
@@ -86,7 +89,7 @@ protected:
       // Grab the use/def instr.
       MachineInstr *mi = &*regItr;
 
-      DEBUG(errs() << "  Processing " << *mi);
+      DEBUG(dbgs() << "  Processing " << *mi);
 
       // Step regItr to the next use/def instr.
       do {
@@ -140,9 +143,9 @@ protected:
 
       // Insert store if necessary.
       if (hasDef) {
-        tii->storeRegToStackSlot(*mi->getParent(), next(miItr), newVReg, true,
+        tii->storeRegToStackSlot(*mi->getParent(), llvm::next(miItr), newVReg, true,
                                  ss, trc);
-        MachineInstr *storeInstr(next(miItr));
+        MachineInstr *storeInstr(llvm::next(miItr));
         SlotIndex storeIndex =
           lis->InsertMachineInstrInMaps(storeInstr).getDefIndex();
         SlotIndex beginIndex = storeIndex.getPrevIndex();
@@ -170,7 +173,8 @@ public:
     : SpillerBase(mf, lis, vrm) {}
 
   std::vector<LiveInterval*> spill(LiveInterval *li,
-                                   SmallVectorImpl<LiveInterval*> &spillIs) {
+                                   SmallVectorImpl<LiveInterval*> &spillIs,
+                                   SlotIndex*) {
     // Ignore spillIs - we don't use it.
     return trivialSpillEverywhere(li);
   }
@@ -179,23 +183,336 @@ public:
 
 /// Falls back on LiveIntervals::addIntervalsForSpills.
 class StandardSpiller : public Spiller {
-private:
+protected:
   LiveIntervals *lis;
   const MachineLoopInfo *loopInfo;
   VirtRegMap *vrm;
 public:
-  StandardSpiller(MachineFunction *mf, LiveIntervals *lis,
-                  const MachineLoopInfo *loopInfo, VirtRegMap *vrm)
+  StandardSpiller(LiveIntervals *lis, const MachineLoopInfo *loopInfo,
+                  VirtRegMap *vrm)
     : lis(lis), loopInfo(loopInfo), vrm(vrm) {}
 
   /// Falls back on LiveIntervals::addIntervalsForSpills.
   std::vector<LiveInterval*> spill(LiveInterval *li,
-                                   SmallVectorImpl<LiveInterval*> &spillIs) {
+                                   SmallVectorImpl<LiveInterval*> &spillIs,
+                                   SlotIndex*) {
     return lis->addIntervalsForSpills(*li, spillIs, loopInfo, *vrm);
   }
 
 };
 
+/// When a call to spill is placed this spiller will first try to break the
+/// interval up into its component values (one new interval per value).
+/// If this fails, or if a call is placed to spill a previously split interval
+/// then the spiller falls back on the standard spilling mechanism. 
+class SplittingSpiller : public StandardSpiller {
+public:
+  SplittingSpiller(MachineFunction *mf, LiveIntervals *lis,
+                   const MachineLoopInfo *loopInfo, VirtRegMap *vrm)
+    : StandardSpiller(lis, loopInfo, vrm) {
+
+    mri = &mf->getRegInfo();
+    tii = mf->getTarget().getInstrInfo();
+    tri = mf->getTarget().getRegisterInfo();
+  }
+
+  std::vector<LiveInterval*> spill(LiveInterval *li,
+                                   SmallVectorImpl<LiveInterval*> &spillIs,
+                                   SlotIndex *earliestStart) {
+    
+    if (worthTryingToSplit(li)) {
+      return tryVNISplit(li, earliestStart);
+    }
+    // else
+    return StandardSpiller::spill(li, spillIs, earliestStart);
+  }
+
+private:
+
+  MachineRegisterInfo *mri;
+  const TargetInstrInfo *tii;
+  const TargetRegisterInfo *tri;  
+  DenseSet<LiveInterval*> alreadySplit;
+
+  bool worthTryingToSplit(LiveInterval *li) const {
+    return (!alreadySplit.count(li) && li->getNumValNums() > 1);
+  }
+
+  /// Try to break a LiveInterval into its component values.
+  std::vector<LiveInterval*> tryVNISplit(LiveInterval *li,
+                                         SlotIndex *earliestStart) {
+
+    DEBUG(dbgs() << "Trying VNI split of %reg" << *li << "\n");
+
+    std::vector<LiveInterval*> added;
+    SmallVector<VNInfo*, 4> vnis;
+
+    std::copy(li->vni_begin(), li->vni_end(), std::back_inserter(vnis));
+   
+    for (SmallVectorImpl<VNInfo*>::iterator vniItr = vnis.begin(),
+         vniEnd = vnis.end(); vniItr != vniEnd; ++vniItr) {
+      VNInfo *vni = *vniItr;
+      
+      // Skip unused VNIs, or VNIs with no kills.
+      if (vni->isUnused() || vni->kills.empty())
+        continue;
+
+      DEBUG(dbgs() << "  Extracted Val #" << vni->id << " as ");
+      LiveInterval *splitInterval = extractVNI(li, vni);
+      
+      if (splitInterval != 0) {
+        DEBUG(dbgs() << *splitInterval << "\n");
+        added.push_back(splitInterval);
+        alreadySplit.insert(splitInterval);
+        if (earliestStart != 0) {
+          if (splitInterval->beginIndex() < *earliestStart)
+            *earliestStart = splitInterval->beginIndex();
+        }
+      } else {
+        DEBUG(dbgs() << "0\n");
+      }
+    } 
+
+    DEBUG(dbgs() << "Original LI: " << *li << "\n");
+
+    // If there original interval still contains some live ranges
+    // add it to added and alreadySplit.    
+    if (!li->empty()) {
+      added.push_back(li);
+      alreadySplit.insert(li);
+      if (earliestStart != 0) {
+        if (li->beginIndex() < *earliestStart)
+          *earliestStart = li->beginIndex();
+      }
+    }
+
+    return added;
+  }
+
+  /// Extract the given value number from the interval.
+  LiveInterval* extractVNI(LiveInterval *li, VNInfo *vni) const {
+    assert(vni->isDefAccurate() || vni->isPHIDef());
+    assert(!vni->kills.empty());
+
+    // Create a new vreg and live interval, copy VNI kills & ranges over.                                                                                                                                                     
+    const TargetRegisterClass *trc = mri->getRegClass(li->reg);
+    unsigned newVReg = mri->createVirtualRegister(trc);
+    vrm->grow();
+    LiveInterval *newLI = &lis->getOrCreateInterval(newVReg);
+    VNInfo *newVNI = newLI->createValueCopy(vni, lis->getVNInfoAllocator());
+
+    // Start by copying all live ranges in the VN to the new interval.                                                                                                                                                        
+    for (LiveInterval::iterator rItr = li->begin(), rEnd = li->end();
+         rItr != rEnd; ++rItr) {
+      if (rItr->valno == vni) {
+        newLI->addRange(LiveRange(rItr->start, rItr->end, newVNI));
+      }
+    }
+
+    // Erase the old VNI & ranges.                                                                                                                                                                                            
+    li->removeValNo(vni);
+
+    // Collect all current uses of the register belonging to the given VNI.
+    // We'll use this to rename the register after we've dealt with the def.
+    std::set<MachineInstr*> uses;
+    for (MachineRegisterInfo::use_iterator
+         useItr = mri->use_begin(li->reg), useEnd = mri->use_end();
+         useItr != useEnd; ++useItr) {
+      uses.insert(&*useItr);
+    }
+
+    // Process the def instruction for this VNI.
+    if (newVNI->isPHIDef()) {
+      // Insert a copy at the start of the MBB. The range proceeding the
+      // copy will be attached to the original LiveInterval.
+      MachineBasicBlock *defMBB = lis->getMBBFromIndex(newVNI->def);
+      tii->copyRegToReg(*defMBB, defMBB->begin(), newVReg, li->reg, trc, trc);
+      MachineInstr *copyMI = defMBB->begin();
+      copyMI->addRegisterKilled(li->reg, tri);
+      SlotIndex copyIdx = lis->InsertMachineInstrInMaps(copyMI);
+      VNInfo *phiDefVNI = li->getNextValue(lis->getMBBStartIdx(defMBB),
+                                           0, false, lis->getVNInfoAllocator());
+      phiDefVNI->setIsPHIDef(true);
+      phiDefVNI->addKill(copyIdx.getDefIndex());
+      li->addRange(LiveRange(phiDefVNI->def, copyIdx.getDefIndex(), phiDefVNI));
+      LiveRange *oldPHIDefRange =
+        newLI->getLiveRangeContaining(lis->getMBBStartIdx(defMBB));
+
+      // If the old phi def starts in the middle of the range chop it up.
+      if (oldPHIDefRange->start < lis->getMBBStartIdx(defMBB)) {
+        LiveRange oldPHIDefRange2(copyIdx.getDefIndex(), oldPHIDefRange->end,
+                                  oldPHIDefRange->valno);
+        oldPHIDefRange->end = lis->getMBBStartIdx(defMBB);
+        newLI->addRange(oldPHIDefRange2);
+      } else if (oldPHIDefRange->start == lis->getMBBStartIdx(defMBB)) {
+        // Otherwise if it's at the start of the range just trim it.
+        oldPHIDefRange->start = copyIdx.getDefIndex();
+      } else {
+        assert(false && "PHI def range doesn't cover PHI def?");
+      }
+
+      newVNI->def = copyIdx.getDefIndex();
+      newVNI->setCopy(copyMI);
+      newVNI->setIsPHIDef(false); // not a PHI def anymore.
+      newVNI->setIsDefAccurate(true);
+    } else {
+      // non-PHI def. Rename the def. If it's two-addr that means renaming the use
+      // and inserting a new copy too.
+      MachineInstr *defInst = lis->getInstructionFromIndex(newVNI->def);
+      // We'll rename this now, so we can remove it from uses.
+      uses.erase(defInst);
+      unsigned defOpIdx = defInst->findRegisterDefOperandIdx(li->reg);
+      bool isTwoAddr = defInst->isRegTiedToUseOperand(defOpIdx),
+        twoAddrUseIsUndef = false;
+
+      for (unsigned i = 0; i < defInst->getNumOperands(); ++i) {
+        MachineOperand &mo = defInst->getOperand(i);
+        if (mo.isReg() && (mo.isDef() || isTwoAddr) && (mo.getReg()==li->reg)) {
+          mo.setReg(newVReg);
+          if (isTwoAddr && mo.isUse() && mo.isUndef())
+            twoAddrUseIsUndef = true;
+        }
+      }
+    
+      SlotIndex defIdx = lis->getInstructionIndex(defInst);
+      newVNI->def = defIdx.getDefIndex();
+
+      if (isTwoAddr && !twoAddrUseIsUndef) {
+        MachineBasicBlock *defMBB = defInst->getParent();
+        tii->copyRegToReg(*defMBB, defInst, newVReg, li->reg, trc, trc);
+        MachineInstr *copyMI = prior(MachineBasicBlock::iterator(defInst));
+        SlotIndex copyIdx = lis->InsertMachineInstrInMaps(copyMI);
+        copyMI->addRegisterKilled(li->reg, tri);
+        LiveRange *origUseRange =
+          li->getLiveRangeContaining(newVNI->def.getUseIndex());
+        VNInfo *origUseVNI = origUseRange->valno;
+        origUseRange->end = copyIdx.getDefIndex();
+        bool updatedKills = false;
+        for (unsigned k = 0; k < origUseVNI->kills.size(); ++k) {
+          if (origUseVNI->kills[k] == defIdx.getDefIndex()) {
+            origUseVNI->kills[k] = copyIdx.getDefIndex();
+            updatedKills = true;
+            break;
+          }
+        }
+        assert(updatedKills && "Failed to update VNI kill list.");
+        VNInfo *copyVNI = newLI->getNextValue(copyIdx.getDefIndex(), copyMI,
+                                              true, lis->getVNInfoAllocator());
+        copyVNI->addKill(defIdx.getDefIndex());
+        LiveRange copyRange(copyIdx.getDefIndex(),defIdx.getDefIndex(),copyVNI);
+        newLI->addRange(copyRange);
+      }    
+    }
+    
+    for (std::set<MachineInstr*>::iterator
+         usesItr = uses.begin(), usesEnd = uses.end();
+         usesItr != usesEnd; ++usesItr) {
+      MachineInstr *useInst = *usesItr;
+      SlotIndex useIdx = lis->getInstructionIndex(useInst);
+      LiveRange *useRange =
+        newLI->getLiveRangeContaining(useIdx.getUseIndex());
+
+      // If this use doesn't belong to the new interval skip it.
+      if (useRange == 0)
+        continue;
+
+      // This use doesn't belong to the VNI, skip it.
+      if (useRange->valno != newVNI)
+        continue;
+
+      // Check if this instr is two address.
+      unsigned useOpIdx = useInst->findRegisterUseOperandIdx(li->reg);
+      bool isTwoAddress = useInst->isRegTiedToDefOperand(useOpIdx);
+      
+      // Rename uses (and defs for two-address instrs).
+      for (unsigned i = 0; i < useInst->getNumOperands(); ++i) {
+        MachineOperand &mo = useInst->getOperand(i);
+        if (mo.isReg() && (mo.isUse() || isTwoAddress) &&
+            (mo.getReg() == li->reg)) {
+          mo.setReg(newVReg);
+        }
+      }
+
+      // If this is a two address instruction we've got some extra work to do.
+      if (isTwoAddress) {
+        // We modified the def operand, so we need to copy back to the original
+        // reg.
+        MachineBasicBlock *useMBB = useInst->getParent();
+        MachineBasicBlock::iterator useItr(useInst);
+        tii->copyRegToReg(*useMBB, next(useItr), li->reg, newVReg, trc, trc);
+        MachineInstr *copyMI = next(useItr);
+        copyMI->addRegisterKilled(newVReg, tri);
+        SlotIndex copyIdx = lis->InsertMachineInstrInMaps(copyMI);
+
+        // Change the old two-address defined range & vni to start at
+        // (and be defined by) the copy.
+        LiveRange *origDefRange =
+          li->getLiveRangeContaining(useIdx.getDefIndex());
+        origDefRange->start = copyIdx.getDefIndex();
+        origDefRange->valno->def = copyIdx.getDefIndex();
+        origDefRange->valno->setCopy(copyMI);
+
+        // Insert a new range & vni for the two-address-to-copy value. This
+        // will be attached to the new live interval.
+        VNInfo *copyVNI =
+          newLI->getNextValue(useIdx.getDefIndex(), 0, true,
+                              lis->getVNInfoAllocator());
+        copyVNI->addKill(copyIdx.getDefIndex());
+        LiveRange copyRange(useIdx.getDefIndex(),copyIdx.getDefIndex(),copyVNI);
+        newLI->addRange(copyRange);
+      }
+    }
+    
+    // Iterate over any PHI kills - we'll need to insert new copies for them.
+    for (VNInfo::KillSet::iterator
+         killItr = newVNI->kills.begin(), killEnd = newVNI->kills.end();
+         killItr != killEnd; ++killItr) {
+      SlotIndex killIdx(*killItr);
+      if (killItr->isPHI()) {
+        MachineBasicBlock *killMBB = lis->getMBBFromIndex(killIdx);
+        LiveRange *oldKillRange =
+          newLI->getLiveRangeContaining(killIdx);
+
+        assert(oldKillRange != 0 && "No kill range?");
+
+        tii->copyRegToReg(*killMBB, killMBB->getFirstTerminator(),
+                          li->reg, newVReg, trc, trc);
+        MachineInstr *copyMI = prior(killMBB->getFirstTerminator());
+        copyMI->addRegisterKilled(newVReg, tri);
+        SlotIndex copyIdx = lis->InsertMachineInstrInMaps(copyMI);
+
+        // Save the current end. We may need it to add a new range if the
+        // current range runs of the end of the MBB.
+        SlotIndex newKillRangeEnd = oldKillRange->end;
+        oldKillRange->end = copyIdx.getDefIndex();
+
+        if (newKillRangeEnd != lis->getMBBEndIdx(killMBB)) {
+          assert(newKillRangeEnd > lis->getMBBEndIdx(killMBB) &&
+                 "PHI kill range doesn't reach kill-block end. Not sane.");
+          newLI->addRange(LiveRange(lis->getMBBEndIdx(killMBB),
+                                    newKillRangeEnd, newVNI));
+        }
+
+        *killItr = oldKillRange->end;
+        VNInfo *newKillVNI = li->getNextValue(copyIdx.getDefIndex(),
+                                              copyMI, true,
+                                              lis->getVNInfoAllocator());
+        newKillVNI->addKill(lis->getMBBTerminatorGap(killMBB));
+        newKillVNI->setHasPHIKill(true);
+        li->addRange(LiveRange(copyIdx.getDefIndex(),
+                               lis->getMBBEndIdx(killMBB),
+                               newKillVNI));
+      }
+
+    }
+
+    newVNI->setHasPHIKill(false);
+
+    return newLI;
+  }
+
+};
+
 }
 
 llvm::Spiller* llvm::createSpiller(MachineFunction *mf, LiveIntervals *lis,
@@ -203,7 +520,8 @@ llvm::Spiller* llvm::createSpiller(MachineFunction *mf, LiveIntervals *lis,
                                    VirtRegMap *vrm) {
   switch (spillerOpt) {
     case trivial: return new TrivialSpiller(mf, lis, vrm); break;
-    case standard: return new StandardSpiller(mf, lis, loopInfo, vrm); break;
+    case standard: return new StandardSpiller(lis, loopInfo, vrm); break;
+    case splitting: return new SplittingSpiller(mf, lis, loopInfo, vrm); break;
     default: llvm_unreachable("Unreachable!"); break;
   }
 }