[PowerPC] Support powerpc64le as a syntax-checking target.
[oota-llvm.git] / lib / ExecutionEngine / RuntimeDyld / RuntimeDyld.cpp
index 2896c2d556c55ee9d3dc3d17b1f84fe822641ab8..943622fba8736518095a9ee59cde7116f9bc5b08 100644 (file)
 //===----------------------------------------------------------------------===//
 
 #define DEBUG_TYPE "dyld"
-#include "RuntimeDyldImpl.h"
+#include "llvm/ExecutionEngine/RuntimeDyld.h"
+#include "ObjectImageCommon.h"
 #include "RuntimeDyldELF.h"
+#include "RuntimeDyldImpl.h"
 #include "RuntimeDyldMachO.h"
-#include "llvm/Support/Path.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Object/ELF.h"
 
 using namespace llvm;
 using namespace llvm::object;
 
 // Empty out-of-line virtual destructor as the key function.
-RTDyldMemoryManager::~RTDyldMemoryManager() {}
 RuntimeDyldImpl::~RuntimeDyldImpl() {}
 
 namespace llvm {
 
-void RuntimeDyldImpl::extractFunction(StringRef Name, uint8_t *StartAddress,
-                                      uint8_t *EndAddress) {
-  // FIXME: DEPRECATED in favor of by-section allocation.
-  // Allocate memory for the function via the memory manager.
-  uintptr_t Size = EndAddress - StartAddress + 1;
-  uintptr_t AllocSize = Size;
-  uint8_t *Mem = MemMgr->startFunctionBody(Name.data(), AllocSize);
-  assert(Size >= (uint64_t)(EndAddress - StartAddress + 1) &&
-         "Memory manager failed to allocate enough memory!");
-  // Copy the function payload into the memory block.
-  memcpy(Mem, StartAddress, Size);
-  MemMgr->endFunctionBody(Name.data(), Mem, Mem + Size);
-  // Remember where we put it.
-  unsigned SectionID = Sections.size();
-  Sections.push_back(sys::MemoryBlock(Mem, Size));
-
-  // Default the assigned address for this symbol to wherever this
-  // allocated it.
-  SymbolTable[Name] = SymbolLoc(SectionID, 0);
-  DEBUG(dbgs() << "    allocated to [" << Mem << ", " << Mem + Size << "]\n");
+StringRef RuntimeDyldImpl::getEHFrameSection() {
+  return StringRef();
 }
 
 // Resolve the relocations for all symbols we currently know about.
 void RuntimeDyldImpl::resolveRelocations() {
+  // First, resolve relocations associated with external symbols.
+  resolveExternalSymbols();
+
   // Just iterate over the sections we have and resolve all the relocations
   // in them. Gross overkill, but it gets the job done.
   for (int i = 0, e = Sections.size(); i != e; ++i) {
-    reassignSectionAddress(i, SectionLoadAddress[i]);
+    uint64_t Addr = Sections[i].LoadAddress;
+    DEBUG(dbgs() << "Resolving relocations Section #" << i
+            << "\t" << format("%p", (uint8_t *)Addr)
+            << "\n");
+    resolveRelocationList(Relocations[i], Addr);
   }
 }
 
-void RuntimeDyldImpl::mapSectionAddress(void *LocalAddress,
+void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
                                         uint64_t TargetAddress) {
-  assert(SectionLocalMemToID.count(LocalAddress) &&
-         "Attempting to remap address of unknown section!");
-  unsigned SectionID = SectionLocalMemToID[LocalAddress];
-  reassignSectionAddress(SectionID, TargetAddress);
+  for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
+    if (Sections[i].Address == LocalAddress) {
+      reassignSectionAddress(i, TargetAddress);
+      return;
+    }
+  }
+  llvm_unreachable("Attempting to remap address of unknown section!");
+}
+
+// Subclasses can implement this method to create specialized image instances.
+// The caller owns the pointer that is returned.
+ObjectImage *RuntimeDyldImpl::createObjectImage(ObjectBuffer *InputBuffer) {
+  return new ObjectImageCommon(InputBuffer);
+}
+
+ObjectImage *RuntimeDyldImpl::loadObject(ObjectBuffer *InputBuffer) {
+  OwningPtr<ObjectImage> obj(createObjectImage(InputBuffer));
+  if (!obj)
+    report_fatal_error("Unable to create object image from memory buffer!");
+
+  Arch = (Triple::ArchType)obj->getArch();
+
+  // Symbols found in this object
+  StringMap<SymbolLoc> LocalSymbols;
+  // Used sections from the object file
+  ObjSectionToIDMap LocalSections;
+
+  // Common symbols requiring allocation, with their sizes and alignments
+  CommonSymbolMap CommonSymbols;
+  // Maximum required total memory to allocate all common symbols
+  uint64_t CommonSize = 0;
+
+  error_code err;
+  // Parse symbols
+  DEBUG(dbgs() << "Parse symbols:\n");
+  for (symbol_iterator i = obj->begin_symbols(), e = obj->end_symbols();
+       i != e; i.increment(err)) {
+    Check(err);
+    object::SymbolRef::Type SymType;
+    StringRef Name;
+    Check(i->getType(SymType));
+    Check(i->getName(Name));
+
+    uint32_t flags;
+    Check(i->getFlags(flags));
+
+    bool isCommon = flags & SymbolRef::SF_Common;
+    if (isCommon) {
+      // Add the common symbols to a list.  We'll allocate them all below.
+      uint32_t Align;
+      Check(i->getAlignment(Align));
+      uint64_t Size = 0;
+      Check(i->getSize(Size));
+      CommonSize += Size + Align;
+      CommonSymbols[*i] = CommonSymbolInfo(Size, Align);
+    } else {
+      if (SymType == object::SymbolRef::ST_Function ||
+          SymType == object::SymbolRef::ST_Data ||
+          SymType == object::SymbolRef::ST_Unknown) {
+        uint64_t FileOffset;
+        StringRef SectionData;
+        bool IsCode;
+        section_iterator si = obj->end_sections();
+        Check(i->getFileOffset(FileOffset));
+        Check(i->getSection(si));
+        if (si == obj->end_sections()) continue;
+        Check(si->getContents(SectionData));
+        Check(si->isText(IsCode));
+        const uint8_t* SymPtr = (const uint8_t*)InputBuffer->getBufferStart() +
+                                (uintptr_t)FileOffset;
+        uintptr_t SectOffset = (uintptr_t)(SymPtr -
+                                           (const uint8_t*)SectionData.begin());
+        unsigned SectionID = findOrEmitSection(*obj, *si, IsCode, LocalSections);
+        LocalSymbols[Name.data()] = SymbolLoc(SectionID, SectOffset);
+        DEBUG(dbgs() << "\tFileOffset: " << format("%p", (uintptr_t)FileOffset)
+                     << " flags: " << flags
+                     << " SID: " << SectionID
+                     << " Offset: " << format("%p", SectOffset));
+        GlobalSymbolTable[Name] = SymbolLoc(SectionID, SectOffset);
+      }
+    }
+    DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name << "\n");
+  }
+
+  // Allocate common symbols
+  if (CommonSize != 0)
+    emitCommonSymbols(*obj, CommonSymbols, CommonSize, LocalSymbols);
+
+  // Parse and process relocations
+  DEBUG(dbgs() << "Parse relocations:\n");
+  for (section_iterator si = obj->begin_sections(),
+       se = obj->end_sections(); si != se; si.increment(err)) {
+    Check(err);
+    bool isFirstRelocation = true;
+    unsigned SectionID = 0;
+    StubMap Stubs;
+    section_iterator RelocatedSection = si->getRelocatedSection();
+
+    for (relocation_iterator i = si->begin_relocations(),
+         e = si->end_relocations(); i != e; i.increment(err)) {
+      Check(err);
+
+      // If it's the first relocation in this section, find its SectionID
+      if (isFirstRelocation) {
+        SectionID =
+            findOrEmitSection(*obj, *RelocatedSection, true, LocalSections);
+        DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
+        isFirstRelocation = false;
+      }
+
+      processRelocationRef(SectionID, *i, *obj, LocalSections, LocalSymbols,
+                          Stubs);
+    }
+  }
+
+  return obj.take();
+}
+
+void RuntimeDyldImpl::emitCommonSymbols(ObjectImage &Obj,
+                                        const CommonSymbolMap &CommonSymbols,
+                                        uint64_t TotalSize,
+                                        SymbolTableMap &SymbolTable) {
+  // Allocate memory for the section
+  unsigned SectionID = Sections.size();
+  uint8_t *Addr = MemMgr->allocateDataSection(TotalSize, sizeof(void*),
+                                              SectionID, false);
+  if (!Addr)
+    report_fatal_error("Unable to allocate memory for common symbols!");
+  uint64_t Offset = 0;
+  Sections.push_back(SectionEntry(StringRef(), Addr, TotalSize, 0));
+  memset(Addr, 0, TotalSize);
+
+  DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID
+               << " new addr: " << format("%p", Addr)
+               << " DataSize: " << TotalSize
+               << "\n");
+
+  // Assign the address of each symbol
+  for (CommonSymbolMap::const_iterator it = CommonSymbols.begin(),
+       itEnd = CommonSymbols.end(); it != itEnd; it++) {
+    uint64_t Size = it->second.first;
+    uint64_t Align = it->second.second;
+    StringRef Name;
+    it->first.getName(Name);
+    if (Align) {
+      // This symbol has an alignment requirement.
+      uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align);
+      Addr += AlignOffset;
+      Offset += AlignOffset;
+      DEBUG(dbgs() << "Allocating common symbol " << Name << " address " <<
+                      format("%p\n", Addr));
+    }
+    Obj.updateSymbolAddress(it->first, (uint64_t)Addr);
+    SymbolTable[Name.data()] = SymbolLoc(SectionID, Offset);
+    Offset += Size;
+    Addr += Size;
+  }
+}
+
+unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj,
+                                      const SectionRef &Section,
+                                      bool IsCode) {
+
+  unsigned StubBufSize = 0,
+           StubSize = getMaxStubSize();
+  error_code err;
+  const ObjectFile *ObjFile = Obj.getObjectFile();
+  // FIXME: this is an inefficient way to handle this. We should computed the
+  // necessary section allocation size in loadObject by walking all the sections
+  // once.
+  if (StubSize > 0) {
+    for (section_iterator SI = ObjFile->begin_sections(),
+           SE = ObjFile->end_sections();
+         SI != SE; SI.increment(err), Check(err)) {
+      section_iterator RelSecI = SI->getRelocatedSection();
+      if (!(RelSecI == Section))
+        continue;
+
+      for (relocation_iterator I = SI->begin_relocations(),
+             E = SI->end_relocations(); I != E; I.increment(err), Check(err)) {
+        StubBufSize += StubSize;
+      }
+    }
+  }
+
+  StringRef data;
+  uint64_t Alignment64;
+  Check(Section.getContents(data));
+  Check(Section.getAlignment(Alignment64));
+
+  unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
+  bool IsRequired;
+  bool IsVirtual;
+  bool IsZeroInit;
+  bool IsReadOnly;
+  uint64_t DataSize;
+  StringRef Name;
+  Check(Section.isRequiredForExecution(IsRequired));
+  Check(Section.isVirtual(IsVirtual));
+  Check(Section.isZeroInit(IsZeroInit));
+  Check(Section.isReadOnlyData(IsReadOnly));
+  Check(Section.getSize(DataSize));
+  Check(Section.getName(Name));
+  if (StubSize > 0) {
+    unsigned StubAlignment = getStubAlignment();
+    unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
+    if (StubAlignment > EndAlignment)
+      StubBufSize += StubAlignment - EndAlignment;
+  }
+
+  unsigned Allocate;
+  unsigned SectionID = Sections.size();
+  uint8_t *Addr;
+  const char *pData = 0;
+
+  // Some sections, such as debug info, don't need to be loaded for execution.
+  // Leave those where they are.
+  if (IsRequired) {
+    Allocate = DataSize + StubBufSize;
+    Addr = IsCode
+      ? MemMgr->allocateCodeSection(Allocate, Alignment, SectionID)
+      : MemMgr->allocateDataSection(Allocate, Alignment, SectionID, IsReadOnly);
+    if (!Addr)
+      report_fatal_error("Unable to allocate section memory!");
+
+    // Virtual sections have no data in the object image, so leave pData = 0
+    if (!IsVirtual)
+      pData = data.data();
+
+    // Zero-initialize or copy the data from the image
+    if (IsZeroInit || IsVirtual)
+      memset(Addr, 0, DataSize);
+    else
+      memcpy(Addr, pData, DataSize);
+
+    DEBUG(dbgs() << "emitSection SectionID: " << SectionID
+                 << " Name: " << Name
+                 << " obj addr: " << format("%p", pData)
+                 << " new addr: " << format("%p", Addr)
+                 << " DataSize: " << DataSize
+                 << " StubBufSize: " << StubBufSize
+                 << " Allocate: " << Allocate
+                 << "\n");
+    Obj.updateSectionAddress(Section, (uint64_t)Addr);
+  }
+  else {
+    // Even if we didn't load the section, we need to record an entry for it
+    // to handle later processing (and by 'handle' I mean don't do anything
+    // with these sections).
+    Allocate = 0;
+    Addr = 0;
+    DEBUG(dbgs() << "emitSection SectionID: " << SectionID
+                 << " Name: " << Name
+                 << " obj addr: " << format("%p", data.data())
+                 << " new addr: 0"
+                 << " DataSize: " << DataSize
+                 << " StubBufSize: " << StubBufSize
+                 << " Allocate: " << Allocate
+                 << "\n");
+  }
+
+  Sections.push_back(SectionEntry(Name, Addr, DataSize, (uintptr_t)pData));
+  return SectionID;
+}
+
+unsigned RuntimeDyldImpl::findOrEmitSection(ObjectImage &Obj,
+                                            const SectionRef &Section,
+                                            bool IsCode,
+                                            ObjSectionToIDMap &LocalSections) {
+
+  unsigned SectionID = 0;
+  ObjSectionToIDMap::iterator i = LocalSections.find(Section);
+  if (i != LocalSections.end())
+    SectionID = i->second;
+  else {
+    SectionID = emitSection(Obj, Section, IsCode);
+    LocalSections[Section] = SectionID;
+  }
+  return SectionID;
+}
+
+void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
+                                              unsigned SectionID) {
+  Relocations[SectionID].push_back(RE);
+}
+
+void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
+                                             StringRef SymbolName) {
+  // Relocation by symbol.  If the symbol is found in the global symbol table,
+  // create an appropriate section relocation.  Otherwise, add it to
+  // ExternalSymbolRelocations.
+  SymbolTableMap::const_iterator Loc =
+      GlobalSymbolTable.find(SymbolName);
+  if (Loc == GlobalSymbolTable.end()) {
+    ExternalSymbolRelocations[SymbolName].push_back(RE);
+  } else {
+    // Copy the RE since we want to modify its addend.
+    RelocationEntry RECopy = RE;
+    RECopy.Addend += Loc->second.second;
+    Relocations[Loc->second.first].push_back(RECopy);
+  }
+}
+
+uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr) {
+  if (Arch == Triple::aarch64) {
+    // This stub has to be able to access the full address space,
+    // since symbol lookup won't necessarily find a handy, in-range,
+    // PLT stub for functions which could be anywhere.
+    uint32_t *StubAddr = (uint32_t*)Addr;
+
+    // Stub can use ip0 (== x16) to calculate address
+    *StubAddr = 0xd2e00010; // movz ip0, #:abs_g3:<addr>
+    StubAddr++;
+    *StubAddr = 0xf2c00010; // movk ip0, #:abs_g2_nc:<addr>
+    StubAddr++;
+    *StubAddr = 0xf2a00010; // movk ip0, #:abs_g1_nc:<addr>
+    StubAddr++;
+    *StubAddr = 0xf2800010; // movk ip0, #:abs_g0_nc:<addr>
+    StubAddr++;
+    *StubAddr = 0xd61f0200; // br ip0
+
+    return Addr;
+  } else if (Arch == Triple::arm) {
+    // TODO: There is only ARM far stub now. We should add the Thumb stub,
+    // and stubs for branches Thumb - ARM and ARM - Thumb.
+    uint32_t *StubAddr = (uint32_t*)Addr;
+    *StubAddr = 0xe51ff004; // ldr pc,<label>
+    return (uint8_t*)++StubAddr;
+  } else if (Arch == Triple::mipsel || Arch == Triple::mips) {
+    uint32_t *StubAddr = (uint32_t*)Addr;
+    // 0:   3c190000        lui     t9,%hi(addr).
+    // 4:   27390000        addiu   t9,t9,%lo(addr).
+    // 8:   03200008        jr      t9.
+    // c:   00000000        nop.
+    const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
+    const unsigned JrT9Instr = 0x03200008, NopInstr = 0x0;
+
+    *StubAddr = LuiT9Instr;
+    StubAddr++;
+    *StubAddr = AdduiT9Instr;
+    StubAddr++;
+    *StubAddr = JrT9Instr;
+    StubAddr++;
+    *StubAddr = NopInstr;
+    return Addr;
+  } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
+    // PowerPC64 stub: the address points to a function descriptor
+    // instead of the function itself. Load the function address
+    // on r11 and sets it to control register. Also loads the function
+    // TOC in r2 and environment pointer to r11.
+    writeInt32BE(Addr,    0x3D800000); // lis   r12, highest(addr)
+    writeInt32BE(Addr+4,  0x618C0000); // ori   r12, higher(addr)
+    writeInt32BE(Addr+8,  0x798C07C6); // sldi  r12, r12, 32
+    writeInt32BE(Addr+12, 0x658C0000); // oris  r12, r12, h(addr)
+    writeInt32BE(Addr+16, 0x618C0000); // ori   r12, r12, l(addr)
+    writeInt32BE(Addr+20, 0xF8410028); // std   r2,  40(r1)
+    writeInt32BE(Addr+24, 0xE96C0000); // ld    r11, 0(r12)
+    writeInt32BE(Addr+28, 0xE84C0008); // ld    r2,  0(r12)
+    writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
+    writeInt32BE(Addr+36, 0xE96C0010); // ld    r11, 16(r2)
+    writeInt32BE(Addr+40, 0x4E800420); // bctr
+
+    return Addr;
+  } else if (Arch == Triple::systemz) {
+    writeInt16BE(Addr,    0xC418);     // lgrl %r1,.+8
+    writeInt16BE(Addr+2,  0x0000);
+    writeInt16BE(Addr+4,  0x0004);
+    writeInt16BE(Addr+6,  0x07F1);     // brc 15,%r1
+    // 8-byte address stored at Addr + 8
+    return Addr;
+  }
+  return Addr;
+}
+
+// Assign an address to a symbol name and resolve all the relocations
+// associated with it.
+void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
+                                             uint64_t Addr) {
+  // The address to use for relocation resolution is not
+  // the address of the local section buffer. We must be doing
+  // a remote execution environment of some sort. Relocations can't
+  // be applied until all the sections have been moved.  The client must
+  // trigger this with a call to MCJIT::finalize() or
+  // RuntimeDyld::resolveRelocations().
+  //
+  // Addr is a uint64_t because we can't assume the pointer width
+  // of the target is the same as that of the host. Just use a generic
+  // "big enough" type.
+  Sections[SectionID].LoadAddress = Addr;
+}
+
+void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
+                                            uint64_t Value) {
+  for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
+    const RelocationEntry &RE = Relocs[i];
+    // Ignore relocations for sections that were not loaded
+    if (Sections[RE.SectionID].Address == 0)
+      continue;
+    resolveRelocation(RE, Value);
+  }
 }
 
+void RuntimeDyldImpl::resolveExternalSymbols() {
+  StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin(),
+                                      e = ExternalSymbolRelocations.end();
+  for (; i != e; i++) {
+    StringRef Name = i->first();
+    RelocationList &Relocs = i->second;
+    SymbolTableMap::const_iterator Loc = GlobalSymbolTable.find(Name);
+    if (Loc == GlobalSymbolTable.end()) {
+      if (Name.size() == 0) {
+        // This is an absolute symbol, use an address of zero.
+        DEBUG(dbgs() << "Resolving absolute relocations." << "\n");
+        resolveRelocationList(Relocs, 0);
+      } else {
+        // This is an external symbol, try to get its address from
+        // MemoryManager.
+        uint8_t *Addr = (uint8_t*) MemMgr->getPointerToNamedFunction(Name.data(),
+                                                                   true);
+        DEBUG(dbgs() << "Resolving relocations Name: " << Name
+                << "\t" << format("%p", Addr)
+                << "\n");
+        resolveRelocationList(Relocs, (uintptr_t)Addr);
+      }
+    } else {
+      report_fatal_error("Expected external symbol");
+    }
+  }
+}
+
+
 //===----------------------------------------------------------------------===//
 // RuntimeDyld class implementation
 RuntimeDyld::RuntimeDyld(RTDyldMemoryManager *mm) {
+  // FIXME: There's a potential issue lurking here if a single instance of
+  // RuntimeDyld is used to load multiple objects.  The current implementation
+  // associates a single memory manager with a RuntimeDyld instance.  Even
+  // though the public class spawns a new 'impl' instance for each load,
+  // they share a single memory manager.  This can become a problem when page
+  // permissions are applied.
   Dyld = 0;
   MM = mm;
 }
@@ -76,35 +499,36 @@ RuntimeDyld::~RuntimeDyld() {
   delete Dyld;
 }
 
-bool RuntimeDyld::loadObject(MemoryBuffer *InputBuffer) {
+ObjectImage *RuntimeDyld::loadObject(ObjectBuffer *InputBuffer) {
   if (!Dyld) {
-    sys::LLVMFileType type = sys::IdentifyFileType(
-            InputBuffer->getBufferStart(),
-            static_cast<unsigned>(InputBuffer->getBufferSize()));
-    switch (type) {
-      case sys::ELF_Relocatable_FileType:
-      case sys::ELF_Executable_FileType:
-      case sys::ELF_SharedObject_FileType:
-      case sys::ELF_Core_FileType:
-        Dyld = new RuntimeDyldELF(MM);
-        break;
-      case sys::Mach_O_Object_FileType:
-      case sys::Mach_O_Executable_FileType:
-      case sys::Mach_O_FixedVirtualMemorySharedLib_FileType:
-      case sys::Mach_O_Core_FileType:
-      case sys::Mach_O_PreloadExecutable_FileType:
-      case sys::Mach_O_DynamicallyLinkedSharedLib_FileType:
-      case sys::Mach_O_DynamicLinker_FileType:
-      case sys::Mach_O_Bundle_FileType:
-      case sys::Mach_O_DynamicallyLinkedSharedLibStub_FileType:
-      case sys::Mach_O_DSYMCompanion_FileType:
-        Dyld = new RuntimeDyldMachO(MM);
-        break;
-      case sys::Unknown_FileType:
-      case sys::Bitcode_FileType:
-      case sys::Archive_FileType:
-      case sys::COFF_FileType:
-        report_fatal_error("Incompatible object format!");
+    sys::fs::file_magic Type =
+        sys::fs::identify_magic(InputBuffer->getBuffer());
+    switch (Type) {
+    case sys::fs::file_magic::elf_relocatable:
+    case sys::fs::file_magic::elf_executable:
+    case sys::fs::file_magic::elf_shared_object:
+    case sys::fs::file_magic::elf_core:
+      Dyld = new RuntimeDyldELF(MM);
+      break;
+    case sys::fs::file_magic::macho_object:
+    case sys::fs::file_magic::macho_executable:
+    case sys::fs::file_magic::macho_fixed_virtual_memory_shared_lib:
+    case sys::fs::file_magic::macho_core:
+    case sys::fs::file_magic::macho_preload_executable:
+    case sys::fs::file_magic::macho_dynamically_linked_shared_lib:
+    case sys::fs::file_magic::macho_dynamic_linker:
+    case sys::fs::file_magic::macho_bundle:
+    case sys::fs::file_magic::macho_dynamically_linked_shared_lib_stub:
+    case sys::fs::file_magic::macho_dsym_companion:
+      Dyld = new RuntimeDyldMachO(MM);
+      break;
+    case sys::fs::file_magic::unknown:
+    case sys::fs::file_magic::bitcode:
+    case sys::fs::file_magic::archive:
+    case sys::fs::file_magic::coff_object:
+    case sys::fs::file_magic::pecoff_executable:
+    case sys::fs::file_magic::macho_universal_binary:
+      report_fatal_error("Incompatible object format!");
     }
   } else {
     if (!Dyld->isCompatibleFormat(InputBuffer))
@@ -118,6 +542,10 @@ void *RuntimeDyld::getSymbolAddress(StringRef Name) {
   return Dyld->getSymbolAddress(Name);
 }
 
+uint64_t RuntimeDyld::getSymbolLoadAddress(StringRef Name) {
+  return Dyld->getSymbolLoadAddress(Name);
+}
+
 void RuntimeDyld::resolveRelocations() {
   Dyld->resolveRelocations();
 }
@@ -127,7 +555,7 @@ void RuntimeDyld::reassignSectionAddress(unsigned SectionID,
   Dyld->reassignSectionAddress(SectionID, Addr);
 }
 
-void RuntimeDyld::mapSectionAddress(void *LocalAddress,
+void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
                                     uint64_t TargetAddress) {
   Dyld->mapSectionAddress(LocalAddress, TargetAddress);
 }
@@ -136,4 +564,8 @@ StringRef RuntimeDyld::getErrorString() {
   return Dyld->getErrorString();
 }
 
+StringRef RuntimeDyld::getEHFrameSection() {
+  return Dyld->getEHFrameSection();
+}
+
 } // end namespace llvm