Fix spelling and grammar in a comment.
[oota-llvm.git] / lib / Linker / LinkModules.cpp
index e36fbafc6faf2fbeb5b4b16d2c2263ed33828a76..1609c6c0e094c7435f11d7f398630d500218a75d 100644 (file)
@@ -26,6 +26,7 @@
 #include "llvm/Assembly/Writer.h"
 #include "llvm/Support/Streams.h"
 #include "llvm/System/Path.h"
+#include "llvm/ADT/DenseMap.h"
 #include <sstream>
 using namespace llvm;
 
@@ -75,93 +76,187 @@ static bool ResolveTypes(const Type *DestTy, const Type *SrcTy) {
   return false;
 }
 
-static const FunctionType *getFT(const PATypeHolder &TH) {
-  return cast<FunctionType>(TH.get());
-}
-static const StructType *getST(const PATypeHolder &TH) {
-  return cast<StructType>(TH.get());
+/// LinkerTypeMap - This implements a map of types that is stable
+/// even if types are resolved/refined to other types.  This is not a general
+/// purpose map, it is specific to the linker's use.
+namespace {
+class LinkerTypeMap : public AbstractTypeUser {
+  typedef DenseMap<const Type*, PATypeHolder> TheMapTy;
+  TheMapTy TheMap;
+  
+  LinkerTypeMap(const LinkerTypeMap&); // DO NOT IMPLEMENT
+  void operator=(const LinkerTypeMap&); // DO NOT IMPLEMENT
+public:
+  LinkerTypeMap() {}
+  ~LinkerTypeMap() {
+    for (DenseMap<const Type*, PATypeHolder>::iterator I = TheMap.begin(),
+         E = TheMap.end(); I != E; ++I)
+      I->first->removeAbstractTypeUser(this);
+  }
+  
+  /// lookup - Return the value for the specified type or null if it doesn't
+  /// exist.
+  const Type *lookup(const Type *Ty) const {
+    TheMapTy::const_iterator I = TheMap.find(Ty);
+    if (I != TheMap.end()) return I->second;
+    return 0;
+  }
+  
+  /// erase - Remove the specified type, returning true if it was in the set.
+  bool erase(const Type *Ty) {
+    if (!TheMap.erase(Ty))
+      return false;
+    if (Ty->isAbstract())
+      Ty->removeAbstractTypeUser(this);
+    return true;
+  }
+  
+  /// insert - This returns true if the pointer was new to the set, false if it
+  /// was already in the set.
+  bool insert(const Type *Src, const Type *Dst) {
+    if (!TheMap.insert(std::make_pair(Src, PATypeHolder(Dst))))
+      return false;  // Already in map.
+    if (Src->isAbstract())
+      Src->addAbstractTypeUser(this);
+    return true;
+  }
+  
+protected:
+  /// refineAbstractType - The callback method invoked when an abstract type is
+  /// resolved to another type.  An object must override this method to update
+  /// its internal state to reference NewType instead of OldType.
+  ///
+  virtual void refineAbstractType(const DerivedType *OldTy,
+                                  const Type *NewTy) {
+    TheMapTy::iterator I = TheMap.find(OldTy);
+    const Type *DstTy = I->second;
+    
+    TheMap.erase(I);
+    if (OldTy->isAbstract())
+      OldTy->removeAbstractTypeUser(this);
+
+    // Don't reinsert into the map if the key is concrete now.
+    if (NewTy->isAbstract())
+      insert(NewTy, DstTy);
+  }
+  
+  /// The other case which AbstractTypeUsers must be aware of is when a type
+  /// makes the transition from being abstract (where it has clients on it's
+  /// AbstractTypeUsers list) to concrete (where it does not).  This method
+  /// notifies ATU's when this occurs for a type.
+  virtual void typeBecameConcrete(const DerivedType *AbsTy) {
+    TheMap.erase(AbsTy);
+    AbsTy->removeAbstractTypeUser(this);
+  }
+  
+  // for debugging...
+  virtual void dump() const {
+    cerr << "AbstractTypeSet!\n";
+  }
+};
 }
 
+
 // RecursiveResolveTypes - This is just like ResolveTypes, except that it
 // recurses down into derived types, merging the used types if the parent types
 // are compatible.
-static bool RecursiveResolveTypesI(const PATypeHolder &DestTy,
-                                   const PATypeHolder &SrcTy,
-                std::vector<std::pair<PATypeHolder, PATypeHolder> > &Pointers) {
-  const Type *SrcTyT = SrcTy.get();
-  const Type *DestTyT = DestTy.get();
-  if (DestTyT == SrcTyT) return false;       // If already equal, noop
+static bool RecursiveResolveTypesI(const Type *DstTy, const Type *SrcTy,
+                                   LinkerTypeMap &Pointers) {
+  if (DstTy == SrcTy) return false;       // If already equal, noop
 
   // If we found our opaque type, resolve it now!
-  if (isa<OpaqueType>(DestTyT) || isa<OpaqueType>(SrcTyT))
-    return ResolveTypes(DestTyT, SrcTyT);
+  if (isa<OpaqueType>(DstTy) || isa<OpaqueType>(SrcTy))
+    return ResolveTypes(DstTy, SrcTy);
 
   // Two types cannot be resolved together if they are of different primitive
   // type.  For example, we cannot resolve an int to a float.
-  if (DestTyT->getTypeID() != SrcTyT->getTypeID()) return true;
+  if (DstTy->getTypeID() != SrcTy->getTypeID()) return true;
 
+  // If neither type is abstract, then they really are just different types.
+  if (!DstTy->isAbstract() && !SrcTy->isAbstract())
+    return true;
+  
   // Otherwise, resolve the used type used by this derived type...
-  switch (DestTyT->getTypeID()) {
-  case Type::IntegerTyID: {
-    if (cast<IntegerType>(DestTyT)->getBitWidth() !=
-        cast<IntegerType>(SrcTyT)->getBitWidth())
-      return true;
-    return false;
-  }
+  switch (DstTy->getTypeID()) {
+  default:
+    return true;
   case Type::FunctionTyID: {
-    if (cast<FunctionType>(DestTyT)->isVarArg() !=
-        cast<FunctionType>(SrcTyT)->isVarArg() ||
-        cast<FunctionType>(DestTyT)->getNumContainedTypes() !=
-        cast<FunctionType>(SrcTyT)->getNumContainedTypes())
+    const FunctionType *DstFT = cast<FunctionType>(DstTy);
+    const FunctionType *SrcFT = cast<FunctionType>(SrcTy);
+    if (DstFT->isVarArg() != SrcFT->isVarArg() ||
+        DstFT->getNumContainedTypes() != SrcFT->getNumContainedTypes())
       return true;
-    for (unsigned i = 0, e = getFT(DestTy)->getNumContainedTypes(); i != e; ++i)
-      if (RecursiveResolveTypesI(getFT(DestTy)->getContainedType(i),
-                                 getFT(SrcTy)->getContainedType(i), Pointers))
+    
+    // Use TypeHolder's so recursive resolution won't break us.
+    PATypeHolder ST(SrcFT), DT(DstFT);
+    for (unsigned i = 0, e = DstFT->getNumContainedTypes(); i != e; ++i) {
+      const Type *SE = ST->getContainedType(i), *DE = DT->getContainedType(i);
+      if (SE != DE && RecursiveResolveTypesI(DE, SE, Pointers))
         return true;
+    }
     return false;
   }
   case Type::StructTyID: {
-    if (getST(DestTy)->getNumContainedTypes() !=
-        getST(SrcTy)->getNumContainedTypes()) return 1;
-    for (unsigned i = 0, e = getST(DestTy)->getNumContainedTypes(); i != e; ++i)
-      if (RecursiveResolveTypesI(getST(DestTy)->getContainedType(i),
-                                 getST(SrcTy)->getContainedType(i), Pointers))
+    const StructType *DstST = cast<StructType>(DstTy);
+    const StructType *SrcST = cast<StructType>(SrcTy);
+    if (DstST->getNumContainedTypes() != SrcST->getNumContainedTypes())
+      return true;
+    
+    PATypeHolder ST(SrcST), DT(DstST);
+    for (unsigned i = 0, e = DstST->getNumContainedTypes(); i != e; ++i) {
+      const Type *SE = ST->getContainedType(i), *DE = DT->getContainedType(i);
+      if (SE != DE && RecursiveResolveTypesI(DE, SE, Pointers))
         return true;
+    }
     return false;
   }
   case Type::ArrayTyID: {
-    const ArrayType *DAT = cast<ArrayType>(DestTy.get());
-    const ArrayType *SAT = cast<ArrayType>(SrcTy.get());
+    const ArrayType *DAT = cast<ArrayType>(DstTy);
+    const ArrayType *SAT = cast<ArrayType>(SrcTy);
     if (DAT->getNumElements() != SAT->getNumElements()) return true;
     return RecursiveResolveTypesI(DAT->getElementType(), SAT->getElementType(),
                                   Pointers);
   }
+  case Type::VectorTyID: {
+    const VectorType *DVT = cast<VectorType>(DstTy);
+    const VectorType *SVT = cast<VectorType>(SrcTy);
+    if (DVT->getNumElements() != SVT->getNumElements()) return true;
+    return RecursiveResolveTypesI(DVT->getElementType(), SVT->getElementType(),
+                                  Pointers);
+  }
   case Type::PointerTyID: {
+    const PointerType *DstPT = cast<PointerType>(DstTy);
+    const PointerType *SrcPT = cast<PointerType>(SrcTy);
+    
+    if (DstPT->getAddressSpace() != SrcPT->getAddressSpace())
+      return true;
+    
     // If this is a pointer type, check to see if we have already seen it.  If
     // so, we are in a recursive branch.  Cut off the search now.  We cannot use
     // an associative container for this search, because the type pointers (keys
-    // in the container) change whenever types get resolved...
-    for (unsigned i = 0, e = Pointers.size(); i != e; ++i)
-      if (Pointers[i].first == DestTy)
-        return Pointers[i].second != SrcTy;
-
+    // in the container) change whenever types get resolved.
+    if (SrcPT->isAbstract())
+      if (const Type *ExistingDestTy = Pointers.lookup(SrcPT))
+        return ExistingDestTy != DstPT;
+    
+    if (DstPT->isAbstract())
+      if (const Type *ExistingSrcTy = Pointers.lookup(DstPT))
+        return ExistingSrcTy != SrcPT;
     // Otherwise, add the current pointers to the vector to stop recursion on
     // this pair.
-    Pointers.push_back(std::make_pair(DestTyT, SrcTyT));
-    bool Result =
-      RecursiveResolveTypesI(cast<PointerType>(DestTy.get())->getElementType(),
-                             cast<PointerType>(SrcTy.get())->getElementType(),
-                             Pointers);
-    Pointers.pop_back();
-    return Result;
+    if (DstPT->isAbstract())
+      Pointers.insert(DstPT, SrcPT);
+    if (SrcPT->isAbstract())
+      Pointers.insert(SrcPT, DstPT);
+    
+    return RecursiveResolveTypesI(DstPT->getElementType(),
+                                  SrcPT->getElementType(), Pointers);
   }
-  default: assert(0 && "Unexpected type!"); return true;
   }
 }
 
-static bool RecursiveResolveTypes(const PATypeHolder &DestTy,
-                                  const PATypeHolder &SrcTy) {
-  std::vector<std::pair<PATypeHolder, PATypeHolder> > PointerTypes;
+static bool RecursiveResolveTypes(const Type *DestTy, const Type *SrcTy) {
+  LinkerTypeMap PointerTypes;
   return RecursiveResolveTypesI(DestTy, SrcTy, PointerTypes);
 }
 
@@ -223,10 +318,7 @@ static bool LinkTypes(Module *Dest, const Module *Src, std::string *Err) {
       // two types: { int* } and { opaque* }
       for (unsigned i = 0, e = DelayedTypesToResolve.size(); i != e; ++i) {
         const std::string &Name = DelayedTypesToResolve[i];
-        PATypeHolder T1(SrcST->lookup(Name));
-        PATypeHolder T2(DestST->lookup(Name));
-
-        if (!RecursiveResolveTypes(T2, T1)) {
+        if (!RecursiveResolveTypes(SrcST->lookup(Name), DestST->lookup(Name))) {
           // We are making progress!
           DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
 
@@ -805,6 +897,7 @@ static bool LinkFunctionProtos(Module *Dest, const Module *Src,
     const Function *SF = I;   // SrcFunction
     
     Function *DF = 0;
+    Value *MappedDF;
     
     // If this function is internal or has no name, it doesn't participate in
     // linkage.
@@ -881,19 +974,14 @@ static bool LinkFunctionProtos(Module *Dest, const Module *Src,
         // Remember this mapping so uses in the source module get remapped
         // later by RemapOperand.
         ValueMap[SF] = NewDF;
-      } else if (SF->isDeclaration()) {
-        // We have two functions of the same name but different type and the
-        // source is a declaration while the destination is not. Any use of
-        // the source must be mapped to the destination, with a cast. 
-        ValueMap[SF] = ConstantExpr::getBitCast(DF, SF->getType());
+        continue;
       } else {
-        // We have two functions of the same name but different types and they
-        // are both definitions. This is an error.
-        return Error(Err, "Function '" + DF->getName() + "' defined as both '" +
-                     ToStr(SF->getFunctionType(), Src) + "' and '" +
-                     ToStr(DF->getFunctionType(), Dest) + "'");
+        // We have two functions of the same name but different type. Any use
+        // of the source must be mapped to the destination, with a cast. 
+        MappedDF = ConstantExpr::getBitCast(DF, SF->getType());
       }
-      continue;
+    } else {
+       MappedDF = DF;
     }
     
     if (SF->isDeclaration()) {
@@ -901,11 +989,11 @@ static bool LinkFunctionProtos(Module *Dest, const Module *Src,
       // the declarations, we aren't adding anything.
       if (SF->hasDLLImportLinkage()) {
         if (DF->isDeclaration()) {
-          ValueMap[SF] = DF;
+          ValueMap[SF] = MappedDF;
           DF->setLinkage(SF->getLinkage());          
         }
       } else {
-        ValueMap[SF] = DF;
+        ValueMap[SF] = MappedDF;
       }
       continue;
     }
@@ -913,7 +1001,7 @@ static bool LinkFunctionProtos(Module *Dest, const Module *Src,
     // If DF is external but SF is not, link the external functions, update
     // linkage qualifiers.
     if (DF->isDeclaration() && !DF->hasDLLImportLinkage()) {
-      ValueMap.insert(std::make_pair(SF, DF));
+      ValueMap.insert(std::make_pair(SF, MappedDF));
       DF->setLinkage(SF->getLinkage());
       continue;
     }
@@ -921,7 +1009,7 @@ static bool LinkFunctionProtos(Module *Dest, const Module *Src,
     // At this point we know that DF has LinkOnce, Weak, or External* linkage.
     if (SF->hasWeakLinkage() || SF->hasLinkOnceLinkage() ||
         SF->hasCommonLinkage()) {
-      ValueMap[SF] = DF;
+      ValueMap[SF] = MappedDF;
 
       // Linkonce+Weak = Weak
       // *+External Weak = *
@@ -935,7 +1023,7 @@ static bool LinkFunctionProtos(Module *Dest, const Module *Src,
     if (DF->hasWeakLinkage() || DF->hasLinkOnceLinkage() ||
         DF->hasCommonLinkage()) {
       // At this point we know that SF has LinkOnce or External* linkage.
-      ValueMap[SF] = DF;
+      ValueMap[SF] = MappedDF;
       
       // If the source function has stronger linkage than the destination, 
       // its body and linkage should override ours.
@@ -1014,10 +1102,10 @@ static bool LinkFunctionBodies(Module *Dest, Module *Src,
   // go
   for (Module::iterator SF = Src->begin(), E = Src->end(); SF != E; ++SF) {
     if (!SF->isDeclaration()) {               // No body if function is external
-      Function *DF = cast<Function>(ValueMap[SF]); // Destination function
+      Function *DF = dyn_cast<Function>(ValueMap[SF]); // Destination function
 
       // DF not external SF external?
-      if (DF->isDeclaration())
+      if (DF && DF->isDeclaration())
         // Only provide the function body if there isn't one already.
         if (LinkFunctionBody(DF, SF, ValueMap, Err))
           return true;