Fix a typo in a comment.
[oota-llvm.git] / lib / Support / APInt.cpp
index 49945d84978c87f4b682569c6f5aff7ba1bffb7f..462d3ed8bdc9cb9c1388727f1dff77f54a896975 100644 (file)
@@ -2,8 +2,8 @@
 //
 //                     The LLVM Compiler Infrastructure
 //
-// This file was developed by Sheng Zhou and is distributed under the 
-// University of Illinois Open Source License. See LICENSE.TXT for details.
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
 //
 //===----------------------------------------------------------------------===//
 //
 
 #define DEBUG_TYPE "apint"
 #include "llvm/ADT/APInt.h"
-#include "llvm/DerivedTypes.h"
+#include "llvm/ADT/FoldingSet.h"
+#include "llvm/ADT/SmallString.h"
 #include "llvm/Support/Debug.h"
 #include "llvm/Support/MathExtras.h"
-#include <math.h>
+#include "llvm/Support/raw_ostream.h"
+#include <cmath>
 #include <limits>
 #include <cstring>
 #include <cstdlib>
-#ifndef NDEBUG
-#include <iomanip>
-#endif
-
 using namespace llvm;
 
 /// A utility function for allocating memory, checking for allocation failures,
@@ -44,26 +42,23 @@ inline static uint64_t* getMemory(uint32_t numWords) {
   return result;
 }
 
-APInt::APInt(uint32_t numBits, uint64_t val, bool isSigned) 
-  : BitWidth(numBits), VAL(0) {
-  assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
-  assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
-  if (isSingleWord())
-    VAL = val;
-  else {
-    pVal = getClearedMemory(getNumWords());
-    pVal[0] = val;
-    if (isSigned && int64_t(val) < 0) 
-      for (unsigned i = 1; i < getNumWords(); ++i)
-        pVal[i] = -1ULL;
-  }
-  clearUnusedBits();
+void APInt::initSlowCase(uint32_t numBits, uint64_t val, bool isSigned) {
+  pVal = getClearedMemory(getNumWords());
+  pVal[0] = val;
+  if (isSigned && int64_t(val) < 0) 
+    for (unsigned i = 1; i < getNumWords(); ++i)
+      pVal[i] = -1ULL;
 }
 
-APInt::APInt(uint32_t numBits, uint32_t numWords, uint64_t bigVal[])
-  : BitWidth(numBits), VAL(0)  {
-  assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
-  assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
+void APInt::initSlowCase(const APInt& that) {
+  pVal = getMemory(getNumWords());
+  memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
+}
+
+
+APInt::APInt(uint32_t numBits, uint32_t numWords, const uint64_t bigVal[])
+  : BitWidth(numBits), VAL(0) {
+  assert(BitWidth && "bitwidth too small");
   assert(bigVal && "Null pointer detected!");
   if (isSingleWord())
     VAL = bigVal[0];
@@ -82,59 +77,29 @@ APInt::APInt(uint32_t numBits, uint32_t numWords, uint64_t bigVal[])
 APInt::APInt(uint32_t numbits, const char StrStart[], uint32_t slen, 
              uint8_t radix) 
   : BitWidth(numbits), VAL(0) {
-  assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
-  assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
+  assert(BitWidth && "bitwidth too small");
   fromString(numbits, StrStart, slen, radix);
 }
 
-APInt::APInt(uint32_t numbits, const std::string& Val, uint8_t radix)
-  : BitWidth(numbits), VAL(0) {
-  assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
-  assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
-  assert(!Val.empty() && "String empty?");
-  fromString(numbits, Val.c_str(), Val.size(), radix);
-}
-
-APInt::APInt(const APInt& that)
-  : BitWidth(that.BitWidth), VAL(0) {
-  assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
-  assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
-  if (isSingleWord()) 
-    VAL = that.VAL;
-  else {
-    pVal = getMemory(getNumWords());
-    memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
-  }
-}
-
-APInt::~APInt() {
-  if (!isSingleWord() && pVal) 
-    delete [] pVal;
-}
-
-APInt& APInt::operator=(const APInt& RHS) {
+APInt& APInt::AssignSlowCase(const APInt& RHS) {
   // Don't do anything for X = X
   if (this == &RHS)
     return *this;
 
-  // If the bitwidths are the same, we can avoid mucking with memory
   if (BitWidth == RHS.getBitWidth()) {
-    if (isSingleWord()) 
-      VAL = RHS.VAL;
-    else
-      memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
+    // assume same bit-width single-word case is already handled
+    assert(!isSingleWord());
+    memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
     return *this;
   }
 
-  if (isSingleWord())
-    if (RHS.isSingleWord())
-      VAL = RHS.VAL;
-    else {
-      VAL = 0;
-      pVal = getMemory(RHS.getNumWords());
-      memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
-    }
-  else if (getNumWords() == RHS.getNumWords()) 
+  if (isSingleWord()) {
+    // assume case where both are single words is already handled
+    assert(!RHS.isSingleWord());
+    VAL = 0;
+    pVal = getMemory(RHS.getNumWords());
+    memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
+  } else if (getNumWords() == RHS.getNumWords()) 
     memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
   else if (RHS.isSingleWord()) {
     delete [] pVal;
@@ -158,6 +123,20 @@ APInt& APInt::operator=(uint64_t RHS) {
   return clearUnusedBits();
 }
 
+/// Profile - This method 'profiles' an APInt for use with FoldingSet.
+void APInt::Profile(FoldingSetNodeID& ID) const {
+  ID.AddInteger(BitWidth);
+  
+  if (isSingleWord()) {
+    ID.AddInteger(VAL);
+    return;
+  }
+
+  uint32_t NumWords = getNumWords();
+  for (unsigned i = 0; i < NumWords; ++i)
+    ID.AddInteger(pVal[i]);
+}
+
 /// add_1 - This function adds a single "digit" integer, y, to the multiple 
 /// "digit" integer array,  x[]. x[] is modified to reflect the addition and
 /// 1 is returned if there is a carry out, otherwise 0 is returned.
@@ -413,11 +392,7 @@ APInt& APInt::operator^=(const APInt& RHS) {
   return clearUnusedBits();
 }
 
-APInt APInt::operator&(const APInt& RHS) const {
-  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
-  if (isSingleWord())
-    return APInt(getBitWidth(), VAL & RHS.VAL);
-
+APInt APInt::AndSlowCase(const APInt& RHS) const {
   uint32_t numWords = getNumWords();
   uint64_t* val = getMemory(numWords);
   for (uint32_t i = 0; i < numWords; ++i)
@@ -425,11 +400,7 @@ APInt APInt::operator&(const APInt& RHS) const {
   return APInt(val, getBitWidth());
 }
 
-APInt APInt::operator|(const APInt& RHS) const {
-  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
-  if (isSingleWord())
-    return APInt(getBitWidth(), VAL | RHS.VAL);
-
+APInt APInt::OrSlowCase(const APInt& RHS) const {
   uint32_t numWords = getNumWords();
   uint64_t *val = getMemory(numWords);
   for (uint32_t i = 0; i < numWords; ++i)
@@ -437,11 +408,7 @@ APInt APInt::operator|(const APInt& RHS) const {
   return APInt(val, getBitWidth());
 }
 
-APInt APInt::operator^(const APInt& RHS) const {
-  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
-  if (isSingleWord())
-    return APInt(BitWidth, VAL ^ RHS.VAL);
-
+APInt APInt::XorSlowCase(const APInt& RHS) const {
   uint32_t numWords = getNumWords();
   uint64_t *val = getMemory(numWords);
   for (uint32_t i = 0; i < numWords; ++i)
@@ -493,11 +460,7 @@ bool APInt::operator[](uint32_t bitPosition) const {
           (isSingleWord() ?  VAL : pVal[whichWord(bitPosition)])) != 0;
 }
 
-bool APInt::operator==(const APInt& RHS) const {
-  assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
-  if (isSingleWord())
-    return VAL == RHS.VAL;
-
+bool APInt::EqualSlowCase(const APInt& RHS) const {
   // Get some facts about the number of bits used in the two operands.
   uint32_t n1 = getActiveBits();
   uint32_t n2 = RHS.getActiveBits();
@@ -517,10 +480,7 @@ bool APInt::operator==(const APInt& RHS) const {
   return true;
 }
 
-bool APInt::operator==(uint64_t Val) const {
-  if (isSingleWord())
-    return VAL == Val;
-
+bool APInt::EqualSlowCase(uint64_t Val) const {
   uint32_t n = getActiveBits(); 
   if (n <= APINT_BITS_PER_WORD)
     return pVal[0] == Val;
@@ -604,19 +564,6 @@ APInt& APInt::set(uint32_t bitPosition) {
   return *this;
 }
 
-APInt& APInt::set() {
-  if (isSingleWord()) {
-    VAL = -1ULL;
-    return clearUnusedBits();
-  }
-
-  // Set all the bits in all the words.
-  for (uint32_t i = 0; i < getNumWords(); ++i)
-    pVal[i] = -1ULL;
-  // Clear the unused ones
-  return clearUnusedBits();
-}
-
 /// Set the given bit to 0 whose position is given as "bitPosition".
 /// @brief Set a given bit to 0.
 APInt& APInt::clear(uint32_t bitPosition) {
@@ -627,33 +574,7 @@ APInt& APInt::clear(uint32_t bitPosition) {
   return *this;
 }
 
-/// @brief Set every bit to 0.
-APInt& APInt::clear() {
-  if (isSingleWord()) 
-    VAL = 0;
-  else 
-    memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
-  return *this;
-}
-
-/// @brief Bitwise NOT operator. Performs a bitwise logical NOT operation on
-/// this APInt.
-APInt APInt::operator~() const {
-  APInt Result(*this);
-  Result.flip();
-  return Result;
-}
-
 /// @brief Toggle every bit to its opposite value.
-APInt& APInt::flip() {
-  if (isSingleWord()) {
-    VAL ^= -1ULL;
-    return clearUnusedBits();
-  }
-  for (uint32_t i = 0; i < getNumWords(); ++i)
-    pVal[i] ^= -1ULL;
-  return clearUnusedBits();
-}
 
 /// Toggle a given bit to its opposite value whose position is given 
 /// as "bitPosition".
@@ -730,24 +651,20 @@ bool APInt::isPowerOf2() const {
   return (!!*this) && !(*this & (*this - APInt(BitWidth,1)));
 }
 
-uint32_t APInt::countLeadingZeros() const {
+uint32_t APInt::countLeadingZerosSlowCase() const {
   uint32_t Count = 0;
-  if (isSingleWord())
-    Count = CountLeadingZeros_64(VAL);
-  else {
-    for (uint32_t i = getNumWords(); i > 0u; --i) {
-      if (pVal[i-1] == 0)
-        Count += APINT_BITS_PER_WORD;
-      else {
-        Count += CountLeadingZeros_64(pVal[i-1]);
-        break;
-      }
+  for (uint32_t i = getNumWords(); i > 0u; --i) {
+    if (pVal[i-1] == 0)
+      Count += APINT_BITS_PER_WORD;
+    else {
+      Count += CountLeadingZeros_64(pVal[i-1]);
+      break;
     }
   }
   uint32_t remainder = BitWidth % APINT_BITS_PER_WORD;
   if (remainder)
     Count -= APINT_BITS_PER_WORD - remainder;
-  return Count;
+  return std::min(Count, BitWidth);
 }
 
 static uint32_t countLeadingOnes_64(uint64_t V, uint32_t skip) {
@@ -784,19 +701,27 @@ uint32_t APInt::countLeadingOnes() const {
 
 uint32_t APInt::countTrailingZeros() const {
   if (isSingleWord())
-    return CountTrailingZeros_64(VAL);
+    return std::min(uint32_t(CountTrailingZeros_64(VAL)), BitWidth);
   uint32_t Count = 0;
   uint32_t i = 0;
   for (; i < getNumWords() && pVal[i] == 0; ++i)
     Count += APINT_BITS_PER_WORD;
   if (i < getNumWords())
     Count += CountTrailingZeros_64(pVal[i]);
-  return Count;
+  return std::min(Count, BitWidth);
 }
 
-uint32_t APInt::countPopulation() const {
-  if (isSingleWord())
-    return CountPopulation_64(VAL);
+uint32_t APInt::countTrailingOnesSlowCase() const {
+  uint32_t Count = 0;
+  uint32_t i = 0;
+  for (; i < getNumWords() && pVal[i] == -1ULL; ++i)
+    Count += APINT_BITS_PER_WORD;
+  if (i < getNumWords())
+    Count += CountTrailingOnes_64(pVal[i]);
+  return std::min(Count, BitWidth);
+}
+
+uint32_t APInt::countPopulationSlowCase() const {
   uint32_t Count = 0;
   for (uint32_t i = 0; i < getNumWords(); ++i)
     Count += CountPopulation_64(pVal[i]);
@@ -872,7 +797,7 @@ APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, uint32_t width) {
 
   // Otherwise, we have to shift the mantissa bits up to the right location
   APInt Tmp(width, mantissa);
-  Tmp = Tmp.shl(exp - 52);
+  Tmp = Tmp.shl((uint32_t)exp - 52);
   return isNeg ? -Tmp : Tmp;
 }
 
@@ -945,7 +870,7 @@ double APInt::roundToDouble(bool isSigned) const {
 // Truncate to new width.
 APInt &APInt::trunc(uint32_t width) {
   assert(width < BitWidth && "Invalid APInt Truncate request");
-  assert(width >= IntegerType::MIN_INT_BITS && "Can't truncate to 0 bits");
+  assert(width && "Can't truncate to 0 bits");
   uint32_t wordsBefore = getNumWords();
   BitWidth = width;
   uint32_t wordsAfter = getNumWords();
@@ -968,7 +893,6 @@ APInt &APInt::trunc(uint32_t width) {
 // Sign extend to a new width.
 APInt &APInt::sext(uint32_t width) {
   assert(width > BitWidth && "Invalid APInt SignExtend request");
-  assert(width <= IntegerType::MAX_INT_BITS && "Too many bits");
   // If the sign bit isn't set, this is the same as zext.
   if (!isNegative()) {
     zext(width);
@@ -1016,7 +940,6 @@ APInt &APInt::sext(uint32_t width) {
 //  Zero extend to a new width.
 APInt &APInt::zext(uint32_t width) {
   assert(width > BitWidth && "Invalid APInt ZeroExtend request");
-  assert(width <= IntegerType::MAX_INT_BITS && "Too many bits");
   uint32_t wordsBefore = getNumWords();
   BitWidth = width;
   uint32_t wordsAfter = getNumWords();
@@ -1050,6 +973,12 @@ APInt &APInt::sextOrTrunc(uint32_t width) {
   return *this;
 }
 
+/// Arithmetic right-shift this APInt by shiftAmt.
+/// @brief Arithmetic right-shift function.
+APInt APInt::ashr(const APInt &shiftAmt) const {
+  return ashr((uint32_t)shiftAmt.getLimitedValue(BitWidth));
+}
+
 /// Arithmetic right-shift this APInt by shiftAmt.
 /// @brief Arithmetic right-shift function.
 APInt APInt::ashr(uint32_t shiftAmt) const {
@@ -1074,7 +1003,7 @@ APInt APInt::ashr(uint32_t shiftAmt) const {
   // issues in the algorithm below.
   if (shiftAmt == BitWidth) {
     if (isNegative())
-      return APInt(BitWidth, -1ULL);
+      return APInt(BitWidth, -1ULL, true);
     else
       return APInt(BitWidth, 0);
   }
@@ -1133,6 +1062,12 @@ APInt APInt::ashr(uint32_t shiftAmt) const {
   return APInt(val, BitWidth).clearUnusedBits();
 }
 
+/// Logical right-shift this APInt by shiftAmt.
+/// @brief Logical right-shift function.
+APInt APInt::lshr(const APInt &shiftAmt) const {
+  return lshr((uint32_t)shiftAmt.getLimitedValue(BitWidth));
+}
+
 /// Logical right-shift this APInt by shiftAmt.
 /// @brief Logical right-shift function.
 APInt APInt::lshr(uint32_t shiftAmt) const {
@@ -1197,14 +1132,12 @@ APInt APInt::lshr(uint32_t shiftAmt) const {
 
 /// Left-shift this APInt by shiftAmt.
 /// @brief Left-shift function.
-APInt APInt::shl(uint32_t shiftAmt) const {
-  assert(shiftAmt <= BitWidth && "Invalid shift amount");
-  if (isSingleWord()) {
-    if (shiftAmt == BitWidth)
-      return APInt(BitWidth, 0); // avoid undefined shift results
-    return APInt(BitWidth, VAL << shiftAmt);
-  }
+APInt APInt::shl(const APInt &shiftAmt) const {
+  // It's undefined behavior in C to shift by BitWidth or greater, but
+  return shl((uint32_t)shiftAmt.getLimitedValue(BitWidth));
+}
 
+APInt APInt::shlSlowCase(uint32_t shiftAmt) const {
   // If all the bits were shifted out, the result is 0. This avoids issues
   // with shifting by the size of the integer type, which produces undefined
   // results. We define these "undefined results" to always be 0.
@@ -1254,6 +1187,10 @@ APInt APInt::shl(uint32_t shiftAmt) const {
   return APInt(val, BitWidth).clearUnusedBits();
 }
 
+APInt APInt::rotl(const APInt &rotateAmt) const {
+  return rotl((uint32_t)rotateAmt.getLimitedValue(BitWidth));
+}
+
 APInt APInt::rotl(uint32_t rotateAmt) const {
   if (rotateAmt == 0)
     return *this;
@@ -1265,6 +1202,10 @@ APInt APInt::rotl(uint32_t rotateAmt) const {
   return hi | lo;
 }
 
+APInt APInt::rotr(const APInt &rotateAmt) const {
+  return rotr((uint32_t)rotateAmt.getLimitedValue(BitWidth));
+}
+
 APInt APInt::rotr(uint32_t rotateAmt) const {
   if (rotateAmt == 0)
     return *this;
@@ -1366,6 +1307,50 @@ APInt APInt::sqrt() const {
   return x_old + 1;
 }
 
+/// Computes the multiplicative inverse of this APInt for a given modulo. The
+/// iterative extended Euclidean algorithm is used to solve for this value,
+/// however we simplify it to speed up calculating only the inverse, and take
+/// advantage of div+rem calculations. We also use some tricks to avoid copying
+/// (potentially large) APInts around.
+APInt APInt::multiplicativeInverse(const APInt& modulo) const {
+  assert(ult(modulo) && "This APInt must be smaller than the modulo");
+
+  // Using the properties listed at the following web page (accessed 06/21/08):
+  //   http://www.numbertheory.org/php/euclid.html
+  // (especially the properties numbered 3, 4 and 9) it can be proved that
+  // BitWidth bits suffice for all the computations in the algorithm implemented
+  // below. More precisely, this number of bits suffice if the multiplicative
+  // inverse exists, but may not suffice for the general extended Euclidean
+  // algorithm.
+
+  APInt r[2] = { modulo, *this };
+  APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
+  APInt q(BitWidth, 0);
+  
+  unsigned i;
+  for (i = 0; r[i^1] != 0; i ^= 1) {
+    // An overview of the math without the confusing bit-flipping:
+    // q = r[i-2] / r[i-1]
+    // r[i] = r[i-2] % r[i-1]
+    // t[i] = t[i-2] - t[i-1] * q
+    udivrem(r[i], r[i^1], q, r[i]);
+    t[i] -= t[i^1] * q;
+  }
+
+  // If this APInt and the modulo are not coprime, there is no multiplicative
+  // inverse, so return 0. We check this by looking at the next-to-last
+  // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
+  // algorithm.
+  if (r[i] != 1)
+    return APInt(BitWidth, 0);
+
+  // The next-to-last t is the multiplicative inverse.  However, we are
+  // interested in a positive inverse. Calcuate a positive one from a negative
+  // one if necessary. A simple addition of the modulo suffices because
+  // abs(t[i]) is known to be less than *this/2 (see the link above).
+  return t[i].isNegative() ? t[i] + modulo : t[i];
+}
+
 /// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
 /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
 /// variables here have the same names as in the algorithm. Comments explain
@@ -1382,12 +1367,14 @@ static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
   // is 2^31 so we just set it to -1u.
   uint64_t b = uint64_t(1) << 32;
 
+#if 0
   DEBUG(cerr << "KnuthDiv: m=" << m << " n=" << n << '\n');
   DEBUG(cerr << "KnuthDiv: original:");
   DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
   DEBUG(cerr << " by");
   DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
   DEBUG(cerr << '\n');
+#endif
   // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of 
   // u and v by d. Note that we have taken Knuth's advice here to use a power 
   // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of 
@@ -1412,11 +1399,13 @@ static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
     }
   }
   u[m+n] = u_carry;
+#if 0
   DEBUG(cerr << "KnuthDiv:   normal:");
   DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
   DEBUG(cerr << " by");
   DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
   DEBUG(cerr << '\n');
+#endif
 
   // D2. [Initialize j.]  Set j to m. This is the loop counter over the places.
   int j = m;
@@ -1457,8 +1446,8 @@ static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
 
       uint64_t result = u_tmp - subtrahend;
       uint32_t k = j + i;
-      u[k++] = result & (b-1); // subtract low word
-      u[k++] = result >> 32;   // subtract high word
+      u[k++] = (uint32_t)(result & (b-1)); // subtract low word
+      u[k++] = (uint32_t)(result >> 32);   // subtract high word
       while (borrow && k <= m+n) { // deal with borrow to the left
         borrow = u[k] == 0;
         u[k]--;
@@ -1489,7 +1478,7 @@ static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
 
     // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was 
     // negative, go to step D6; otherwise go on to step D7.
-    q[j] = qp;
+    q[j] = (uint32_t)qp;
     if (isNeg) {
       // D6. [Add back]. The probability that this step is necessary is very 
       // small, on the order of only 2/b. Make sure that test data accounts for
@@ -1540,7 +1529,9 @@ static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
     }
     DEBUG(cerr << '\n');
   }
+#if 0
   DEBUG(cerr << std::setbase(10) << '\n');
+#endif
 }
 
 void APInt::divide(const APInt LHS, uint32_t lhsWords, 
@@ -1585,8 +1576,8 @@ void APInt::divide(const APInt LHS, uint32_t lhsWords,
   memset(U, 0, (m+n+1)*sizeof(uint32_t));
   for (unsigned i = 0; i < lhsWords; ++i) {
     uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
-    U[i * 2] = tmp & mask;
-    U[i * 2 + 1] = tmp >> (sizeof(uint32_t)*8);
+    U[i * 2] = (uint32_t)(tmp & mask);
+    U[i * 2 + 1] = (uint32_t)(tmp >> (sizeof(uint32_t)*8));
   }
   U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
 
@@ -1594,8 +1585,8 @@ void APInt::divide(const APInt LHS, uint32_t lhsWords,
   memset(V, 0, (n)*sizeof(uint32_t));
   for (unsigned i = 0; i < rhsWords; ++i) {
     uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
-    V[i * 2] = tmp & mask;
-    V[i * 2 + 1] = tmp >> (sizeof(uint32_t)*8);
+    V[i * 2] = (uint32_t)(tmp & mask);
+    V[i * 2 + 1] = (uint32_t)(tmp >> (sizeof(uint32_t)*8));
   }
 
   // initialize the quotient and remainder
@@ -1631,13 +1622,13 @@ void APInt::divide(const APInt LHS, uint32_t lhsWords,
         remainder = 0;
       } else if (partial_dividend < divisor) {
         Q[i] = 0;
-        remainder = partial_dividend;
+        remainder = (uint32_t)partial_dividend;
       } else if (partial_dividend == divisor) {
         Q[i] = 1;
         remainder = 0;
       } else {
-        Q[i] = partial_dividend / divisor;
-        remainder = partial_dividend - (Q[i] * divisor);
+        Q[i] = (uint32_t)(partial_dividend / divisor);
+        remainder = (uint32_t)(partial_dividend - (Q[i] * divisor));
       }
     }
     if (R)
@@ -1822,13 +1813,10 @@ void APInt::udivrem(const APInt &LHS, const APInt &RHS,
   
   if (lhsWords == 1 && rhsWords == 1) {
     // There is only one word to consider so use the native versions.
-    if (LHS.isSingleWord()) {
-      Quotient = APInt(LHS.getBitWidth(), LHS.VAL / RHS.VAL);
-      Remainder = APInt(LHS.getBitWidth(), LHS.VAL % RHS.VAL);
-    } else {
-      Quotient = APInt(LHS.getBitWidth(), LHS.pVal[0] / RHS.pVal[0]);
-      Remainder = APInt(LHS.getBitWidth(), LHS.pVal[0] % RHS.pVal[0]);
-    }
+    uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0];
+    uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
+    Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue);
+    Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue);
     return;
   }
 
@@ -1880,6 +1868,10 @@ void APInt::fromString(uint32_t numbits, const char *str, uint32_t slen,
         assert(0 && "huh? we shouldn't get here");
     } else if (isdigit(cdigit)) {
       digit = cdigit - '0';
+      assert((radix == 10 ||
+              (radix == 8 && digit != 8 && digit != 9) ||
+              (radix == 2 && (digit == 0 || digit == 1))) &&
+             "Invalid digit in string for given radix");
     } else {
       assert(0 && "Invalid character in digit string");
     }
@@ -1904,111 +1896,744 @@ void APInt::fromString(uint32_t numbits, const char *str, uint32_t slen,
   }
 }
 
-std::string APInt::toString(uint8_t radix, bool wantSigned) const {
-  assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
+void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
+                     bool Signed) const {
+  assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2) &&
          "Radix should be 2, 8, 10, or 16!");
-  static const char *digits[] = { 
-    "0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F" 
-  };
-  std::string result;
-  uint32_t bits_used = getActiveBits();
+  
+  // First, check for a zero value and just short circuit the logic below.
+  if (*this == 0) {
+    Str.push_back('0');
+    return;
+  }
+  
+  static const char Digits[] = "0123456789ABCDEF";
+  
   if (isSingleWord()) {
-    char buf[65];
-    const char *format = (radix == 10 ? (wantSigned ? "%lld" : "%llu") :
-       (radix == 16 ? "%llX" : (radix == 8 ? "%llo" : 0)));
-    if (format) {
-      if (wantSigned) {
-        int64_t sextVal = (int64_t(VAL) << (APINT_BITS_PER_WORD-BitWidth)) >> 
-                           (APINT_BITS_PER_WORD-BitWidth);
-        sprintf(buf, format, sextVal);
-      } else 
-        sprintf(buf, format, VAL);
+    char Buffer[65];
+    char *BufPtr = Buffer+65;
+    
+    uint64_t N;
+    if (Signed) {
+      int64_t I = getSExtValue();
+      if (I < 0) {
+        Str.push_back('-');
+        I = -I;
+      }
+      N = I;
     } else {
-      memset(buf, 0, 65);
-      uint64_t v = VAL;
-      while (bits_used) {
-        uint32_t bit = v & 1;
-        bits_used--;
-        buf[bits_used] = digits[bit][0];
-        v >>=1;
+      N = getZExtValue();
+    }
+    
+    while (N) {
+      *--BufPtr = Digits[N % Radix];
+      N /= Radix;
+    }
+    Str.append(BufPtr, Buffer+65);
+    return;
+  }
+
+  APInt Tmp(*this);
+  
+  if (Signed && isNegative()) {
+    // They want to print the signed version and it is a negative value
+    // Flip the bits and add one to turn it into the equivalent positive
+    // value and put a '-' in the result.
+    Tmp.flip();
+    Tmp++;
+    Str.push_back('-');
+  }
+  
+  // We insert the digits backward, then reverse them to get the right order.
+  unsigned StartDig = Str.size();
+  
+  // For the 2, 8 and 16 bit cases, we can just shift instead of divide 
+  // because the number of bits per digit (1, 3 and 4 respectively) divides 
+  // equaly.  We just shift until the value is zero.
+  if (Radix != 10) {
+    // Just shift tmp right for each digit width until it becomes zero
+    unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
+    unsigned MaskAmt = Radix - 1;
+    
+    while (Tmp != 0) {
+      unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
+      Str.push_back(Digits[Digit]);
+      Tmp = Tmp.lshr(ShiftAmt);
+    }
+  } else {
+    APInt divisor(4, 10);
+    while (Tmp != 0) {
+      APInt APdigit(1, 0);
+      APInt tmp2(Tmp.getBitWidth(), 0);
+      divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2, 
+             &APdigit);
+      uint32_t Digit = (uint32_t)APdigit.getZExtValue();
+      assert(Digit < Radix && "divide failed");
+      Str.push_back(Digits[Digit]);
+      Tmp = tmp2;
+    }
+  }
+  
+  // Reverse the digits before returning.
+  std::reverse(Str.begin()+StartDig, Str.end());
+}
+
+/// toString - This returns the APInt as a std::string.  Note that this is an
+/// inefficient method.  It is better to pass in a SmallVector/SmallString
+/// to the methods above.
+std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
+  SmallString<40> S;
+  toString(S, Radix, Signed);
+  return S.c_str();
+}
+
+
+void APInt::dump() const {
+  SmallString<40> S, U;
+  this->toStringUnsigned(U);
+  this->toStringSigned(S);
+  fprintf(stderr, "APInt(%db, %su %ss)", BitWidth, U.c_str(), S.c_str());
+}
+
+void APInt::print(raw_ostream &OS, bool isSigned) const {
+  SmallString<40> S;
+  this->toString(S, 10, isSigned);
+  OS << S.c_str();
+}
+
+// This implements a variety of operations on a representation of
+// arbitrary precision, two's-complement, bignum integer values.
+
+/* Assumed by lowHalf, highHalf, partMSB and partLSB.  A fairly safe
+   and unrestricting assumption.  */
+#define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
+COMPILE_TIME_ASSERT(integerPartWidth % 2 == 0);
+
+/* Some handy functions local to this file.  */
+namespace {
+
+  /* Returns the integer part with the least significant BITS set.
+     BITS cannot be zero.  */
+  static inline integerPart
+  lowBitMask(unsigned int bits)
+  {
+    assert (bits != 0 && bits <= integerPartWidth);
+
+    return ~(integerPart) 0 >> (integerPartWidth - bits);
+  }
+
+  /* Returns the value of the lower half of PART.  */
+  static inline integerPart
+  lowHalf(integerPart part)
+  {
+    return part & lowBitMask(integerPartWidth / 2);
+  }
+
+  /* Returns the value of the upper half of PART.  */
+  static inline integerPart
+  highHalf(integerPart part)
+  {
+    return part >> (integerPartWidth / 2);
+  }
+
+  /* Returns the bit number of the most significant set bit of a part.
+     If the input number has no bits set -1U is returned.  */
+  static unsigned int
+  partMSB(integerPart value)
+  {
+    unsigned int n, msb;
+
+    if (value == 0)
+      return -1U;
+
+    n = integerPartWidth / 2;
+
+    msb = 0;
+    do {
+      if (value >> n) {
+        value >>= n;
+        msb += n;
       }
+
+      n >>= 1;
+    } while (n);
+
+    return msb;
+  }
+
+  /* Returns the bit number of the least significant set bit of a
+     part.  If the input number has no bits set -1U is returned.  */
+  static unsigned int
+  partLSB(integerPart value)
+  {
+    unsigned int n, lsb;
+
+    if (value == 0)
+      return -1U;
+
+    lsb = integerPartWidth - 1;
+    n = integerPartWidth / 2;
+
+    do {
+      if (value << n) {
+        value <<= n;
+        lsb -= n;
+      }
+
+      n >>= 1;
+    } while (n);
+
+    return lsb;
+  }
+}
+
+/* Sets the least significant part of a bignum to the input value, and
+   zeroes out higher parts.  */
+void
+APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts)
+{
+  unsigned int i;
+
+  assert (parts > 0);
+
+  dst[0] = part;
+  for(i = 1; i < parts; i++)
+    dst[i] = 0;
+}
+
+/* Assign one bignum to another.  */
+void
+APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts)
+{
+  unsigned int i;
+
+  for(i = 0; i < parts; i++)
+    dst[i] = src[i];
+}
+
+/* Returns true if a bignum is zero, false otherwise.  */
+bool
+APInt::tcIsZero(const integerPart *src, unsigned int parts)
+{
+  unsigned int i;
+
+  for(i = 0; i < parts; i++)
+    if (src[i])
+      return false;
+
+  return true;
+}
+
+/* Extract the given bit of a bignum; returns 0 or 1.  */
+int
+APInt::tcExtractBit(const integerPart *parts, unsigned int bit)
+{
+  return(parts[bit / integerPartWidth]
+         & ((integerPart) 1 << bit % integerPartWidth)) != 0;
+}
+
+/* Set the given bit of a bignum.  */
+void
+APInt::tcSetBit(integerPart *parts, unsigned int bit)
+{
+  parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth);
+}
+
+/* Returns the bit number of the least significant set bit of a
+   number.  If the input number has no bits set -1U is returned.  */
+unsigned int
+APInt::tcLSB(const integerPart *parts, unsigned int n)
+{
+  unsigned int i, lsb;
+
+  for(i = 0; i < n; i++) {
+      if (parts[i] != 0) {
+          lsb = partLSB(parts[i]);
+
+          return lsb + i * integerPartWidth;
+      }
+  }
+
+  return -1U;
+}
+
+/* Returns the bit number of the most significant set bit of a number.
+   If the input number has no bits set -1U is returned.  */
+unsigned int
+APInt::tcMSB(const integerPart *parts, unsigned int n)
+{
+  unsigned int msb;
+
+  do {
+      --n;
+
+      if (parts[n] != 0) {
+          msb = partMSB(parts[n]);
+
+          return msb + n * integerPartWidth;
+      }
+  } while (n);
+
+  return -1U;
+}
+
+/* Copy the bit vector of width srcBITS from SRC, starting at bit
+   srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
+   the least significant bit of DST.  All high bits above srcBITS in
+   DST are zero-filled.  */
+void
+APInt::tcExtract(integerPart *dst, unsigned int dstCount, const integerPart *src,
+                 unsigned int srcBits, unsigned int srcLSB)
+{
+  unsigned int firstSrcPart, dstParts, shift, n;
+
+  dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth;
+  assert (dstParts <= dstCount);
+
+  firstSrcPart = srcLSB / integerPartWidth;
+  tcAssign (dst, src + firstSrcPart, dstParts);
+
+  shift = srcLSB % integerPartWidth;
+  tcShiftRight (dst, dstParts, shift);
+
+  /* We now have (dstParts * integerPartWidth - shift) bits from SRC
+     in DST.  If this is less that srcBits, append the rest, else
+     clear the high bits.  */
+  n = dstParts * integerPartWidth - shift;
+  if (n < srcBits) {
+    integerPart mask = lowBitMask (srcBits - n);
+    dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
+                          << n % integerPartWidth);
+  } else if (n > srcBits) {
+    if (srcBits % integerPartWidth)
+      dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth);
+  }
+
+  /* Clear high parts.  */
+  while (dstParts < dstCount)
+    dst[dstParts++] = 0;
+}
+
+/* DST += RHS + C where C is zero or one.  Returns the carry flag.  */
+integerPart
+APInt::tcAdd(integerPart *dst, const integerPart *rhs,
+             integerPart c, unsigned int parts)
+{
+  unsigned int i;
+
+  assert(c <= 1);
+
+  for(i = 0; i < parts; i++) {
+    integerPart l;
+
+    l = dst[i];
+    if (c) {
+      dst[i] += rhs[i] + 1;
+      c = (dst[i] <= l);
+    } else {
+      dst[i] += rhs[i];
+      c = (dst[i] < l);
     }
-    result = buf;
-    return result;
   }
 
-  if (radix != 10) {
-    // For the 2, 8 and 16 bit cases, we can just shift instead of divide 
-    // because the number of bits per digit (1,3 and 4 respectively) divides 
-    // equaly. We just shift until there value is zero.
+  return c;
+}
 
-    // First, check for a zero value and just short circuit the logic below.
-    if (*this == 0)
-      result = "0";
-    else {
-      APInt tmp(*this);
-      size_t insert_at = 0;
-      if (wantSigned && this->isNegative()) {
-        // They want to print the signed version and it is a negative value
-        // Flip the bits and add one to turn it into the equivalent positive
-        // value and put a '-' in the result.
-        tmp.flip();
-        tmp++;
-        result = "-";
-        insert_at = 1;
+/* DST -= RHS + C where C is zero or one.  Returns the carry flag.  */
+integerPart
+APInt::tcSubtract(integerPart *dst, const integerPart *rhs,
+                  integerPart c, unsigned int parts)
+{
+  unsigned int i;
+
+  assert(c <= 1);
+
+  for(i = 0; i < parts; i++) {
+    integerPart l;
+
+    l = dst[i];
+    if (c) {
+      dst[i] -= rhs[i] + 1;
+      c = (dst[i] >= l);
+    } else {
+      dst[i] -= rhs[i];
+      c = (dst[i] > l);
+    }
+  }
+
+  return c;
+}
+
+/* Negate a bignum in-place.  */
+void
+APInt::tcNegate(integerPart *dst, unsigned int parts)
+{
+  tcComplement(dst, parts);
+  tcIncrement(dst, parts);
+}
+
+/*  DST += SRC * MULTIPLIER + CARRY   if add is true
+    DST  = SRC * MULTIPLIER + CARRY   if add is false
+
+    Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC
+    they must start at the same point, i.e. DST == SRC.
+
+    If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
+    returned.  Otherwise DST is filled with the least significant
+    DSTPARTS parts of the result, and if all of the omitted higher
+    parts were zero return zero, otherwise overflow occurred and
+    return one.  */
+int
+APInt::tcMultiplyPart(integerPart *dst, const integerPart *src,
+                      integerPart multiplier, integerPart carry,
+                      unsigned int srcParts, unsigned int dstParts,
+                      bool add)
+{
+  unsigned int i, n;
+
+  /* Otherwise our writes of DST kill our later reads of SRC.  */
+  assert(dst <= src || dst >= src + srcParts);
+  assert(dstParts <= srcParts + 1);
+
+  /* N loops; minimum of dstParts and srcParts.  */
+  n = dstParts < srcParts ? dstParts: srcParts;
+
+  for(i = 0; i < n; i++) {
+    integerPart low, mid, high, srcPart;
+
+      /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
+
+         This cannot overflow, because
+
+         (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
+
+         which is less than n^2.  */
+
+    srcPart = src[i];
+
+    if (multiplier == 0 || srcPart == 0)        {
+      low = carry;
+      high = 0;
+    } else {
+      low = lowHalf(srcPart) * lowHalf(multiplier);
+      high = highHalf(srcPart) * highHalf(multiplier);
+
+      mid = lowHalf(srcPart) * highHalf(multiplier);
+      high += highHalf(mid);
+      mid <<= integerPartWidth / 2;
+      if (low + mid < low)
+        high++;
+      low += mid;
+
+      mid = highHalf(srcPart) * lowHalf(multiplier);
+      high += highHalf(mid);
+      mid <<= integerPartWidth / 2;
+      if (low + mid < low)
+        high++;
+      low += mid;
+
+      /* Now add carry.  */
+      if (low + carry < low)
+        high++;
+      low += carry;
+    }
+
+    if (add) {
+      /* And now DST[i], and store the new low part there.  */
+      if (low + dst[i] < low)
+        high++;
+      dst[i] += low;
+    } else
+      dst[i] = low;
+
+    carry = high;
+  }
+
+  if (i < dstParts) {
+    /* Full multiplication, there is no overflow.  */
+    assert(i + 1 == dstParts);
+    dst[i] = carry;
+    return 0;
+  } else {
+    /* We overflowed if there is carry.  */
+    if (carry)
+      return 1;
+
+    /* We would overflow if any significant unwritten parts would be
+       non-zero.  This is true if any remaining src parts are non-zero
+       and the multiplier is non-zero.  */
+    if (multiplier)
+      for(; i < srcParts; i++)
+        if (src[i])
+          return 1;
+
+    /* We fitted in the narrow destination.  */
+    return 0;
+  }
+}
+
+/* DST = LHS * RHS, where DST has the same width as the operands and
+   is filled with the least significant parts of the result.  Returns
+   one if overflow occurred, otherwise zero.  DST must be disjoint
+   from both operands.  */
+int
+APInt::tcMultiply(integerPart *dst, const integerPart *lhs,
+                  const integerPart *rhs, unsigned int parts)
+{
+  unsigned int i;
+  int overflow;
+
+  assert(dst != lhs && dst != rhs);
+
+  overflow = 0;
+  tcSet(dst, 0, parts);
+
+  for(i = 0; i < parts; i++)
+    overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
+                               parts - i, true);
+
+  return overflow;
+}
+
+/* DST = LHS * RHS, where DST has width the sum of the widths of the
+   operands.  No overflow occurs.  DST must be disjoint from both
+   operands.  Returns the number of parts required to hold the
+   result.  */
+unsigned int
+APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs,
+                      const integerPart *rhs, unsigned int lhsParts,
+                      unsigned int rhsParts)
+{
+  /* Put the narrower number on the LHS for less loops below.  */
+  if (lhsParts > rhsParts) {
+    return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
+  } else {
+    unsigned int n;
+
+    assert(dst != lhs && dst != rhs);
+
+    tcSet(dst, 0, rhsParts);
+
+    for(n = 0; n < lhsParts; n++)
+      tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true);
+
+    n = lhsParts + rhsParts;
+
+    return n - (dst[n - 1] == 0);
+  }
+}
+
+/* If RHS is zero LHS and REMAINDER are left unchanged, return one.
+   Otherwise set LHS to LHS / RHS with the fractional part discarded,
+   set REMAINDER to the remainder, return zero.  i.e.
+
+   OLD_LHS = RHS * LHS + REMAINDER
+
+   SCRATCH is a bignum of the same size as the operands and result for
+   use by the routine; its contents need not be initialized and are
+   destroyed.  LHS, REMAINDER and SCRATCH must be distinct.
+*/
+int
+APInt::tcDivide(integerPart *lhs, const integerPart *rhs,
+                integerPart *remainder, integerPart *srhs,
+                unsigned int parts)
+{
+  unsigned int n, shiftCount;
+  integerPart mask;
+
+  assert(lhs != remainder && lhs != srhs && remainder != srhs);
+
+  shiftCount = tcMSB(rhs, parts) + 1;
+  if (shiftCount == 0)
+    return true;
+
+  shiftCount = parts * integerPartWidth - shiftCount;
+  n = shiftCount / integerPartWidth;
+  mask = (integerPart) 1 << (shiftCount % integerPartWidth);
+
+  tcAssign(srhs, rhs, parts);
+  tcShiftLeft(srhs, parts, shiftCount);
+  tcAssign(remainder, lhs, parts);
+  tcSet(lhs, 0, parts);
+
+  /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
+     the total.  */
+  for(;;) {
+      int compare;
+
+      compare = tcCompare(remainder, srhs, parts);
+      if (compare >= 0) {
+        tcSubtract(remainder, srhs, 0, parts);
+        lhs[n] |= mask;
       }
-      // Just shift tmp right for each digit width until it becomes zero
-      uint32_t shift = (radix == 16 ? 4 : (radix == 8 ? 3 : 1));
-      uint64_t mask = radix - 1;
-      APInt zero(tmp.getBitWidth(), 0);
-      while (tmp.ne(zero)) {
-        unsigned digit = tmp.getZExtValue() & mask;
-        tmp = tmp.lshr(shift);
-        result.insert(insert_at, digits[digit]);
+
+      if (shiftCount == 0)
+        break;
+      shiftCount--;
+      tcShiftRight(srhs, parts, 1);
+      if ((mask >>= 1) == 0)
+        mask = (integerPart) 1 << (integerPartWidth - 1), n--;
+  }
+
+  return false;
+}
+
+/* Shift a bignum left COUNT bits in-place.  Shifted in bits are zero.
+   There are no restrictions on COUNT.  */
+void
+APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count)
+{
+  if (count) {
+    unsigned int jump, shift;
+
+    /* Jump is the inter-part jump; shift is is intra-part shift.  */
+    jump = count / integerPartWidth;
+    shift = count % integerPartWidth;
+
+    while (parts > jump) {
+      integerPart part;
+
+      parts--;
+
+      /* dst[i] comes from the two parts src[i - jump] and, if we have
+         an intra-part shift, src[i - jump - 1].  */
+      part = dst[parts - jump];
+      if (shift) {
+        part <<= shift;
+        if (parts >= jump + 1)
+          part |= dst[parts - jump - 1] >> (integerPartWidth - shift);
       }
+
+      dst[parts] = part;
     }
-    return result;
+
+    while (parts > 0)
+      dst[--parts] = 0;
   }
+}
 
-  APInt tmp(*this);
-  APInt divisor(4, radix);
-  APInt zero(tmp.getBitWidth(), 0);
-  size_t insert_at = 0;
-  if (wantSigned && tmp[BitWidth-1]) {
-    // They want to print the signed version and it is a negative value
-    // Flip the bits and add one to turn it into the equivalent positive
-    // value and put a '-' in the result.
-    tmp.flip();
-    tmp++;
-    result = "-";
-    insert_at = 1;
-  }
-  if (tmp == APInt(tmp.getBitWidth(), 0))
-    result = "0";
-  else while (tmp.ne(zero)) {
-    APInt APdigit(1,0);
-    APInt tmp2(tmp.getBitWidth(), 0);
-    divide(tmp, tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2, 
-           &APdigit);
-    uint32_t digit = APdigit.getZExtValue();
-    assert(digit < radix && "divide failed");
-    result.insert(insert_at,digits[digit]);
-    tmp = tmp2;
+/* Shift a bignum right COUNT bits in-place.  Shifted in bits are
+   zero.  There are no restrictions on COUNT.  */
+void
+APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count)
+{
+  if (count) {
+    unsigned int i, jump, shift;
+
+    /* Jump is the inter-part jump; shift is is intra-part shift.  */
+    jump = count / integerPartWidth;
+    shift = count % integerPartWidth;
+
+    /* Perform the shift.  This leaves the most significant COUNT bits
+       of the result at zero.  */
+    for(i = 0; i < parts; i++) {
+      integerPart part;
+
+      if (i + jump >= parts) {
+        part = 0;
+      } else {
+        part = dst[i + jump];
+        if (shift) {
+          part >>= shift;
+          if (i + jump + 1 < parts)
+            part |= dst[i + jump + 1] << (integerPartWidth - shift);
+        }
+      }
+
+      dst[i] = part;
+    }
   }
+}
 
-  return result;
+/* Bitwise and of two bignums.  */
+void
+APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts)
+{
+  unsigned int i;
+
+  for(i = 0; i < parts; i++)
+    dst[i] &= rhs[i];
 }
 
-#ifndef NDEBUG
-void APInt::dump() const
+/* Bitwise inclusive or of two bignums.  */
+void
+APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts)
 {
-  cerr << "APInt(" << BitWidth << ")=" << std::setbase(16);
-  if (isSingleWord())
-    cerr << VAL;
-  else for (unsigned i = getNumWords(); i > 0; i--) {
-    cerr << pVal[i-1] << " ";
+  unsigned int i;
+
+  for(i = 0; i < parts; i++)
+    dst[i] |= rhs[i];
+}
+
+/* Bitwise exclusive or of two bignums.  */
+void
+APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts)
+{
+  unsigned int i;
+
+  for(i = 0; i < parts; i++)
+    dst[i] ^= rhs[i];
+}
+
+/* Complement a bignum in-place.  */
+void
+APInt::tcComplement(integerPart *dst, unsigned int parts)
+{
+  unsigned int i;
+
+  for(i = 0; i < parts; i++)
+    dst[i] = ~dst[i];
+}
+
+/* Comparison (unsigned) of two bignums.  */
+int
+APInt::tcCompare(const integerPart *lhs, const integerPart *rhs,
+                 unsigned int parts)
+{
+  while (parts) {
+      parts--;
+      if (lhs[parts] == rhs[parts])
+        continue;
+
+      if (lhs[parts] > rhs[parts])
+        return 1;
+      else
+        return -1;
+    }
+
+  return 0;
+}
+
+/* Increment a bignum in-place, return the carry flag.  */
+integerPart
+APInt::tcIncrement(integerPart *dst, unsigned int parts)
+{
+  unsigned int i;
+
+  for(i = 0; i < parts; i++)
+    if (++dst[i] != 0)
+      break;
+
+  return i == parts;
+}
+
+/* Set the least significant BITS bits of a bignum, clear the
+   rest.  */
+void
+APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts,
+                                 unsigned int bits)
+{
+  unsigned int i;
+
+  i = 0;
+  while (bits > integerPartWidth) {
+    dst[i++] = ~(integerPart) 0;
+    bits -= integerPartWidth;
   }
-  cerr << " U(" << this->toString(10) << ") S(" << this->toStringSigned(10)
-       << ")\n" << std::setbase(10);
+
+  if (bits)
+    dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits);
+
+  while (i < parts)
+    dst[i++] = 0;
 }
-#endif