PPC should always use the register scavenger for CR spilling
[oota-llvm.git] / lib / Target / PowerPC / PPCISelLowering.cpp
index 239aa2bf4d0435f12fb55b11211df0b5bd4b0003..13cb358fc028f01dc33fbadb2badc80af1cdc09e 100644 (file)
 //===----------------------------------------------------------------------===//
 
 #include "PPCISelLowering.h"
+#include "MCTargetDesc/PPCPredicates.h"
 #include "PPCMachineFunctionInfo.h"
 #include "PPCPerfectShuffle.h"
 #include "PPCTargetMachine.h"
-#include "MCTargetDesc/PPCPredicates.h"
-#include "llvm/CallingConv.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/Intrinsics.h"
 #include "llvm/ADT/STLExtras.h"
 #include "llvm/CodeGen/CallingConvLower.h"
 #include "llvm/CodeGen/MachineFrameInfo.h"
 #include "llvm/CodeGen/MachineRegisterInfo.h"
 #include "llvm/CodeGen/SelectionDAG.h"
 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Intrinsics.h"
 #include "llvm/Support/CommandLine.h"
 #include "llvm/Support/ErrorHandling.h"
 #include "llvm/Support/MathExtras.h"
 #include "llvm/Target/TargetOptions.h"
 using namespace llvm;
 
-static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
-                                     CCValAssign::LocInfo &LocInfo,
-                                     ISD::ArgFlagsTy &ArgFlags,
-                                     CCState &State);
-static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
-                                            MVT &LocVT,
-                                            CCValAssign::LocInfo &LocInfo,
-                                            ISD::ArgFlagsTy &ArgFlags,
-                                            CCState &State);
-static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
+static bool CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
+                                       CCValAssign::LocInfo &LocInfo,
+                                       ISD::ArgFlagsTy &ArgFlags,
+                                       CCState &State);
+static bool CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
                                               MVT &LocVT,
                                               CCValAssign::LocInfo &LocInfo,
                                               ISD::ArgFlagsTy &ArgFlags,
                                               CCState &State);
+static bool CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
+                                                MVT &LocVT,
+                                                CCValAssign::LocInfo &LocInfo,
+                                                ISD::ArgFlagsTy &ArgFlags,
+                                                CCState &State);
 
 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
@@ -132,11 +132,13 @@ PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
   // We don't support sin/cos/sqrt/fmod/pow
   setOperationAction(ISD::FSIN , MVT::f64, Expand);
   setOperationAction(ISD::FCOS , MVT::f64, Expand);
+  setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
   setOperationAction(ISD::FREM , MVT::f64, Expand);
   setOperationAction(ISD::FPOW , MVT::f64, Expand);
   setOperationAction(ISD::FMA  , MVT::f64, Legal);
   setOperationAction(ISD::FSIN , MVT::f32, Expand);
   setOperationAction(ISD::FCOS , MVT::f32, Expand);
+  setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
   setOperationAction(ISD::FREM , MVT::f32, Expand);
   setOperationAction(ISD::FPOW , MVT::f32, Expand);
   setOperationAction(ISD::FMA  , MVT::f32, Legal);
@@ -347,6 +349,21 @@ PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
       setOperationAction(ISD::UREM, VT, Expand);
       setOperationAction(ISD::FDIV, VT, Expand);
       setOperationAction(ISD::FNEG, VT, Expand);
+      setOperationAction(ISD::FSQRT, VT, Expand);
+      setOperationAction(ISD::FLOG, VT, Expand);
+      setOperationAction(ISD::FLOG10, VT, Expand);
+      setOperationAction(ISD::FLOG2, VT, Expand);
+      setOperationAction(ISD::FEXP, VT, Expand);
+      setOperationAction(ISD::FEXP2, VT, Expand);
+      setOperationAction(ISD::FSIN, VT, Expand);
+      setOperationAction(ISD::FCOS, VT, Expand);
+      setOperationAction(ISD::FABS, VT, Expand);
+      setOperationAction(ISD::FPOWI, VT, Expand);
+      setOperationAction(ISD::FFLOOR, VT, Expand);
+      setOperationAction(ISD::FCEIL,  VT, Expand);
+      setOperationAction(ISD::FTRUNC, VT, Expand);
+      setOperationAction(ISD::FRINT,  VT, Expand);
+      setOperationAction(ISD::FNEARBYINT, VT, Expand);
       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
@@ -361,6 +378,17 @@ PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
       setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
       setOperationAction(ISD::CTTZ, VT, Expand);
       setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
+      setOperationAction(ISD::VSELECT, VT, Expand);
+      setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
+
+      for (unsigned j = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
+           j <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++j) {
+        MVT::SimpleValueType InnerVT = (MVT::SimpleValueType)j;
+        setTruncStoreAction(VT, InnerVT, Expand);
+      }
+      setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
+      setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
+      setLoadExtAction(ISD::EXTLOAD, VT, Expand);
     }
 
     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
@@ -373,6 +401,14 @@ PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
     setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
+    setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
+    setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
+    setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
+    setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
+    setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
+    setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
+    setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
+    setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
 
     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
@@ -392,6 +428,14 @@ PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
+
+    // Altivec does not contain unordered floating-point compare instructions
+    setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
+    setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
+    setCondCodeAction(ISD::SETUGT, MVT::v4f32, Expand);
+    setCondCodeAction(ISD::SETUGE, MVT::v4f32, Expand);
+    setCondCodeAction(ISD::SETULT, MVT::v4f32, Expand);
+    setCondCodeAction(ISD::SETULE, MVT::v4f32, Expand);
   }
 
   if (Subtarget->has64BitSupport()) {
@@ -401,6 +445,8 @@ PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
 
   setOperationAction(ISD::ATOMIC_LOAD,  MVT::i32, Expand);
   setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
+  setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
+  setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
 
   setBooleanContents(ZeroOrOneBooleanContent);
   setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
@@ -454,15 +500,15 @@ PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
   // friends. Gcc uses same threshold of 128 bytes (= 32 word stores).
   if (Subtarget->getDarwinDirective() == PPC::DIR_E500mc ||
       Subtarget->getDarwinDirective() == PPC::DIR_E5500) {
-    maxStoresPerMemset = 32;
-    maxStoresPerMemsetOptSize = 16;
-    maxStoresPerMemcpy = 32;
-    maxStoresPerMemcpyOptSize = 8;
-    maxStoresPerMemmove = 32;
-    maxStoresPerMemmoveOptSize = 8;
+    MaxStoresPerMemset = 32;
+    MaxStoresPerMemsetOptSize = 16;
+    MaxStoresPerMemcpy = 32;
+    MaxStoresPerMemcpyOptSize = 8;
+    MaxStoresPerMemmove = 32;
+    MaxStoresPerMemmoveOptSize = 8;
 
     setPrefFunctionAlignment(4);
-    benefitFromCodePlacementOpt = true;
+    BenefitFromCodePlacementOpt = true;
   }
 }
 
@@ -534,11 +580,28 @@ const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
+  case PPCISD::ADDIS_TOC_HA:    return "PPCISD::ADDIS_TOC_HA";
+  case PPCISD::LD_TOC_L:        return "PPCISD::LD_TOC_L";
+  case PPCISD::ADDI_TOC_L:      return "PPCISD::ADDI_TOC_L";
+  case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
+  case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
+  case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
+  case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
+  case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
+  case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
+  case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
+  case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
+  case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
+  case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
+  case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
+  case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
   }
 }
 
 EVT PPCTargetLowering::getSetCCResultType(EVT VT) const {
-  return MVT::i32;
+  if (!VT.isVector())
+    return MVT::i32;
+  return VT.changeVectorElementTypeToInteger();
 }
 
 //===----------------------------------------------------------------------===//
@@ -1278,19 +1341,81 @@ SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
   EVT PtrVT = getPointerTy();
   bool is64bit = PPCSubTarget.isPPC64();
 
-  TLSModel::Model model = getTargetMachine().getTLSModel(GV);
+  TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
+
+  if (Model == TLSModel::LocalExec) {
+    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
+                                               PPCII::MO_TPREL16_HA);
+    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
+                                               PPCII::MO_TPREL16_LO);
+    SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
+                                     is64bit ? MVT::i64 : MVT::i32);
+    SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
+    return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
+  }
+
+  if (!is64bit)
+    llvm_unreachable("only local-exec is currently supported for ppc32");
+
+  if (Model == TLSModel::InitialExec) {
+    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
+    SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
+    SDValue TPOffsetHi = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
+                                     PtrVT, GOTReg, TGA);
+    SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
+                                   PtrVT, TGA, TPOffsetHi);
+    return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGA);
+  }
+
+  if (Model == TLSModel::GeneralDynamic) {
+    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
+    SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
+    SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
+                                     GOTReg, TGA);
+    SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSGD_L, dl, PtrVT,
+                                   GOTEntryHi, TGA);
+
+    // We need a chain node, and don't have one handy.  The underlying
+    // call has no side effects, so using the function entry node
+    // suffices.
+    SDValue Chain = DAG.getEntryNode();
+    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry);
+    SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64);
+    SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLS_ADDR, dl,
+                                  PtrVT, ParmReg, TGA);
+    // The return value from GET_TLS_ADDR really is in X3 already, but
+    // some hacks are needed here to tie everything together.  The extra
+    // copies dissolve during subsequent transforms.
+    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr);
+    return DAG.getCopyFromReg(Chain, dl, PPC::X3, PtrVT);
+  }
 
-  SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
-                                             PPCII::MO_TPREL16_HA);
-  SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
-                                             PPCII::MO_TPREL16_LO);
+  if (Model == TLSModel::LocalDynamic) {
+    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
+    SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
+    SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
+                                     GOTReg, TGA);
+    SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSLD_L, dl, PtrVT,
+                                   GOTEntryHi, TGA);
+
+    // We need a chain node, and don't have one handy.  The underlying
+    // call has no side effects, so using the function entry node
+    // suffices.
+    SDValue Chain = DAG.getEntryNode();
+    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry);
+    SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64);
+    SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLSLD_ADDR, dl,
+                                  PtrVT, ParmReg, TGA);
+    // The return value from GET_TLSLD_ADDR really is in X3 already, but
+    // some hacks are needed here to tie everything together.  The extra
+    // copies dissolve during subsequent transforms.
+    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr);
+    SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, PtrVT,
+                                      Chain, ParmReg, TGA);
+    return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
+  }
 
-  if (model != TLSModel::LocalExec)
-    llvm_unreachable("only local-exec TLS mode supported");
-  SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
-                                   is64bit ? MVT::i64 : MVT::i32);
-  SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
-  return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
+  llvm_unreachable("Unknown TLS model!");
 }
 
 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
@@ -1493,7 +1618,7 @@ SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   bool isPPC64 = (PtrVT == MVT::i64);
   Type *IntPtrTy =
-    DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType(
+    DAG.getTargetLoweringInfo().getDataLayout()->getIntPtrType(
                                                              *DAG.getContext());
 
   TargetLowering::ArgListTy Args;
@@ -1624,18 +1749,18 @@ SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
 
 #include "PPCGenCallingConv.inc"
 
-static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
-                                     CCValAssign::LocInfo &LocInfo,
-                                     ISD::ArgFlagsTy &ArgFlags,
-                                     CCState &State) {
+static bool CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
+                                       CCValAssign::LocInfo &LocInfo,
+                                       ISD::ArgFlagsTy &ArgFlags,
+                                       CCState &State) {
   return true;
 }
 
-static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
-                                            MVT &LocVT,
-                                            CCValAssign::LocInfo &LocInfo,
-                                            ISD::ArgFlagsTy &ArgFlags,
-                                            CCState &State) {
+static bool CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
+                                              MVT &LocVT,
+                                              CCValAssign::LocInfo &LocInfo,
+                                              ISD::ArgFlagsTy &ArgFlags,
+                                              CCState &State) {
   static const uint16_t ArgRegs[] = {
     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
@@ -1658,11 +1783,11 @@ static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
   return false;
 }
 
-static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
-                                              MVT &LocVT,
-                                              CCValAssign::LocInfo &LocInfo,
-                                              ISD::ArgFlagsTy &ArgFlags,
-                                              CCState &State) {
+static bool CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
+                                                MVT &LocVT,
+                                                CCValAssign::LocInfo &LocInfo,
+                                                ISD::ArgFlagsTy &ArgFlags,
+                                                CCState &State) {
   static const uint16_t ArgRegs[] = {
     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
     PPC::F8
@@ -1716,12 +1841,16 @@ PPCTargetLowering::LowerFormalArguments(SDValue Chain,
                                         DebugLoc dl, SelectionDAG &DAG,
                                         SmallVectorImpl<SDValue> &InVals)
                                           const {
-  if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) {
-    return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
-                                       dl, DAG, InVals);
+  if (PPCSubTarget.isSVR4ABI()) {
+    if (PPCSubTarget.isPPC64())
+      return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
+                                         dl, DAG, InVals);
+    else
+      return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
+                                         dl, DAG, InVals);
   } else {
-    return LowerFormalArguments_Darwin_Or_64SVR4(Chain, CallConv, isVarArg, Ins,
-                                                 dl, DAG, InVals);
+    return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
+                                       dl, DAG, InVals);
   }
 }
 
@@ -1781,7 +1910,7 @@ PPCTargetLowering::LowerFormalArguments_32SVR4(
   // Reserve space for the linkage area on the stack.
   CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
 
-  CCInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4);
+  CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
 
   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
     CCValAssign &VA = ArgLocs[i];
@@ -1842,7 +1971,7 @@ PPCTargetLowering::LowerFormalArguments_32SVR4(
   // Reserve stack space for the allocations in CCInfo.
   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
 
-  CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4_ByVal);
+  CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
 
   // Area that is at least reserved in the caller of this function.
   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
@@ -1943,8 +2072,50 @@ PPCTargetLowering::LowerFormalArguments_32SVR4(
   return Chain;
 }
 
+// PPC64 passes i8, i16, and i32 values in i64 registers. Promote
+// value to MVT::i64 and then truncate to the correct register size.
+SDValue
+PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
+                                     SelectionDAG &DAG, SDValue ArgVal,
+                                     DebugLoc dl) const {
+  if (Flags.isSExt())
+    ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
+                         DAG.getValueType(ObjectVT));
+  else if (Flags.isZExt())
+    ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
+                         DAG.getValueType(ObjectVT));
+  
+  return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
+}
+
+// Set the size that is at least reserved in caller of this function.  Tail
+// call optimized functions' reserved stack space needs to be aligned so that
+// taking the difference between two stack areas will result in an aligned
+// stack.
+void
+PPCTargetLowering::setMinReservedArea(MachineFunction &MF, SelectionDAG &DAG,
+                                      unsigned nAltivecParamsAtEnd,
+                                      unsigned MinReservedArea,
+                                      bool isPPC64) const {
+  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
+  // Add the Altivec parameters at the end, if needed.
+  if (nAltivecParamsAtEnd) {
+    MinReservedArea = ((MinReservedArea+15)/16)*16;
+    MinReservedArea += 16*nAltivecParamsAtEnd;
+  }
+  MinReservedArea =
+    std::max(MinReservedArea,
+             PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
+  unsigned TargetAlign
+    = DAG.getMachineFunction().getTarget().getFrameLowering()->
+        getStackAlignment();
+  unsigned AlignMask = TargetAlign-1;
+  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
+  FI->setMinReservedArea(MinReservedArea);
+}
+
 SDValue
-PPCTargetLowering::LowerFormalArguments_Darwin_Or_64SVR4(
+PPCTargetLowering::LowerFormalArguments_64SVR4(
                                       SDValue Chain,
                                       CallingConv::ID CallConv, bool isVarArg,
                                       const SmallVectorImpl<ISD::InputArg>
@@ -1958,22 +2129,16 @@ PPCTargetLowering::LowerFormalArguments_Darwin_Or_64SVR4(
   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
 
   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
-  bool isPPC64 = PtrVT == MVT::i64;
-  bool isSVR4ABI = PPCSubTarget.isSVR4ABI();
   // Potential tail calls could cause overwriting of argument stack slots.
   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
                        (CallConv == CallingConv::Fast));
-  unsigned PtrByteSize = isPPC64 ? 8 : 4;
+  unsigned PtrByteSize = 8;
 
-  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
+  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(true, true);
   // Area that is at least reserved in caller of this function.
   unsigned MinReservedArea = ArgOffset;
 
-  static const uint16_t GPR_32[] = {           // 32-bit registers.
-    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
-    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
-  };
-  static const uint16_t GPR_64[] = {           // 64-bit registers.
+  static const uint16_t GPR[] = {
     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
   };
@@ -1985,63 +2150,12 @@ PPCTargetLowering::LowerFormalArguments_Darwin_Or_64SVR4(
     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
   };
 
-  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
+  const unsigned Num_GPR_Regs = array_lengthof(GPR);
   const unsigned Num_FPR_Regs = 13;
-  const unsigned Num_VR_Regs  = array_lengthof( VR);
+  const unsigned Num_VR_Regs  = array_lengthof(VR);
 
   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
 
-  const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32;
-
-  // In 32-bit non-varargs functions, the stack space for vectors is after the
-  // stack space for non-vectors.  We do not use this space unless we have
-  // too many vectors to fit in registers, something that only occurs in
-  // constructed examples:), but we have to walk the arglist to figure
-  // that out...for the pathological case, compute VecArgOffset as the
-  // start of the vector parameter area.  Computing VecArgOffset is the
-  // entire point of the following loop.
-  unsigned VecArgOffset = ArgOffset;
-  if (!isVarArg && !isPPC64) {
-    for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
-         ++ArgNo) {
-      EVT ObjectVT = Ins[ArgNo].VT;
-      ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
-
-      if (Flags.isByVal()) {
-        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
-        unsigned ObjSize = Flags.getByValSize();
-        unsigned ArgSize =
-                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
-        VecArgOffset += ArgSize;
-        continue;
-      }
-
-      switch(ObjectVT.getSimpleVT().SimpleTy) {
-      default: llvm_unreachable("Unhandled argument type!");
-      case MVT::i32:
-      case MVT::f32:
-        VecArgOffset += 4;
-        break;
-      case MVT::i64:  // PPC64
-      case MVT::f64:
-        // FIXME: We are guaranteed to be !isPPC64 at this point.
-        // Does MVT::i64 apply?
-        VecArgOffset += 8;
-        break;
-      case MVT::v4f32:
-      case MVT::v4i32:
-      case MVT::v8i16:
-      case MVT::v16i8:
-        // Nothing to do, we're only looking at Nonvector args here.
-        break;
-      }
-    }
-  }
-  // We've found where the vector parameter area in memory is.  Skip the
-  // first 12 parameters; these don't use that memory.
-  VecArgOffset = ((VecArgOffset+15)/16)*16;
-  VecArgOffset += 12*16;
-
   // Add DAG nodes to load the arguments or copy them out of registers.  On
   // entry to a function on PPC, the arguments start after the linkage area,
   // although the first ones are often in registers.
@@ -2049,25 +2163,29 @@ PPCTargetLowering::LowerFormalArguments_Darwin_Or_64SVR4(
   SmallVector<SDValue, 8> MemOps;
   unsigned nAltivecParamsAtEnd = 0;
   Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
-  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo, ++FuncArg) {
+  unsigned CurArgIdx = 0;
+  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
     SDValue ArgVal;
     bool needsLoad = false;
     EVT ObjectVT = Ins[ArgNo].VT;
     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
     unsigned ArgSize = ObjSize;
     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
+    std::advance(FuncArg, Ins[ArgNo].OrigArgIndex - CurArgIdx);
+    CurArgIdx = Ins[ArgNo].OrigArgIndex;
 
     unsigned CurArgOffset = ArgOffset;
 
     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
-      if (isVarArg || isPPC64) {
+      if (isVarArg) {
         MinReservedArea = ((MinReservedArea+15)/16)*16;
         MinReservedArea += CalculateStackSlotSize(ObjectVT,
                                                   Flags,
                                                   PtrByteSize);
-      } else  nAltivecParamsAtEnd++;
+      } else
+        nAltivecParamsAtEnd++;
     } else
       // Calculate min reserved area.
       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
@@ -2080,71 +2198,80 @@ PPCTargetLowering::LowerFormalArguments_Darwin_Or_64SVR4(
       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
       ObjSize = Flags.getByValSize();
       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
-      // FOR DARWIN: Objects of size 1 and 2 are right justified, everything
-      // else is left justified.  This means the memory address is adjusted
-      // forwards.
-      // FOR 64-BIT SVR4: All aggregates smaller than 8 bytes must be passed
-      // right-justified.
-      if (ObjSize==1 || ObjSize==2) {
-        CurArgOffset = CurArgOffset + (4 - ObjSize);
+      // Empty aggregate parameters do not take up registers.  Examples:
+      //   struct { } a;
+      //   union  { } b;
+      //   int c[0];
+      // etc.  However, we have to provide a place-holder in InVals, so
+      // pretend we have an 8-byte item at the current address for that
+      // purpose.
+      if (!ObjSize) {
+        int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
+        SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
+        InVals.push_back(FIN);
+        continue;
       }
+      // All aggregates smaller than 8 bytes must be passed right-justified.
+      if (ObjSize < PtrByteSize)
+        CurArgOffset = CurArgOffset + (PtrByteSize - ObjSize);
       // The value of the object is its address.
       int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
       InVals.push_back(FIN);
-      if (ObjSize==1 || ObjSize==2 ||
-          (ObjSize==4 && isSVR4ABI)) {
+
+      if (ObjSize < 8) {
         if (GPR_idx != Num_GPR_Regs) {
-          unsigned VReg;
-          if (isPPC64)
-            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
-          else
-            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
+          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
-          EVT ObjType = (ObjSize == 1 ? MVT::i8 :
-                         (ObjSize == 2 ? MVT::i16 : MVT::i32));
-          SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
-                                            MachinePointerInfo(FuncArg,
-                                              CurArgOffset),
-                                            ObjType, false, false, 0);
+          SDValue Store;
+
+          if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
+            EVT ObjType = (ObjSize == 1 ? MVT::i8 :
+                           (ObjSize == 2 ? MVT::i16 : MVT::i32));
+            Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
+                                      MachinePointerInfo(FuncArg, CurArgOffset),
+                                      ObjType, false, false, 0);
+          } else {
+            // For sizes that don't fit a truncating store (3, 5, 6, 7),
+            // store the whole register as-is to the parameter save area
+            // slot.  The address of the parameter was already calculated
+            // above (InVals.push_back(FIN)) to be the right-justified
+            // offset within the slot.  For this store, we need a new
+            // frame index that points at the beginning of the slot.
+            int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
+            SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
+            Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
+                                 MachinePointerInfo(FuncArg, ArgOffset),
+                                 false, false, 0);
+          }
+
           MemOps.push_back(Store);
           ++GPR_idx;
         }
-
+        // Whether we copied from a register or not, advance the offset
+        // into the parameter save area by a full doubleword.
         ArgOffset += PtrByteSize;
-
         continue;
       }
+
       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
         // Store whatever pieces of the object are in registers
         // to memory.  ArgOffset will be the address of the beginning
         // of the object.
         if (GPR_idx != Num_GPR_Regs) {
           unsigned VReg;
-          if (isPPC64)
-            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
-          else
-            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
+          VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
           int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
-          SDValue Shifted = Val;
-
-          // For 64-bit SVR4, small structs come in right-adjusted.
-          // Shift them left so the following logic works as expected.
-          if (ObjSize < 8 && isSVR4ABI) {
-            SDValue ShiftAmt = DAG.getConstant(64 - 8 * ObjSize, PtrVT);
-            Shifted = DAG.getNode(ISD::SHL, dl, PtrVT, Val, ShiftAmt);
-          }
-
-          SDValue Store = DAG.getStore(Val.getValue(1), dl, Shifted, FIN,
+          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
                                        MachinePointerInfo(FuncArg, ArgOffset),
                                        false, false, 0);
           MemOps.push_back(Store);
           ++GPR_idx;
           ArgOffset += PtrByteSize;
         } else {
-          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
+          ArgOffset += ArgSize - j;
           break;
         }
       }
@@ -2154,55 +2281,30 @@ PPCTargetLowering::LowerFormalArguments_Darwin_Or_64SVR4(
     switch (ObjectVT.getSimpleVT().SimpleTy) {
     default: llvm_unreachable("Unhandled argument type!");
     case MVT::i32:
-      if (!isPPC64) {
-        if (GPR_idx != Num_GPR_Regs) {
-          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
-          ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
-          ++GPR_idx;
-        } else {
-          needsLoad = true;
-          ArgSize = PtrByteSize;
-        }
-        // All int arguments reserve stack space in the Darwin ABI.
-        ArgOffset += PtrByteSize;
-        break;
-      }
-      // FALLTHROUGH
-    case MVT::i64:  // PPC64
+    case MVT::i64:
       if (GPR_idx != Num_GPR_Regs) {
         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
 
-        if (ObjectVT == MVT::i32) {
+        if (ObjectVT == MVT::i32)
           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
           // value to MVT::i64 and then truncate to the correct register size.
-          if (Flags.isSExt())
-            ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
-                                 DAG.getValueType(ObjectVT));
-          else if (Flags.isZExt())
-            ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
-                                 DAG.getValueType(ObjectVT));
-
-          ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
-        }
+          ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
 
         ++GPR_idx;
       } else {
         needsLoad = true;
         ArgSize = PtrByteSize;
       }
-      // All int arguments reserve stack space in the Darwin ABI.
       ArgOffset += 8;
       break;
 
     case MVT::f32:
     case MVT::f64:
-      // Every 4 bytes of argument space consumes one of the GPRs available for
+      // Every 8 bytes of argument space consumes one of the GPRs available for
       // argument passing.
       if (GPR_idx != Num_GPR_Regs) {
         ++GPR_idx;
-        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
-          ++GPR_idx;
       }
       if (FPR_idx != Num_FPR_Regs) {
         unsigned VReg;
@@ -2216,10 +2318,10 @@ PPCTargetLowering::LowerFormalArguments_Darwin_Or_64SVR4(
         ++FPR_idx;
       } else {
         needsLoad = true;
+        ArgSize = PtrByteSize;
       }
 
-      // All FP arguments reserve stack space in the Darwin ABI.
-      ArgOffset += isPPC64 ? 8 : ObjSize;
+      ArgOffset += 8;
       break;
     case MVT::v4f32:
     case MVT::v4i32:
@@ -2241,23 +2343,17 @@ PPCTargetLowering::LowerFormalArguments_Darwin_Or_64SVR4(
         }
         ++VR_idx;
       } else {
-        if (!isVarArg && !isPPC64) {
-          // Vectors go after all the nonvectors.
-          CurArgOffset = VecArgOffset;
-          VecArgOffset += 16;
-        } else {
-          // Vectors are aligned.
-          ArgOffset = ((ArgOffset+15)/16)*16;
-          CurArgOffset = ArgOffset;
-          ArgOffset += 16;
-        }
+        // Vectors are aligned.
+        ArgOffset = ((ArgOffset+15)/16)*16;
+        CurArgOffset = ArgOffset;
+        ArgOffset += 16;
         needsLoad = true;
       }
       break;
     }
 
-    // We need to load the argument to a virtual register if we determined above
-    // that we ran out of physical registers of the appropriate type.
+    // We need to load the argument to a virtual register if we determined
+    // above that we ran out of physical registers of the appropriate type.
     if (needsLoad) {
       int FI = MFI->CreateFixedObject(ObjSize,
                                       CurArgOffset + (ArgSize - ObjSize),
@@ -2271,23 +2367,10 @@ PPCTargetLowering::LowerFormalArguments_Darwin_Or_64SVR4(
   }
 
   // Set the size that is at least reserved in caller of this function.  Tail
-  // call optimized function's reserved stack space needs to be aligned so that
+  // call optimized functions' reserved stack space needs to be aligned so that
   // taking the difference between two stack areas will result in an aligned
   // stack.
-  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
-  // Add the Altivec parameters at the end, if needed.
-  if (nAltivecParamsAtEnd) {
-    MinReservedArea = ((MinReservedArea+15)/16)*16;
-    MinReservedArea += 16*nAltivecParamsAtEnd;
-  }
-  MinReservedArea =
-    std::max(MinReservedArea,
-             PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
-  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
-    getStackAlignment();
-  unsigned AlignMask = TargetAlign-1;
-  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
-  FI->setMinReservedArea(MinReservedArea);
+  setMinReservedArea(MF, DAG, nAltivecParamsAtEnd, MinReservedArea, true);
 
   // If the function takes variable number of arguments, make a frame index for
   // the start of the first vararg value... for expansion of llvm.va_start.
@@ -2295,27 +2378,20 @@ PPCTargetLowering::LowerFormalArguments_Darwin_Or_64SVR4(
     int Depth = ArgOffset;
 
     FuncInfo->setVarArgsFrameIndex(
-      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
-                             Depth, true));
+      MFI->CreateFixedObject(PtrByteSize, Depth, true));
     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
 
     // If this function is vararg, store any remaining integer argument regs
     // to their spots on the stack so that they may be loaded by deferencing the
     // result of va_next.
     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
-      unsigned VReg;
-
-      if (isPPC64)
-        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
-      else
-        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
-
+      unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
                                    MachinePointerInfo(), false, false, 0);
       MemOps.push_back(Store);
       // Increment the address by four for the next argument to store
-      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
+      SDValue PtrOff = DAG.getConstant(PtrByteSize, PtrVT);
       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
     }
   }
@@ -2327,50 +2403,401 @@ PPCTargetLowering::LowerFormalArguments_Darwin_Or_64SVR4(
   return Chain;
 }
 
-/// CalculateParameterAndLinkageAreaSize - Get the size of the parameter plus
-/// linkage area for the Darwin ABI, or the 64-bit SVR4 ABI.
-static unsigned
-CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
-                                     bool isPPC64,
-                                     bool isVarArg,
-                                     unsigned CC,
-                                     const SmallVectorImpl<ISD::OutputArg>
-                                       &Outs,
-                                     const SmallVectorImpl<SDValue> &OutVals,
-                                     unsigned &nAltivecParamsAtEnd) {
-  // Count how many bytes are to be pushed on the stack, including the linkage
-  // area, and parameter passing area.  We start with 24/48 bytes, which is
-  // prereserved space for [SP][CR][LR][3 x unused].
-  unsigned NumBytes = PPCFrameLowering::getLinkageSize(isPPC64, true);
-  unsigned NumOps = Outs.size();
-  unsigned PtrByteSize = isPPC64 ? 8 : 4;
+SDValue
+PPCTargetLowering::LowerFormalArguments_Darwin(
+                                      SDValue Chain,
+                                      CallingConv::ID CallConv, bool isVarArg,
+                                      const SmallVectorImpl<ISD::InputArg>
+                                        &Ins,
+                                      DebugLoc dl, SelectionDAG &DAG,
+                                      SmallVectorImpl<SDValue> &InVals) const {
+  // TODO: add description of PPC stack frame format, or at least some docs.
+  //
+  MachineFunction &MF = DAG.getMachineFunction();
+  MachineFrameInfo *MFI = MF.getFrameInfo();
+  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
 
-  // Add up all the space actually used.
-  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
-  // they all go in registers, but we must reserve stack space for them for
-  // possible use by the caller.  In varargs or 64-bit calls, parameters are
-  // assigned stack space in order, with padding so Altivec parameters are
-  // 16-byte aligned.
-  nAltivecParamsAtEnd = 0;
-  for (unsigned i = 0; i != NumOps; ++i) {
-    ISD::ArgFlagsTy Flags = Outs[i].Flags;
-    EVT ArgVT = Outs[i].VT;
-    // Varargs Altivec parameters are padded to a 16 byte boundary.
-    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
-        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
-      if (!isVarArg && !isPPC64) {
-        // Non-varargs Altivec parameters go after all the non-Altivec
-        // parameters; handle those later so we know how much padding we need.
-        nAltivecParamsAtEnd++;
-        continue;
-      }
-      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
-      NumBytes = ((NumBytes+15)/16)*16;
-    }
-    NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
-  }
+  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+  bool isPPC64 = PtrVT == MVT::i64;
+  // Potential tail calls could cause overwriting of argument stack slots.
+  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
+                       (CallConv == CallingConv::Fast));
+  unsigned PtrByteSize = isPPC64 ? 8 : 4;
 
-   // Allow for Altivec parameters at the end, if needed.
+  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
+  // Area that is at least reserved in caller of this function.
+  unsigned MinReservedArea = ArgOffset;
+
+  static const uint16_t GPR_32[] = {           // 32-bit registers.
+    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
+    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
+  };
+  static const uint16_t GPR_64[] = {           // 64-bit registers.
+    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
+    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
+  };
+
+  static const uint16_t *FPR = GetFPR();
+
+  static const uint16_t VR[] = {
+    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
+    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
+  };
+
+  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
+  const unsigned Num_FPR_Regs = 13;
+  const unsigned Num_VR_Regs  = array_lengthof( VR);
+
+  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
+
+  const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32;
+
+  // In 32-bit non-varargs functions, the stack space for vectors is after the
+  // stack space for non-vectors.  We do not use this space unless we have
+  // too many vectors to fit in registers, something that only occurs in
+  // constructed examples:), but we have to walk the arglist to figure
+  // that out...for the pathological case, compute VecArgOffset as the
+  // start of the vector parameter area.  Computing VecArgOffset is the
+  // entire point of the following loop.
+  unsigned VecArgOffset = ArgOffset;
+  if (!isVarArg && !isPPC64) {
+    for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
+         ++ArgNo) {
+      EVT ObjectVT = Ins[ArgNo].VT;
+      ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
+
+      if (Flags.isByVal()) {
+        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
+        unsigned ObjSize = Flags.getByValSize();
+        unsigned ArgSize =
+                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
+        VecArgOffset += ArgSize;
+        continue;
+      }
+
+      switch(ObjectVT.getSimpleVT().SimpleTy) {
+      default: llvm_unreachable("Unhandled argument type!");
+      case MVT::i32:
+      case MVT::f32:
+        VecArgOffset += 4;
+        break;
+      case MVT::i64:  // PPC64
+      case MVT::f64:
+        // FIXME: We are guaranteed to be !isPPC64 at this point.
+        // Does MVT::i64 apply?
+        VecArgOffset += 8;
+        break;
+      case MVT::v4f32:
+      case MVT::v4i32:
+      case MVT::v8i16:
+      case MVT::v16i8:
+        // Nothing to do, we're only looking at Nonvector args here.
+        break;
+      }
+    }
+  }
+  // We've found where the vector parameter area in memory is.  Skip the
+  // first 12 parameters; these don't use that memory.
+  VecArgOffset = ((VecArgOffset+15)/16)*16;
+  VecArgOffset += 12*16;
+
+  // Add DAG nodes to load the arguments or copy them out of registers.  On
+  // entry to a function on PPC, the arguments start after the linkage area,
+  // although the first ones are often in registers.
+
+  SmallVector<SDValue, 8> MemOps;
+  unsigned nAltivecParamsAtEnd = 0;
+  // FIXME: FuncArg and Ins[ArgNo] must reference the same argument.
+  // When passing anonymous aggregates, this is currently not true.
+  // See LowerFormalArguments_64SVR4 for a fix.
+  Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
+  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo, ++FuncArg) {
+    SDValue ArgVal;
+    bool needsLoad = false;
+    EVT ObjectVT = Ins[ArgNo].VT;
+    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
+    unsigned ArgSize = ObjSize;
+    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
+
+    unsigned CurArgOffset = ArgOffset;
+
+    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
+    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
+        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
+      if (isVarArg || isPPC64) {
+        MinReservedArea = ((MinReservedArea+15)/16)*16;
+        MinReservedArea += CalculateStackSlotSize(ObjectVT,
+                                                  Flags,
+                                                  PtrByteSize);
+      } else  nAltivecParamsAtEnd++;
+    } else
+      // Calculate min reserved area.
+      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
+                                                Flags,
+                                                PtrByteSize);
+
+    // FIXME the codegen can be much improved in some cases.
+    // We do not have to keep everything in memory.
+    if (Flags.isByVal()) {
+      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
+      ObjSize = Flags.getByValSize();
+      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
+      // Objects of size 1 and 2 are right justified, everything else is
+      // left justified.  This means the memory address is adjusted forwards.
+      if (ObjSize==1 || ObjSize==2) {
+        CurArgOffset = CurArgOffset + (4 - ObjSize);
+      }
+      // The value of the object is its address.
+      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
+      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
+      InVals.push_back(FIN);
+      if (ObjSize==1 || ObjSize==2) {
+        if (GPR_idx != Num_GPR_Regs) {
+          unsigned VReg;
+          if (isPPC64)
+            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
+          else
+            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
+          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
+          EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
+          SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
+                                            MachinePointerInfo(FuncArg,
+                                              CurArgOffset),
+                                            ObjType, false, false, 0);
+          MemOps.push_back(Store);
+          ++GPR_idx;
+        }
+
+        ArgOffset += PtrByteSize;
+
+        continue;
+      }
+      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
+        // Store whatever pieces of the object are in registers
+        // to memory.  ArgOffset will be the address of the beginning
+        // of the object.
+        if (GPR_idx != Num_GPR_Regs) {
+          unsigned VReg;
+          if (isPPC64)
+            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
+          else
+            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
+          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
+          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
+          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
+          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
+                                       MachinePointerInfo(FuncArg, ArgOffset),
+                                       false, false, 0);
+          MemOps.push_back(Store);
+          ++GPR_idx;
+          ArgOffset += PtrByteSize;
+        } else {
+          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
+          break;
+        }
+      }
+      continue;
+    }
+
+    switch (ObjectVT.getSimpleVT().SimpleTy) {
+    default: llvm_unreachable("Unhandled argument type!");
+    case MVT::i32:
+      if (!isPPC64) {
+        if (GPR_idx != Num_GPR_Regs) {
+          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
+          ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
+          ++GPR_idx;
+        } else {
+          needsLoad = true;
+          ArgSize = PtrByteSize;
+        }
+        // All int arguments reserve stack space in the Darwin ABI.
+        ArgOffset += PtrByteSize;
+        break;
+      }
+      // FALLTHROUGH
+    case MVT::i64:  // PPC64
+      if (GPR_idx != Num_GPR_Regs) {
+        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
+        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
+
+        if (ObjectVT == MVT::i32)
+          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
+          // value to MVT::i64 and then truncate to the correct register size.
+          ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
+
+        ++GPR_idx;
+      } else {
+        needsLoad = true;
+        ArgSize = PtrByteSize;
+      }
+      // All int arguments reserve stack space in the Darwin ABI.
+      ArgOffset += 8;
+      break;
+
+    case MVT::f32:
+    case MVT::f64:
+      // Every 4 bytes of argument space consumes one of the GPRs available for
+      // argument passing.
+      if (GPR_idx != Num_GPR_Regs) {
+        ++GPR_idx;
+        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
+          ++GPR_idx;
+      }
+      if (FPR_idx != Num_FPR_Regs) {
+        unsigned VReg;
+
+        if (ObjectVT == MVT::f32)
+          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
+        else
+          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
+
+        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
+        ++FPR_idx;
+      } else {
+        needsLoad = true;
+      }
+
+      // All FP arguments reserve stack space in the Darwin ABI.
+      ArgOffset += isPPC64 ? 8 : ObjSize;
+      break;
+    case MVT::v4f32:
+    case MVT::v4i32:
+    case MVT::v8i16:
+    case MVT::v16i8:
+      // Note that vector arguments in registers don't reserve stack space,
+      // except in varargs functions.
+      if (VR_idx != Num_VR_Regs) {
+        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
+        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
+        if (isVarArg) {
+          while ((ArgOffset % 16) != 0) {
+            ArgOffset += PtrByteSize;
+            if (GPR_idx != Num_GPR_Regs)
+              GPR_idx++;
+          }
+          ArgOffset += 16;
+          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
+        }
+        ++VR_idx;
+      } else {
+        if (!isVarArg && !isPPC64) {
+          // Vectors go after all the nonvectors.
+          CurArgOffset = VecArgOffset;
+          VecArgOffset += 16;
+        } else {
+          // Vectors are aligned.
+          ArgOffset = ((ArgOffset+15)/16)*16;
+          CurArgOffset = ArgOffset;
+          ArgOffset += 16;
+        }
+        needsLoad = true;
+      }
+      break;
+    }
+
+    // We need to load the argument to a virtual register if we determined above
+    // that we ran out of physical registers of the appropriate type.
+    if (needsLoad) {
+      int FI = MFI->CreateFixedObject(ObjSize,
+                                      CurArgOffset + (ArgSize - ObjSize),
+                                      isImmutable);
+      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
+      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
+                           false, false, false, 0);
+    }
+
+    InVals.push_back(ArgVal);
+  }
+
+  // Set the size that is at least reserved in caller of this function.  Tail
+  // call optimized functions' reserved stack space needs to be aligned so that
+  // taking the difference between two stack areas will result in an aligned
+  // stack.
+  setMinReservedArea(MF, DAG, nAltivecParamsAtEnd, MinReservedArea, isPPC64);
+
+  // If the function takes variable number of arguments, make a frame index for
+  // the start of the first vararg value... for expansion of llvm.va_start.
+  if (isVarArg) {
+    int Depth = ArgOffset;
+
+    FuncInfo->setVarArgsFrameIndex(
+      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
+                             Depth, true));
+    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
+
+    // If this function is vararg, store any remaining integer argument regs
+    // to their spots on the stack so that they may be loaded by deferencing the
+    // result of va_next.
+    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
+      unsigned VReg;
+
+      if (isPPC64)
+        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
+      else
+        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
+
+      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
+      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
+                                   MachinePointerInfo(), false, false, 0);
+      MemOps.push_back(Store);
+      // Increment the address by four for the next argument to store
+      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
+      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
+    }
+  }
+
+  if (!MemOps.empty())
+    Chain = DAG.getNode(ISD::TokenFactor, dl,
+                        MVT::Other, &MemOps[0], MemOps.size());
+
+  return Chain;
+}
+
+/// CalculateParameterAndLinkageAreaSize - Get the size of the parameter plus
+/// linkage area for the Darwin ABI, or the 64-bit SVR4 ABI.
+static unsigned
+CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
+                                     bool isPPC64,
+                                     bool isVarArg,
+                                     unsigned CC,
+                                     const SmallVectorImpl<ISD::OutputArg>
+                                       &Outs,
+                                     const SmallVectorImpl<SDValue> &OutVals,
+                                     unsigned &nAltivecParamsAtEnd) {
+  // Count how many bytes are to be pushed on the stack, including the linkage
+  // area, and parameter passing area.  We start with 24/48 bytes, which is
+  // prereserved space for [SP][CR][LR][3 x unused].
+  unsigned NumBytes = PPCFrameLowering::getLinkageSize(isPPC64, true);
+  unsigned NumOps = Outs.size();
+  unsigned PtrByteSize = isPPC64 ? 8 : 4;
+
+  // Add up all the space actually used.
+  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
+  // they all go in registers, but we must reserve stack space for them for
+  // possible use by the caller.  In varargs or 64-bit calls, parameters are
+  // assigned stack space in order, with padding so Altivec parameters are
+  // 16-byte aligned.
+  nAltivecParamsAtEnd = 0;
+  for (unsigned i = 0; i != NumOps; ++i) {
+    ISD::ArgFlagsTy Flags = Outs[i].Flags;
+    EVT ArgVT = Outs[i].VT;
+    // Varargs Altivec parameters are padded to a 16 byte boundary.
+    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
+        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
+      if (!isVarArg && !isPPC64) {
+        // Non-varargs Altivec parameters go after all the non-Altivec
+        // parameters; handle those later so we know how much padding we need.
+        nAltivecParamsAtEnd++;
+        continue;
+      }
+      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
+      NumBytes = ((NumBytes+15)/16)*16;
+    }
+    NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
+  }
+
+   // Allow for Altivec parameters at the end, if needed.
   if (nAltivecParamsAtEnd) {
     NumBytes = ((NumBytes+15)/16)*16;
     NumBytes += 16*nAltivecParamsAtEnd;
@@ -2737,7 +3164,7 @@ unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
       // Thus for a call through a function pointer, the following actions need
       // to be performed:
       //   1. Save the TOC of the caller in the TOC save area of its stack
-      //      frame (this is done in LowerCall_Darwin_Or_64SVR4()).
+      //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
       //   2. Load the address of the function entry point from the function
       //      descriptor.
       //   3. Load the TOC of the callee from the function descriptor into r2.
@@ -2851,12 +3278,32 @@ PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
   // Copy all of the result registers out of their specified physreg.
   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
     CCValAssign &VA = RVLocs[i];
-    EVT VT = VA.getValVT();
     assert(VA.isRegLoc() && "Can only return in registers!");
-    Chain = DAG.getCopyFromReg(Chain, dl,
-                               VA.getLocReg(), VT, InFlag).getValue(1);
-    InVals.push_back(Chain.getValue(0));
-    InFlag = Chain.getValue(2);
+
+    SDValue Val = DAG.getCopyFromReg(Chain, dl,
+                                     VA.getLocReg(), VA.getLocVT(), InFlag);
+    Chain = Val.getValue(1);
+    InFlag = Val.getValue(2);
+
+    switch (VA.getLocInfo()) {
+    default: llvm_unreachable("Unknown loc info!");
+    case CCValAssign::Full: break;
+    case CCValAssign::AExt:
+      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
+      break;
+    case CCValAssign::ZExt:
+      Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
+                        DAG.getValueType(VA.getValVT()));
+      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
+      break;
+    case CCValAssign::SExt:
+      Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
+                        DAG.getValueType(VA.getValVT()));
+      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
+      break;
+    }
+
+    InVals.push_back(Val);
   }
 
   return Chain;
@@ -2885,7 +3332,7 @@ PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl,
 
   // When performing tail call optimization the callee pops its arguments off
   // the stack. Account for this here so these bytes can be pushed back on in
-  // PPCRegisterInfo::eliminateCallFramePseudoInstr.
+  // PPCFrameLowering::eliminateCallFramePseudoInstr.
   int BytesCalleePops =
     (CallConv == CallingConv::Fast &&
      getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
@@ -2901,17 +3348,6 @@ PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl,
 
   // Emit tail call.
   if (isTailCall) {
-    // If this is the first return lowered for this function, add the regs
-    // to the liveout set for the function.
-    if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
-      SmallVector<CCValAssign, 16> RVLocs;
-      CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
-                     getTargetMachine(), RVLocs, *DAG.getContext());
-      CCInfo.AnalyzeCallResult(Ins, RetCC_PPC);
-      for (unsigned i = 0; i != RVLocs.size(); ++i)
-        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
-    }
-
     assert(((Callee.getOpcode() == ISD::Register &&
              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
             Callee.getOpcode() == ISD::TargetExternalSymbol ||
@@ -2987,14 +3423,20 @@ PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
                                                    Ins, DAG);
 
-  if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64())
-    return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
-                            isTailCall, Outs, OutVals, Ins,
-                            dl, DAG, InVals);
+  if (PPCSubTarget.isSVR4ABI()) {
+    if (PPCSubTarget.isPPC64())
+      return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
+                              isTailCall, Outs, OutVals, Ins,
+                              dl, DAG, InVals);
+    else
+      return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
+                              isTailCall, Outs, OutVals, Ins,
+                              dl, DAG, InVals);
+  }
 
-  return LowerCall_Darwin_Or_64SVR4(Chain, Callee, CallConv, isVarArg,
-                                    isTailCall, Outs, OutVals, Ins,
-                                    dl, DAG, InVals);
+  return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
+                          isTailCall, Outs, OutVals, Ins,
+                          dl, DAG, InVals);
 }
 
 SDValue
@@ -3049,11 +3491,11 @@ PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee,
       bool Result;
 
       if (Outs[i].IsFixed) {
-        Result = CC_PPC_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
-                             CCInfo);
+        Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
+                               CCInfo);
       } else {
-        Result = CC_PPC_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
-                                    ArgFlags, CCInfo);
+        Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
+                                      ArgFlags, CCInfo);
       }
 
       if (Result) {
@@ -3066,7 +3508,7 @@ PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee,
     }
   } else {
     // All arguments are treated the same.
-    CCInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4);
+    CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
   }
 
   // Assign locations to all of the outgoing aggregate by value arguments.
@@ -3077,7 +3519,7 @@ PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee,
   // Reserve stack space for the allocations in CCInfo.
   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
 
-  CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4_ByVal);
+  CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
 
   // Size of the linkage area, parameter list area and the part of the local
   // space variable where copies of aggregates which are passed by value are
@@ -3126,53 +3568,435 @@ PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee,
       CCValAssign &ByValVA = ByValArgLocs[j++];
       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
 
-      // Memory reserved in the local variable space of the callers stack frame.
-      unsigned LocMemOffset = ByValVA.getLocMemOffset();
+      // Memory reserved in the local variable space of the callers stack frame.
+      unsigned LocMemOffset = ByValVA.getLocMemOffset();
+
+      SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
+      PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
+
+      // Create a copy of the argument in the local area of the current
+      // stack frame.
+      SDValue MemcpyCall =
+        CreateCopyOfByValArgument(Arg, PtrOff,
+                                  CallSeqStart.getNode()->getOperand(0),
+                                  Flags, DAG, dl);
+
+      // This must go outside the CALLSEQ_START..END.
+      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
+                           CallSeqStart.getNode()->getOperand(1));
+      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
+                             NewCallSeqStart.getNode());
+      Chain = CallSeqStart = NewCallSeqStart;
+
+      // Pass the address of the aggregate copy on the stack either in a
+      // physical register or in the parameter list area of the current stack
+      // frame to the callee.
+      Arg = PtrOff;
+    }
+
+    if (VA.isRegLoc()) {
+      seenFloatArg |= VA.getLocVT().isFloatingPoint();
+      // Put argument in a physical register.
+      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
+    } else {
+      // Put argument in the parameter list area of the current stack frame.
+      assert(VA.isMemLoc());
+      unsigned LocMemOffset = VA.getLocMemOffset();
+
+      if (!isTailCall) {
+        SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
+        PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
+
+        MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
+                                           MachinePointerInfo(),
+                                           false, false, 0));
+      } else {
+        // Calculate and remember argument location.
+        CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
+                                 TailCallArguments);
+      }
+    }
+  }
+
+  if (!MemOpChains.empty())
+    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+                        &MemOpChains[0], MemOpChains.size());
+
+  // Build a sequence of copy-to-reg nodes chained together with token chain
+  // and flag operands which copy the outgoing args into the appropriate regs.
+  SDValue InFlag;
+  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
+    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
+                             RegsToPass[i].second, InFlag);
+    InFlag = Chain.getValue(1);
+  }
+
+  // Set CR bit 6 to true if this is a vararg call with floating args passed in
+  // registers.
+  if (isVarArg) {
+    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
+    SDValue Ops[] = { Chain, InFlag };
+
+    Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
+                        dl, VTs, Ops, InFlag.getNode() ? 2 : 1);
+
+    InFlag = Chain.getValue(1);
+  }
+
+  if (isTailCall)
+    PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
+                    false, TailCallArguments);
+
+  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
+                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
+                    Ins, InVals);
+}
+
+// Copy an argument into memory, being careful to do this outside the
+// call sequence for the call to which the argument belongs.
+SDValue
+PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
+                                              SDValue CallSeqStart,
+                                              ISD::ArgFlagsTy Flags,
+                                              SelectionDAG &DAG,
+                                              DebugLoc dl) const {
+  SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
+                        CallSeqStart.getNode()->getOperand(0),
+                        Flags, DAG, dl);
+  // The MEMCPY must go outside the CALLSEQ_START..END.
+  SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
+                             CallSeqStart.getNode()->getOperand(1));
+  DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
+                         NewCallSeqStart.getNode());
+  return NewCallSeqStart;
+}
+
+SDValue
+PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
+                                    CallingConv::ID CallConv, bool isVarArg,
+                                    bool isTailCall,
+                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
+                                    const SmallVectorImpl<SDValue> &OutVals,
+                                    const SmallVectorImpl<ISD::InputArg> &Ins,
+                                    DebugLoc dl, SelectionDAG &DAG,
+                                    SmallVectorImpl<SDValue> &InVals) const {
+
+  unsigned NumOps = Outs.size();
+
+  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+  unsigned PtrByteSize = 8;
+
+  MachineFunction &MF = DAG.getMachineFunction();
+
+  // Mark this function as potentially containing a function that contains a
+  // tail call. As a consequence the frame pointer will be used for dynamicalloc
+  // and restoring the callers stack pointer in this functions epilog. This is
+  // done because by tail calling the called function might overwrite the value
+  // in this function's (MF) stack pointer stack slot 0(SP).
+  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
+      CallConv == CallingConv::Fast)
+    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
+
+  unsigned nAltivecParamsAtEnd = 0;
+
+  // Count how many bytes are to be pushed on the stack, including the linkage
+  // area, and parameter passing area.  We start with at least 48 bytes, which
+  // is reserved space for [SP][CR][LR][3 x unused].
+  // NOTE: For PPC64, nAltivecParamsAtEnd always remains zero as a result
+  // of this call.
+  unsigned NumBytes =
+    CalculateParameterAndLinkageAreaSize(DAG, true, isVarArg, CallConv,
+                                         Outs, OutVals, nAltivecParamsAtEnd);
+
+  // Calculate by how many bytes the stack has to be adjusted in case of tail
+  // call optimization.
+  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
+
+  // To protect arguments on the stack from being clobbered in a tail call,
+  // force all the loads to happen before doing any other lowering.
+  if (isTailCall)
+    Chain = DAG.getStackArgumentTokenFactor(Chain);
+
+  // Adjust the stack pointer for the new arguments...
+  // These operations are automatically eliminated by the prolog/epilog pass
+  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
+  SDValue CallSeqStart = Chain;
+
+  // Load the return address and frame pointer so it can be move somewhere else
+  // later.
+  SDValue LROp, FPOp;
+  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
+                                       dl);
+
+  // Set up a copy of the stack pointer for use loading and storing any
+  // arguments that may not fit in the registers available for argument
+  // passing.
+  SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
+
+  // Figure out which arguments are going to go in registers, and which in
+  // memory.  Also, if this is a vararg function, floating point operations
+  // must be stored to our stack, and loaded into integer regs as well, if
+  // any integer regs are available for argument passing.
+  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(true, true);
+  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
+
+  static const uint16_t GPR[] = {
+    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
+    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
+  };
+  static const uint16_t *FPR = GetFPR();
+
+  static const uint16_t VR[] = {
+    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
+    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
+  };
+  const unsigned NumGPRs = array_lengthof(GPR);
+  const unsigned NumFPRs = 13;
+  const unsigned NumVRs  = array_lengthof(VR);
+
+  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
+  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
+
+  SmallVector<SDValue, 8> MemOpChains;
+  for (unsigned i = 0; i != NumOps; ++i) {
+    SDValue Arg = OutVals[i];
+    ISD::ArgFlagsTy Flags = Outs[i].Flags;
+
+    // PtrOff will be used to store the current argument to the stack if a
+    // register cannot be found for it.
+    SDValue PtrOff;
+
+    PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
+
+    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
+
+    // Promote integers to 64-bit values.
+    if (Arg.getValueType() == MVT::i32) {
+      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
+      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
+      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
+    }
+
+    // FIXME memcpy is used way more than necessary.  Correctness first.
+    // Note: "by value" is code for passing a structure by value, not
+    // basic types.
+    if (Flags.isByVal()) {
+      // Note: Size includes alignment padding, so
+      //   struct x { short a; char b; }
+      // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
+      // These are the proper values we need for right-justifying the
+      // aggregate in a parameter register.
+      unsigned Size = Flags.getByValSize();
+
+      // An empty aggregate parameter takes up no storage and no
+      // registers.
+      if (Size == 0)
+        continue;
+
+      // All aggregates smaller than 8 bytes must be passed right-justified.
+      if (Size==1 || Size==2 || Size==4) {
+        EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
+        if (GPR_idx != NumGPRs) {
+          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
+                                        MachinePointerInfo(), VT,
+                                        false, false, 0);
+          MemOpChains.push_back(Load.getValue(1));
+          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
+
+          ArgOffset += PtrByteSize;
+          continue;
+        }
+      }
+
+      if (GPR_idx == NumGPRs && Size < 8) {
+        SDValue Const = DAG.getConstant(PtrByteSize - Size,
+                                        PtrOff.getValueType());
+        SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
+        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
+                                                          CallSeqStart,
+                                                          Flags, DAG, dl);
+        ArgOffset += PtrByteSize;
+        continue;
+      }
+      // Copy entire object into memory.  There are cases where gcc-generated
+      // code assumes it is there, even if it could be put entirely into
+      // registers.  (This is not what the doc says.)
+
+      // FIXME: The above statement is likely due to a misunderstanding of the
+      // documents.  All arguments must be copied into the parameter area BY
+      // THE CALLEE in the event that the callee takes the address of any
+      // formal argument.  That has not yet been implemented.  However, it is
+      // reasonable to use the stack area as a staging area for the register
+      // load.
+
+      // Skip this for small aggregates, as we will use the same slot for a
+      // right-justified copy, below.
+      if (Size >= 8)
+        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
+                                                          CallSeqStart,
+                                                          Flags, DAG, dl);
+
+      // When a register is available, pass a small aggregate right-justified.
+      if (Size < 8 && GPR_idx != NumGPRs) {
+        // The easiest way to get this right-justified in a register
+        // is to copy the structure into the rightmost portion of a
+        // local variable slot, then load the whole slot into the
+        // register.
+        // FIXME: The memcpy seems to produce pretty awful code for
+        // small aggregates, particularly for packed ones.
+        // FIXME: It would be preferable to use the slot in the 
+        // parameter save area instead of a new local variable.
+        SDValue Const = DAG.getConstant(8 - Size, PtrOff.getValueType());
+        SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
+        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
+                                                          CallSeqStart,
+                                                          Flags, DAG, dl);
+
+        // Load the slot into the register.
+        SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff,
+                                   MachinePointerInfo(),
+                                   false, false, false, 0);
+        MemOpChains.push_back(Load.getValue(1));
+        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
+
+        // Done with this argument.
+        ArgOffset += PtrByteSize;
+        continue;
+      }
 
-      SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
-      PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
+      // For aggregates larger than PtrByteSize, copy the pieces of the
+      // object that fit into registers from the parameter save area.
+      for (unsigned j=0; j<Size; j+=PtrByteSize) {
+        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
+        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
+        if (GPR_idx != NumGPRs) {
+          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
+                                     MachinePointerInfo(),
+                                     false, false, false, 0);
+          MemOpChains.push_back(Load.getValue(1));
+          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
+          ArgOffset += PtrByteSize;
+        } else {
+          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
+          break;
+        }
+      }
+      continue;
+    }
 
-      // Create a copy of the argument in the local area of the current
-      // stack frame.
-      SDValue MemcpyCall =
-        CreateCopyOfByValArgument(Arg, PtrOff,
-                                  CallSeqStart.getNode()->getOperand(0),
-                                  Flags, DAG, dl);
+    switch (Arg.getValueType().getSimpleVT().SimpleTy) {
+    default: llvm_unreachable("Unexpected ValueType for argument!");
+    case MVT::i32:
+    case MVT::i64:
+      if (GPR_idx != NumGPRs) {
+        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
+      } else {
+        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
+                         true, isTailCall, false, MemOpChains,
+                         TailCallArguments, dl);
+      }
+      ArgOffset += PtrByteSize;
+      break;
+    case MVT::f32:
+    case MVT::f64:
+      if (FPR_idx != NumFPRs) {
+        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
 
-      // This must go outside the CALLSEQ_START..END.
-      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
-                           CallSeqStart.getNode()->getOperand(1));
-      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
-                             NewCallSeqStart.getNode());
-      Chain = CallSeqStart = NewCallSeqStart;
+        if (isVarArg) {
+          // A single float or an aggregate containing only a single float
+          // must be passed right-justified in the stack doubleword, and
+          // in the GPR, if one is available.
+          SDValue StoreOff;
+          if (Arg.getValueType().getSimpleVT().SimpleTy == MVT::f32) {
+            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
+            StoreOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
+          } else
+            StoreOff = PtrOff;
 
-      // Pass the address of the aggregate copy on the stack either in a
-      // physical register or in the parameter list area of the current stack
-      // frame to the callee.
-      Arg = PtrOff;
-    }
+          SDValue Store = DAG.getStore(Chain, dl, Arg, StoreOff,
+                                       MachinePointerInfo(), false, false, 0);
+          MemOpChains.push_back(Store);
 
-    if (VA.isRegLoc()) {
-      seenFloatArg |= VA.getLocVT().isFloatingPoint();
-      // Put argument in a physical register.
-      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
-    } else {
-      // Put argument in the parameter list area of the current stack frame.
-      assert(VA.isMemLoc());
-      unsigned LocMemOffset = VA.getLocMemOffset();
+          // Float varargs are always shadowed in available integer registers
+          if (GPR_idx != NumGPRs) {
+            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
+                                       MachinePointerInfo(), false, false,
+                                       false, 0);
+            MemOpChains.push_back(Load.getValue(1));
+            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
+          }
+        } else if (GPR_idx != NumGPRs)
+          // If we have any FPRs remaining, we may also have GPRs remaining.
+          ++GPR_idx;
+      } else {
+        // Single-precision floating-point values are mapped to the
+        // second (rightmost) word of the stack doubleword.
+        if (Arg.getValueType() == MVT::f32) {
+          SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
+          PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
+        }
 
-      if (!isTailCall) {
-        SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
-        PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
+        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
+                         true, isTailCall, false, MemOpChains,
+                         TailCallArguments, dl);
+      }
+      ArgOffset += 8;
+      break;
+    case MVT::v4f32:
+    case MVT::v4i32:
+    case MVT::v8i16:
+    case MVT::v16i8:
+      if (isVarArg) {
+        // These go aligned on the stack, or in the corresponding R registers
+        // when within range.  The Darwin PPC ABI doc claims they also go in
+        // V registers; in fact gcc does this only for arguments that are
+        // prototyped, not for those that match the ...  We do it for all
+        // arguments, seems to work.
+        while (ArgOffset % 16 !=0) {
+          ArgOffset += PtrByteSize;
+          if (GPR_idx != NumGPRs)
+            GPR_idx++;
+        }
+        // We could elide this store in the case where the object fits
+        // entirely in R registers.  Maybe later.
+        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
+                            DAG.getConstant(ArgOffset, PtrVT));
+        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
+                                     MachinePointerInfo(), false, false, 0);
+        MemOpChains.push_back(Store);
+        if (VR_idx != NumVRs) {
+          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
+                                     MachinePointerInfo(),
+                                     false, false, false, 0);
+          MemOpChains.push_back(Load.getValue(1));
+          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
+        }
+        ArgOffset += 16;
+        for (unsigned i=0; i<16; i+=PtrByteSize) {
+          if (GPR_idx == NumGPRs)
+            break;
+          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
+                                  DAG.getConstant(i, PtrVT));
+          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
+                                     false, false, false, 0);
+          MemOpChains.push_back(Load.getValue(1));
+          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
+        }
+        break;
+      }
 
-        MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
-                                           MachinePointerInfo(),
-                                           false, false, 0));
+      // Non-varargs Altivec params generally go in registers, but have
+      // stack space allocated at the end.
+      if (VR_idx != NumVRs) {
+        // Doesn't have GPR space allocated.
+        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
       } else {
-        // Calculate and remember argument location.
-        CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
-                                 TailCallArguments);
+        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
+                         true, isTailCall, true, MemOpChains,
+                         TailCallArguments, dl);
+        ArgOffset += 16;
       }
+      break;
     }
   }
 
@@ -3180,6 +4004,26 @@ PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee,
     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
                         &MemOpChains[0], MemOpChains.size());
 
+  // Check if this is an indirect call (MTCTR/BCTRL).
+  // See PrepareCall() for more information about calls through function
+  // pointers in the 64-bit SVR4 ABI.
+  if (!isTailCall &&
+      !dyn_cast<GlobalAddressSDNode>(Callee) &&
+      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
+      !isBLACompatibleAddress(Callee, DAG)) {
+    // Load r2 into a virtual register and store it to the TOC save area.
+    SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
+    // TOC save area offset.
+    SDValue PtrOff = DAG.getIntPtrConstant(40);
+    SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
+    Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(),
+                         false, false, 0);
+    // R12 must contain the address of an indirect callee.  This does not
+    // mean the MTCTR instruction must use R12; it's easier to model this
+    // as an extra parameter, so do that.
+    RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
+  }
+
   // Build a sequence of copy-to-reg nodes chained together with token chain
   // and flag operands which copy the outgoing args into the appropriate regs.
   SDValue InFlag;
@@ -3189,21 +4033,9 @@ PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee,
     InFlag = Chain.getValue(1);
   }
 
-  // Set CR bit 6 to true if this is a vararg call with floating args passed in
-  // registers.
-  if (isVarArg) {
-    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
-    SDValue Ops[] = { Chain, InFlag };
-
-    Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
-                        dl, VTs, Ops, InFlag.getNode() ? 2 : 1);
-
-    InFlag = Chain.getValue(1);
-  }
-
   if (isTailCall)
-    PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
-                    false, TailCallArguments);
+    PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp,
+                    FPOp, true, TailCallArguments);
 
   return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
                     RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
@@ -3211,7 +4043,7 @@ PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee,
 }
 
 SDValue
-PPCTargetLowering::LowerCall_Darwin_Or_64SVR4(SDValue Chain, SDValue Callee,
+PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
                                     CallingConv::ID CallConv, bool isVarArg,
                                     bool isTailCall,
                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
@@ -3220,9 +4052,7 @@ PPCTargetLowering::LowerCall_Darwin_Or_64SVR4(SDValue Chain, SDValue Callee,
                                     DebugLoc dl, SelectionDAG &DAG,
                                     SmallVectorImpl<SDValue> &InVals) const {
 
-  bool isSVR4ABI = PPCSubTarget.isSVR4ABI();
-
-  unsigned NumOps  = Outs.size();
+  unsigned NumOps = Outs.size();
 
   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   bool isPPC64 = PtrVT == MVT::i64;
@@ -3332,19 +4162,11 @@ PPCTargetLowering::LowerCall_Darwin_Or_64SVR4(SDValue Chain, SDValue Callee,
     // Note: "by value" is code for passing a structure by value, not
     // basic types.
     if (Flags.isByVal()) {
-      // Note: Size includes alignment padding, so
-      //   struct x { short a; char b; }
-      // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
-      // These are the proper values we need for right-justifying the
-      // aggregate in a parameter register for 64-bit SVR4.
       unsigned Size = Flags.getByValSize();
-      // FOR DARWIN ONLY:  Very small objects are passed right-justified.
-      // Everything else is passed left-justified.
-      // FOR 64-BIT SVR4:  All aggregates smaller than 8 bytes must
-      // be passed right-justified.
-      if (Size==1 || Size==2 ||
-          (Size==4 && isSVR4ABI)) {
-        EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
+      // Very small objects are passed right-justified.  Everything else is
+      // passed left-justified.
+      if (Size==1 || Size==2) {
+        EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
         if (GPR_idx != NumGPRs) {
           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
                                         MachinePointerInfo(), VT,
@@ -3354,17 +4176,12 @@ PPCTargetLowering::LowerCall_Darwin_Or_64SVR4(SDValue Chain, SDValue Callee,
 
           ArgOffset += PtrByteSize;
         } else {
-          SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
+          SDValue Const = DAG.getConstant(PtrByteSize - Size,
+                                          PtrOff.getValueType());
           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
-          SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
-                                CallSeqStart.getNode()->getOperand(0),
-                                Flags, DAG, dl);
-          // This must go outside the CALLSEQ_START..END.
-          SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
-                               CallSeqStart.getNode()->getOperand(1));
-          DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
-                                 NewCallSeqStart.getNode());
-          Chain = CallSeqStart = NewCallSeqStart;
+          Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
+                                                            CallSeqStart,
+                                                            Flags, DAG, dl);
           ArgOffset += PtrByteSize;
         }
         continue;
@@ -3372,63 +4189,9 @@ PPCTargetLowering::LowerCall_Darwin_Or_64SVR4(SDValue Chain, SDValue Callee,
       // Copy entire object into memory.  There are cases where gcc-generated
       // code assumes it is there, even if it could be put entirely into
       // registers.  (This is not what the doc says.)
-
-      // FIXME: The above statement is likely due to a misunderstanding of the
-      // documents.  At least for 64-bit SVR4, all arguments must be copied
-      // into the parameter area BY THE CALLEE in the event that the callee
-      // takes the address of any formal argument.  That has not yet been
-      // implemented.  However, it is reasonable to use the stack area as a
-      // staging area for the register load.
-
-      // Skip this for small aggregates under 64-bit SVR4, as we will use
-      // the same slot for a right-justified copy, below.
-      if (Size >= 8 || !isSVR4ABI) {
-        SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
-                              CallSeqStart.getNode()->getOperand(0),
-                              Flags, DAG, dl);
-        // This must go outside the CALLSEQ_START..END.
-        SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
-                                   CallSeqStart.getNode()->getOperand(1));
-        DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
-                               NewCallSeqStart.getNode());
-        Chain = CallSeqStart = NewCallSeqStart;
-      }
-
-      // FOR 64-BIT SVR4:  When a register is available, pass the
-      // aggregate right-justified.
-      if (isSVR4ABI && Size < 8 && GPR_idx != NumGPRs) {
-        // The easiest way to get this right-justified in a register
-        // is to copy the structure into the rightmost portion of a
-        // local variable slot, then load the whole slot into the
-        // register.
-        // FIXME: The memcpy seems to produce pretty awful code for
-        // small aggregates, particularly for packed ones.
-        // FIXME: It would be preferable to use the slot in the 
-        // parameter save area instead of a new local variable.
-        SDValue Const = DAG.getConstant(8 - Size, PtrOff.getValueType());
-        SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
-        SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
-                              CallSeqStart.getNode()->getOperand(0),
-                              Flags, DAG, dl);
-
-        // Place the memcpy outside the CALLSEQ_START..END.
-        SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
-                                   CallSeqStart.getNode()->getOperand(1));
-        DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 
-                               NewCallSeqStart.getNode());
-        Chain = CallSeqStart = NewCallSeqStart;
-
-        // Load the slot into the register.
-        SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff,
-                                   MachinePointerInfo(),
-                                   false, false, false, 0);
-        MemOpChains.push_back(Load.getValue(1));
-        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
-
-        // Done with this argument.
-        ArgOffset += PtrByteSize;
-        continue;
-      }
+      Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
+                                                        CallSeqStart,
+                                                        Flags, DAG, dl);
 
       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
       // copy the pieces of the object that fit into registers from the
@@ -3501,11 +4264,10 @@ PPCTargetLowering::LowerCall_Darwin_Or_64SVR4(SDValue Chain, SDValue Callee,
               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
             ++GPR_idx;
         }
-      } else {
+      } else
         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
                          isPPC64, isTailCall, false, MemOpChains,
                          TailCallArguments, dl);
-      }
       if (isPPC64)
         ArgOffset += 8;
       else
@@ -3600,22 +4362,6 @@ PPCTargetLowering::LowerCall_Darwin_Or_64SVR4(SDValue Chain, SDValue Callee,
     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
                         &MemOpChains[0], MemOpChains.size());
 
-  // Check if this is an indirect call (MTCTR/BCTRL).
-  // See PrepareCall() for more information about calls through function
-  // pointers in the 64-bit SVR4 ABI.
-  if (!isTailCall && isPPC64 && PPCSubTarget.isSVR4ABI() &&
-      !dyn_cast<GlobalAddressSDNode>(Callee) &&
-      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
-      !isBLACompatibleAddress(Callee, DAG)) {
-    // Load r2 into a virtual register and store it to the TOC save area.
-    SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
-    // TOC save area offset.
-    SDValue PtrOff = DAG.getIntPtrConstant(40);
-    SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
-    Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(),
-                         false, false, 0);
-  }
-
   // On Darwin, R12 must contain the address of an indirect callee.  This does
   // not mean the MTCTR instruction must use R12; it's easier to model this as
   // an extra parameter, so do that.
@@ -3667,28 +4413,43 @@ PPCTargetLowering::LowerReturn(SDValue Chain,
                  getTargetMachine(), RVLocs, *DAG.getContext());
   CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
 
-  // If this is the first return lowered for this function, add the regs to the
-  // liveout set for the function.
-  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
-    for (unsigned i = 0; i != RVLocs.size(); ++i)
-      DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
-  }
-
   SDValue Flag;
+  SmallVector<SDValue, 4> RetOps(1, Chain);
 
   // Copy the result values into the output registers.
   for (unsigned i = 0; i != RVLocs.size(); ++i) {
     CCValAssign &VA = RVLocs[i];
     assert(VA.isRegLoc() && "Can only return in registers!");
-    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
-                             OutVals[i], Flag);
+
+    SDValue Arg = OutVals[i];
+
+    switch (VA.getLocInfo()) {
+    default: llvm_unreachable("Unknown loc info!");
+    case CCValAssign::Full: break;
+    case CCValAssign::AExt:
+      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
+      break;
+    case CCValAssign::ZExt:
+      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
+      break;
+    case CCValAssign::SExt:
+      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
+      break;
+    }
+
+    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
     Flag = Chain.getValue(1);
+    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
   }
 
+  RetOps[0] = Chain;  // Update chain.
+
+  // Add the flag if we have it.
   if (Flag.getNode())
-    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
-  else
-    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain);
+    RetOps.push_back(Flag);
+
+  return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other,
+                     &RetOps[0], RetOps.size());
 }
 
 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
@@ -3913,7 +4674,52 @@ SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op,
     return SDValue();
 
   if (Op.getOperand(0).getValueType() == MVT::i64) {
-    SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op.getOperand(0));
+    SDValue SINT = Op.getOperand(0);
+    // When converting to single-precision, we actually need to convert
+    // to double-precision first and then round to single-precision.
+    // To avoid double-rounding effects during that operation, we have
+    // to prepare the input operand.  Bits that might be truncated when
+    // converting to double-precision are replaced by a bit that won't
+    // be lost at this stage, but is below the single-precision rounding
+    // position.
+    //
+    // However, if -enable-unsafe-fp-math is in effect, accept double
+    // rounding to avoid the extra overhead.
+    if (Op.getValueType() == MVT::f32 &&
+        !DAG.getTarget().Options.UnsafeFPMath) {
+
+      // Twiddle input to make sure the low 11 bits are zero.  (If this
+      // is the case, we are guaranteed the value will fit into the 53 bit
+      // mantissa of an IEEE double-precision value without rounding.)
+      // If any of those low 11 bits were not zero originally, make sure
+      // bit 12 (value 2048) is set instead, so that the final rounding
+      // to single-precision gets the correct result.
+      SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
+                                  SINT, DAG.getConstant(2047, MVT::i64));
+      Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
+                          Round, DAG.getConstant(2047, MVT::i64));
+      Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
+      Round = DAG.getNode(ISD::AND, dl, MVT::i64,
+                          Round, DAG.getConstant(-2048, MVT::i64));
+
+      // However, we cannot use that value unconditionally: if the magnitude
+      // of the input value is small, the bit-twiddling we did above might
+      // end up visibly changing the output.  Fortunately, in that case, we
+      // don't need to twiddle bits since the original input will convert
+      // exactly to double-precision floating-point already.  Therefore,
+      // construct a conditional to use the original value if the top 11
+      // bits are all sign-bit copies, and use the rounded value computed
+      // above otherwise.
+      SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
+                                 SINT, DAG.getConstant(53, MVT::i32));
+      Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
+                         Cond, DAG.getConstant(1, MVT::i64));
+      Cond = DAG.getSetCC(dl, MVT::i32,
+                          Cond, DAG.getConstant(1, MVT::i64), ISD::SETUGT);
+
+      SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
+    }
+    SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
     SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits);
     if (Op.getValueType() == MVT::f32)
       FP = DAG.getNode(ISD::FP_ROUND, dl,
@@ -3980,12 +4786,13 @@ SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
   MachineFunction &MF = DAG.getMachineFunction();
   EVT VT = Op.getValueType();
   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
-  std::vector<EVT> NodeTys;
   SDValue MFFSreg, InFlag;
 
   // Save FP Control Word to register
-  NodeTys.push_back(MVT::f64);    // return register
-  NodeTys.push_back(MVT::Glue);   // unused in this context
+  EVT NodeTys[] = {
+    MVT::f64,    // return register
+    MVT::Glue    // unused in this context
+  };
   SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
 
   // Save FP register to stack slot
@@ -4219,11 +5026,21 @@ SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
   // Two instruction sequences.
 
   // If this value is in the range [-32,30] and is even, use:
-  //    tmp = VSPLTI[bhw], result = add tmp, tmp
-  if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
-    SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl);
-    Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res);
-    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
+  //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
+  // If this value is in the range [17,31] and is odd, use:
+  //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
+  // If this value is in the range [-31,-17] and is odd, use:
+  //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
+  // Note the last two are three-instruction sequences.
+  if (SextVal >= -32 && SextVal <= 31) {
+    // To avoid having these optimizations undone by constant folding,
+    // we convert to a pseudo that will be expanded later into one of
+    // the above forms.
+    SDValue Elt = DAG.getConstant(SextVal, MVT::i32);
+    EVT VT = Op.getValueType();
+    int Size = VT == MVT::v16i8 ? 1 : (VT == MVT::v8i16 ? 2 : 4);
+    SDValue EltSize = DAG.getConstant(Size, MVT::i32);
+    return DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
   }
 
   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
@@ -4319,23 +5136,6 @@ SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
     }
   }
 
-  // Three instruction sequences.
-
-  // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
-  if (SextVal >= 0 && SextVal <= 31) {
-    SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl);
-    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
-    LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS);
-    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS);
-  }
-  // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
-  if (SextVal >= -31 && SextVal <= 0) {
-    SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl);
-    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
-    LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS);
-    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS);
-  }
-
   return SDValue();
 }
 
@@ -4609,9 +5409,7 @@ SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
     Op.getOperand(3),  // RHS
     DAG.getConstant(CompareOpc, MVT::i32)
   };
-  std::vector<EVT> VTs;
-  VTs.push_back(Op.getOperand(2).getValueType());
-  VTs.push_back(MVT::Glue);
+  EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
 
   // Now that we have the comparison, emit a copy from the CR to a GPR.
@@ -5667,14 +6465,12 @@ SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
 
       // Create the PPCISD altivec 'dot' comparison node.
-      std::vector<EVT> VTs;
       SDValue Ops[] = {
         LHS.getOperand(2),  // LHS of compare
         LHS.getOperand(3),  // RHS of compare
         DAG.getConstant(CompareOpc, MVT::i32)
       };
-      VTs.push_back(LHS.getOperand(2).getValueType());
-      VTs.push_back(MVT::Glue);
+      EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
 
       // Unpack the result based on how the target uses it.
@@ -5762,6 +6558,14 @@ PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
     case 'v':
     case 'y':
       return C_RegisterClass;
+    case 'Z':
+      // FIXME: While Z does indicate a memory constraint, it specifically
+      // indicates an r+r address (used in conjunction with the 'y' modifier
+      // in the replacement string). Currently, we're forcing the base
+      // register to be r0 in the asm printer (which is interpreted as zero)
+      // and forming the complete address in the second register. This is
+      // suboptimal.
+      return C_Memory;
     }
   }
   return TargetLowering::getConstraintType(Constraint);
@@ -5804,6 +6608,9 @@ PPCTargetLowering::getSingleConstraintMatchWeight(
   case 'y':
     weight = CW_Register;
     break;
+  case 'Z':
+    weight = CW_Memory;
+    break;
   }
   return weight;
 }
@@ -5820,9 +6627,9 @@ PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
         return std::make_pair(0U, &PPC::G8RCRegClass);
       return std::make_pair(0U, &PPC::GPRCRegClass);
     case 'f':
-      if (VT == MVT::f32)
+      if (VT == MVT::f32 || VT == MVT::i32)
         return std::make_pair(0U, &PPC::F4RCRegClass);
-      if (VT == MVT::f64)
+      if (VT == MVT::f64 || VT == MVT::i64)
         return std::make_pair(0U, &PPC::F8RCRegClass);
       break;
     case 'v':
@@ -6002,7 +6809,8 @@ SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
   bool is31 = (getTargetMachine().Options.DisableFramePointerElim(MF) ||
                MFI->hasVarSizedObjects()) &&
                   MFI->getStackSize() &&
-                  !MF.getFunction()->hasFnAttr(Attribute::Naked);
+                  !MF.getFunction()->getAttributes().
+                    hasAttribute(AttributeSet::FunctionIndex, Attribute::Naked);
   unsigned FrameReg = isPPC64 ? (is31 ? PPC::X31 : PPC::X1) :
                                 (is31 ? PPC::R31 : PPC::R1);
   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
@@ -6025,16 +6833,15 @@ PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
 /// lowering. If DstAlign is zero that means it's safe to destination
 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
 /// means there isn't a need to check it against alignment requirement,
-/// probably because the source does not need to be loaded. If
-/// 'IsZeroVal' is true, that means it's safe to return a
-/// non-scalar-integer type, e.g. empty string source, constant, or loaded
-/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
-/// constant so it does not need to be loaded.
+/// probably because the source does not need to be loaded. If 'IsMemset' is
+/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
+/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
+/// source is constant so it does not need to be loaded.
 /// It returns EVT::Other if the type should be determined using generic
 /// target-independent logic.
 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
                                            unsigned DstAlign, unsigned SrcAlign,
-                                           bool IsZeroVal,
+                                           bool IsMemset, bool ZeroMemset,
                                            bool MemcpyStrSrc,
                                            MachineFunction &MF) const {
   if (this->PPCSubTarget.isPPC64()) {