CostModel: We have API for checking the costs of known shuffles. This patch adds
[oota-llvm.git] / lib / Target / TargetTransformImpl.cpp
index 1cb5edab9d0c7a2ad5eeac42ceca29a23bc1d2b4..235a8fc76a646f50d09fc8e995c1cbd73d932468 100644 (file)
@@ -9,9 +9,16 @@
 
 #include "llvm/Target/TargetTransformImpl.h"
 #include "llvm/Target/TargetLowering.h"
+#include <utility>
 
 using namespace llvm;
 
+//===----------------------------------------------------------------------===//
+//
+// Calls used by scalar transformations.
+//
+//===----------------------------------------------------------------------===//
+
 bool ScalarTargetTransformImpl::isLegalAddImmediate(int64_t imm) const {
   return TLI->isLegalAddImmediate(imm);
 }
@@ -21,7 +28,7 @@ bool ScalarTargetTransformImpl::isLegalICmpImmediate(int64_t imm) const {
 }
 
 bool ScalarTargetTransformImpl::isLegalAddressingMode(const AddrMode &AM,
-                                                    Type *Ty) const {
+                                                      Type *Ty) const {
   return TLI->isLegalAddressingMode(AM, Ty);
 }
 
@@ -41,3 +48,332 @@ unsigned ScalarTargetTransformImpl::getJumpBufAlignment() const {
 unsigned ScalarTargetTransformImpl::getJumpBufSize() const {
   return TLI->getJumpBufSize();
 }
+
+bool ScalarTargetTransformImpl::shouldBuildLookupTables() const {
+  return TLI->supportJumpTables() &&
+      (TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
+       TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
+}
+
+//===----------------------------------------------------------------------===//
+//
+// Calls used by the vectorizers.
+//
+//===----------------------------------------------------------------------===//
+int VectorTargetTransformImpl::InstructionOpcodeToISD(unsigned Opcode) const {
+  enum InstructionOpcodes {
+#define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
+#define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
+#include "llvm/Instruction.def"
+  };
+  switch (static_cast<InstructionOpcodes>(Opcode)) {
+  case Ret:            return 0;
+  case Br:             return 0;
+  case Switch:         return 0;
+  case IndirectBr:     return 0;
+  case Invoke:         return 0;
+  case Resume:         return 0;
+  case Unreachable:    return 0;
+  case Add:            return ISD::ADD;
+  case FAdd:           return ISD::FADD;
+  case Sub:            return ISD::SUB;
+  case FSub:           return ISD::FSUB;
+  case Mul:            return ISD::MUL;
+  case FMul:           return ISD::FMUL;
+  case UDiv:           return ISD::UDIV;
+  case SDiv:           return ISD::UDIV;
+  case FDiv:           return ISD::FDIV;
+  case URem:           return ISD::UREM;
+  case SRem:           return ISD::SREM;
+  case FRem:           return ISD::FREM;
+  case Shl:            return ISD::SHL;
+  case LShr:           return ISD::SRL;
+  case AShr:           return ISD::SRA;
+  case And:            return ISD::AND;
+  case Or:             return ISD::OR;
+  case Xor:            return ISD::XOR;
+  case Alloca:         return 0;
+  case Load:           return ISD::LOAD;
+  case Store:          return ISD::STORE;
+  case GetElementPtr:  return 0;
+  case Fence:          return 0;
+  case AtomicCmpXchg:  return 0;
+  case AtomicRMW:      return 0;
+  case Trunc:          return ISD::TRUNCATE;
+  case ZExt:           return ISD::ZERO_EXTEND;
+  case SExt:           return ISD::SIGN_EXTEND;
+  case FPToUI:         return ISD::FP_TO_UINT;
+  case FPToSI:         return ISD::FP_TO_SINT;
+  case UIToFP:         return ISD::UINT_TO_FP;
+  case SIToFP:         return ISD::SINT_TO_FP;
+  case FPTrunc:        return ISD::FP_ROUND;
+  case FPExt:          return ISD::FP_EXTEND;
+  case PtrToInt:       return ISD::BITCAST;
+  case IntToPtr:       return ISD::BITCAST;
+  case BitCast:        return ISD::BITCAST;
+  case ICmp:           return ISD::SETCC;
+  case FCmp:           return ISD::SETCC;
+  case PHI:            return 0;
+  case Call:           return 0;
+  case Select:         return ISD::SELECT;
+  case UserOp1:        return 0;
+  case UserOp2:        return 0;
+  case VAArg:          return 0;
+  case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
+  case InsertElement:  return ISD::INSERT_VECTOR_ELT;
+  case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
+  case ExtractValue:   return ISD::MERGE_VALUES;
+  case InsertValue:    return ISD::MERGE_VALUES;
+  case LandingPad:     return 0;
+  }
+
+  llvm_unreachable("Unknown instruction type encountered!");
+}
+
+std::pair<unsigned, MVT>
+VectorTargetTransformImpl::getTypeLegalizationCost(Type *Ty) const {
+  LLVMContext &C = Ty->getContext();
+  EVT MTy = TLI->getValueType(Ty);
+
+  unsigned Cost = 1;
+  // We keep legalizing the type until we find a legal kind. We assume that
+  // the only operation that costs anything is the split. After splitting
+  // we need to handle two types.
+  while (true) {
+    TargetLowering::LegalizeKind LK = TLI->getTypeConversion(C, MTy);
+
+    if (LK.first == TargetLowering::TypeLegal)
+      return std::make_pair(Cost, MTy.getSimpleVT());
+
+    if (LK.first == TargetLowering::TypeSplitVector ||
+        LK.first == TargetLowering::TypeExpandInteger)
+      Cost *= 2;
+
+    // Keep legalizing the type.
+    MTy = LK.second;
+  }
+}
+
+unsigned
+VectorTargetTransformImpl::getScalarizationOverhead(Type *Ty,
+                                                    bool Insert,
+                                                    bool Extract) const {
+  assert (Ty->isVectorTy() && "Can only scalarize vectors");
+  unsigned Cost = 0;
+
+  for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
+    if (Insert)
+      Cost += getVectorInstrCost(Instruction::InsertElement, Ty, i);
+    if (Extract)
+      Cost += getVectorInstrCost(Instruction::ExtractElement, Ty, i);
+  }
+
+  return Cost;
+}
+
+unsigned VectorTargetTransformImpl::getArithmeticInstrCost(unsigned Opcode,
+                                                           Type *Ty) const {
+  // Check if any of the operands are vector operands.
+  int ISD = InstructionOpcodeToISD(Opcode);
+  assert(ISD && "Invalid opcode");
+
+  std::pair<unsigned, MVT> LT = getTypeLegalizationCost(Ty);
+
+  if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
+    // The operation is legal. Assume it costs 1.
+    // If the type is split to multiple registers, assume that thre is some
+    // overhead to this.
+    // TODO: Once we have extract/insert subvector cost we need to use them.
+    if (LT.first > 1)
+      return LT.first * 2;
+    return LT.first * 1;
+  }
+
+  if (!TLI->isOperationExpand(ISD, LT.second)) {
+    // If the operation is custom lowered then assume
+    // thare the code is twice as expensive.
+    return LT.first * 2;
+  }
+
+  // Else, assume that we need to scalarize this op.
+  if (Ty->isVectorTy()) {
+    unsigned Num = Ty->getVectorNumElements();
+    unsigned Cost = getArithmeticInstrCost(Opcode, Ty->getScalarType());
+    // return the cost of multiple scalar invocation plus the cost of inserting
+    // and extracting the values.
+    return getScalarizationOverhead(Ty, true, true) + Num * Cost;
+  }
+
+  // We don't know anything about this scalar instruction.
+  return 1;
+}
+
+unsigned VectorTargetTransformImpl::getShuffleCost(ShuffleKind Kind,
+                                                   Type *Tp,
+                                                   int Index) const {
+  return 1;
+}
+
+unsigned VectorTargetTransformImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
+                                  Type *Src) const {
+  int ISD = InstructionOpcodeToISD(Opcode);
+  assert(ISD && "Invalid opcode");
+
+  std::pair<unsigned, MVT> SrcLT = getTypeLegalizationCost(Src);
+  std::pair<unsigned, MVT> DstLT = getTypeLegalizationCost(Dst);
+
+  // Handle scalar conversions.
+  if (!Src->isVectorTy() && !Dst->isVectorTy()) {
+
+    // Scalar bitcasts are usually free.
+    if (Opcode == Instruction::BitCast)
+      return 0;
+
+    if (Opcode == Instruction::Trunc &&
+        TLI->isTruncateFree(SrcLT.second, DstLT.second))
+      return 0;
+
+    if (Opcode == Instruction::ZExt &&
+        TLI->isZExtFree(SrcLT.second, DstLT.second))
+      return 0;
+
+    // Just check the op cost. If the operation is legal then assume it costs 1.
+    if (!TLI->isOperationExpand(ISD, DstLT.second))
+      return  1;
+
+    // Assume that illegal scalar instruction are expensive.
+    return 4;
+  }
+
+  // Check vector-to-vector casts.
+  if (Dst->isVectorTy() && Src->isVectorTy()) {
+
+    // If the cast is between same-sized registers, then the check is simple.
+    if (SrcLT.first == DstLT.first &&
+        SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
+
+      // Bitcast between types that are legalized to the same type are free.
+      if (Opcode == Instruction::BitCast || Opcode == Instruction::Trunc)
+        return 0;
+
+      // Assume that Zext is done using AND.
+      if (Opcode == Instruction::ZExt)
+        return 1;
+
+      // Assume that sext is done using SHL and SRA.
+      if (Opcode == Instruction::SExt)
+        return 2;
+
+      // Just check the op cost. If the operation is legal then assume it costs
+      // 1 and multiply by the type-legalization overhead.
+      if (!TLI->isOperationExpand(ISD, DstLT.second))
+        return SrcLT.first * 1;
+    }
+
+    // If we are converting vectors and the operation is illegal, or
+    // if the vectors are legalized to different types, estimate the
+    // scalarization costs.
+    unsigned Num = Dst->getVectorNumElements();
+    unsigned Cost = getCastInstrCost(Opcode, Dst->getScalarType(),
+                                     Src->getScalarType());
+
+    // Return the cost of multiple scalar invocation plus the cost of
+    // inserting and extracting the values.
+    return getScalarizationOverhead(Dst, true, true) + Num * Cost;
+  }
+
+  // We already handled vector-to-vector and scalar-to-scalar conversions. This
+  // is where we handle bitcast between vectors and scalars. We need to assume
+  //  that the conversion is scalarized in one way or another.
+  if (Opcode == Instruction::BitCast)
+    // Illegal bitcasts are done by storing and loading from a stack slot.
+    return (Src->isVectorTy()? getScalarizationOverhead(Src, false, true):0) +
+           (Dst->isVectorTy()? getScalarizationOverhead(Dst, true, false):0);
+
+  llvm_unreachable("Unhandled cast");
+ }
+
+unsigned VectorTargetTransformImpl::getCFInstrCost(unsigned Opcode) const {
+  // Branches are assumed to be predicted.
+  return 0;
+}
+
+unsigned VectorTargetTransformImpl::getCmpSelInstrCost(unsigned Opcode,
+                                                       Type *ValTy,
+                                                       Type *CondTy) const {
+  int ISD = InstructionOpcodeToISD(Opcode);
+  assert(ISD && "Invalid opcode");
+
+  // Selects on vectors are actually vector selects.
+  if (ISD == ISD::SELECT) {
+    assert(CondTy && "CondTy must exist");
+    if (CondTy->isVectorTy())
+      ISD = ISD::VSELECT;
+  }
+
+  std::pair<unsigned, MVT> LT = getTypeLegalizationCost(ValTy);
+
+  if (!TLI->isOperationExpand(ISD, LT.second)) {
+    // The operation is legal. Assume it costs 1. Multiply
+    // by the type-legalization overhead.
+    return LT.first * 1;
+  }
+
+  // Otherwise, assume that the cast is scalarized.
+  if (ValTy->isVectorTy()) {
+    unsigned Num = ValTy->getVectorNumElements();
+    if (CondTy)
+      CondTy = CondTy->getScalarType();
+    unsigned Cost = getCmpSelInstrCost(Opcode, ValTy->getScalarType(),
+                                       CondTy);
+
+    // Return the cost of multiple scalar invocation plus the cost of inserting
+    // and extracting the values.
+    return getScalarizationOverhead(ValTy, true, false) + Num * Cost;
+  }
+
+  // Unknown scalar opcode.
+  return 1;
+}
+
+unsigned VectorTargetTransformImpl::getVectorInstrCost(unsigned Opcode,
+                                                       Type *Val,
+                                                       unsigned Index) const {
+  return 1;
+}
+
+unsigned
+VectorTargetTransformImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
+                                           unsigned Alignment,
+                                           unsigned AddressSpace) const {
+  assert(!Src->isVoidTy() && "Invalid type");
+  std::pair<unsigned, MVT> LT = getTypeLegalizationCost(Src);
+
+  // Assume that all loads of legal types cost 1.
+  return LT.first;
+}
+
+unsigned
+VectorTargetTransformImpl::getIntrinsicInstrCost(Intrinsic::ID, Type *RetTy,
+                                                 ArrayRef<Type*> Tys) const {
+  // assume that we need to scalarize this intrinsic.
+  unsigned ScalarizationCost = 0;
+  unsigned ScalarCalls = 1;
+  if (RetTy->isVectorTy()) {
+    ScalarizationCost = getScalarizationOverhead(RetTy, true, false);
+    ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements());
+  }
+  for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
+    if (Tys[i]->isVectorTy()) {
+      ScalarizationCost += getScalarizationOverhead(Tys[i], false, true);
+      ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements());
+    }
+  }
+  return ScalarCalls + ScalarizationCost;
+}
+
+unsigned
+VectorTargetTransformImpl::getNumberOfParts(Type *Tp) const {
+  std::pair<unsigned, MVT> LT = getTypeLegalizationCost(Tp);
+  return LT.first;
+}