Turn off the old way of handling debug information in the code generator. Use
[oota-llvm.git] / lib / Target / X86 / X86FastISel.cpp
index b280d65290140fdd4b42d79bc1a02fc43f74feb9..d85d2fbea3fcfb18d87e699ec48ae42140569147 100644 (file)
@@ -22,6 +22,7 @@
 #include "llvm/CallingConv.h"
 #include "llvm/DerivedTypes.h"
 #include "llvm/Instructions.h"
+#include "llvm/Intrinsics.h"
 #include "llvm/CodeGen/FastISel.h"
 #include "llvm/CodeGen/MachineConstantPool.h"
 #include "llvm/CodeGen/MachineFrameInfo.h"
@@ -50,6 +51,7 @@ class X86FastISel : public FastISel {
 public:
   explicit X86FastISel(MachineFunction &mf,
                        MachineModuleInfo *mmi,
+                       DwarfWriter *dw,
                        DenseMap<const Value *, unsigned> &vm,
                        DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
                        DenseMap<const AllocaInst *, int> &am
@@ -57,7 +59,7 @@ public:
                        , SmallSet<Instruction*, 8> &cil
 #endif
                        )
-    : FastISel(mf, mmi, vm, bm, am
+    : FastISel(mf, mmi, dw, vm, bm, am
 #ifndef NDEBUG
                , cil
 #endif
@@ -106,6 +108,9 @@ private:
   bool X86SelectFPExt(Instruction *I);
   bool X86SelectFPTrunc(Instruction *I);
 
+  bool X86SelectExtractValue(Instruction *I);
+
+  bool X86VisitIntrinsicCall(CallInst &I, unsigned Intrinsic);
   bool X86SelectCall(Instruction *I);
 
   CCAssignFn *CCAssignFnForCall(unsigned CC, bool isTailCall = false);
@@ -292,8 +297,6 @@ bool X86FastISel::X86FastEmitStore(MVT VT, Value *Val,
   return X86FastEmitStore(VT, ValReg, AM);
 }
 
-
-
 /// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
 /// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
 /// ISD::SIGN_EXTEND).
@@ -332,11 +335,13 @@ bool X86FastISel::X86SelectAddress(Value *V, X86AddressMode &AM, bool isCall) {
     // Look past no-op inttoptrs.
     if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
       return X86SelectAddress(U->getOperand(0), AM, isCall);
+    break;
 
   case Instruction::PtrToInt:
     // Look past no-op ptrtoints.
     if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
       return X86SelectAddress(U->getOperand(0), AM, isCall);
+    break;
 
   case Instruction::Alloca: {
     if (isCall) break;
@@ -372,8 +377,8 @@ bool X86FastISel::X86SelectAddress(Value *V, X86AddressMode &AM, bool isCall) {
     unsigned IndexReg = AM.IndexReg;
     unsigned Scale = AM.Scale;
     gep_type_iterator GTI = gep_type_begin(U);
-    // Look at all but the last index. Constants can be folded,
-    // and one dynamic index can be handled, if the scale is supported.
+    // Iterate through the indices, folding what we can. Constants can be
+    // folded, and one dynamic index can be handled, if the scale is supported.
     for (User::op_iterator i = U->op_begin() + 1, e = U->op_end();
          i != e; ++i, ++GTI) {
       Value *Op = *i;
@@ -382,7 +387,7 @@ bool X86FastISel::X86SelectAddress(Value *V, X86AddressMode &AM, bool isCall) {
         unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
         Disp += SL->getElementOffset(Idx);
       } else {
-        uint64_t S = TD.getABITypeSize(GTI.getIndexedType());
+        uint64_t S = TD.getTypePaddedSize(GTI.getIndexedType());
         if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
           // Constant-offset addressing.
           Disp += CI->getSExtValue() * S;
@@ -392,7 +397,7 @@ bool X86FastISel::X86SelectAddress(Value *V, X86AddressMode &AM, bool isCall) {
                    (S == 1 || S == 2 || S == 4 || S == 8)) {
           // Scaled-index addressing.
           Scale = S;
-          IndexReg = getRegForValue(Op);
+          IndexReg = getRegForGEPIndex(Op);
           if (IndexReg == 0)
             return false;
         } else
@@ -744,6 +749,84 @@ bool X86FastISel::X86SelectBranch(Instruction *I) {
       MBB->addSuccessor(TrueMBB);
       return true;
     }
+  } else if (ExtractValueInst *EI =
+             dyn_cast<ExtractValueInst>(BI->getCondition())) {
+    // Check to see if the branch instruction is from an "arithmetic with
+    // overflow" intrinsic. The main way these intrinsics are used is:
+    //
+    //   %t = call { i32, i1 } @llvm.sadd.with.overflow.i32(i32 %v1, i32 %v2)
+    //   %sum = extractvalue { i32, i1 } %t, 0
+    //   %obit = extractvalue { i32, i1 } %t, 1
+    //   br i1 %obit, label %overflow, label %normal
+    //
+    // The %sum and %obit are converted in an ADD and a SETO/SETB before
+    // reaching the branch. Therefore, we search backwards through the MBB
+    // looking for the SETO/SETB instruction. If an instruction modifies the
+    // EFLAGS register before we reach the SETO/SETB instruction, then we can't
+    // convert the branch into a JO/JB instruction.
+
+    Value *Agg = EI->getAggregateOperand();
+
+    if (CallInst *CI = dyn_cast<CallInst>(Agg)) {
+      Function *F = CI->getCalledFunction();
+
+      if (F && F->isDeclaration()) {
+        switch (F->getIntrinsicID()) {
+        default: break;
+        case Intrinsic::sadd_with_overflow:
+        case Intrinsic::uadd_with_overflow: {
+          const MachineInstr *SetMI = 0;
+          unsigned Reg = lookUpRegForValue(EI);
+
+          for (MachineBasicBlock::const_reverse_iterator
+                 RI = MBB->rbegin(), RE = MBB->rend(); RI != RE; ++RI) {
+            const MachineInstr &MI = *RI;
+
+            if (MI.modifiesRegister(Reg)) {
+              unsigned Src, Dst, SrcSR, DstSR;
+
+              if (getInstrInfo()->isMoveInstr(MI, Src, Dst, SrcSR, DstSR)) {
+                Reg = Src;
+                continue;
+              }
+
+              SetMI = &MI;
+              break;
+            }
+
+            const TargetInstrDesc &TID = MI.getDesc();
+            const unsigned *ImpDefs = TID.getImplicitDefs();
+
+            if (TID.hasUnmodeledSideEffects()) break;
+
+            bool ModifiesEFlags = false;
+
+            if (ImpDefs) {
+              for (unsigned u = 0; ImpDefs[u]; ++u)
+                if (ImpDefs[u] == X86::EFLAGS) {
+                  ModifiesEFlags = true;
+                  break;
+                }
+            }
+
+            if (ModifiesEFlags) break;
+          }
+
+          if (SetMI) {
+            unsigned OpCode = SetMI->getOpcode();
+
+            if (OpCode == X86::SETOr || OpCode == X86::SETBr) {
+              BuildMI(MBB, TII.get((OpCode == X86::SETOr) ? 
+                                   X86::JO : X86::JB)).addMBB(TrueMBB);
+              FastEmitBranch(FalseMBB);
+              MBB->addSuccessor(TrueMBB);
+              return true;
+            }
+          }
+        }
+        }
+      }
+    }
   }
 
   // Otherwise do a clumsy setcc and re-test it.
@@ -811,7 +894,7 @@ bool X86FastISel::X86SelectShift(Instruction *I) {
   if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
     unsigned ResultReg = createResultReg(RC);
     BuildMI(MBB, TII.get(OpImm), 
-            ResultReg).addReg(Op0Reg).addImm(CI->getZExtValue());
+            ResultReg).addReg(Op0Reg).addImm(CI->getZExtValue() & 0xff);
     UpdateValueMap(I, ResultReg);
     return true;
   }
@@ -928,7 +1011,8 @@ bool X86FastISel::X86SelectTrunc(Instruction *I) {
   BuildMI(MBB, TII.get(CopyOpc), CopyReg).addReg(InputReg);
 
   // Then issue an extract_subreg.
-  unsigned ResultReg = FastEmitInst_extractsubreg(CopyReg, X86::SUBREG_8BIT);
+  unsigned ResultReg = FastEmitInst_extractsubreg(DstVT.getSimpleVT(),
+                                                  CopyReg, X86::SUBREG_8BIT);
   if (!ResultReg)
     return false;
 
@@ -936,6 +1020,80 @@ bool X86FastISel::X86SelectTrunc(Instruction *I) {
   return true;
 }
 
+bool X86FastISel::X86SelectExtractValue(Instruction *I) {
+  ExtractValueInst *EI = cast<ExtractValueInst>(I);
+  Value *Agg = EI->getAggregateOperand();
+
+  if (CallInst *CI = dyn_cast<CallInst>(Agg)) {
+    Function *F = CI->getCalledFunction();
+
+    if (F && F->isDeclaration()) {
+      switch (F->getIntrinsicID()) {
+      default: break;
+      case Intrinsic::sadd_with_overflow:
+      case Intrinsic::uadd_with_overflow:
+        // Cheat a little. We know that the registers for "add" and "seto" are
+        // allocated sequentially. However, we only keep track of the register
+        // for "add" in the value map. Use extractvalue's index to get the
+        // correct register for "seto".
+        UpdateValueMap(I, lookUpRegForValue(Agg) + *EI->idx_begin());
+        return true;
+      }
+    }
+  }
+
+  return false;
+}
+
+bool X86FastISel::X86VisitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
+  // FIXME: Handle more intrinsics.
+  switch (Intrinsic) {
+  default: return false;
+  case Intrinsic::sadd_with_overflow:
+  case Intrinsic::uadd_with_overflow: {
+    // Replace "add with overflow" intrinsics with an "add" instruction followed
+    // by a seto/setc instruction. Later on, when the "extractvalue"
+    // instructions are encountered, we use the fact that two registers were
+    // created sequentially to get the correct registers for the "sum" and the
+    // "overflow bit".
+    MVT VT;
+    const Function *Callee = I.getCalledFunction();
+    const Type *RetTy =
+      cast<StructType>(Callee->getReturnType())->getTypeAtIndex(unsigned(0));
+
+    if (!isTypeLegal(RetTy, VT))
+      return false;
+
+    Value *Op1 = I.getOperand(1);
+    Value *Op2 = I.getOperand(2);
+    unsigned Reg1 = getRegForValue(Op1);
+    unsigned Reg2 = getRegForValue(Op2);
+
+    if (Reg1 == 0 || Reg2 == 0)
+      // FIXME: Handle values *not* in registers.
+      return false;
+
+    unsigned OpC = 0;
+
+    if (VT == MVT::i32)
+      OpC = X86::ADD32rr;
+    else if (VT == MVT::i64)
+      OpC = X86::ADD64rr;
+    else
+      return false;
+
+    unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
+    BuildMI(MBB, TII.get(OpC), ResultReg).addReg(Reg1).addReg(Reg2);
+    UpdateValueMap(&I, ResultReg);
+
+    ResultReg = createResultReg(TLI.getRegClassFor(MVT::i8));
+    BuildMI(MBB, TII.get((Intrinsic == Intrinsic::sadd_with_overflow) ?
+                         X86::SETOr : X86::SETBr), ResultReg);
+    return true;
+  }
+  }
+}
+
 bool X86FastISel::X86SelectCall(Instruction *I) {
   CallInst *CI = cast<CallInst>(I);
   Value *Callee = I->getOperand(0);
@@ -944,11 +1102,11 @@ bool X86FastISel::X86SelectCall(Instruction *I) {
   if (isa<InlineAsm>(Callee))
     return false;
 
-  // FIXME: Handle some intrinsics.
-  if (Function *F = CI->getCalledFunction()) {
-    if (F->isDeclaration() &&F->getIntrinsicID())
-      return false;
-  }
+  // Handle intrinsic calls.
+  if (Function *F = CI->getCalledFunction())
+    if (F->isDeclaration())
+      if (unsigned IID = F->getIntrinsicID())
+        return X86VisitIntrinsicCall(*CI, IID);
 
   // Handle only C and fastcc calling conventions for now.
   CallSite CS(CI);
@@ -1063,14 +1221,16 @@ bool X86FastISel::X86SelectCall(Instruction *I) {
     case CCValAssign::SExt: {
       bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
                                        Arg, ArgVT, Arg);
-      assert(Emitted && "Failed to emit a sext!");
+      assert(Emitted && "Failed to emit a sext!"); Emitted=Emitted;
+      Emitted = true;
       ArgVT = VA.getLocVT();
       break;
     }
     case CCValAssign::ZExt: {
       bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
                                        Arg, ArgVT, Arg);
-      assert(Emitted && "Failed to emit a zext!");
+      assert(Emitted && "Failed to emit a zext!"); Emitted=Emitted;
+      Emitted = true;
       ArgVT = VA.getLocVT();
       break;
     }
@@ -1084,7 +1244,7 @@ bool X86FastISel::X86SelectCall(Instruction *I) {
         Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
                                     Arg, ArgVT, Arg);
       
-      assert(Emitted && "Failed to emit a aext!");
+      assert(Emitted && "Failed to emit a aext!"); Emitted=Emitted;
       ArgVT = VA.getLocVT();
       break;
     }
@@ -1094,7 +1254,8 @@ bool X86FastISel::X86SelectCall(Instruction *I) {
       TargetRegisterClass* RC = TLI.getRegClassFor(ArgVT);
       bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), VA.getLocReg(),
                                       Arg, RC, RC);
-      assert(Emitted && "Failed to emit a copy instruction!");
+      assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted;
+      Emitted = true;
       RegArgs.push_back(VA.getLocReg());
     } else {
       unsigned LocMemOffset = VA.getLocMemOffset();
@@ -1121,7 +1282,8 @@ bool X86FastISel::X86SelectCall(Instruction *I) {
     TargetRegisterClass *RC = X86::GR32RegisterClass;
     unsigned Base = getInstrInfo()->getGlobalBaseReg(&MF);
     bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), X86::EBX, Base, RC, RC);
-    assert(Emitted && "Failed to emit a copy instruction!");
+    assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted;
+    Emitted = true;
   }
 
   // Issue the call.
@@ -1172,7 +1334,8 @@ bool X86FastISel::X86SelectCall(Instruction *I) {
     unsigned ResultReg = createResultReg(DstRC);
     bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
                                     RVLocs[0].getLocReg(), DstRC, SrcRC);
-    assert(Emitted && "Failed to emit a copy instruction!");
+    assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted;
+    Emitted = true;
     if (CopyVT != RVLocs[0].getValVT()) {
       // Round the F80 the right size, which also moves to the appropriate xmm
       // register. This is accomplished by storing the F80 value in memory and
@@ -1232,6 +1395,8 @@ X86FastISel::TargetSelectInstruction(Instruction *I)  {
     return X86SelectFPExt(I);
   case Instruction::FPTrunc:
     return X86SelectFPTrunc(I);
+  case Instruction::ExtractValue:
+    return X86SelectExtractValue(I);
   }
 
   return false;
@@ -1306,7 +1471,7 @@ unsigned X86FastISel::TargetMaterializeConstant(Constant *C) {
   unsigned Align = TD.getPreferredTypeAlignmentShift(C->getType());
   if (Align == 0) {
     // Alignment of vector types.  FIXME!
-    Align = TD.getABITypeSize(C->getType());
+    Align = TD.getTypePaddedSize(C->getType());
     Align = Log2_64(Align);
   }
   
@@ -1349,6 +1514,7 @@ unsigned X86FastISel::TargetMaterializeAlloca(AllocaInst *C) {
 namespace llvm {
   llvm::FastISel *X86::createFastISel(MachineFunction &mf,
                         MachineModuleInfo *mmi,
+                        DwarfWriter *dw,
                         DenseMap<const Value *, unsigned> &vm,
                         DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
                         DenseMap<const AllocaInst *, int> &am
@@ -1356,7 +1522,7 @@ namespace llvm {
                         , SmallSet<Instruction*, 8> &cil
 #endif
                         ) {
-    return new X86FastISel(mf, mmi, vm, bm, am
+    return new X86FastISel(mf, mmi, dw, vm, bm, am
 #ifndef NDEBUG
                            , cil
 #endif