[InstCombine][x86] Constant fold psll intrinsics.
[oota-llvm.git] / lib / Transforms / InstCombine / InstCombineVectorOps.cpp
index 527ddbca398b361d723b239afbf994e4069eeed1..12837eed16812e74ee441e5e5124d873a4d0798e 100644 (file)
 //===----------------------------------------------------------------------===//
 
 #include "InstCombine.h"
-#include "llvm/Support/PatternMatch.h"
+#include "llvm/IR/PatternMatch.h"
 using namespace llvm;
 using namespace PatternMatch;
 
+#define DEBUG_TYPE "instcombine"
+
 /// CheapToScalarize - Return true if the value is cheaper to scalarize than it
 /// is to leave as a vector operation.  isConstant indicates whether we're
 /// extracting one known element.  If false we're extracting a variable index.
@@ -25,11 +27,13 @@ static bool CheapToScalarize(Value *V, bool isConstant) {
     if (isConstant) return true;
 
     // If all elts are the same, we can extract it and use any of the values.
-    Constant *Op0 = C->getAggregateElement(0U);
-    for (unsigned i = 1, e = V->getType()->getVectorNumElements(); i != e; ++i)
-      if (C->getAggregateElement(i) != Op0)
-        return false;
-    return true;
+    if (Constant *Op0 = C->getAggregateElement(0U)) {
+      for (unsigned i = 1, e = V->getType()->getVectorNumElements(); i != e;
+           ++i)
+        if (C->getAggregateElement(i) != Op0)
+          return false;
+      return true;
+    }
   }
   Instruction *I = dyn_cast<Instruction>(V);
   if (!I) return false;
@@ -106,8 +110,8 @@ static Value *FindScalarElement(Value *V, unsigned EltNo) {
 }
 
 // If we have a PHI node with a vector type that has only 2 uses: feed
-// itself and be an operand of extractelemnt at a constant location,
-// try to replace the PHI of the vector type with a PHI of a scalar type
+// itself and be an operand of extractelement at a constant location,
+// try to replace the PHI of the vector type with a PHI of a scalar type.
 Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) {
   // Verify that the PHI node has exactly 2 uses. Otherwise return NULL.
   if (!PN->hasNUses(2))
@@ -116,7 +120,7 @@ Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) {
   // If so, it's known at this point that one operand is PHI and the other is
   // an extractelement node. Find the PHI user that is not the extractelement
   // node.
-  Value::use_iterator iu = PN->use_begin();
+  auto iu = PN->user_begin();
   Instruction *PHIUser = dyn_cast<Instruction>(*iu);
   if (PHIUser == cast<Instruction>(&EI))
     PHIUser = cast<Instruction>(*(++iu));
@@ -124,18 +128,16 @@ Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) {
   // Verify that this PHI user has one use, which is the PHI itself,
   // and that it is a binary operation which is cheap to scalarize.
   // otherwise return NULL.
-  if (!PHIUser->hasOneUse() || !(PHIUser->use_back() == PN) ||
-    !(isa<BinaryOperator>(PHIUser)) ||
-    !CheapToScalarize(PHIUser, true))
+  if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
+      !(isa<BinaryOperator>(PHIUser)) || !CheapToScalarize(PHIUser, true))
     return NULL;
 
   // Create a scalar PHI node that will replace the vector PHI node
   // just before the current PHI node.
-  PHINode * scalarPHI = cast<PHINode>(
-    InsertNewInstWith(PHINode::Create(EI.getType(),
-    PN->getNumIncomingValues(), ""), *PN));
+  PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
+      PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
   // Scalarize each PHI operand.
-  for (unsigned i=0; i < PN->getNumIncomingValues(); i++) {
+  for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
     Value *PHIInVal = PN->getIncomingValue(i);
     BasicBlock *inBB = PN->getIncomingBlock(i);
     Value *Elt = EI.getIndexOperand();
@@ -145,19 +147,17 @@ Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) {
       // scalar PHI and the second operand is extracted from the other
       // vector operand.
       BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
-      unsigned opId = (B0->getOperand(0) == PN) ? 1: 0;
+      unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
       Value *Op = InsertNewInstWith(
           ExtractElementInst::Create(B0->getOperand(opId), Elt,
                                      B0->getOperand(opId)->getName() + ".Elt"),
           *B0);
       Value *newPHIUser = InsertNewInstWith(
-        BinaryOperator::Create(B0->getOpcode(), scalarPHI,Op),
-        *B0);
+          BinaryOperator::Create(B0->getOpcode(), scalarPHI, Op), *B0);
       scalarPHI->addIncoming(newPHIUser, inBB);
     } else {
       // Scalarize PHI input:
-      Instruction *newEI =
-        ExtractElementInst::Create(PHIInVal, Elt, "");
+      Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
       // Insert the new instruction into the predecessor basic block.
       Instruction *pos = dyn_cast<Instruction>(PHIInVal);
       BasicBlock::iterator InsertPos;
@@ -226,7 +226,7 @@ Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
     if (PHINode *PN = dyn_cast<PHINode>(EI.getOperand(0))) {
       Instruction *scalarPHI = scalarizePHI(EI, PN);
       if (scalarPHI)
-        return (scalarPHI);
+        return scalarPHI;
     }
   }
 
@@ -286,6 +286,38 @@ Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
         Worklist.AddValue(EE);
         return CastInst::Create(CI->getOpcode(), EE, EI.getType());
       }
+    } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
+      if (SI->hasOneUse()) {
+        // TODO: For a select on vectors, it might be useful to do this if it
+        // has multiple extractelement uses. For vector select, that seems to
+        // fight the vectorizer.
+
+        // If we are extracting an element from a vector select or a select on
+        // vectors, a select on the scalars extracted from the vector arguments.
+        Value *TrueVal = SI->getTrueValue();
+        Value *FalseVal = SI->getFalseValue();
+
+        Value *Cond = SI->getCondition();
+        if (Cond->getType()->isVectorTy()) {
+          Cond = Builder->CreateExtractElement(Cond,
+                                               EI.getIndexOperand(),
+                                               Cond->getName() + ".elt");
+        }
+
+        Value *V1Elem
+          = Builder->CreateExtractElement(TrueVal,
+                                          EI.getIndexOperand(),
+                                          TrueVal->getName() + ".elt");
+
+        Value *V2Elem
+          = Builder->CreateExtractElement(FalseVal,
+                                          EI.getIndexOperand(),
+                                          FalseVal->getName() + ".elt");
+        return SelectInst::Create(Cond,
+                                  V1Elem,
+                                  V2Elem,
+                                  SI->getName() + ".elt");
+      }
     }
   }
   return 0;
@@ -296,9 +328,9 @@ Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
 /// Otherwise, return false.
 static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
                                          SmallVectorImpl<Constant*> &Mask) {
-  assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() &&
+  assert(LHS->getType() == RHS->getType() &&
          "Invalid CollectSingleShuffleElements");
-  unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
+  unsigned NumElts = V->getType()->getVectorNumElements();
 
   if (isa<UndefValue>(V)) {
     Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
@@ -337,10 +369,10 @@ static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
         return true;
       }
     } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
-      if (isa<ConstantInt>(EI->getOperand(1)) &&
-          EI->getOperand(0)->getType() == V->getType()) {
+      if (isa<ConstantInt>(EI->getOperand(1))) {
         unsigned ExtractedIdx =
         cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
+        unsigned NumLHSElts = LHS->getType()->getVectorNumElements();
 
         // This must be extracting from either LHS or RHS.
         if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
@@ -356,7 +388,7 @@ static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
               assert(EI->getOperand(0) == RHS);
               Mask[InsertedIdx % NumElts] =
               ConstantInt::get(Type::getInt32Ty(V->getContext()),
-                               ExtractedIdx+NumElts);
+                               ExtractedIdx + NumLHSElts);
             }
             return true;
           }
@@ -364,29 +396,36 @@ static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
       }
     }
   }
-  // TODO: Handle shufflevector here!
 
   return false;
 }
 
-/// CollectShuffleElements - We are building a shuffle of V, using RHS as the
-/// RHS of the shuffle instruction, if it is not null.  Return a shuffle mask
-/// that computes V and the LHS value of the shuffle.
-static Value *CollectShuffleElements(Value *V, SmallVectorImpl<Constant*> &Mask,
-                                     Value *&RHS) {
-  assert(V->getType()->isVectorTy() &&
-         (RHS == 0 || V->getType() == RHS->getType()) &&
-         "Invalid shuffle!");
+
+/// We are building a shuffle to create V, which is a sequence of insertelement,
+/// extractelement pairs. If PermittedRHS is set, then we must either use it or
+/// not rely on the second vector source. Return an std::pair containing the
+/// left and right vectors of the proposed shuffle (or 0), and set the Mask
+/// parameter as required.
+///
+/// Note: we intentionally don't try to fold earlier shuffles since they have
+/// often been chosen carefully to be efficiently implementable on the target.
+typedef std::pair<Value *, Value *> ShuffleOps;
+
+static ShuffleOps CollectShuffleElements(Value *V,
+                                         SmallVectorImpl<Constant *> &Mask,
+                                         Value *PermittedRHS) {
+  assert(V->getType()->isVectorTy() && "Invalid shuffle!");
   unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
 
   if (isa<UndefValue>(V)) {
     Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
-    return V;
+    return std::make_pair(
+        PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
   }
 
   if (isa<ConstantAggregateZero>(V)) {
     Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
-    return V;
+    return std::make_pair(V, nullptr);
   }
 
   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
@@ -396,51 +435,59 @@ static Value *CollectShuffleElements(Value *V, SmallVectorImpl<Constant*> &Mask,
     Value *IdxOp    = IEI->getOperand(2);
 
     if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
-      if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
-          EI->getOperand(0)->getType() == V->getType()) {
+      if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
         unsigned ExtractedIdx =
           cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
         unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
 
         // Either the extracted from or inserted into vector must be RHSVec,
         // otherwise we'd end up with a shuffle of three inputs.
-        if (EI->getOperand(0) == RHS || RHS == 0) {
-          RHS = EI->getOperand(0);
-          Value *V = CollectShuffleElements(VecOp, Mask, RHS);
+        if (EI->getOperand(0) == PermittedRHS || PermittedRHS == 0) {
+          Value *RHS = EI->getOperand(0);
+          ShuffleOps LR = CollectShuffleElements(VecOp, Mask, RHS);
+          assert(LR.second == 0 || LR.second == RHS);
+
+          if (LR.first->getType() != RHS->getType()) {
+            // We tried our best, but we can't find anything compatible with RHS
+            // further up the chain. Return a trivial shuffle.
+            for (unsigned i = 0; i < NumElts; ++i)
+              Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i);
+            return std::make_pair(V, nullptr);
+          }
+
+          unsigned NumLHSElts = RHS->getType()->getVectorNumElements();
           Mask[InsertedIdx % NumElts] =
             ConstantInt::get(Type::getInt32Ty(V->getContext()),
-                             NumElts+ExtractedIdx);
-          return V;
+                             NumLHSElts+ExtractedIdx);
+          return std::make_pair(LR.first, RHS);
         }
 
-        if (VecOp == RHS) {
-          Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS);
-          // Update Mask to reflect that `ScalarOp' has been inserted at
-          // position `InsertedIdx' within the vector returned by IEI.
-          Mask[InsertedIdx % NumElts] = Mask[ExtractedIdx];
-
-          // Everything but the extracted element is replaced with the RHS.
-          for (unsigned i = 0; i != NumElts; ++i) {
-            if (i != InsertedIdx)
-              Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()),
-                                         NumElts+i);
-          }
-          return V;
+        if (VecOp == PermittedRHS) {
+          // We've gone as far as we can: anything on the other side of the
+          // extractelement will already have been converted into a shuffle.
+          unsigned NumLHSElts =
+              EI->getOperand(0)->getType()->getVectorNumElements();
+          for (unsigned i = 0; i != NumElts; ++i)
+            Mask.push_back(ConstantInt::get(
+                Type::getInt32Ty(V->getContext()),
+                i == InsertedIdx ? ExtractedIdx : NumLHSElts + i));
+          return std::make_pair(EI->getOperand(0), PermittedRHS);
         }
 
         // If this insertelement is a chain that comes from exactly these two
         // vectors, return the vector and the effective shuffle.
-        if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask))
-          return EI->getOperand(0);
+        if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
+            CollectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
+                                         Mask))
+          return std::make_pair(EI->getOperand(0), PermittedRHS);
       }
     }
   }
-  // TODO: Handle shufflevector here!
 
   // Otherwise, can't do anything fancy.  Return an identity vector.
   for (unsigned i = 0; i != NumElts; ++i)
     Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
-  return V;
+  return std::make_pair(V, nullptr);
 }
 
 Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
@@ -455,17 +502,18 @@ Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
   // If the inserted element was extracted from some other vector, and if the
   // indexes are constant, try to turn this into a shufflevector operation.
   if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
-    if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
-        EI->getOperand(0)->getType() == IE.getType()) {
-      unsigned NumVectorElts = IE.getType()->getNumElements();
+    if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
+      unsigned NumInsertVectorElts = IE.getType()->getNumElements();
+      unsigned NumExtractVectorElts =
+          EI->getOperand(0)->getType()->getVectorNumElements();
       unsigned ExtractedIdx =
         cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
       unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
 
-      if (ExtractedIdx >= NumVectorElts) // Out of range extract.
+      if (ExtractedIdx >= NumExtractVectorElts) // Out of range extract.
         return ReplaceInstUsesWith(IE, VecOp);
 
-      if (InsertedIdx >= NumVectorElts)  // Out of range insert.
+      if (InsertedIdx >= NumInsertVectorElts)  // Out of range insert.
         return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
 
       // If we are extracting a value from a vector, then inserting it right
@@ -475,13 +523,18 @@ Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
 
       // If this insertelement isn't used by some other insertelement, turn it
       // (and any insertelements it points to), into one big shuffle.
-      if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) {
+      if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.user_back())) {
         SmallVector<Constant*, 16> Mask;
-        Value *RHS = 0;
-        Value *LHS = CollectShuffleElements(&IE, Mask, RHS);
-        if (RHS == 0) RHS = UndefValue::get(LHS->getType());
-        // We now have a shuffle of LHS, RHS, Mask.
-        return new ShuffleVectorInst(LHS, RHS, ConstantVector::get(Mask));
+        ShuffleOps LR = CollectShuffleElements(&IE, Mask, 0);
+
+        // The proposed shuffle may be trivial, in which case we shouldn't
+        // perform the combine.
+        if (LR.first != &IE && LR.second != &IE) {
+          // We now have a shuffle of LHS, RHS, Mask.
+          if (LR.second == 0) LR.second = UndefValue::get(LR.first->getType());
+          return new ShuffleVectorInst(LR.first, LR.second,
+                                       ConstantVector::get(Mask));
+        }
       }
     }
   }
@@ -498,6 +551,257 @@ Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
   return 0;
 }
 
+/// Return true if we can evaluate the specified expression tree if the vector
+/// elements were shuffled in a different order.
+static bool CanEvaluateShuffled(Value *V, ArrayRef<int> Mask,
+                                unsigned Depth = 5) {
+  // We can always reorder the elements of a constant.
+  if (isa<Constant>(V))
+    return true;
+
+  // We won't reorder vector arguments. No IPO here.
+  Instruction *I = dyn_cast<Instruction>(V);
+  if (!I) return false;
+
+  // Two users may expect different orders of the elements. Don't try it.
+  if (!I->hasOneUse())
+    return false;
+
+  if (Depth == 0) return false;
+
+  switch (I->getOpcode()) {
+    case Instruction::Add:
+    case Instruction::FAdd:
+    case Instruction::Sub:
+    case Instruction::FSub:
+    case Instruction::Mul:
+    case Instruction::FMul:
+    case Instruction::UDiv:
+    case Instruction::SDiv:
+    case Instruction::FDiv:
+    case Instruction::URem:
+    case Instruction::SRem:
+    case Instruction::FRem:
+    case Instruction::Shl:
+    case Instruction::LShr:
+    case Instruction::AShr:
+    case Instruction::And:
+    case Instruction::Or:
+    case Instruction::Xor:
+    case Instruction::ICmp:
+    case Instruction::FCmp:
+    case Instruction::Trunc:
+    case Instruction::ZExt:
+    case Instruction::SExt:
+    case Instruction::FPToUI:
+    case Instruction::FPToSI:
+    case Instruction::UIToFP:
+    case Instruction::SIToFP:
+    case Instruction::FPTrunc:
+    case Instruction::FPExt:
+    case Instruction::GetElementPtr: {
+      for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
+        if (!CanEvaluateShuffled(I->getOperand(i), Mask, Depth-1))
+          return false;
+      }
+      return true;
+    }
+    case Instruction::InsertElement: {
+      ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
+      if (!CI) return false;
+      int ElementNumber = CI->getLimitedValue();
+
+      // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
+      // can't put an element into multiple indices.
+      bool SeenOnce = false;
+      for (int i = 0, e = Mask.size(); i != e; ++i) {
+        if (Mask[i] == ElementNumber) {
+          if (SeenOnce)
+            return false;
+          SeenOnce = true;
+        }
+      }
+      return CanEvaluateShuffled(I->getOperand(0), Mask, Depth-1);
+    }
+  }
+  return false;
+}
+
+/// Rebuild a new instruction just like 'I' but with the new operands given.
+/// In the event of type mismatch, the type of the operands is correct.
+static Value *BuildNew(Instruction *I, ArrayRef<Value*> NewOps) {
+  // We don't want to use the IRBuilder here because we want the replacement
+  // instructions to appear next to 'I', not the builder's insertion point.
+  switch (I->getOpcode()) {
+    case Instruction::Add:
+    case Instruction::FAdd:
+    case Instruction::Sub:
+    case Instruction::FSub:
+    case Instruction::Mul:
+    case Instruction::FMul:
+    case Instruction::UDiv:
+    case Instruction::SDiv:
+    case Instruction::FDiv:
+    case Instruction::URem:
+    case Instruction::SRem:
+    case Instruction::FRem:
+    case Instruction::Shl:
+    case Instruction::LShr:
+    case Instruction::AShr:
+    case Instruction::And:
+    case Instruction::Or:
+    case Instruction::Xor: {
+      BinaryOperator *BO = cast<BinaryOperator>(I);
+      assert(NewOps.size() == 2 && "binary operator with #ops != 2");
+      BinaryOperator *New =
+          BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
+                                 NewOps[0], NewOps[1], "", BO);
+      if (isa<OverflowingBinaryOperator>(BO)) {
+        New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
+        New->setHasNoSignedWrap(BO->hasNoSignedWrap());
+      }
+      if (isa<PossiblyExactOperator>(BO)) {
+        New->setIsExact(BO->isExact());
+      }
+      if (isa<FPMathOperator>(BO))
+        New->copyFastMathFlags(I);
+      return New;
+    }
+    case Instruction::ICmp:
+      assert(NewOps.size() == 2 && "icmp with #ops != 2");
+      return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
+                          NewOps[0], NewOps[1]);
+    case Instruction::FCmp:
+      assert(NewOps.size() == 2 && "fcmp with #ops != 2");
+      return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
+                          NewOps[0], NewOps[1]);
+    case Instruction::Trunc:
+    case Instruction::ZExt:
+    case Instruction::SExt:
+    case Instruction::FPToUI:
+    case Instruction::FPToSI:
+    case Instruction::UIToFP:
+    case Instruction::SIToFP:
+    case Instruction::FPTrunc:
+    case Instruction::FPExt: {
+      // It's possible that the mask has a different number of elements from
+      // the original cast. We recompute the destination type to match the mask.
+      Type *DestTy =
+          VectorType::get(I->getType()->getScalarType(),
+                          NewOps[0]->getType()->getVectorNumElements());
+      assert(NewOps.size() == 1 && "cast with #ops != 1");
+      return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
+                              "", I);
+    }
+    case Instruction::GetElementPtr: {
+      Value *Ptr = NewOps[0];
+      ArrayRef<Value*> Idx = NewOps.slice(1);
+      GetElementPtrInst *GEP = GetElementPtrInst::Create(Ptr, Idx, "", I);
+      GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
+      return GEP;
+    }
+  }
+  llvm_unreachable("failed to rebuild vector instructions");
+}
+
+Value *
+InstCombiner::EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
+  // Mask.size() does not need to be equal to the number of vector elements.
+
+  assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
+  if (isa<UndefValue>(V)) {
+    return UndefValue::get(VectorType::get(V->getType()->getScalarType(),
+                                           Mask.size()));
+  }
+  if (isa<ConstantAggregateZero>(V)) {
+    return ConstantAggregateZero::get(
+               VectorType::get(V->getType()->getScalarType(),
+                               Mask.size()));
+  }
+  if (Constant *C = dyn_cast<Constant>(V)) {
+    SmallVector<Constant *, 16> MaskValues;
+    for (int i = 0, e = Mask.size(); i != e; ++i) {
+      if (Mask[i] == -1)
+        MaskValues.push_back(UndefValue::get(Builder->getInt32Ty()));
+      else
+        MaskValues.push_back(Builder->getInt32(Mask[i]));
+    }
+    return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()),
+                                          ConstantVector::get(MaskValues));
+  }
+
+  Instruction *I = cast<Instruction>(V);
+  switch (I->getOpcode()) {
+    case Instruction::Add:
+    case Instruction::FAdd:
+    case Instruction::Sub:
+    case Instruction::FSub:
+    case Instruction::Mul:
+    case Instruction::FMul:
+    case Instruction::UDiv:
+    case Instruction::SDiv:
+    case Instruction::FDiv:
+    case Instruction::URem:
+    case Instruction::SRem:
+    case Instruction::FRem:
+    case Instruction::Shl:
+    case Instruction::LShr:
+    case Instruction::AShr:
+    case Instruction::And:
+    case Instruction::Or:
+    case Instruction::Xor:
+    case Instruction::ICmp:
+    case Instruction::FCmp:
+    case Instruction::Trunc:
+    case Instruction::ZExt:
+    case Instruction::SExt:
+    case Instruction::FPToUI:
+    case Instruction::FPToSI:
+    case Instruction::UIToFP:
+    case Instruction::SIToFP:
+    case Instruction::FPTrunc:
+    case Instruction::FPExt:
+    case Instruction::Select:
+    case Instruction::GetElementPtr: {
+      SmallVector<Value*, 8> NewOps;
+      bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements());
+      for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
+        Value *V = EvaluateInDifferentElementOrder(I->getOperand(i), Mask);
+        NewOps.push_back(V);
+        NeedsRebuild |= (V != I->getOperand(i));
+      }
+      if (NeedsRebuild) {
+        return BuildNew(I, NewOps);
+      }
+      return I;
+    }
+    case Instruction::InsertElement: {
+      int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
+
+      // The insertelement was inserting at Element. Figure out which element
+      // that becomes after shuffling. The answer is guaranteed to be unique
+      // by CanEvaluateShuffled.
+      bool Found = false;
+      int Index = 0;
+      for (int e = Mask.size(); Index != e; ++Index) {
+        if (Mask[Index] == Element) {
+          Found = true;
+          break;
+        }
+      }
+
+      // If element is not in Mask, no need to handle the operand 1 (element to
+      // be inserted). Just evaluate values in operand 0 according to Mask.
+      if (!Found)
+        return EvaluateInDifferentElementOrder(I->getOperand(0), Mask);
+
+      Value *V = EvaluateInDifferentElementOrder(I->getOperand(0), Mask);
+      return InsertElementInst::Create(V, I->getOperand(1),
+                                       Builder->getInt32(Index), "", I);
+    }
+  }
+  llvm_unreachable("failed to reorder elements of vector instruction!");
+}
 
 Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
   Value *LHS = SVI.getOperand(0);
@@ -529,9 +833,9 @@ Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
   if (LHS == RHS || isa<UndefValue>(LHS)) {
     if (isa<UndefValue>(LHS) && LHS == RHS) {
       // shuffle(undef,undef,mask) -> undef.
-      Value* result = (VWidth == LHSWidth)
+      Value *Result = (VWidth == LHSWidth)
                       ? LHS : UndefValue::get(SVI.getType());
-      return ReplaceInstUsesWith(SVI, result);
+      return ReplaceInstUsesWith(SVI, Result);
     }
 
     // Remap any references to RHS to use LHS.
@@ -578,6 +882,11 @@ Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
     if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
   }
 
+  if (isa<UndefValue>(RHS) && CanEvaluateShuffled(LHS, Mask)) {
+    Value *V = EvaluateInDifferentElementOrder(LHS, Mask);
+    return ReplaceInstUsesWith(SVI, V);
+  }
+
   // If the LHS is a shufflevector itself, see if we can combine it with this
   // one without producing an unusual shuffle.
   // Cases that might be simplified:
@@ -729,7 +1038,7 @@ Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
       // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
       // If newRHS == newLHS, we want to remap any references from newRHS to
       // newLHS so that we can properly identify splats that may occur due to
-      // obfuscation accross the two vectors.
+      // obfuscation across the two vectors.
       if (eltMask >= 0 && newRHS != NULL && newLHS != newRHS)
         eltMask += newLHSWidth;
     }