Switch SROA to pop Uses off the back of its visitors' queues.
[oota-llvm.git] / lib / Transforms / Scalar / JumpThreading.cpp
index 1bcbd0a7dc209038a2a51afa6548604395337372..4a4cd705e213cff4587276b0e3ffce2aec49f808 100644 (file)
 
 #define DEBUG_TYPE "jump-threading"
 #include "llvm/Transforms/Scalar.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Pass.h"
-#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/Analysis/LazyValueInfo.h"
-#include "llvm/Analysis/Loads.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Transforms/Utils/SSAUpdater.h"
-#include "llvm/Target/TargetData.h"
 #include "llvm/ADT/DenseMap.h"
 #include "llvm/ADT/DenseSet.h"
-#include "llvm/ADT/Statistic.h"
 #include "llvm/ADT/STLExtras.h"
 #include "llvm/ADT/SmallPtrSet.h"
 #include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/LazyValueInfo.h"
+#include "llvm/Analysis/Loads.h"
+#include "llvm/DataLayout.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/LLVMContext.h"
+#include "llvm/Pass.h"
 #include "llvm/Support/CommandLine.h"
 #include "llvm/Support/Debug.h"
 #include "llvm/Support/ValueHandle.h"
 #include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetLibraryInfo.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/SSAUpdater.h"
 using namespace llvm;
 
 STATISTIC(NumThreads, "Number of jumps threaded");
@@ -49,6 +51,13 @@ namespace {
   typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo;
   typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy;
 
+  // This is used to keep track of what kind of constant we're currently hoping
+  // to find.
+  enum ConstantPreference {
+    WantInteger,
+    WantBlockAddress
+  };
+
   /// This pass performs 'jump threading', which looks at blocks that have
   /// multiple predecessors and multiple successors.  If one or more of the
   /// predecessors of the block can be proven to always jump to one of the
@@ -66,7 +75,8 @@ namespace {
   /// revectored to the false side of the second if.
   ///
   class JumpThreading : public FunctionPass {
-    TargetData *TD;
+    DataLayout *TD;
+    TargetLibraryInfo *TLI;
     LazyValueInfo *LVI;
 #ifdef NDEBUG
     SmallPtrSet<BasicBlock*, 16> LoopHeaders;
@@ -99,6 +109,7 @@ namespace {
     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
       AU.addRequired<LazyValueInfo>();
       AU.addPreserved<LazyValueInfo>();
+      AU.addRequired<TargetLibraryInfo>();
     }
 
     void FindLoopHeaders(Function &F);
@@ -109,12 +120,10 @@ namespace {
                                   const SmallVectorImpl<BasicBlock *> &PredBBs);
 
     bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
-                                         PredValueInfo &Result);
-    bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB);
-
-
-    bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
-    bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
+                                         PredValueInfo &Result,
+                                         ConstantPreference Preference);
+    bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
+                                ConstantPreference Preference);
 
     bool ProcessBranchOnPHI(PHINode *PN);
     bool ProcessBranchOnXOR(BinaryOperator *BO);
@@ -127,6 +136,7 @@ char JumpThreading::ID = 0;
 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
                 "Jump Threading", false, false)
 INITIALIZE_PASS_DEPENDENCY(LazyValueInfo)
+INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
                 "Jump Threading", false, false)
 
@@ -137,7 +147,8 @@ FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
 ///
 bool JumpThreading::runOnFunction(Function &F) {
   DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
-  TD = getAnalysisIfAvailable<TargetData>();
+  TD = getAnalysisIfAvailable<DataLayout>();
+  TLI = &getAnalysis<TargetLibraryInfo>();
   LVI = &getAnalysis<LazyValueInfo>();
 
   FindLoopHeaders(F);
@@ -163,40 +174,38 @@ bool JumpThreading::runOnFunction(Function &F) {
         LVI->eraseBlock(BB);
         DeleteDeadBlock(BB);
         Changed = true;
-      } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
-        // Can't thread an unconditional jump, but if the block is "almost
-        // empty", we can replace uses of it with uses of the successor and make
-        // this dead.
-        if (BI->isUnconditional() &&
-            BB != &BB->getParent()->getEntryBlock()) {
-          BasicBlock::iterator BBI = BB->getFirstNonPHI();
-          // Ignore dbg intrinsics.
-          while (isa<DbgInfoIntrinsic>(BBI))
-            ++BBI;
+        continue;
+      }
+
+      BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
+
+      // Can't thread an unconditional jump, but if the block is "almost
+      // empty", we can replace uses of it with uses of the successor and make
+      // this dead.
+      if (BI && BI->isUnconditional() &&
+          BB != &BB->getParent()->getEntryBlock() &&
           // If the terminator is the only non-phi instruction, try to nuke it.
-          if (BBI->isTerminator()) {
-            // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
-            // block, we have to make sure it isn't in the LoopHeaders set.  We
-            // reinsert afterward if needed.
-            bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
-            BasicBlock *Succ = BI->getSuccessor(0);
-
-            // FIXME: It is always conservatively correct to drop the info
-            // for a block even if it doesn't get erased.  This isn't totally
-            // awesome, but it allows us to use AssertingVH to prevent nasty
-            // dangling pointer issues within LazyValueInfo.
-            LVI->eraseBlock(BB);
-            if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
-              Changed = true;
-              // If we deleted BB and BB was the header of a loop, then the
-              // successor is now the header of the loop.
-              BB = Succ;
-            }
-
-            if (ErasedFromLoopHeaders)
-              LoopHeaders.insert(BB);
-          }
+          BB->getFirstNonPHIOrDbg()->isTerminator()) {
+        // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
+        // block, we have to make sure it isn't in the LoopHeaders set.  We
+        // reinsert afterward if needed.
+        bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
+        BasicBlock *Succ = BI->getSuccessor(0);
+
+        // FIXME: It is always conservatively correct to drop the info
+        // for a block even if it doesn't get erased.  This isn't totally
+        // awesome, but it allows us to use AssertingVH to prevent nasty
+        // dangling pointer issues within LazyValueInfo.
+        LVI->eraseBlock(BB);
+        if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
+          Changed = true;
+          // If we deleted BB and BB was the header of a loop, then the
+          // successor is now the header of the loop.
+          BB = Succ;
         }
+
+        if (ErasedFromLoopHeaders)
+          LoopHeaders.insert(BB);
       }
     }
     EverChanged |= Changed;
@@ -207,19 +216,24 @@ bool JumpThreading::runOnFunction(Function &F) {
 }
 
 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
-/// thread across it.
-static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
+/// thread across it. Stop scanning the block when passing the threshold.
+static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB,
+                                             unsigned Threshold) {
   /// Ignore PHI nodes, these will be flattened when duplication happens.
   BasicBlock::const_iterator I = BB->getFirstNonPHI();
 
   // FIXME: THREADING will delete values that are just used to compute the
   // branch, so they shouldn't count against the duplication cost.
 
-
   // Sum up the cost of each instruction until we get to the terminator.  Don't
   // include the terminator because the copy won't include it.
   unsigned Size = 0;
   for (; !isa<TerminatorInst>(I); ++I) {
+
+    // Stop scanning the block if we've reached the threshold.
+    if (Size > Threshold)
+      return Size;
+
     // Debugger intrinsics don't incur code size.
     if (isa<DbgInfoIntrinsic>(I)) continue;
 
@@ -247,6 +261,10 @@ static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
   if (isa<SwitchInst>(I))
     Size = Size > 6 ? Size-6 : 0;
 
+  // The same holds for indirect branches, but slightly more so.
+  if (isa<IndirectBrInst>(I))
+    Size = Size > 8 ? Size-8 : 0;
+
   return Size;
 }
 
@@ -275,9 +293,10 @@ void JumpThreading::FindLoopHeaders(Function &F) {
 
 /// getKnownConstant - Helper method to determine if we can thread over a
 /// terminator with the given value as its condition, and if so what value to
-/// use for that.
+/// use for that. What kind of value this is depends on whether we want an
+/// integer or a block address, but an undef is always accepted.
 /// Returns null if Val is null or not an appropriate constant.
-static Constant *getKnownConstant(Value *Val) {
+static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
   if (!Val)
     return 0;
 
@@ -285,26 +304,22 @@ static Constant *getKnownConstant(Value *Val) {
   if (UndefValue *U = dyn_cast<UndefValue>(Val))
     return U;
 
-  return dyn_cast<ConstantInt>(Val);
-}
+  if (Preference == WantBlockAddress)
+    return dyn_cast<BlockAddress>(Val->stripPointerCasts());
 
-// Helper method for ComputeValueKnownInPredecessors.  If Value is a
-// ConstantInt or undef, push it.  Otherwise, do nothing.
-static void PushKnownConstantOrUndef(PredValueInfo &Result, Constant *Value,
-                                     BasicBlock *BB) {
-  if (Constant *KC = getKnownConstant(Value))
-    Result.push_back(std::make_pair(KC, BB));
+  return dyn_cast<ConstantInt>(Val);
 }
 
 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
-/// if we can infer that the value is a known ConstantInt in any of our
-/// predecessors.  If so, return the known list of value and pred BB in the
-/// result vector.  If a value is known to be undef, it is returned as null.
+/// if we can infer that the value is a known ConstantInt/BlockAddress or undef
+/// in any of our predecessors.  If so, return the known list of value and pred
+/// BB in the result vector.
 ///
 /// This returns true if there were any known values.
 ///
 bool JumpThreading::
-ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
+ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
+                                ConstantPreference Preference) {
   // This method walks up use-def chains recursively.  Because of this, we could
   // get into an infinite loop going around loops in the use-def chain.  To
   // prevent this, keep track of what (value, block) pairs we've already visited
@@ -317,7 +332,7 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
   RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
 
   // If V is a constant, then it is known in all predecessors.
-  if (Constant *KC = getKnownConstant(V)) {
+  if (Constant *KC = getKnownConstant(V, Preference)) {
     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
       Result.push_back(std::make_pair(KC, *PI));
 
@@ -347,7 +362,7 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
       // If the value is known by LazyValueInfo to be a constant in a
       // predecessor, use that information to try to thread this block.
       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB);
-      if (Constant *KC = getKnownConstant(PredCst))
+      if (Constant *KC = getKnownConstant(PredCst, Preference))
         Result.push_back(std::make_pair(KC, P));
     }
 
@@ -358,14 +373,13 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
   if (PHINode *PN = dyn_cast<PHINode>(I)) {
     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
       Value *InVal = PN->getIncomingValue(i);
-      if (Constant *KC = getKnownConstant(InVal)) {
+      if (Constant *KC = getKnownConstant(InVal, Preference)) {
         Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
       } else {
         Constant *CI = LVI->getConstantOnEdge(InVal,
                                               PN->getIncomingBlock(i), BB);
-        // LVI returns null is no value could be determined.
-        if (!CI) continue;
-        PushKnownConstantOrUndef(Result, CI, PN->getIncomingBlock(i));
+        if (Constant *KC = getKnownConstant(CI, Preference))
+          Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
       }
     }
 
@@ -376,12 +390,15 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
 
   // Handle some boolean conditions.
   if (I->getType()->getPrimitiveSizeInBits() == 1) {
+    assert(Preference == WantInteger && "One-bit non-integer type?");
     // X | true -> true
     // X & false -> false
     if (I->getOpcode() == Instruction::Or ||
         I->getOpcode() == Instruction::And) {
-      ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
-      ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
+      ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
+                                      WantInteger);
+      ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
+                                      WantInteger);
 
       if (LHSVals.empty() && RHSVals.empty())
         return false;
@@ -421,7 +438,8 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
     if (I->getOpcode() == Instruction::Xor &&
         isa<ConstantInt>(I->getOperand(1)) &&
         cast<ConstantInt>(I->getOperand(1))->isOne()) {
-      ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result);
+      ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
+                                      WantInteger);
       if (Result.empty())
         return false;
 
@@ -434,16 +452,20 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
 
   // Try to simplify some other binary operator values.
   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
+    assert(Preference != WantBlockAddress
+            && "A binary operator creating a block address?");
     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
       PredValueInfoTy LHSVals;
-      ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals);
+      ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
+                                      WantInteger);
 
       // Try to use constant folding to simplify the binary operator.
       for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
         Constant *V = LHSVals[i].first;
         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
 
-        PushKnownConstantOrUndef(Result, Folded, LHSVals[i].second);
+        if (Constant *KC = getKnownConstant(Folded, WantInteger))
+          Result.push_back(std::make_pair(KC, LHSVals[i].second));
       }
     }
 
@@ -452,6 +474,7 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
 
   // Handle compare with phi operand, where the PHI is defined in this block.
   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
+    assert(Preference == WantInteger && "Compares only produce integers");
     PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
     if (PN && PN->getParent() == BB) {
       // We can do this simplification if any comparisons fold to true or false.
@@ -474,8 +497,8 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
         }
 
-        if (Constant *ConstRes = dyn_cast<Constant>(Res))
-          PushKnownConstantOrUndef(Result, ConstRes, PredBB);
+        if (Constant *KC = getKnownConstant(Res, WantInteger))
+          Result.push_back(std::make_pair(KC, PredBB));
       }
 
       return !Result.empty();
@@ -510,13 +533,15 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
       // and evaluate it statically if we can.
       if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) {
         PredValueInfoTy LHSVals;
-        ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
+        ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
+                                        WantInteger);
 
         for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
           Constant *V = LHSVals[i].first;
           Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(),
                                                       V, CmpConst);
-          PushKnownConstantOrUndef(Result, Folded, LHSVals[i].second);
+          if (Constant *KC = getKnownConstant(Folded, WantInteger))
+            Result.push_back(std::make_pair(KC, LHSVals[i].second));
         }
 
         return !Result.empty();
@@ -524,9 +549,43 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
     }
   }
 
+  if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
+    // Handle select instructions where at least one operand is a known constant
+    // and we can figure out the condition value for any predecessor block.
+    Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
+    Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
+    PredValueInfoTy Conds;
+    if ((TrueVal || FalseVal) &&
+        ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
+                                        WantInteger)) {
+      for (unsigned i = 0, e = Conds.size(); i != e; ++i) {
+        Constant *Cond = Conds[i].first;
+
+        // Figure out what value to use for the condition.
+        bool KnownCond;
+        if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
+          // A known boolean.
+          KnownCond = CI->isOne();
+        } else {
+          assert(isa<UndefValue>(Cond) && "Unexpected condition value");
+          // Either operand will do, so be sure to pick the one that's a known
+          // constant.
+          // FIXME: Do this more cleverly if both values are known constants?
+          KnownCond = (TrueVal != 0);
+        }
+
+        // See if the select has a known constant value for this predecessor.
+        if (Constant *Val = KnownCond ? TrueVal : FalseVal)
+          Result.push_back(std::make_pair(Val, Conds[i].second));
+      }
+
+      return !Result.empty();
+    }
+  }
+
   // If all else fails, see if LVI can figure out a constant value for us.
   Constant *CI = LVI->getConstant(V, BB);
-  if (Constant *KC = getKnownConstant(CI)) {
+  if (Constant *KC = getKnownConstant(CI, Preference)) {
     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
       Result.push_back(std::make_pair(KC, *PI));
   }
@@ -551,13 +610,25 @@ static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
     TestBB = BBTerm->getSuccessor(i);
     unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
-    if (NumPreds < MinNumPreds)
+    if (NumPreds < MinNumPreds) {
       MinSucc = i;
+      MinNumPreds = NumPreds;
+    }
   }
 
   return MinSucc;
 }
 
+static bool hasAddressTakenAndUsed(BasicBlock *BB) {
+  if (!BB->hasAddressTaken()) return false;
+
+  // If the block has its address taken, it may be a tree of dead constants
+  // hanging off of it.  These shouldn't keep the block alive.
+  BlockAddress *BA = BlockAddress::get(BB);
+  BA->removeDeadConstantUsers();
+  return !BA->use_empty();
+}
+
 /// ProcessBlock - If there are any predecessors whose control can be threaded
 /// through to a successor, transform them now.
 bool JumpThreading::ProcessBlock(BasicBlock *BB) {
@@ -573,7 +644,7 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) {
   // predecessors of our predecessor block.
   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
     if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
-        SinglePred != BB) {
+        SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
       // If SinglePred was a loop header, BB becomes one.
       if (LoopHeaders.erase(SinglePred))
         LoopHeaders.insert(BB);
@@ -590,17 +661,38 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) {
     }
   }
 
-  // Look to see if the terminator is a branch of switch, if not we can't thread
-  // it.
+  // What kind of constant we're looking for.
+  ConstantPreference Preference = WantInteger;
+
+  // Look to see if the terminator is a conditional branch, switch or indirect
+  // branch, if not we can't thread it.
   Value *Condition;
-  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
+  Instruction *Terminator = BB->getTerminator();
+  if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
     // Can't thread an unconditional jump.
     if (BI->isUnconditional()) return false;
     Condition = BI->getCondition();
-  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
+  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
     Condition = SI->getCondition();
-  else
+  } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
+    // Can't thread indirect branch with no successors.
+    if (IB->getNumSuccessors() == 0) return false;
+    Condition = IB->getAddress()->stripPointerCasts();
+    Preference = WantBlockAddress;
+  } else {
     return false; // Must be an invoke.
+  }
+
+  // Run constant folding to see if we can reduce the condition to a simple
+  // constant.
+  if (Instruction *I = dyn_cast<Instruction>(Condition)) {
+    Value *SimpleVal = ConstantFoldInstruction(I, TD, TLI);
+    if (SimpleVal) {
+      I->replaceAllUsesWith(SimpleVal);
+      I->eraseFromParent();
+      Condition = SimpleVal;
+    }
+  }
 
   // If the terminator is branching on an undef, we can pick any of the
   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
@@ -624,11 +716,11 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) {
   // If the terminator of this block is branching on a constant, simplify the
   // terminator to an unconditional branch.  This can occur due to threading in
   // other blocks.
-  if (getKnownConstant(Condition)) {
+  if (getKnownConstant(Condition, Preference)) {
     DEBUG(dbgs() << "  In block '" << BB->getName()
           << "' folding terminator: " << *BB->getTerminator() << '\n');
     ++NumFolds;
-    ConstantFoldTerminator(BB);
+    ConstantFoldTerminator(BB, true);
     return true;
   }
 
@@ -637,7 +729,7 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) {
   // All the rest of our checks depend on the condition being an instruction.
   if (CondInst == 0) {
     // FIXME: Unify this with code below.
-    if (ProcessThreadableEdges(Condition, BB))
+    if (ProcessThreadableEdges(Condition, BB, Preference))
       return true;
     return false;
   }
@@ -703,7 +795,7 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) {
   // a PHI node in the current block.  If we can prove that any predecessors
   // compute a predictable value based on a PHI node, thread those predecessors.
   //
-  if (ProcessThreadableEdges(CondInst, BB))
+  if (ProcessThreadableEdges(CondInst, BB, Preference))
     return true;
 
   // If this is an otherwise-unfoldable branch on a phi node in the current
@@ -725,151 +817,14 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) {
   return false;
 }
 
-/// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
-/// block that jump on exactly the same condition.  This means that we almost
-/// always know the direction of the edge in the DESTBB:
-///  PREDBB:
-///     br COND, DESTBB, BBY
-///  DESTBB:
-///     br COND, BBZ, BBW
-///
-/// If DESTBB has multiple predecessors, we can't just constant fold the branch
-/// in DESTBB, we have to thread over it.
-bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
-                                                 BasicBlock *BB) {
-  BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
-
-  // If both successors of PredBB go to DESTBB, we don't know anything.  We can
-  // fold the branch to an unconditional one, which allows other recursive
-  // simplifications.
-  bool BranchDir;
-  if (PredBI->getSuccessor(1) != BB)
-    BranchDir = true;
-  else if (PredBI->getSuccessor(0) != BB)
-    BranchDir = false;
-  else {
-    DEBUG(dbgs() << "  In block '" << PredBB->getName()
-          << "' folding terminator: " << *PredBB->getTerminator() << '\n');
-    ++NumFolds;
-    ConstantFoldTerminator(PredBB);
-    return true;
-  }
-
-  BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
-
-  // If the dest block has one predecessor, just fix the branch condition to a
-  // constant and fold it.
-  if (BB->getSinglePredecessor()) {
-    DEBUG(dbgs() << "  In block '" << BB->getName()
-          << "' folding condition to '" << BranchDir << "': "
-          << *BB->getTerminator() << '\n');
-    ++NumFolds;
-    Value *OldCond = DestBI->getCondition();
-    DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
-                                          BranchDir));
-    // Delete dead instructions before we fold the branch.  Folding the branch
-    // can eliminate edges from the CFG which can end up deleting OldCond.
-    RecursivelyDeleteTriviallyDeadInstructions(OldCond);
-    ConstantFoldTerminator(BB);
-    return true;
-  }
-
-
-  // Next, figure out which successor we are threading to.
-  BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
-
-  SmallVector<BasicBlock*, 2> Preds;
-  Preds.push_back(PredBB);
-
-  // Ok, try to thread it!
-  return ThreadEdge(BB, Preds, SuccBB);
-}
-
-/// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
-/// block that switch on exactly the same condition.  This means that we almost
-/// always know the direction of the edge in the DESTBB:
-///  PREDBB:
-///     switch COND [... DESTBB, BBY ... ]
-///  DESTBB:
-///     switch COND [... BBZ, BBW ]
-///
-/// Optimizing switches like this is very important, because simplifycfg builds
-/// switches out of repeated 'if' conditions.
-bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
-                                                 BasicBlock *DestBB) {
-  // Can't thread edge to self.
-  if (PredBB == DestBB)
-    return false;
-
-  SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
-  SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
-
-  // There are a variety of optimizations that we can potentially do on these
-  // blocks: we order them from most to least preferable.
-
-  // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
-  // directly to their destination.  This does not introduce *any* code size
-  // growth.  Skip debug info first.
-  BasicBlock::iterator BBI = DestBB->begin();
-  while (isa<DbgInfoIntrinsic>(BBI))
-    BBI++;
-
-  // FIXME: Thread if it just contains a PHI.
-  if (isa<SwitchInst>(BBI)) {
-    bool MadeChange = false;
-    // Ignore the default edge for now.
-    for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
-      ConstantInt *DestVal = DestSI->getCaseValue(i);
-      BasicBlock *DestSucc = DestSI->getSuccessor(i);
-
-      // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'.  See if
-      // PredSI has an explicit case for it.  If so, forward.  If it is covered
-      // by the default case, we can't update PredSI.
-      unsigned PredCase = PredSI->findCaseValue(DestVal);
-      if (PredCase == 0) continue;
-
-      // If PredSI doesn't go to DestBB on this value, then it won't reach the
-      // case on this condition.
-      if (PredSI->getSuccessor(PredCase) != DestBB &&
-          DestSI->getSuccessor(i) != DestBB)
-        continue;
-
-      // Do not forward this if it already goes to this destination, this would
-      // be an infinite loop.
-      if (PredSI->getSuccessor(PredCase) == DestSucc)
-        continue;
-
-      // Otherwise, we're safe to make the change.  Make sure that the edge from
-      // DestSI to DestSucc is not critical and has no PHI nodes.
-      DEBUG(dbgs() << "FORWARDING EDGE " << *DestVal << "   FROM: " << *PredSI);
-      DEBUG(dbgs() << "THROUGH: " << *DestSI);
-
-      // If the destination has PHI nodes, just split the edge for updating
-      // simplicity.
-      if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
-        SplitCriticalEdge(DestSI, i, this);
-        DestSucc = DestSI->getSuccessor(i);
-      }
-      FoldSingleEntryPHINodes(DestSucc);
-      PredSI->setSuccessor(PredCase, DestSucc);
-      MadeChange = true;
-    }
-
-    if (MadeChange)
-      return true;
-  }
-
-  return false;
-}
-
 
 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
 /// load instruction, eliminate it by replacing it with a PHI node.  This is an
 /// important optimization that encourages jump threading, and needs to be run
 /// interlaced with other jump threading tasks.
 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
-  // Don't hack volatile loads.
-  if (LI->isVolatile()) return false;
+  // Don't hack volatile/atomic loads.
+  if (!LI->isSimple()) return false;
 
   // If the load is defined in a block with exactly one predecessor, it can't be
   // partially redundant.
@@ -909,6 +864,9 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
   if (BBIt != LoadBB->begin())
     return false;
 
+  // If all of the loads and stores that feed the value have the same TBAA tag,
+  // then we can propagate it onto any newly inserted loads.
+  MDNode *TBAATag = LI->getMetadata(LLVMContext::MD_tbaa);
 
   SmallPtrSet<BasicBlock*, 8> PredsScanned;
   typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
@@ -927,12 +885,17 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
 
     // Scan the predecessor to see if the value is available in the pred.
     BBIt = PredBB->end();
-    Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
+    MDNode *ThisTBAATag = 0;
+    Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6,
+                                                    0, &ThisTBAATag);
     if (!PredAvailable) {
       OneUnavailablePred = PredBB;
       continue;
     }
 
+    // If tbaa tags disagree or are not present, forget about them.
+    if (TBAATag != ThisTBAATag) TBAATag = 0;
+
     // If so, this load is partially redundant.  Remember this info so that we
     // can create a PHI node.
     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
@@ -978,8 +941,7 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
 
     // Split them out to their own block.
     UnavailablePred =
-      SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
-                             "thread-pre-split", this);
+      SplitBlockPredecessors(LoadBB, PredsToSplit, "thread-pre-split", this);
   }
 
   // If the value isn't available in all predecessors, then there will be
@@ -988,9 +950,13 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
   if (UnavailablePred) {
     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
            "Can't handle critical edge here!");
-    Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
+    LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
                                  LI->getAlignment(),
                                  UnavailablePred->getTerminator());
+    NewVal->setDebugLoc(LI->getDebugLoc());
+    if (TBAATag)
+      NewVal->setMetadata(LLVMContext::MD_tbaa, TBAATag);
+
     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
   }
 
@@ -999,13 +965,15 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
 
   // Create a PHI node at the start of the block for the PRE'd load value.
-  PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
+  pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
+  PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "",
+                                LoadBB->begin());
   PN->takeName(LI);
+  PN->setDebugLoc(LI->getDebugLoc());
 
   // Insert new entries into the PHI for each predecessor.  A single block may
   // have multiple entries here.
-  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
-       ++PI) {
+  for (pred_iterator PI = PB; PI != PE; ++PI) {
     BasicBlock *P = *PI;
     AvailablePredsTy::iterator I =
       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
@@ -1065,7 +1033,7 @@ FindMostPopularDest(BasicBlock *BB,
     }
   }
 
-  // Okay, now we know the most popular destination.  If there is more than
+  // Okay, now we know the most popular destination.  If there is more than one
   // destination, we need to determine one.  This is arbitrary, but we need
   // to make a deterministic decision.  Pick the first one that appears in the
   // successor list.
@@ -1088,14 +1056,15 @@ FindMostPopularDest(BasicBlock *BB,
   return MostPopularDest;
 }
 
-bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) {
+bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
+                                           ConstantPreference Preference) {
   // If threading this would thread across a loop header, don't even try to
   // thread the edge.
   if (LoopHeaders.count(BB))
     return false;
 
   PredValueInfoTy PredValues;
-  if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues))
+  if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference))
     return false;
 
   assert(!PredValues.empty() &&
@@ -1135,13 +1104,16 @@ bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) {
       DestBB = 0;
     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
-    else {
-      SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
-      DestBB = SI->getSuccessor(SI->findCaseValue(cast<ConstantInt>(Val)));
+    else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
+      DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor();
+    } else {
+      assert(isa<IndirectBrInst>(BB->getTerminator())
+              && "Unexpected terminator");
+      DestBB = cast<BlockAddress>(Val)->getBasicBlock();
     }
 
     // If we have exactly one destination, remember it for efficiency below.
-    if (i == 0)
+    if (PredToDestList.empty())
       OnlyDest = DestBB;
     else if (OnlyDest != DestBB)
       OnlyDest = MultipleDestSentinel;
@@ -1256,9 +1228,11 @@ bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
 
   PredValueInfoTy XorOpValues;
   bool isLHS = true;
-  if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues)) {
+  if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
+                                       WantInteger)) {
     assert(XorOpValues.empty());
-    if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues))
+    if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
+                                         WantInteger))
       return false;
     isLHS = false;
   }
@@ -1368,7 +1342,7 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB,
     return false;
   }
 
-  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
+  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, Threshold);
   if (JumpThreadCost > Threshold) {
     DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
           << "' - Cost is too high: " << JumpThreadCost << "\n");
@@ -1382,8 +1356,7 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB,
   else {
     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
           << " common predecessors.\n");
-    PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
-                                    ".thr_comm", this);
+    PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm", this);
   }
 
   // And finally, do it!
@@ -1427,7 +1400,8 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB,
 
   // We didn't copy the terminator from BB over to NewBB, because there is now
   // an unconditional jump to SuccBB.  Insert the unconditional jump.
-  BranchInst::Create(SuccBB, NewBB);
+  BranchInst *NewBI =BranchInst::Create(SuccBB, NewBB);
+  NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
 
   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
   // PHI nodes for NewBB now.
@@ -1486,7 +1460,7 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB,
   // At this point, the IR is fully up to date and consistent.  Do a quick scan
   // over the new instructions and zap any that are constants or dead.  This
   // frequently happens because of phi translation.
-  SimplifyInstructionsInBlock(NewBB, TD);
+  SimplifyInstructionsInBlock(NewBB, TD, TLI);
 
   // Threaded an edge!
   ++NumThreads;
@@ -1512,7 +1486,7 @@ bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
     return false;
   }
 
-  unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
+  unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, Threshold);
   if (DuplicationCost > Threshold) {
     DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
           << "' - Cost is too high: " << DuplicationCost << "\n");
@@ -1526,8 +1500,7 @@ bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
   else {
     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
           << " common predecessors.\n");
-    PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
-                                    ".thr_comm", this);
+    PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm", this);
   }
 
   // Okay, we decided to do this!  Clone all the instructions in BB onto the end