assert(0) -> LLVM_UNREACHABLE.
[oota-llvm.git] / lib / Transforms / Scalar / SCCP.cpp
index 79cda33f79319888d7e1874a2acf9cb4b24515a5..e521be2db253a95a03e7518fa39d1081c81cae0c 100644 (file)
 #include "llvm/Constants.h"
 #include "llvm/DerivedTypes.h"
 #include "llvm/Instructions.h"
+#include "llvm/LLVMContext.h"
 #include "llvm/Pass.h"
 #include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/ValueTracking.h"
 #include "llvm/Transforms/Utils/Local.h"
 #include "llvm/Support/CallSite.h"
 #include "llvm/Support/Compiler.h"
 #include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
 #include "llvm/Support/InstVisitor.h"
 #include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DenseSet.h"
 #include "llvm/ADT/SmallSet.h"
 #include "llvm/ADT/SmallVector.h"
 #include "llvm/ADT/Statistic.h"
@@ -136,7 +140,8 @@ public:
 /// Constant Propagation.
 ///
 class SCCPSolver : public InstVisitor<SCCPSolver> {
-  SmallSet<BasicBlock*, 16> BBExecutable;// The basic blocks that are executable
+  LLVMContext *Context;
+  DenseSet<BasicBlock*> BBExecutable;// The basic blocks that are executable
   std::map<Value*, LatticeVal> ValueState;  // The state each value is in.
 
   /// GlobalValue - If we are tracking any values for the contents of a global
@@ -152,7 +157,7 @@ class SCCPSolver : public InstVisitor<SCCPSolver> {
 
   /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
   /// that return multiple values.
-  std::map<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals;
+  DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals;
 
   // The reason for two worklists is that overdefined is the lowest state
   // on the lattice, and moving things to overdefined as fast as possible
@@ -160,11 +165,11 @@ class SCCPSolver : public InstVisitor<SCCPSolver> {
   // By having a separate worklist, we accomplish this because everything
   // possibly overdefined will become overdefined at the soonest possible
   // point.
-  std::vector<Value*> OverdefinedInstWorkList;
-  std::vector<Value*> InstWorkList;
+  SmallVector<Value*, 64> OverdefinedInstWorkList;
+  SmallVector<Value*, 64> InstWorkList;
 
 
-  std::vector<BasicBlock*>  BBWorkList;  // The BasicBlock work list
+  SmallVector<BasicBlock*, 64>  BBWorkList;  // The BasicBlock work list
 
   /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not
   /// overdefined, despite the fact that the PHI node is overdefined.
@@ -172,9 +177,10 @@ class SCCPSolver : public InstVisitor<SCCPSolver> {
 
   /// KnownFeasibleEdges - Entries in this set are edges which have already had
   /// PHI nodes retriggered.
-  typedef std::pair<BasicBlock*,BasicBlock*> Edge;
-  std::set<Edge> KnownFeasibleEdges;
+  typedef std::pair<BasicBlock*, BasicBlock*> Edge;
+  DenseSet<Edge> KnownFeasibleEdges;
 public:
+  void setContext(LLVMContext *C) { Context = C; }
 
   /// MarkBlockExecutable - This method can be used by clients to mark all of
   /// the blocks that are known to be intrinsically live in the processed unit.
@@ -201,7 +207,7 @@ public:
   /// and out of the specified function (which cannot have its address taken),
   /// this method must be called.
   void AddTrackedFunction(Function *F) {
-    assert(F->hasInternalLinkage() && "Can only track internal functions!");
+    assert(F->hasLocalLinkage() && "Can only track internal functions!");
     // Add an entry, F -> undef.
     if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
@@ -222,10 +228,8 @@ public:
   /// should be rerun.
   bool ResolvedUndefsIn(Function &F);
 
-  /// getExecutableBlocks - Once we have solved for constants, return the set of
-  /// blocks that is known to be executable.
-  SmallSet<BasicBlock*, 16> &getExecutableBlocks() {
-    return BBExecutable;
+  bool isBlockExecutable(BasicBlock *BB) const {
+    return BBExecutable.count(BB);
   }
 
   /// getValueMapping - Once we have solved for constants, return the mapping of
@@ -383,13 +387,14 @@ private:
   void visitTerminatorInst(TerminatorInst &TI);
 
   void visitCastInst(CastInst &I);
-  void visitGetResultInst(GetResultInst &GRI);
   void visitSelectInst(SelectInst &I);
   void visitBinaryOperator(Instruction &I);
   void visitCmpInst(CmpInst &I);
   void visitExtractElementInst(ExtractElementInst &I);
   void visitInsertElementInst(InsertElementInst &I);
   void visitShuffleVectorInst(ShuffleVectorInst &I);
+  void visitExtractValueInst(ExtractValueInst &EVI);
+  void visitInsertValueInst(InsertValueInst &IVI);
 
   // Instructions that cannot be folded away...
   void visitStoreInst     (Instruction &I);
@@ -436,7 +441,7 @@ void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
         Succs[0] = Succs[1] = true;
       } else if (BCValue.isConstant()) {
         // Constant condition variables mean the branch can only go a single way
-        Succs[BCValue.getConstant() == ConstantInt::getFalse()] = true;
+        Succs[BCValue.getConstant() == Context->getConstantIntFalse()] = true;
       }
     }
   } else if (isa<InvokeInst>(&TI)) {
@@ -451,7 +456,7 @@ void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
     } else if (SCValue.isConstant())
       Succs[SI->findCaseValue(cast<ConstantInt>(SCValue.getConstant()))] = true;
   } else {
-    assert(0 && "SCCP: Don't know how to handle this terminator!");
+    LLVM_UNREACHABLE("SCCP: Don't know how to handle this terminator!");
   }
 }
 
@@ -481,7 +486,7 @@ bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
 
         // Constant condition variables mean the branch can only go a single way
         return BI->getSuccessor(BCValue.getConstant() ==
-                                       ConstantInt::getFalse()) == To;
+                                       Context->getConstantIntFalse()) == To;
       }
       return false;
     }
@@ -509,8 +514,10 @@ bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
     }
     return false;
   } else {
+#ifndef NDEBUG
     cerr << "Unknown terminator instruction: " << *TI;
-    abort();
+#endif
+    llvm_unreachable();
   }
 }
 
@@ -571,7 +578,7 @@ void SCCPSolver::visitPHINode(PHINode &PN) {
 
     if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) {
       if (IV.isOverdefined()) {   // PHI node becomes overdefined!
-        markOverdefined(PNIV, &PN);
+        markOverdefined(&PN);
         return;
       }
 
@@ -587,7 +594,7 @@ void SCCPSolver::visitPHINode(PHINode &PN) {
           // Yes there is.  This means the PHI node is not constant.
           // You must be overdefined poor PHI.
           //
-          markOverdefined(PNIV, &PN);    // The PHI node now becomes overdefined
+          markOverdefined(&PN);    // The PHI node now becomes overdefined
           return;    // I'm done analyzing you
         }
       }
@@ -600,7 +607,7 @@ void SCCPSolver::visitPHINode(PHINode &PN) {
   // this is the case, the PHI remains undefined.
   //
   if (OperandVal)
-    markConstant(PNIV, &PN, OperandVal);      // Acquire operand value
+    markConstant(&PN, OperandVal);      // Acquire operand value
 }
 
 void SCCPSolver::visitReturnInst(ReturnInst &I) {
@@ -608,7 +615,7 @@ void SCCPSolver::visitReturnInst(ReturnInst &I) {
 
   Function *F = I.getParent()->getParent();
   // If we are tracking the return value of this function, merge it in.
-  if (!F->hasInternalLinkage())
+  if (!F->hasLocalLinkage())
     return;
 
   if (!TrackedRetVals.empty() && I.getNumOperands() == 1) {
@@ -625,11 +632,22 @@ void SCCPSolver::visitReturnInst(ReturnInst &I) {
   // Handle functions that return multiple values.
   if (!TrackedMultipleRetVals.empty() && I.getNumOperands() > 1) {
     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
-      std::map<std::pair<Function*, unsigned>, LatticeVal>::iterator
+      DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
         It = TrackedMultipleRetVals.find(std::make_pair(F, i));
       if (It == TrackedMultipleRetVals.end()) break;
       mergeInValue(It->second, F, getValueState(I.getOperand(i)));
     }
+  } else if (!TrackedMultipleRetVals.empty() &&
+             I.getNumOperands() == 1 &&
+             isa<StructType>(I.getOperand(0)->getType())) {
+    for (unsigned i = 0, e = I.getOperand(0)->getType()->getNumContainedTypes();
+         i != e; ++i) {
+      DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
+        It = TrackedMultipleRetVals.find(std::make_pair(F, i));
+      if (It == TrackedMultipleRetVals.end()) break;
+      if (Value *Val = FindInsertedValue(I.getOperand(0), i, Context))
+        mergeInValue(It->second, F, getValueState(Val));
+    }
   }
 }
 
@@ -651,38 +669,40 @@ void SCCPSolver::visitCastInst(CastInst &I) {
   if (VState.isOverdefined())          // Inherit overdefinedness of operand
     markOverdefined(&I);
   else if (VState.isConstant())        // Propagate constant value
-    markConstant(&I, ConstantExpr::getCast(I.getOpcode(), 
+    markConstant(&I, Context->getConstantExprCast(I.getOpcode(), 
                                            VState.getConstant(), I.getType()));
 }
 
-void SCCPSolver::visitGetResultInst(GetResultInst &GRI) {
-  Value *Aggr = GRI.getOperand(0);
+void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
+  Value *Aggr = EVI.getAggregateOperand();
 
-  // If the operand to the getresult is an undef, the result is undef.
+  // If the operand to the extractvalue is an undef, the result is undef.
   if (isa<UndefValue>(Aggr))
     return;
+
+  // Currently only handle single-index extractvalues.
+  if (EVI.getNumIndices() != 1) {
+    markOverdefined(&EVI);
+    return;
+  }
   
-  Function *F;
+  Function *F = 0;
   if (CallInst *CI = dyn_cast<CallInst>(Aggr))
     F = CI->getCalledFunction();
-  else
-    F = cast<InvokeInst>(Aggr)->getCalledFunction();
+  else if (InvokeInst *II = dyn_cast<InvokeInst>(Aggr))
+    F = II->getCalledFunction();
 
   // TODO: If IPSCCP resolves the callee of this function, we could propagate a
   // result back!
   if (F == 0 || TrackedMultipleRetVals.empty()) {
-    markOverdefined(&GRI);
+    markOverdefined(&EVI);
     return;
   }
   
-  // See if we are tracking the result of the callee.
-  std::map<std::pair<Function*, unsigned>, LatticeVal>::iterator
-    It = TrackedMultipleRetVals.find(std::make_pair(F, GRI.getIndex()));
-
-  // If not tracking this function (for example, it is a declaration) just move
-  // to overdefined.
-  if (It == TrackedMultipleRetVals.end()) {
-    markOverdefined(&GRI);
+  // See if we are tracking the result of the callee.  If not tracking this
+  // function (for example, it is a declaration) just move to overdefined.
+  if (!TrackedMultipleRetVals.count(std::make_pair(F, *EVI.idx_begin()))) {
+    markOverdefined(&EVI);
     return;
   }
   
@@ -690,6 +710,51 @@ void SCCPSolver::visitGetResultInst(GetResultInst &GRI) {
   // handling.
 }
 
+void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
+  Value *Aggr = IVI.getAggregateOperand();
+  Value *Val = IVI.getInsertedValueOperand();
+
+  // If the operands to the insertvalue are undef, the result is undef.
+  if (isa<UndefValue>(Aggr) && isa<UndefValue>(Val))
+    return;
+
+  // Currently only handle single-index insertvalues.
+  if (IVI.getNumIndices() != 1) {
+    markOverdefined(&IVI);
+    return;
+  }
+
+  // Currently only handle insertvalue instructions that are in a single-use
+  // chain that builds up a return value.
+  for (const InsertValueInst *TmpIVI = &IVI; ; ) {
+    if (!TmpIVI->hasOneUse()) {
+      markOverdefined(&IVI);
+      return;
+    }
+    const Value *V = *TmpIVI->use_begin();
+    if (isa<ReturnInst>(V))
+      break;
+    TmpIVI = dyn_cast<InsertValueInst>(V);
+    if (!TmpIVI) {
+      markOverdefined(&IVI);
+      return;
+    }
+  }
+  
+  // See if we are tracking the result of the callee.
+  Function *F = IVI.getParent()->getParent();
+  DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
+    It = TrackedMultipleRetVals.find(std::make_pair(F, *IVI.idx_begin()));
+
+  // Merge in the inserted member value.
+  if (It != TrackedMultipleRetVals.end())
+    mergeInValue(It->second, F, getValueState(Val));
+
+  // Mark the aggregate result of the IVI overdefined; any tracking that we do
+  // will be done on the individual member values.
+  markOverdefined(&IVI);
+}
+
 void SCCPSolver::visitSelectInst(SelectInst &I) {
   LatticeVal &CondValue = getValueState(I.getCondition());
   if (CondValue.isUndefined())
@@ -747,11 +812,12 @@ void SCCPSolver::visitBinaryOperator(Instruction &I) {
         if (NonOverdefVal->isUndefined()) {
           // Could annihilate value.
           if (I.getOpcode() == Instruction::And)
-            markConstant(IV, &I, Constant::getNullValue(I.getType()));
+            markConstant(IV, &I, Context->getNullValue(I.getType()));
           else if (const VectorType *PT = dyn_cast<VectorType>(I.getType()))
-            markConstant(IV, &I, ConstantVector::getAllOnesValue(PT));
+            markConstant(IV, &I, Context->getConstantVectorAllOnesValue(PT));
           else
-            markConstant(IV, &I, ConstantInt::getAllOnesValue(I.getType()));
+            markConstant(IV, &I,
+                         Context->getConstantIntAllOnesValue(I.getType()));
           return;
         } else {
           if (I.getOpcode() == Instruction::And) {
@@ -795,7 +861,8 @@ void SCCPSolver::visitBinaryOperator(Instruction &I) {
               Result.markOverdefined();
               break;  // Cannot fold this operation over the PHI nodes!
             } else if (In1.isConstant() && In2.isConstant()) {
-              Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(),
+              Constant *V =
+                     Context->getConstantExpr(I.getOpcode(), In1.getConstant(),
                                               In2.getConstant());
               if (Result.isUndefined())
                 Result.markConstant(V);
@@ -843,7 +910,8 @@ void SCCPSolver::visitBinaryOperator(Instruction &I) {
 
     markOverdefined(IV, &I);
   } else if (V1State.isConstant() && V2State.isConstant()) {
-    markConstant(IV, &I, ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
+    markConstant(IV, &I,
+                Context->getConstantExpr(I.getOpcode(), V1State.getConstant(),
                                            V2State.getConstant()));
   }
 }
@@ -880,7 +948,7 @@ void SCCPSolver::visitCmpInst(CmpInst &I) {
               Result.markOverdefined();
               break;  // Cannot fold this operation over the PHI nodes!
             } else if (In1.isConstant() && In2.isConstant()) {
-              Constant *V = ConstantExpr::getCompare(I.getPredicate(), 
+              Constant *V = Context->getConstantExprCompare(I.getPredicate(), 
                                                      In1.getConstant(), 
                                                      In2.getConstant());
               if (Result.isUndefined())
@@ -929,7 +997,7 @@ void SCCPSolver::visitCmpInst(CmpInst &I) {
 
     markOverdefined(IV, &I);
   } else if (V1State.isConstant() && V2State.isConstant()) {
-    markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(), 
+    markConstant(IV, &I, Context->getConstantExprCompare(I.getPredicate(), 
                                                   V1State.getConstant(), 
                                                   V2State.getConstant()));
   }
@@ -1031,7 +1099,7 @@ void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
   Constant *Ptr = Operands[0];
   Operands.erase(Operands.begin());  // Erase the pointer from idx list...
 
-  markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, &Operands[0],
+  markConstant(IV, &I, Context->getConstantExprGetElementPtr(Ptr, &Operands[0],
                                                       Operands.size()));
 }
 
@@ -1065,14 +1133,14 @@ void SCCPSolver::visitLoadInst(LoadInst &I) {
     if (isa<ConstantPointerNull>(Ptr) && 
         cast<PointerType>(Ptr->getType())->getAddressSpace() == 0) {
       // load null -> null
-      markConstant(IV, &I, Constant::getNullValue(I.getType()));
+      markConstant(IV, &I, Context->getNullValue(I.getType()));
       return;
     }
 
     // Transform load (constant global) into the value loaded.
     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
       if (GV->isConstant()) {
-        if (!GV->isDeclaration()) {
+        if (GV->hasDefinitiveInitializer()) {
           markConstant(IV, &I, GV->getInitializer());
           return;
         }
@@ -1091,9 +1159,10 @@ void SCCPSolver::visitLoadInst(LoadInst &I) {
     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
       if (CE->getOpcode() == Instruction::GetElementPtr)
     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
-      if (GV->isConstant() && !GV->isDeclaration())
+      if (GV->isConstant() && GV->hasDefinitiveInitializer())
         if (Constant *V =
-             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE)) {
+             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE,
+                                                    Context)) {
           markConstant(IV, &I, V);
           return;
         }
@@ -1111,7 +1180,7 @@ void SCCPSolver::visitCallSite(CallSite CS) {
   // The common case is that we aren't tracking the callee, either because we
   // are not doing interprocedural analysis or the callee is indirect, or is
   // external.  Handle these cases first.
-  if (F == 0 || !F->hasInternalLinkage()) {
+  if (F == 0 || !F->hasLocalLinkage()) {
 CallOverdefined:
     // Void return and not tracking callee, just bail.
     if (I->getType() == Type::VoidTy) return;
@@ -1137,7 +1206,7 @@ CallOverdefined:
      
       // If we can constant fold this, mark the result of the call as a
       // constant.
-      if (Constant *C = ConstantFoldCall(F, &Operands[0], Operands.size())) {
+      if (Constant *C = ConstantFoldCall(F, Operands.data(), Operands.size())) {
         markConstant(I, C);
         return;
       }
@@ -1149,32 +1218,38 @@ CallOverdefined:
   }
 
   // If this is a single/zero retval case, see if we're tracking the function.
-  const StructType *RetSTy = dyn_cast<StructType>(I->getType());
-  if (RetSTy == 0) {
-    // Check to see if we're tracking this callee, if not, handle it in the
-    // common path above.
-    DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
-    if (TFRVI == TrackedRetVals.end())
-      goto CallOverdefined;
-    
+  DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
+  if (TFRVI != TrackedRetVals.end()) {
     // If so, propagate the return value of the callee into this call result.
     mergeInValue(I, TFRVI->second);
-  } else {
+  } else if (isa<StructType>(I->getType())) {
     // Check to see if we're tracking this callee, if not, handle it in the
     // common path above.
-    std::map<std::pair<Function*, unsigned>, LatticeVal>::iterator
-      TMRVI = TrackedMultipleRetVals.find(std::make_pair(F, 0));
+    DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
+    TMRVI = TrackedMultipleRetVals.find(std::make_pair(F, 0));
     if (TMRVI == TrackedMultipleRetVals.end())
       goto CallOverdefined;
     
     // If we are tracking this callee, propagate the return values of the call
-    // into this call site.  We do this by walking all the getresult uses.
+    // into this call site.  We do this by walking all the uses. Single-index
+    // ExtractValueInst uses can be tracked; anything more complicated is
+    // currently handled conservatively.
     for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
          UI != E; ++UI) {
-      GetResultInst *GRI = cast<GetResultInst>(*UI);
-      mergeInValue(GRI, 
-                   TrackedMultipleRetVals[std::make_pair(F, GRI->getIndex())]);
+      if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(*UI)) {
+        if (EVI->getNumIndices() == 1) {
+          mergeInValue(EVI, 
+                  TrackedMultipleRetVals[std::make_pair(F, *EVI->idx_begin())]);
+          continue;
+        }
+      }
+      // The aggregate value is used in a way not handled here. Assume nothing.
+      markOverdefined(*UI);
     }
+  } else {
+    // Otherwise we're not tracking this callee, so handle it in the
+    // common path above.
+    goto CallOverdefined;
   }
    
   // Finally, if this is the first call to the function hit, mark its entry
@@ -1300,21 +1375,22 @@ bool SCCPSolver::ResolvedUndefsIn(Function &F) {
         // to be handled here, because we don't know whether the top part is 1's
         // or 0's.
         assert(Op0LV.isUndefined());
-        markForcedConstant(LV, I, Constant::getNullValue(ITy));
+        markForcedConstant(LV, I, Context->getNullValue(ITy));
         return true;
       case Instruction::Mul:
       case Instruction::And:
         // undef * X -> 0.   X could be zero.
         // undef & X -> 0.   X could be zero.
-        markForcedConstant(LV, I, Constant::getNullValue(ITy));
+        markForcedConstant(LV, I, Context->getNullValue(ITy));
         return true;
 
       case Instruction::Or:
         // undef | X -> -1.   X could be -1.
         if (const VectorType *PTy = dyn_cast<VectorType>(ITy))
-          markForcedConstant(LV, I, ConstantVector::getAllOnesValue(PTy));
+          markForcedConstant(LV, I,
+                             Context->getConstantVectorAllOnesValue(PTy));
         else          
-          markForcedConstant(LV, I, ConstantInt::getAllOnesValue(ITy));
+          markForcedConstant(LV, I, Context->getConstantIntAllOnesValue(ITy));
         return true;
 
       case Instruction::SDiv:
@@ -1327,7 +1403,7 @@ bool SCCPSolver::ResolvedUndefsIn(Function &F) {
         
         // undef / X -> 0.   X could be maxint.
         // undef % X -> 0.   X could be 1.
-        markForcedConstant(LV, I, Constant::getNullValue(ITy));
+        markForcedConstant(LV, I, Context->getNullValue(ITy));
         return true;
         
       case Instruction::AShr:
@@ -1348,7 +1424,7 @@ bool SCCPSolver::ResolvedUndefsIn(Function &F) {
         
         // X >> undef -> 0.  X could be 0.
         // X << undef -> 0.  X could be 0.
-        markForcedConstant(LV, I, Constant::getNullValue(ITy));
+        markForcedConstant(LV, I, Context->getNullValue(ITy));
         return true;
       case Instruction::Select:
         // undef ? X : Y  -> X or Y.  There could be commonality between X/Y.
@@ -1370,6 +1446,12 @@ bool SCCPSolver::ResolvedUndefsIn(Function &F) {
         else
           markOverdefined(LV, I);
         return true;
+      case Instruction::Call:
+        // If a call has an undef result, it is because it is constant foldable
+        // but one of the inputs was undef.  Just force the result to
+        // overdefined.
+        markOverdefined(LV, I);
+        return true;
       }
     }
   
@@ -1405,7 +1487,7 @@ bool SCCPSolver::ResolvedUndefsIn(Function &F) {
     // as undef, then further analysis could think the undef went another way
     // leading to an inconsistent set of conclusions.
     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
-      BI->setCondition(ConstantInt::getFalse());
+      BI->setCondition(Context->getConstantIntFalse());
     } else {
       SwitchInst *SI = cast<SwitchInst>(TI);
       SI->setCondition(SI->getCaseValue(1));
@@ -1426,7 +1508,7 @@ namespace {
   ///
   struct VISIBILITY_HIDDEN SCCP : public FunctionPass {
     static char ID; // Pass identification, replacement for typeid
-    SCCP() : FunctionPass((intptr_t)&ID) {}
+    SCCP() : FunctionPass(&ID) {}
 
     // runOnFunction - Run the Sparse Conditional Constant Propagation
     // algorithm, and return true if the function was modified.
@@ -1455,6 +1537,7 @@ FunctionPass *llvm::createSCCPPass() {
 bool SCCP::runOnFunction(Function &F) {
   DOUT << "SCCP on function '" << F.getNameStart() << "'\n";
   SCCPSolver Solver;
+  Solver.setContext(Context);
 
   // Mark the first block of the function as being executable.
   Solver.MarkBlockExecutable(F.begin());
@@ -1477,12 +1560,11 @@ bool SCCP::runOnFunction(Function &F) {
   // delete their contents now.  Note that we cannot actually delete the blocks,
   // as we cannot modify the CFG of the function.
   //
-  SmallSet<BasicBlock*, 16> &ExecutableBBs = Solver.getExecutableBlocks();
-  SmallVector<Instruction*, 32> Insts;
+  SmallVector<Instruction*, 512> Insts;
   std::map<Value*, LatticeVal> &Values = Solver.getValueMapping();
 
   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
-    if (!ExecutableBBs.count(BB)) {
+    if (!Solver.isBlockExecutable(BB)) {
       DOUT << "  BasicBlock Dead:" << *BB;
       ++NumDeadBlocks;
 
@@ -1495,7 +1577,7 @@ bool SCCP::runOnFunction(Function &F) {
         Instruction *I = Insts.back();
         Insts.pop_back();
         if (!I->use_empty())
-          I->replaceAllUsesWith(UndefValue::get(I->getType()));
+          I->replaceAllUsesWith(Context->getUndef(I->getType()));
         BB->getInstList().erase(I);
         MadeChanges = true;
         ++NumInstRemoved;
@@ -1507,7 +1589,6 @@ bool SCCP::runOnFunction(Function &F) {
       for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
         Instruction *Inst = BI++;
         if (Inst->getType() == Type::VoidTy ||
-            isa<StructType>(Inst->getType()) ||
             isa<TerminatorInst>(Inst))
           continue;
         
@@ -1516,7 +1597,7 @@ bool SCCP::runOnFunction(Function &F) {
           continue;
         
         Constant *Const = IV.isConstant()
-          ? IV.getConstant() : UndefValue::get(Inst->getType());
+          ? IV.getConstant() : Context->getUndef(Inst->getType());
         DOUT << "  Constant: " << *Const << " = " << *Inst;
 
         // Replaces all of the uses of a variable with uses of the constant.
@@ -1542,7 +1623,7 @@ namespace {
   ///
   struct VISIBILITY_HIDDEN IPSCCP : public ModulePass {
     static char ID;
-    IPSCCP() : ModulePass((intptr_t)&ID) {}
+    IPSCCP() : ModulePass(&ID) {}
     bool runOnModule(Module &M);
   };
 } // end anonymous namespace
@@ -1569,10 +1650,8 @@ static bool AddressIsTaken(GlobalValue *GV) {
     } else if (isa<InvokeInst>(*UI) || isa<CallInst>(*UI)) {
       // Make sure we are calling the function, not passing the address.
       CallSite CS = CallSite::get(cast<Instruction>(*UI));
-      for (CallSite::arg_iterator AI = CS.arg_begin(),
-             E = CS.arg_end(); AI != E; ++AI)
-        if (*AI == GV)
-          return true;
+      if (CS.hasArgument(GV))
+        return true;
     } else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
       if (LI->isVolatile())
         return true;
@@ -1589,7 +1668,7 @@ bool IPSCCP::runOnModule(Module &M) {
   // taken or that are external as overdefined.
   //
   for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
-    if (!F->hasInternalLinkage() || AddressIsTaken(F)) {
+    if (!F->hasLocalLinkage() || AddressIsTaken(F)) {
       if (!F->isDeclaration())
         Solver.MarkBlockExecutable(F->begin());
       for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
@@ -1604,7 +1683,7 @@ bool IPSCCP::runOnModule(Module &M) {
   // their addresses taken, we can propagate constants through them.
   for (Module::global_iterator G = M.global_begin(), E = M.global_end();
        G != E; ++G)
-    if (!G->isConstant() && G->hasInternalLinkage() && !AddressIsTaken(G))
+    if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G))
       Solver.TrackValueOfGlobalVariable(G);
 
   // Solve for constants.
@@ -1623,9 +1702,8 @@ bool IPSCCP::runOnModule(Module &M) {
   // Iterate over all of the instructions in the module, replacing them with
   // constants if we have found them to be of constant values.
   //
-  SmallSet<BasicBlock*, 16> &ExecutableBBs = Solver.getExecutableBlocks();
-  SmallVector<Instruction*, 32> Insts;
-  SmallVector<BasicBlock*, 32> BlocksToErase;
+  SmallVector<Instruction*, 512> Insts;
+  SmallVector<BasicBlock*, 512> BlocksToErase;
   std::map<Value*, LatticeVal> &Values = Solver.getValueMapping();
 
   for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
@@ -1635,7 +1713,7 @@ bool IPSCCP::runOnModule(Module &M) {
         LatticeVal &IV = Values[AI];
         if (IV.isConstant() || IV.isUndefined()) {
           Constant *CST = IV.isConstant() ?
-            IV.getConstant() : UndefValue::get(AI->getType());
+            IV.getConstant() : Context->getUndef(AI->getType());
           DOUT << "***  Arg " << *AI << " = " << *CST <<"\n";
 
           // Replaces all of the uses of a variable with uses of the
@@ -1646,7 +1724,7 @@ bool IPSCCP::runOnModule(Module &M) {
       }
 
     for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
-      if (!ExecutableBBs.count(BB)) {
+      if (!Solver.isBlockExecutable(BB)) {
         DOUT << "  BasicBlock Dead:" << *BB;
         ++IPNumDeadBlocks;
 
@@ -1660,7 +1738,7 @@ bool IPSCCP::runOnModule(Module &M) {
           Instruction *I = Insts.back();
           Insts.pop_back();
           if (!I->use_empty())
-            I->replaceAllUsesWith(UndefValue::get(I->getType()));
+            I->replaceAllUsesWith(Context->getUndef(I->getType()));
           BB->getInstList().erase(I);
           MadeChanges = true;
           ++IPNumInstRemoved;
@@ -1672,7 +1750,7 @@ bool IPSCCP::runOnModule(Module &M) {
             TI->getSuccessor(i)->removePredecessor(BB);
         }
         if (!TI->use_empty())
-          TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
+          TI->replaceAllUsesWith(Context->getUndef(TI->getType()));
         BB->getInstList().erase(TI);
 
         if (&*BB != &F->front())
@@ -1683,9 +1761,7 @@ bool IPSCCP::runOnModule(Module &M) {
       } else {
         for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
           Instruction *Inst = BI++;
-          if (Inst->getType() == Type::VoidTy ||
-              isa<StructType>(Inst->getType()) ||
-              isa<TerminatorInst>(Inst))
+          if (Inst->getType() == Type::VoidTy)
             continue;
           
           LatticeVal &IV = Values[Inst];
@@ -1693,7 +1769,7 @@ bool IPSCCP::runOnModule(Module &M) {
             continue;
           
           Constant *Const = IV.isConstant()
-            ? IV.getConstant() : UndefValue::get(Inst->getType());
+            ? IV.getConstant() : Context->getUndef(Inst->getType());
           DOUT << "  Constant: " << *Const << " = " << *Inst;
 
           // Replaces all of the uses of a variable with uses of the
@@ -1701,7 +1777,7 @@ bool IPSCCP::runOnModule(Module &M) {
           Inst->replaceAllUsesWith(Const);
           
           // Delete the instruction.
-          if (!isa<CallInst>(Inst))
+          if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst))
             Inst->eraseFromParent();
 
           // Hey, we just changed something!
@@ -1723,14 +1799,16 @@ bool IPSCCP::runOnModule(Module &M) {
           // The constant folder may not have been able to fold the terminator
           // if this is a branch or switch on undef.  Fold it manually as a
           // branch to the first successor.
+#ifndef NDEBUG
           if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
             assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
                    "Branch should be foldable!");
           } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
             assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
           } else {
-            assert(0 && "Didn't fold away reference to block!");
+            LLVM_UNREACHABLE("Didn't fold away reference to block!");
           }
+#endif
           
           // Make this an uncond branch to the first successor.
           TerminatorInst *TI = I->getParent()->getTerminator();
@@ -1765,7 +1843,7 @@ bool IPSCCP::runOnModule(Module &M) {
       for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
         if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
           if (!isa<UndefValue>(RI->getOperand(0)))
-            RI->setOperand(0, UndefValue::get(F->getReturnType()));
+            RI->setOperand(0, Context->getUndef(F->getReturnType()));
     }
 
   // If we infered constant or undef values for globals variables, we can delete