Change errs() to dbgs().
[oota-llvm.git] / lib / Transforms / Utils / BasicBlockUtils.cpp
index 9452e6e8778eb120ec471e48aa5bb1b1a1502d81..840fe3ef71e87abbf1038c1ce1f4c715f78d7d28 100644 (file)
 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 #include "llvm/Function.h"
 #include "llvm/Instructions.h"
+#include "llvm/IntrinsicInst.h"
 #include "llvm/Constant.h"
 #include "llvm/Type.h"
 #include "llvm/Analysis/AliasAnalysis.h"
 #include "llvm/Analysis/LoopInfo.h"
 #include "llvm/Analysis/Dominators.h"
 #include "llvm/Target/TargetData.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/ValueHandle.h"
 #include <algorithm>
 using namespace llvm;
 
 /// DeleteDeadBlock - Delete the specified block, which must have no
 /// predecessors.
 void llvm::DeleteDeadBlock(BasicBlock *BB) {
-  assert(pred_begin(BB) != pred_end(BB) && "Block is not dead!");
+  assert((pred_begin(BB) == pred_end(BB) ||
+         // Can delete self loop.
+         BB->getSinglePredecessor() == BB) && "Block is not dead!");
   TerminatorInst *BBTerm = BB->getTerminator();
   
   // Loop through all of our successors and make sure they know that one
@@ -52,12 +59,48 @@ void llvm::DeleteDeadBlock(BasicBlock *BB) {
   BB->eraseFromParent();
 }
 
+/// FoldSingleEntryPHINodes - We know that BB has one predecessor.  If there are
+/// any single-entry PHI nodes in it, fold them away.  This handles the case
+/// when all entries to the PHI nodes in a block are guaranteed equal, such as
+/// when the block has exactly one predecessor.
+void llvm::FoldSingleEntryPHINodes(BasicBlock *BB) {
+  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
+    if (PN->getIncomingValue(0) != PN)
+      PN->replaceAllUsesWith(PN->getIncomingValue(0));
+    else
+      PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
+    PN->eraseFromParent();
+  }
+}
+
+
+/// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it
+/// is dead. Also recursively delete any operands that become dead as
+/// a result. This includes tracing the def-use list from the PHI to see if
+/// it is ultimately unused or if it reaches an unused cycle.
+void llvm::DeleteDeadPHIs(BasicBlock *BB) {
+  // Recursively deleting a PHI may cause multiple PHIs to be deleted
+  // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete.
+  SmallVector<WeakVH, 8> PHIs;
+  for (BasicBlock::iterator I = BB->begin();
+       PHINode *PN = dyn_cast<PHINode>(I); ++I)
+    PHIs.push_back(PN);
+
+  for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
+    if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
+      RecursivelyDeleteDeadPHINode(PN);
+}
+
 /// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor,
 /// if possible.  The return value indicates success or failure.
-bool llvm::MergeBlockIntoPredecessor(BasicBlock* BB, Pass* P) {
+bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, Pass *P) {
   pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
-  // Can't merge the entry block.
-  if (pred_begin(BB) == pred_end(BB)) return false;
+  // Can't merge the entry block.  Don't merge away blocks who have their
+  // address taken: this is a bug if the predecessor block is the entry node
+  // (because we'd end up taking the address of the entry) and undesirable in
+  // any case.
+  if (pred_begin(BB) == pred_end(BB) ||
+      BB->hasAddressTaken()) return false;
   
   BasicBlock *PredBB = *PI++;
   for (; PI != PE; ++PI)  // Search all predecessors, see if they are all same
@@ -116,7 +159,7 @@ bool llvm::MergeBlockIntoPredecessor(BasicBlock* BB, Pass* P) {
   
   // Finally, erase the old block and update dominator info.
   if (P) {
-    if (DominatorTree* DT = P->getAnalysisToUpdate<DominatorTree>()) {
+    if (DominatorTree* DT = P->getAnalysisIfAvailable<DominatorTree>()) {
       DomTreeNode* DTN = DT->getNode(BB);
       DomTreeNode* PredDTN = DT->getNode(PredBB);
   
@@ -209,11 +252,11 @@ void llvm::RemoveSuccessor(TerminatorInst *TI, unsigned SuccNum) {
       Value *RetVal = 0;
 
       // Create a value to return... if the function doesn't return null...
-      if (BB->getParent()->getReturnType() != Type::VoidTy)
+      if (BB->getParent()->getReturnType() != Type::getVoidTy(TI->getContext()))
         RetVal = Constant::getNullValue(BB->getParent()->getReturnType());
 
       // Create the return...
-      NewTI = ReturnInst::Create(RetVal);
+      NewTI = ReturnInst::Create(TI->getContext(), RetVal);
     }
     break;
 
@@ -221,8 +264,7 @@ void llvm::RemoveSuccessor(TerminatorInst *TI, unsigned SuccNum) {
   case Instruction::Switch:    // Should remove entry
   default:
   case Instruction::Ret:       // Cannot happen, has no successors!
-    assert(0 && "Unhandled terminator instruction type in RemoveSuccessor!");
-    abort();
+    llvm_unreachable("Unhandled terminator instruction type in RemoveSuccessor!");
   }
 
   if (NewTI)   // If it's a different instruction, replace.
@@ -278,12 +320,13 @@ BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) {
     ++SplitIt;
   BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
 
-  // The new block lives in whichever loop the old one did.
-  if (LoopInfo* LI = P->getAnalysisToUpdate<LoopInfo>())
+  // The new block lives in whichever loop the old one did. This preserves
+  // LCSSA as well, because we force the split point to be after any PHI nodes.
+  if (LoopInfo* LI = P->getAnalysisIfAvailable<LoopInfo>())
     if (Loop *L = LI->getLoopFor(Old))
       L->addBasicBlockToLoop(New, LI->getBase());
 
-  if (DominatorTree *DT = P->getAnalysisToUpdate<DominatorTree>()) 
+  if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>())
     {
       // Old dominates New. New node domiantes all other nodes dominated by Old.
       DomTreeNode *OldNode = DT->getNode(Old);
@@ -299,7 +342,7 @@ BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) {
         DT->changeImmediateDominator(*I, NewNode);
     }
 
-  if (DominanceFrontier *DF = P->getAnalysisToUpdate<DominanceFrontier>())
+  if (DominanceFrontier *DF = P->getAnalysisIfAvailable<DominanceFrontier>())
     DF->splitBlock(Old);
     
   return New;
@@ -312,32 +355,67 @@ BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) {
 /// Preds array, which has NumPreds elements in it.  The new block is given a
 /// suffix of 'Suffix'.
 ///
-/// This currently updates the LLVM IR, AliasAnalysis, DominatorTree and
-/// DominanceFrontier, but no other analyses.
+/// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
+/// DominanceFrontier, LoopInfo, and LCCSA but no other analyses.
+/// In particular, it does not preserve LoopSimplify (because it's
+/// complicated to handle the case where one of the edges being split
+/// is an exit of a loop with other exits).
+///
 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 
                                          BasicBlock *const *Preds,
                                          unsigned NumPreds, const char *Suffix,
                                          Pass *P) {
   // Create new basic block, insert right before the original block.
-  BasicBlock *NewBB =
-    BasicBlock::Create(BB->getName()+Suffix, BB->getParent(), BB);
+  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), BB->getName()+Suffix,
+                                         BB->getParent(), BB);
   
   // The new block unconditionally branches to the old block.
   BranchInst *BI = BranchInst::Create(BB, NewBB);
   
+  LoopInfo *LI = P ? P->getAnalysisIfAvailable<LoopInfo>() : 0;
+  Loop *L = LI ? LI->getLoopFor(BB) : 0;
+  bool PreserveLCSSA = P->mustPreserveAnalysisID(LCSSAID);
+
   // Move the edges from Preds to point to NewBB instead of BB.
-  for (unsigned i = 0; i != NumPreds; ++i)
+  // While here, if we need to preserve loop analyses, collect
+  // some information about how this split will affect loops.
+  bool HasLoopExit = false;
+  bool IsLoopEntry = !!L;
+  bool SplitMakesNewLoopHeader = false;
+  for (unsigned i = 0; i != NumPreds; ++i) {
+    // This is slightly more strict than necessary; the minimum requirement
+    // is that there be no more than one indirectbr branching to BB. And
+    // all BlockAddress uses would need to be updated.
+    assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
+           "Cannot split an edge from an IndirectBrInst");
+
     Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
-  
+
+    if (LI) {
+      // If we need to preserve LCSSA, determine if any of
+      // the preds is a loop exit.
+      if (PreserveLCSSA)
+        if (Loop *PL = LI->getLoopFor(Preds[i]))
+          if (!PL->contains(BB))
+            HasLoopExit = true;
+      // If we need to preserve LoopInfo, note whether any of the
+      // preds crosses an interesting loop boundary.
+      if (L) {
+        if (L->contains(Preds[i]))
+          IsLoopEntry = false;
+        else
+          SplitMakesNewLoopHeader = true;
+      }
+    }
+  }
+
   // Update dominator tree and dominator frontier if available.
-  DominatorTree *DT = P ? P->getAnalysisToUpdate<DominatorTree>() : 0;
+  DominatorTree *DT = P ? P->getAnalysisIfAvailable<DominatorTree>() : 0;
   if (DT)
     DT->splitBlock(NewBB);
-  if (DominanceFrontier *DF = P ? P->getAnalysisToUpdate<DominanceFrontier>():0)
+  if (DominanceFrontier *DF = P ? P->getAnalysisIfAvailable<DominanceFrontier>():0)
     DF->splitBlock(NewBB);
-  AliasAnalysis *AA = P ? P->getAnalysisToUpdate<AliasAnalysis>() : 0;
-  
-  
+
   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
   // node becomes an incoming value for BB's phi node.  However, if the Preds
   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
@@ -348,20 +426,54 @@ BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
       cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
     return NewBB;
   }
+
+  AliasAnalysis *AA = P ? P->getAnalysisIfAvailable<AliasAnalysis>() : 0;
+
+  if (L) {
+    if (IsLoopEntry) {
+      // Add the new block to the nearest enclosing loop (and not an
+      // adjacent loop). To find this, examine each of the predecessors and
+      // determine which loops enclose them, and select the most-nested loop
+      // which contains the loop containing the block being split.
+      Loop *InnermostPredLoop = 0;
+      for (unsigned i = 0; i != NumPreds; ++i)
+        if (Loop *PredLoop = LI->getLoopFor(Preds[i])) {
+          // Seek a loop which actually contains the block being split (to
+          // avoid adjacent loops).
+          while (PredLoop && !PredLoop->contains(BB))
+            PredLoop = PredLoop->getParentLoop();
+          // Select the most-nested of these loops which contains the block.
+          if (PredLoop &&
+              PredLoop->contains(BB) &&
+              (!InnermostPredLoop ||
+               InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
+            InnermostPredLoop = PredLoop;
+        }
+      if (InnermostPredLoop)
+        InnermostPredLoop->addBasicBlockToLoop(NewBB, LI->getBase());
+    } else {
+      L->addBasicBlockToLoop(NewBB, LI->getBase());
+      if (SplitMakesNewLoopHeader)
+        L->moveToHeader(NewBB);
+    }
+  }
   
   // Otherwise, create a new PHI node in NewBB for each PHI node in BB.
   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ) {
     PHINode *PN = cast<PHINode>(I++);
     
     // Check to see if all of the values coming in are the same.  If so, we
-    // don't need to create a new PHI node.
-    Value *InVal = PN->getIncomingValueForBlock(Preds[0]);
-    for (unsigned i = 1; i != NumPreds; ++i)
-      if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
-        InVal = 0;
-        break;
-      }
-    
+    // don't need to create a new PHI node, unless it's needed for LCSSA.
+    Value *InVal = 0;
+    if (!HasLoopExit) {
+      InVal = PN->getIncomingValueForBlock(Preds[0]);
+      for (unsigned i = 1; i != NumPreds; ++i)
+        if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
+          InVal = 0;
+          break;
+        }
+    }
+
     if (InVal) {
       // If all incoming values for the new PHI would be the same, just don't
       // make a new PHI.  Instead, just remove the incoming values from the old
@@ -386,38 +498,82 @@ BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
     // Add an incoming value to the PHI node in the loop for the preheader
     // edge.
     PN->addIncoming(InVal, NewBB);
+  }
+  
+  return NewBB;
+}
+
+/// FindFunctionBackedges - Analyze the specified function to find all of the
+/// loop backedges in the function and return them.  This is a relatively cheap
+/// (compared to computing dominators and loop info) analysis.
+///
+/// The output is added to Result, as pairs of <from,to> edge info.
+void llvm::FindFunctionBackedges(const Function &F,
+     SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) {
+  const BasicBlock *BB = &F.getEntryBlock();
+  if (succ_begin(BB) == succ_end(BB))
+    return;
+  
+  SmallPtrSet<const BasicBlock*, 8> Visited;
+  SmallVector<std::pair<const BasicBlock*, succ_const_iterator>, 8> VisitStack;
+  SmallPtrSet<const BasicBlock*, 8> InStack;
+  
+  Visited.insert(BB);
+  VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
+  InStack.insert(BB);
+  do {
+    std::pair<const BasicBlock*, succ_const_iterator> &Top = VisitStack.back();
+    const BasicBlock *ParentBB = Top.first;
+    succ_const_iterator &I = Top.second;
     
-    // Check to see if we can eliminate this phi node.
-    if (Value *V = PN->hasConstantValue(DT != 0)) {
-      Instruction *I = dyn_cast<Instruction>(V);
-      if (!I || DT == 0 || DT->dominates(I, PN)) {
-        PN->replaceAllUsesWith(V);
-        if (AA) AA->deleteValue(PN);
-        PN->eraseFromParent();
+    bool FoundNew = false;
+    while (I != succ_end(ParentBB)) {
+      BB = *I++;
+      if (Visited.insert(BB)) {
+        FoundNew = true;
+        break;
       }
+      // Successor is in VisitStack, it's a back edge.
+      if (InStack.count(BB))
+        Result.push_back(std::make_pair(ParentBB, BB));
     }
-  }
+    
+    if (FoundNew) {
+      // Go down one level if there is a unvisited successor.
+      InStack.insert(BB);
+      VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
+    } else {
+      // Go up one level.
+      InStack.erase(VisitStack.pop_back_val().first);
+    }
+  } while (!VisitStack.empty());
+  
   
-  return NewBB;
 }
 
+
+
 /// AreEquivalentAddressValues - Test if A and B will obviously have the same
 /// value. This includes recognizing that %t0 and %t1 will have the same
 /// value in code like this:
-///   %t0 = getelementptr @a, 0, 3
+///   %t0 = getelementptr \@a, 0, 3
 ///   store i32 0, i32* %t0
-///   %t1 = getelementptr @a, 0, 3
+///   %t1 = getelementptr \@a, 0, 3
 ///   %t2 = load i32* %t1
 ///
 static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
   // Test if the values are trivially equivalent.
   if (A == B) return true;
   
-  // Test if the values come form identical arithmetic instructions.
+  // Test if the values come from identical arithmetic instructions.
+  // Use isIdenticalToWhenDefined instead of isIdenticalTo because
+  // this function is only used when one address use dominates the
+  // other, which means that they'll always either have the same
+  // value or one of them will have an undefined value.
   if (isa<BinaryOperator>(A) || isa<CastInst>(A) ||
       isa<PHINode>(A) || isa<GetElementPtrInst>(A))
     if (const Instruction *BI = dyn_cast<Instruction>(B))
-      if (cast<Instruction>(A)->isIdenticalTo(BI))
+      if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
         return true;
   
   // Otherwise they may not be equivalent.
@@ -447,15 +603,28 @@ Value *llvm::FindAvailableLoadedValue(Value *Ptr, BasicBlock *ScanBB,
   unsigned AccessSize = 0;
   if (AA) {
     const Type *AccessTy = cast<PointerType>(Ptr->getType())->getElementType();
-    AccessSize = AA->getTargetData().getTypeStoreSizeInBits(AccessTy);
+    AccessSize = AA->getTypeStoreSize(AccessTy);
   }
   
   while (ScanFrom != ScanBB->begin()) {
+    // We must ignore debug info directives when counting (otherwise they
+    // would affect codegen).
+    Instruction *Inst = --ScanFrom;
+    if (isa<DbgInfoIntrinsic>(Inst))
+      continue;
+    // We skip pointer-to-pointer bitcasts, which are NOPs.
+    // It is necessary for correctness to skip those that feed into a
+    // llvm.dbg.declare, as these are not present when debugging is off.
+    if (isa<BitCastInst>(Inst) && isa<PointerType>(Inst->getType()))
+      continue;
+
+    // Restore ScanFrom to expected value in case next test succeeds
+    ScanFrom++;
+   
     // Don't scan huge blocks.
     if (MaxInstsToScan-- == 0) return 0;
     
-    Instruction *Inst = --ScanFrom;
-    
+    --ScanFrom;
     // If this is a load of Ptr, the loaded value is available.
     if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
       if (AreEquivalentAddressValues(LI->getOperand(0), Ptr))
@@ -503,3 +672,4 @@ Value *llvm::FindAvailableLoadedValue(Value *Ptr, BasicBlock *ScanBB,
   // block.
   return 0;
 }
+