Rename MallocHelper as MallocFreeHelper, since it now also identifies calls to free()
[oota-llvm.git] / lib / Transforms / Utils / Local.cpp
index e668dc3d4a47988e5aca0fcea9bafcbf49b62d0a..4ff1e9ad24aea84493901747cf1fb087bdd527d9 100644 (file)
 //===-- Local.cpp - Functions to perform local transformations ------------===//
 //
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
 // This family of functions perform various local transformations to the
 // program.
 //
 //===----------------------------------------------------------------------===//
 
 #include "llvm/Transforms/Utils/Local.h"
-#include "llvm/iTerminators.h"
-#include "llvm/iOperators.h"
-#include "llvm/ConstantHandling.h"
+#include "llvm/Constants.h"
+#include "llvm/GlobalAlias.h"
+#include "llvm/GlobalVariable.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Instructions.h"
+#include "llvm/Intrinsics.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/LLVMContext.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/DebugInfo.h"
+#include "llvm/Analysis/MallocFreeHelper.h"
+#include "llvm/Analysis/ProfileInfo.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Support/GetElementPtrTypeIterator.h"
+#include "llvm/Support/MathExtras.h"
+using namespace llvm;
 
 //===----------------------------------------------------------------------===//
-//  Local constant propagation...
+//  Local analysis.
 //
 
-// ConstantFoldInstruction - If an instruction references constants, try to fold
-// them together...
-//
-bool doConstantPropagation(BasicBlock::iterator &II) {
-  if (Constant *C = ConstantFoldInstruction(II)) {
-    // Replaces all of the uses of a variable with uses of the constant.
-    II->replaceAllUsesWith(C);
-    
-    // Remove the instruction from the basic block...
-    II = II->getParent()->getInstList().erase(II);
-    return true;
-  }
+/// isSafeToLoadUnconditionally - Return true if we know that executing a load
+/// from this value cannot trap.  If it is not obviously safe to load from the
+/// specified pointer, we do a quick local scan of the basic block containing
+/// ScanFrom, to determine if the address is already accessed.
+bool llvm::isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) {
+  // If it is an alloca it is always safe to load from.
+  if (isa<AllocaInst>(V)) return true;
 
+  // If it is a global variable it is mostly safe to load from.
+  if (const GlobalValue *GV = dyn_cast<GlobalVariable>(V))
+    // Don't try to evaluate aliases.  External weak GV can be null.
+    return !isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage();
+
+  // Otherwise, be a little bit agressive by scanning the local block where we
+  // want to check to see if the pointer is already being loaded or stored
+  // from/to.  If so, the previous load or store would have already trapped,
+  // so there is no harm doing an extra load (also, CSE will later eliminate
+  // the load entirely).
+  BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
+
+  while (BBI != E) {
+    --BBI;
+
+    // If we see a free or a call which may write to memory (i.e. which might do
+    // a free) the pointer could be marked invalid.
+    if (isFreeCall(BBI) || (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
+                            !isa<DbgInfoIntrinsic>(BBI)))
+      return false;
+
+    if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
+      if (LI->getOperand(0) == V) return true;
+    } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
+      if (SI->getOperand(1) == V) return true;
+    }
+  }
   return false;
 }
 
+
+//===----------------------------------------------------------------------===//
+//  Local constant propagation.
+//
+
 // ConstantFoldTerminator - If a terminator instruction is predicated on a
 // constant value, convert it into an unconditional branch to the constant
 // destination.
 //
-bool ConstantFoldTerminator(BasicBlock *BB) {
+bool llvm::ConstantFoldTerminator(BasicBlock *BB) {
   TerminatorInst *T = BB->getTerminator();
-      
+
   // Branch - See if we are conditional jumping on constant
   if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
-    BasicBlock *Dest1 = cast<BasicBlock>(BI->getOperand(0));
-    BasicBlock *Dest2 = cast<BasicBlock>(BI->getOperand(1));
+    BasicBlock *Dest1 = BI->getSuccessor(0);
+    BasicBlock *Dest2 = BI->getSuccessor(1);
 
-    if (ConstantBool *Cond = dyn_cast<ConstantBool>(BI->getCondition())) {
+    if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
       // Are we branching on constant?
       // YES.  Change to unconditional branch...
-      BasicBlock *Destination = Cond->getValue() ? Dest1 : Dest2;
-      BasicBlock *OldDest     = Cond->getValue() ? Dest2 : Dest1;
+      BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
+      BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
 
-      //cerr << "Function: " << T->getParent()->getParent() 
-      //     << "\nRemoving branch from " << T->getParent() 
+      //cerr << "Function: " << T->getParent()->getParent()
+      //     << "\nRemoving branch from " << T->getParent()
       //     << "\n\nTo: " << OldDest << endl;
 
       // Let the basic block know that we are letting go of it.  Based on this,
@@ -63,7 +111,7 @@ bool ConstantFoldTerminator(BasicBlock *BB) {
       BI->setUnconditionalDest(Destination);
       return true;
     } else if (Dest2 == Dest1) {       // Conditional branch to same location?
-      // This branch matches something like this:  
+      // This branch matches something like this:
       //     br bool %cond, label %Dest, label %Dest
       // and changes it into:  br label %Dest
 
@@ -80,6 +128,9 @@ bool ConstantFoldTerminator(BasicBlock *BB) {
     // single branch instruction!
     ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
     BasicBlock *TheOnlyDest = SI->getSuccessor(0);  // The default dest
+    BasicBlock *DefaultDest = TheOnlyDest;
+    assert(TheOnlyDest == SI->getDefaultDest() &&
+           "Default destination is not successor #0?");
 
     // Figure out which case it goes to...
     for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) {
@@ -89,6 +140,16 @@ bool ConstantFoldTerminator(BasicBlock *BB) {
         break;
       }
 
+      // Check to see if this branch is going to the same place as the default
+      // dest.  If so, eliminate it as an explicit compare.
+      if (SI->getSuccessor(i) == DefaultDest) {
+        // Remove this entry...
+        DefaultDest->removePredecessor(SI->getParent());
+        SI->removeCase(i);
+        --i; --e;  // Don't skip an entry...
+        continue;
+      }
+
       // Otherwise, check to see if the switch only branches to one destination.
       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
       // destinations.
@@ -105,7 +166,7 @@ bool ConstantFoldTerminator(BasicBlock *BB) {
     // now.
     if (TheOnlyDest) {
       // Insert the new branch..
-      new BranchInst(TheOnlyDest, SI);
+      BranchInst::Create(TheOnlyDest, SI);
       BasicBlock *BB = SI->getParent();
 
       // Remove entries from PHI nodes which we no longer branch to...
@@ -124,13 +185,13 @@ bool ConstantFoldTerminator(BasicBlock *BB) {
     } else if (SI->getNumSuccessors() == 2) {
       // Otherwise, we can fold this switch into a conditional branch
       // instruction if it has only one non-default destination.
-      Value *Cond = new SetCondInst(Instruction::SetEQ, SI->getCondition(),
-                                    SI->getSuccessorValue(1), "cond", SI);
+      Value *Cond = new ICmpInst(SI, ICmpInst::ICMP_EQ, SI->getCondition(),
+                                 SI->getSuccessorValue(1), "cond");
       // Insert the new branch...
-      new BranchInst(SI->getSuccessor(1), SI->getSuccessor(0), Cond, SI);
+      BranchInst::Create(SI->getSuccessor(1), SI->getSuccessor(0), Cond, SI);
 
       // Delete the old switch...
-      SI->getParent()->getInstList().erase(SI);
+      SI->eraseFromParent();
       return true;
     }
   }
@@ -138,25 +199,152 @@ bool ConstantFoldTerminator(BasicBlock *BB) {
 }
 
 
-
 //===----------------------------------------------------------------------===//
 //  Local dead code elimination...
 //
 
-bool isInstructionTriviallyDead(Instruction *I) {
-  return I->use_empty() && !I->mayWriteToMemory() && !isa<TerminatorInst>(I);
+/// isInstructionTriviallyDead - Return true if the result produced by the
+/// instruction is not used, and the instruction has no side effects.
+///
+bool llvm::isInstructionTriviallyDead(Instruction *I) {
+  if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
+
+  // We don't want debug info removed by anything this general.
+  if (isa<DbgInfoIntrinsic>(I)) return false;
+
+  if (!I->mayHaveSideEffects()) return true;
+
+  // Special case intrinsics that "may have side effects" but can be deleted
+  // when dead.
+  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
+    // Safe to delete llvm.stacksave if dead.
+    if (II->getIntrinsicID() == Intrinsic::stacksave)
+      return true;
+  return false;
 }
 
-// dceInstruction - Inspect the instruction at *BBI and figure out if it's
-// [trivially] dead.  If so, remove the instruction and update the iterator
-// to point to the instruction that immediately succeeded the original
-// instruction.
+/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
+/// trivially dead instruction, delete it.  If that makes any of its operands
+/// trivially dead, delete them too, recursively.
+void llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V) {
+  Instruction *I = dyn_cast<Instruction>(V);
+  if (!I || !I->use_empty() || !isInstructionTriviallyDead(I))
+    return;
+  
+  SmallVector<Instruction*, 16> DeadInsts;
+  DeadInsts.push_back(I);
+  
+  while (!DeadInsts.empty()) {
+    I = DeadInsts.pop_back_val();
+
+    // Null out all of the instruction's operands to see if any operand becomes
+    // dead as we go.
+    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
+      Value *OpV = I->getOperand(i);
+      I->setOperand(i, 0);
+      
+      if (!OpV->use_empty()) continue;
+    
+      // If the operand is an instruction that became dead as we nulled out the
+      // operand, and if it is 'trivially' dead, delete it in a future loop
+      // iteration.
+      if (Instruction *OpI = dyn_cast<Instruction>(OpV))
+        if (isInstructionTriviallyDead(OpI))
+          DeadInsts.push_back(OpI);
+    }
+    
+    I->eraseFromParent();
+  }
+}
+
+/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
+/// dead PHI node, due to being a def-use chain of single-use nodes that
+/// either forms a cycle or is terminated by a trivially dead instruction,
+/// delete it.  If that makes any of its operands trivially dead, delete them
+/// too, recursively.
+void
+llvm::RecursivelyDeleteDeadPHINode(PHINode *PN) {
+  // We can remove a PHI if it is on a cycle in the def-use graph
+  // where each node in the cycle has degree one, i.e. only one use,
+  // and is an instruction with no side effects.
+  if (!PN->hasOneUse())
+    return;
+
+  SmallPtrSet<PHINode *, 4> PHIs;
+  PHIs.insert(PN);
+  for (Instruction *J = cast<Instruction>(*PN->use_begin());
+       J->hasOneUse() && !J->mayHaveSideEffects();
+       J = cast<Instruction>(*J->use_begin()))
+    // If we find a PHI more than once, we're on a cycle that
+    // won't prove fruitful.
+    if (PHINode *JP = dyn_cast<PHINode>(J))
+      if (!PHIs.insert(cast<PHINode>(JP))) {
+        // Break the cycle and delete the PHI and its operands.
+        JP->replaceAllUsesWith(UndefValue::get(JP->getType()));
+        RecursivelyDeleteTriviallyDeadInstructions(JP);
+        break;
+      }
+}
+
+//===----------------------------------------------------------------------===//
+//  Control Flow Graph Restructuring...
 //
-bool dceInstruction(BasicBlock::iterator &BBI) {
-  // Look for un"used" definitions...
-  if (isInstructionTriviallyDead(BBI)) {
-    BBI = BBI->getParent()->getInstList().erase(BBI);   // Bye bye
-    return true;
+
+/// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
+/// predecessor is known to have one successor (DestBB!).  Eliminate the edge
+/// between them, moving the instructions in the predecessor into DestBB and
+/// deleting the predecessor block.
+///
+void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) {
+  // If BB has single-entry PHI nodes, fold them.
+  while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
+    Value *NewVal = PN->getIncomingValue(0);
+    // Replace self referencing PHI with undef, it must be dead.
+    if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
+    PN->replaceAllUsesWith(NewVal);
+    PN->eraseFromParent();
   }
-  return false;
+  
+  BasicBlock *PredBB = DestBB->getSinglePredecessor();
+  assert(PredBB && "Block doesn't have a single predecessor!");
+  
+  // Splice all the instructions from PredBB to DestBB.
+  PredBB->getTerminator()->eraseFromParent();
+  DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
+  
+  // Anything that branched to PredBB now branches to DestBB.
+  PredBB->replaceAllUsesWith(DestBB);
+  
+  if (P) {
+    ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
+    if (PI) {
+      PI->replaceAllUses(PredBB, DestBB);
+      PI->removeEdge(ProfileInfo::getEdge(PredBB, DestBB));
+    }
+  }
+  // Nuke BB.
+  PredBB->eraseFromParent();
 }
+
+/// OnlyUsedByDbgIntrinsics - Return true if the instruction I is only used
+/// by DbgIntrinsics. If DbgInUses is specified then the vector is filled 
+/// with the DbgInfoIntrinsic that use the instruction I.
+bool llvm::OnlyUsedByDbgInfoIntrinsics(Instruction *I, 
+                               SmallVectorImpl<DbgInfoIntrinsic *> *DbgInUses) {
+  if (DbgInUses)
+    DbgInUses->clear();
+
+  for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE; 
+       ++UI) {
+    if (DbgInfoIntrinsic *DI = dyn_cast<DbgInfoIntrinsic>(*UI)) {
+      if (DbgInUses)
+        DbgInUses->push_back(DI);
+    } else {
+      if (DbgInUses)
+        DbgInUses->clear();
+      return false;
+    }
+  }
+  return true;
+}
+