Move lib/Analysis/DebugInfo.cpp to lib/VMCore/DebugInfo.cpp and
[oota-llvm.git] / lib / Transforms / Utils / PromoteMemoryToRegister.cpp
index e7a320ef549477037cf76b8a77330d803e8c681b..1c531038babd690fb288238759dc035f98476db9 100644 (file)
@@ -2,56 +2,77 @@
 //
 //                     The LLVM Compiler Infrastructure
 //
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
 //
 //===----------------------------------------------------------------------===//
 //
-// This file promote memory references to be register references.  It promotes
+// This file promotes memory references to be register references.  It promotes
 // alloca instructions which only have loads and stores as uses.  An alloca is
-// transformed by using dominator frontiers to place PHI nodes, then traversing
-// the function in depth-first order to rewrite loads and stores as appropriate.
-// This is just the standard SSA construction algorithm to construct "pruned"
-// SSA form.
+// transformed by using iterated dominator frontiers to place PHI nodes, then
+// traversing the function in depth-first order to rewrite loads and stores as
+// appropriate.
+//
+// The algorithm used here is based on:
+//
+//   Sreedhar and Gao. A linear time algorithm for placing phi-nodes.
+//   In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
+//   Programming Languages
+//   POPL '95. ACM, New York, NY, 62-73.
+//
+// It has been modified to not explicitly use the DJ graph data structure and to
+// directly compute pruned SSA using per-variable liveness information.
 //
 //===----------------------------------------------------------------------===//
 
 #define DEBUG_TYPE "mem2reg"
 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
 #include "llvm/Constants.h"
+#include "llvm/DebugInfo.h"
 #include "llvm/DerivedTypes.h"
 #include "llvm/Function.h"
 #include "llvm/Instructions.h"
-#include "llvm/Analysis/Dominators.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/Metadata.h"
 #include "llvm/Analysis/AliasSetTracker.h"
+#include "llvm/Analysis/DIBuilder.h"
+#include "llvm/Analysis/Dominators.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/Transforms/Utils/Local.h"
 #include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/Hashing.h"
 #include "llvm/ADT/SmallPtrSet.h"
 #include "llvm/ADT/SmallVector.h"
 #include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/STLExtras.h"
 #include "llvm/Support/CFG.h"
-#include "llvm/Support/Compiler.h"
 #include <algorithm>
+#include <queue>
 using namespace llvm;
 
 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
 STATISTIC(NumSingleStore,   "Number of alloca's promoted with a single store");
 STATISTIC(NumDeadAlloca,    "Number of dead alloca's removed");
+STATISTIC(NumPHIInsert,     "Number of PHI nodes inserted");
 
-// Provide DenseMapKeyInfo for all pointers.
 namespace llvm {
 template<>
-struct DenseMapKeyInfo<std::pair<BasicBlock*, unsigned> > {
-  static inline std::pair<BasicBlock*, unsigned> getEmptyKey() {
-    return std::make_pair((BasicBlock*)-1, ~0U);
+struct DenseMapInfo<std::pair<BasicBlock*, unsigned> > {
+  typedef std::pair<BasicBlock*, unsigned> EltTy;
+  static inline EltTy getEmptyKey() {
+    return EltTy(reinterpret_cast<BasicBlock*>(-1), ~0U);
   }
-  static inline std::pair<BasicBlock*, unsigned> getTombstoneKey() {
-    return std::make_pair((BasicBlock*)-2, 0U);
+  static inline EltTy getTombstoneKey() {
+    return EltTy(reinterpret_cast<BasicBlock*>(-2), 0U);
   }
   static unsigned getHashValue(const std::pair<BasicBlock*, unsigned> &Val) {
-    return DenseMapKeyInfo<void*>::getHashValue(Val.first) + Val.second*2;
+    using llvm::hash_value;
+    return static_cast<unsigned>(hash_value(Val));
+  }
+  static bool isEqual(const EltTy &LHS, const EltTy &RHS) {
+    return LHS == RHS;
   }
-  static bool isPod() { return true; }
 };
 }
 
@@ -62,17 +83,42 @@ bool llvm::isAllocaPromotable(const AllocaInst *AI) {
   // FIXME: If the memory unit is of pointer or integer type, we can permit
   // assignments to subsections of the memory unit.
 
-  // Only allow direct loads and stores...
-  for (Value::use_const_iterator UI = AI->use_begin(), UE = AI->use_end();
-       UI != UE; ++UI)     // Loop over all of the uses of the alloca
-    if (isa<LoadInst>(*UI)) {
-      // noop
-    } else if (const StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
+  // Only allow direct and non-volatile loads and stores...
+  for (Value::const_use_iterator UI = AI->use_begin(), UE = AI->use_end();
+       UI != UE; ++UI) {   // Loop over all of the uses of the alloca
+    const User *U = *UI;
+    if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
+      // Note that atomic loads can be transformed; atomic semantics do
+      // not have any meaning for a local alloca.
+      if (LI->isVolatile())
+        return false;
+    } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
       if (SI->getOperand(0) == AI)
         return false;   // Don't allow a store OF the AI, only INTO the AI.
+      // Note that atomic stores can be transformed; atomic semantics do
+      // not have any meaning for a local alloca.
+      if (SI->isVolatile())
+        return false;
+    } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
+      if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
+          II->getIntrinsicID() != Intrinsic::lifetime_end)
+        return false;
+    } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
+      if (BCI->getType() != Type::getInt8PtrTy(U->getContext()))
+        return false;
+      if (!onlyUsedByLifetimeMarkers(BCI))
+        return false;
+    } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
+      if (GEPI->getType() != Type::getInt8PtrTy(U->getContext()))
+        return false;
+      if (!GEPI->hasAllZeroIndices())
+        return false;
+      if (!onlyUsedByLifetimeMarkers(GEPI))
+        return false;
     } else {
-      return false;   // Not a load or store.
+      return false;
     }
+  }
 
   return true;
 }
@@ -81,11 +127,11 @@ namespace {
   struct AllocaInfo;
 
   // Data package used by RenamePass()
-  class VISIBILITY_HIDDEN RenamePassData {
+  class RenamePassData {
   public:
     typedef std::vector<Value *> ValVector;
     
-    RenamePassData() {}
+    RenamePassData() : BB(NULL), Pred(NULL), Values() {}
     RenamePassData(BasicBlock *B, BasicBlock *P,
                    const ValVector &V) : BB(B), Pred(P), Values(V) {}
     BasicBlock *BB;
@@ -98,22 +144,73 @@ namespace {
       Values.swap(RHS.Values);
     }
   };
+  
+  /// LargeBlockInfo - This assigns and keeps a per-bb relative ordering of
+  /// load/store instructions in the block that directly load or store an alloca.
+  ///
+  /// This functionality is important because it avoids scanning large basic
+  /// blocks multiple times when promoting many allocas in the same block.
+  class LargeBlockInfo {
+    /// InstNumbers - For each instruction that we track, keep the index of the
+    /// instruction.  The index starts out as the number of the instruction from
+    /// the start of the block.
+    DenseMap<const Instruction *, unsigned> InstNumbers;
+  public:
+    
+    /// isInterestingInstruction - This code only looks at accesses to allocas.
+    static bool isInterestingInstruction(const Instruction *I) {
+      return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
+             (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
+    }
+    
+    /// getInstructionIndex - Get or calculate the index of the specified
+    /// instruction.
+    unsigned getInstructionIndex(const Instruction *I) {
+      assert(isInterestingInstruction(I) &&
+             "Not a load/store to/from an alloca?");
+      
+      // If we already have this instruction number, return it.
+      DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
+      if (It != InstNumbers.end()) return It->second;
+      
+      // Scan the whole block to get the instruction.  This accumulates
+      // information for every interesting instruction in the block, in order to
+      // avoid gratuitus rescans.
+      const BasicBlock *BB = I->getParent();
+      unsigned InstNo = 0;
+      for (BasicBlock::const_iterator BBI = BB->begin(), E = BB->end();
+           BBI != E; ++BBI)
+        if (isInterestingInstruction(BBI))
+          InstNumbers[BBI] = InstNo++;
+      It = InstNumbers.find(I);
+      
+      assert(It != InstNumbers.end() && "Didn't insert instruction?");
+      return It->second;
+    }
+    
+    void deleteValue(const Instruction *I) {
+      InstNumbers.erase(I);
+    }
+    
+    void clear() {
+      InstNumbers.clear();
+    }
+  };
 
-  struct VISIBILITY_HIDDEN PromoteMem2Reg {
+  struct PromoteMem2Reg {
     /// Allocas - The alloca instructions being promoted.
     ///
     std::vector<AllocaInst*> Allocas;
-    SmallVector<AllocaInst*, 16> &RetryList;
     DominatorTree &DT;
-    DominanceFrontier &DF;
+    DIBuilder *DIB;
 
     /// AST - An AliasSetTracker object to update.  If null, don't update it.
     ///
     AliasSetTracker *AST;
-
+    
     /// AllocaLookup - Reverse mapping of Allocas.
     ///
-    std::map<AllocaInst*, unsigned>  AllocaLookup;
+    DenseMap<AllocaInst*, unsigned>  AllocaLookup;
 
     /// NewPhiNodes - The PhiNodes we're adding.
     ///
@@ -129,6 +226,11 @@ namespace {
     ///
     std::vector<Value*> PointerAllocaValues;
 
+    /// AllocaDbgDeclares - For each alloca, we keep track of the dbg.declare
+    /// intrinsic that describes it, if any, so that we can convert it to a
+    /// dbg.value intrinsic if the alloca gets promoted.
+    SmallVector<DbgDeclareInst*, 8> AllocaDbgDeclares;
+
     /// Visited - The set of basic blocks the renamer has already visited.
     ///
     SmallPtrSet<BasicBlock*, 16> Visited;
@@ -137,24 +239,21 @@ namespace {
     /// non-determinstic behavior.
     DenseMap<BasicBlock*, unsigned> BBNumbers;
 
+    /// DomLevels - Maps DomTreeNodes to their level in the dominator tree.
+    DenseMap<DomTreeNode*, unsigned> DomLevels;
+
     /// BBNumPreds - Lazily compute the number of predecessors a block has.
     DenseMap<const BasicBlock*, unsigned> BBNumPreds;
   public:
-    PromoteMem2Reg(const std::vector<AllocaInst*> &A,
-                   SmallVector<AllocaInst*, 16> &Retry, DominatorTree &dt,
-                   DominanceFrontier &df, AliasSetTracker *ast)
-      : Allocas(A), RetryList(Retry), DT(dt), DF(df), AST(ast) {}
+    PromoteMem2Reg(const std::vector<AllocaInst*> &A, DominatorTree &dt,
+                   AliasSetTracker *ast)
+      : Allocas(A), DT(dt), DIB(0), AST(ast) {}
+    ~PromoteMem2Reg() {
+      delete DIB;
+    }
 
     void run();
 
-    /// properlyDominates - Return true if I1 properly dominates I2.
-    ///
-    bool properlyDominates(Instruction *I1, Instruction *I2) const {
-      if (InvokeInst *II = dyn_cast<InvokeInst>(I1))
-        I1 = II->getNormalDest()->begin();
-      return DT.properlyDominates(I1->getParent(), I2->getParent());
-    }
-    
     /// dominates - Return true if BB1 dominates BB2 using the DominatorTree.
     ///
     bool dominates(BasicBlock *BB1, BasicBlock *BB2) const {
@@ -177,31 +276,31 @@ namespace {
 
     void DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
                                  AllocaInfo &Info);
+    void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info, 
+                             const SmallPtrSet<BasicBlock*, 32> &DefBlocks,
+                             SmallPtrSet<BasicBlock*, 32> &LiveInBlocks);
+    
+    void RewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
+                                  LargeBlockInfo &LBI);
+    void PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info,
+                                  LargeBlockInfo &LBI);
     
-    void RewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info);
-
-    void MarkDominatingPHILive(BasicBlock *BB, unsigned AllocaNum,
-                               SmallPtrSet<PHINode*, 16> &DeadPHINodes);
-    bool PromoteLocallyUsedAlloca(BasicBlock *BB, AllocaInst *AI);
-    void PromoteLocallyUsedAllocas(BasicBlock *BB,
-                                   const std::vector<AllocaInst*> &AIs);
-
     void RenamePass(BasicBlock *BB, BasicBlock *Pred,
                     RenamePassData::ValVector &IncVals,
                     std::vector<RenamePassData> &Worklist);
-    bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version,
-                      SmallPtrSet<PHINode*, 16> &InsertedPHINodes);
+    bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version);
   };
   
   struct AllocaInfo {
-    std::vector<BasicBlock*> DefiningBlocks;
-    std::vector<BasicBlock*> UsingBlocks;
+    SmallVector<BasicBlock*, 32> DefiningBlocks;
+    SmallVector<BasicBlock*, 32> UsingBlocks;
     
     StoreInst  *OnlyStore;
     BasicBlock *OnlyBlock;
     bool OnlyUsedInOneBlock;
     
     Value *AllocaPointerVal;
+    DbgDeclareInst *DbgDeclare;
     
     void clear() {
       DefiningBlocks.clear();
@@ -210,19 +309,21 @@ namespace {
       OnlyBlock = 0;
       OnlyUsedInOneBlock = true;
       AllocaPointerVal = 0;
+      DbgDeclare = 0;
     }
     
     /// AnalyzeAlloca - Scan the uses of the specified alloca, filling in our
     /// ivars.
     void AnalyzeAlloca(AllocaInst *AI) {
       clear();
-      
+
       // As we scan the uses of the alloca instruction, keep track of stores,
       // and decide whether all of the loads and stores to the alloca are within
       // the same basic block.
-      for (Value::use_iterator U = AI->use_begin(), E = AI->use_end();
-           U != E; ++U) {
-        Instruction *User = cast<Instruction>(*U);
+      for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
+           UI != E;)  {
+        Instruction *User = cast<Instruction>(*UI++);
+
         if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
           // Remember the basic blocks which define new values for the alloca
           DefiningBlocks.push_back(SI->getParent());
@@ -243,25 +344,54 @@ namespace {
             OnlyUsedInOneBlock = false;
         }
       }
+      
+      DbgDeclare = FindAllocaDbgDeclare(AI);
     }
   };
 
+  typedef std::pair<DomTreeNode*, unsigned> DomTreeNodePair;
+
+  struct DomTreeNodeCompare {
+    bool operator()(const DomTreeNodePair &LHS, const DomTreeNodePair &RHS) {
+      return LHS.second < RHS.second;
+    }
+  };
 }  // end of anonymous namespace
 
+static void removeLifetimeIntrinsicUsers(AllocaInst *AI) {
+  // Knowing that this alloca is promotable, we know that it's safe to kill all
+  // instructions except for load and store.
 
-void PromoteMem2Reg::run() {
-  Function &F = *DF.getRoot()->getParent();
+  for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
+       UI != UE;) {
+    Instruction *I = cast<Instruction>(*UI);
+    ++UI;
+    if (isa<LoadInst>(I) || isa<StoreInst>(I))
+      continue;
 
-  // LocallyUsedAllocas - Keep track of all of the alloca instructions which are
-  // only used in a single basic block.  These instructions can be efficiently
-  // promoted by performing a single linear scan over that one block.  Since
-  // individual basic blocks are sometimes large, we group together all allocas
-  // that are live in a single basic block by the basic block they are live in.
-  std::map<BasicBlock*, std::vector<AllocaInst*> > LocallyUsedAllocas;
+    if (!I->getType()->isVoidTy()) {
+      // The only users of this bitcast/GEP instruction are lifetime intrinsics.
+      // Follow the use/def chain to erase them now instead of leaving it for
+      // dead code elimination later.
+      for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
+           UI != UE;) {
+        Instruction *Inst = cast<Instruction>(*UI);
+        ++UI;
+        Inst->eraseFromParent();
+      }
+    }
+    I->eraseFromParent();
+  }
+}
+
+void PromoteMem2Reg::run() {
+  Function &F = *DT.getRoot()->getParent();
 
   if (AST) PointerAllocaValues.resize(Allocas.size());
+  AllocaDbgDeclares.resize(Allocas.size());
 
   AllocaInfo Info;
+  LargeBlockInfo LBI;
 
   for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
     AllocaInst *AI = Allocas[AllocaNum];
@@ -271,6 +401,8 @@ void PromoteMem2Reg::run() {
     assert(AI->getParent()->getParent() == &F &&
            "All allocas should be in the same function, which is same as DF!");
 
+    removeLifetimeIntrinsicUsers(AI);
+
     if (AI->use_empty()) {
       // If there are no uses of the alloca, just delete it now.
       if (AST) AST->deleteValue(AI);
@@ -289,14 +421,25 @@ void PromoteMem2Reg::run() {
     // If there is only a single store to this value, replace any loads of
     // it that are directly dominated by the definition with the value stored.
     if (Info.DefiningBlocks.size() == 1) {
-      RewriteSingleStoreAlloca(AI, Info);
+      RewriteSingleStoreAlloca(AI, Info, LBI);
 
       // Finally, after the scan, check to see if the store is all that is left.
       if (Info.UsingBlocks.empty()) {
+        // Record debuginfo for the store and remove the declaration's 
+        // debuginfo.
+        if (DbgDeclareInst *DDI = Info.DbgDeclare) {
+          if (!DIB)
+            DIB = new DIBuilder(*DDI->getParent()->getParent()->getParent());
+          ConvertDebugDeclareToDebugValue(DDI, Info.OnlyStore, *DIB);
+          DDI->eraseFromParent();
+        }
         // Remove the (now dead) store and alloca.
         Info.OnlyStore->eraseFromParent();
+        LBI.deleteValue(Info.OnlyStore);
+
         if (AST) AST->deleteValue(AI);
         AI->eraseFromParent();
+        LBI.deleteValue(AI);
         
         // The alloca has been processed, move on.
         RemoveFromAllocasList(AllocaNum);
@@ -309,13 +452,60 @@ void PromoteMem2Reg::run() {
     // If the alloca is only read and written in one basic block, just perform a
     // linear sweep over the block to eliminate it.
     if (Info.OnlyUsedInOneBlock) {
-      LocallyUsedAllocas[Info.OnlyBlock].push_back(AI);
+      PromoteSingleBlockAlloca(AI, Info, LBI);
       
-      // Remove the alloca from the Allocas list, since it will be processed.
-      RemoveFromAllocasList(AllocaNum);
-      continue;
+      // Finally, after the scan, check to see if the stores are all that is
+      // left.
+      if (Info.UsingBlocks.empty()) {
+        
+        // Remove the (now dead) stores and alloca.
+        while (!AI->use_empty()) {
+          StoreInst *SI = cast<StoreInst>(AI->use_back());
+          // Record debuginfo for the store before removing it.
+          if (DbgDeclareInst *DDI = Info.DbgDeclare) {
+            if (!DIB)
+              DIB = new DIBuilder(*SI->getParent()->getParent()->getParent());
+            ConvertDebugDeclareToDebugValue(DDI, SI, *DIB);
+          }
+          SI->eraseFromParent();
+          LBI.deleteValue(SI);
+        }
+        
+        if (AST) AST->deleteValue(AI);
+        AI->eraseFromParent();
+        LBI.deleteValue(AI);
+        
+        // The alloca has been processed, move on.
+        RemoveFromAllocasList(AllocaNum);
+        
+        // The alloca's debuginfo can be removed as well.
+        if (DbgDeclareInst *DDI = Info.DbgDeclare)
+          DDI->eraseFromParent();
+
+        ++NumLocalPromoted;
+        continue;
+      }
     }
-    
+
+    // If we haven't computed dominator tree levels, do so now.
+    if (DomLevels.empty()) {
+      SmallVector<DomTreeNode*, 32> Worklist;
+
+      DomTreeNode *Root = DT.getRootNode();
+      DomLevels[Root] = 0;
+      Worklist.push_back(Root);
+
+      while (!Worklist.empty()) {
+        DomTreeNode *Node = Worklist.pop_back_val();
+        unsigned ChildLevel = DomLevels[Node] + 1;
+        for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end();
+             CI != CE; ++CI) {
+          DomLevels[*CI] = ChildLevel;
+          Worklist.push_back(*CI);
+        }
+      }
+    }
+
     // If we haven't computed a numbering for the BB's in the function, do so
     // now.
     if (BBNumbers.empty()) {
@@ -328,40 +518,26 @@ void PromoteMem2Reg::run() {
     // stored into the alloca.
     if (AST)
       PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal;
+      
+    // Remember the dbg.declare intrinsic describing this alloca, if any.
+    if (Info.DbgDeclare) AllocaDbgDeclares[AllocaNum] = Info.DbgDeclare;
     
     // Keep the reverse mapping of the 'Allocas' array for the rename pass.
     AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
 
     // At this point, we're committed to promoting the alloca using IDF's, and
-    // the standard SSA construction algorithm.  Determine which blocks need phi
+    // the standard SSA construction algorithm.  Determine which blocks need PHI
     // nodes and see if we can optimize out some work by avoiding insertion of
     // dead phi nodes.
     DetermineInsertionPoint(AI, AllocaNum, Info);
   }
 
-  // Process all allocas which are only used in a single basic block.
-  for (std::map<BasicBlock*, std::vector<AllocaInst*> >::iterator I =
-         LocallyUsedAllocas.begin(), E = LocallyUsedAllocas.end(); I != E; ++I){
-    const std::vector<AllocaInst*> &LocAllocas = I->second;
-    assert(!LocAllocas.empty() && "empty alloca list??");
-
-    // It's common for there to only be one alloca in the list.  Handle it
-    // efficiently.
-    if (LocAllocas.size() == 1) {
-      // If we can do the quick promotion pass, do so now.
-      if (PromoteLocallyUsedAlloca(I->first, LocAllocas[0]))
-        RetryList.push_back(LocAllocas[0]);  // Failed, retry later.
-    } else {
-      // Locally promote anything possible.  Note that if this is unable to
-      // promote a particular alloca, it puts the alloca onto the Allocas vector
-      // for global processing.
-      PromoteLocallyUsedAllocas(I->first, LocAllocas);
-    }
-  }
-
   if (Allocas.empty())
     return; // All of the allocas must have been trivial!
 
+  LBI.clear();
+  
+  
   // Set the incoming values for the basic block to be null values for all of
   // the alloca's.  We do this in case there is a load of a value that has not
   // been stored yet.  In this case, it will get this null value.
@@ -375,13 +551,13 @@ void PromoteMem2Reg::run() {
   //
   std::vector<RenamePassData> RenamePassWorkList;
   RenamePassWorkList.push_back(RenamePassData(F.begin(), 0, Values));
-  while (!RenamePassWorkList.empty()) {
+  do {
     RenamePassData RPD;
     RPD.swap(RenamePassWorkList.back());
     RenamePassWorkList.pop_back();
     // RenamePass may add new worklist entries.
     RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList);
-  }
+  } while (!RenamePassWorkList.empty());
   
   // The renamer uses the Visited set to avoid infinite loops.  Clear it now.
   Visited.clear();
@@ -391,16 +567,19 @@ void PromoteMem2Reg::run() {
     Instruction *A = Allocas[i];
 
     // If there are any uses of the alloca instructions left, they must be in
-    // sections of dead code that were not processed on the dominance frontier.
-    // Just delete the users now.
-    //
+    // unreachable basic blocks that were not processed by walking the dominator
+    // tree. Just delete the users now.
     if (!A->use_empty())
       A->replaceAllUsesWith(UndefValue::get(A->getType()));
     if (AST) AST->deleteValue(A);
     A->eraseFromParent();
   }
 
-  
+  // Remove alloca's dbg.declare instrinsics from the function.
+  for (unsigned i = 0, e = AllocaDbgDeclares.size(); i != e; ++i)
+    if (DbgDeclareInst *DDI = AllocaDbgDeclares[i])
+      DDI->eraseFromParent();
+
   // Loop over all of the PHI nodes and see if there are any that we can get
   // rid of because they merge all of the same incoming values.  This can
   // happen due to undef values coming into the PHI nodes.  This process is
@@ -412,19 +591,16 @@ void PromoteMem2Reg::run() {
     for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I =
            NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E;) {
       PHINode *PN = I->second;
-      
+
       // If this PHI node merges one value and/or undefs, get the value.
-      if (Value *V = PN->hasConstantValue(true)) {
-        if (!isa<Instruction>(V) ||
-            properlyDominates(cast<Instruction>(V), PN)) {
-          if (AST && isa<PointerType>(PN->getType()))
-            AST->deleteValue(PN);
-          PN->replaceAllUsesWith(V);
-          PN->eraseFromParent();
-          NewPhiNodes.erase(I++);
-          EliminatedAPHI = true;
-          continue;
-        }
+      if (Value *V = SimplifyInstruction(PN, 0, 0, &DT)) {
+        if (AST && PN->getType()->isPointerTy())
+          AST->deleteValue(PN);
+        PN->replaceAllUsesWith(V);
+        PN->eraseFromParent();
+        NewPhiNodes.erase(I++);
+        EliminatedAPHI = true;
+        continue;
       }
       ++I;
     }
@@ -491,173 +667,245 @@ void PromoteMem2Reg::run() {
 }
 
 
+/// ComputeLiveInBlocks - Determine which blocks the value is live in.  These
+/// are blocks which lead to uses.  Knowing this allows us to avoid inserting
+/// PHI nodes into blocks which don't lead to uses (thus, the inserted phi nodes
+/// would be dead).
+void PromoteMem2Reg::
+ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info, 
+                    const SmallPtrSet<BasicBlock*, 32> &DefBlocks,
+                    SmallPtrSet<BasicBlock*, 32> &LiveInBlocks) {
+  
+  // To determine liveness, we must iterate through the predecessors of blocks
+  // where the def is live.  Blocks are added to the worklist if we need to
+  // check their predecessors.  Start with all the using blocks.
+  SmallVector<BasicBlock*, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(),
+                                                   Info.UsingBlocks.end());
+  
+  // If any of the using blocks is also a definition block, check to see if the
+  // definition occurs before or after the use.  If it happens before the use,
+  // the value isn't really live-in.
+  for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
+    BasicBlock *BB = LiveInBlockWorklist[i];
+    if (!DefBlocks.count(BB)) continue;
+    
+    // Okay, this is a block that both uses and defines the value.  If the first
+    // reference to the alloca is a def (store), then we know it isn't live-in.
+    for (BasicBlock::iterator I = BB->begin(); ; ++I) {
+      if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
+        if (SI->getOperand(1) != AI) continue;
+        
+        // We found a store to the alloca before a load.  The alloca is not
+        // actually live-in here.
+        LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
+        LiveInBlockWorklist.pop_back();
+        --i, --e;
+        break;
+      }
+      
+      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
+        if (LI->getOperand(0) != AI) continue;
+        
+        // Okay, we found a load before a store to the alloca.  It is actually
+        // live into this block.
+        break;
+      }
+    }
+  }
+  
+  // Now that we have a set of blocks where the phi is live-in, recursively add
+  // their predecessors until we find the full region the value is live.
+  while (!LiveInBlockWorklist.empty()) {
+    BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
+    
+    // The block really is live in here, insert it into the set.  If already in
+    // the set, then it has already been processed.
+    if (!LiveInBlocks.insert(BB))
+      continue;
+    
+    // Since the value is live into BB, it is either defined in a predecessor or
+    // live into it to.  Add the preds to the worklist unless they are a
+    // defining block.
+    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
+      BasicBlock *P = *PI;
+      
+      // The value is not live into a predecessor if it defines the value.
+      if (DefBlocks.count(P))
+        continue;
+      
+      // Otherwise it is, add to the worklist.
+      LiveInBlockWorklist.push_back(P);
+    }
+  }
+}
+
 /// DetermineInsertionPoint - At this point, we're committed to promoting the
 /// alloca using IDF's, and the standard SSA construction algorithm.  Determine
 /// which blocks need phi nodes and see if we can optimize out some work by
 /// avoiding insertion of dead phi nodes.
 void PromoteMem2Reg::DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
                                              AllocaInfo &Info) {
-  // Compute the locations where PhiNodes need to be inserted.  Look at the
-  // dominance frontier of EACH basic-block we have a write in.
-  unsigned CurrentVersion = 0;
-  SmallPtrSet<PHINode*, 16> InsertedPHINodes;
-  std::vector<std::pair<unsigned, BasicBlock*> > DFBlocks;
-  while (!Info.DefiningBlocks.empty()) {
-    BasicBlock *BB = Info.DefiningBlocks.back();
-    Info.DefiningBlocks.pop_back();
-    
-    // Look up the DF for this write, add it to PhiNodes
-    DominanceFrontier::const_iterator it = DF.find(BB);
-    if (it != DF.end()) {
-      const DominanceFrontier::DomSetType &S = it->second;
-      
-      // In theory we don't need the indirection through the DFBlocks vector.
-      // In practice, the order of calling QueuePhiNode would depend on the
-      // (unspecified) ordering of basic blocks in the dominance frontier,
-      // which would give PHI nodes non-determinstic subscripts.  Fix this by
-      // processing blocks in order of the occurance in the function.
-      for (DominanceFrontier::DomSetType::const_iterator P = S.begin(),
-           PE = S.end(); P != PE; ++P)
-        DFBlocks.push_back(std::make_pair(BBNumbers[*P], *P));
-      
-      // Sort by which the block ordering in the function.
-      std::sort(DFBlocks.begin(), DFBlocks.end());
-      
-      for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i) {
-        BasicBlock *BB = DFBlocks[i].second;
-        if (QueuePhiNode(BB, AllocaNum, CurrentVersion, InsertedPHINodes))
-          Info.DefiningBlocks.push_back(BB);
+  // Unique the set of defining blocks for efficient lookup.
+  SmallPtrSet<BasicBlock*, 32> DefBlocks;
+  DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end());
+
+  // Determine which blocks the value is live in.  These are blocks which lead
+  // to uses.
+  SmallPtrSet<BasicBlock*, 32> LiveInBlocks;
+  ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
+
+  // Use a priority queue keyed on dominator tree level so that inserted nodes
+  // are handled from the bottom of the dominator tree upwards.
+  typedef std::priority_queue<DomTreeNodePair, SmallVector<DomTreeNodePair, 32>,
+                              DomTreeNodeCompare> IDFPriorityQueue;
+  IDFPriorityQueue PQ;
+
+  for (SmallPtrSet<BasicBlock*, 32>::const_iterator I = DefBlocks.begin(),
+       E = DefBlocks.end(); I != E; ++I) {
+    if (DomTreeNode *Node = DT.getNode(*I))
+      PQ.push(std::make_pair(Node, DomLevels[Node]));
+  }
+
+  SmallVector<std::pair<unsigned, BasicBlock*>, 32> DFBlocks;
+  SmallPtrSet<DomTreeNode*, 32> Visited;
+  SmallVector<DomTreeNode*, 32> Worklist;
+  while (!PQ.empty()) {
+    DomTreeNodePair RootPair = PQ.top();
+    PQ.pop();
+    DomTreeNode *Root = RootPair.first;
+    unsigned RootLevel = RootPair.second;
+
+    // Walk all dominator tree children of Root, inspecting their CFG edges with
+    // targets elsewhere on the dominator tree. Only targets whose level is at
+    // most Root's level are added to the iterated dominance frontier of the
+    // definition set.
+
+    Worklist.clear();
+    Worklist.push_back(Root);
+
+    while (!Worklist.empty()) {
+      DomTreeNode *Node = Worklist.pop_back_val();
+      BasicBlock *BB = Node->getBlock();
+
+      for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE;
+           ++SI) {
+        DomTreeNode *SuccNode = DT.getNode(*SI);
+
+        // Quickly skip all CFG edges that are also dominator tree edges instead
+        // of catching them below.
+        if (SuccNode->getIDom() == Node)
+          continue;
+
+        unsigned SuccLevel = DomLevels[SuccNode];
+        if (SuccLevel > RootLevel)
+          continue;
+
+        if (!Visited.insert(SuccNode))
+          continue;
+
+        BasicBlock *SuccBB = SuccNode->getBlock();
+        if (!LiveInBlocks.count(SuccBB))
+          continue;
+
+        DFBlocks.push_back(std::make_pair(BBNumbers[SuccBB], SuccBB));
+        if (!DefBlocks.count(SuccBB))
+          PQ.push(std::make_pair(SuccNode, SuccLevel));
+      }
+
+      for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end(); CI != CE;
+           ++CI) {
+        if (!Visited.count(*CI))
+          Worklist.push_back(*CI);
       }
-      DFBlocks.clear();
     }
   }
-  
-  // Now that we have inserted PHI nodes along the Iterated Dominance Frontier
-  // of the writes to the variable, scan through the reads of the variable,
-  // marking PHI nodes which are actually necessary as alive (by removing them
-  // from the InsertedPHINodes set).  This is not perfect: there may PHI
-  // marked alive because of loads which are dominated by stores, but there
-  // will be no unmarked PHI nodes which are actually used.
-  //
-  for (unsigned i = 0, e = Info.UsingBlocks.size(); i != e; ++i)
-    MarkDominatingPHILive(Info.UsingBlocks[i], AllocaNum, InsertedPHINodes);
-  Info.UsingBlocks.clear();
-  
-  // If there are any PHI nodes which are now known to be dead, remove them!
-  for (SmallPtrSet<PHINode*, 16>::iterator I = InsertedPHINodes.begin(),
-       E = InsertedPHINodes.end(); I != E; ++I) {
-    PHINode *PN = *I;
-    bool Erased=NewPhiNodes.erase(std::make_pair(PN->getParent(), AllocaNum));
-    Erased=Erased;
-    assert(Erased && "PHI already removed?");
-    
-    if (AST && isa<PointerType>(PN->getType()))
-      AST->deleteValue(PN);
-    PN->eraseFromParent();
-    PhiToAllocaMap.erase(PN);
-  }
+
+  if (DFBlocks.size() > 1)
+    std::sort(DFBlocks.begin(), DFBlocks.end());
+
+  unsigned CurrentVersion = 0;
+  for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i)
+    QueuePhiNode(DFBlocks[i].second, AllocaNum, CurrentVersion);
 }
-  
 
 /// RewriteSingleStoreAlloca - If there is only a single store to this value,
 /// replace any loads of it that are directly dominated by the definition with
 /// the value stored.
 void PromoteMem2Reg::RewriteSingleStoreAlloca(AllocaInst *AI,
-                                              AllocaInfo &Info) {
+                                              AllocaInfo &Info,
+                                              LargeBlockInfo &LBI) {
   StoreInst *OnlyStore = Info.OnlyStore;
   bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
+  BasicBlock *StoreBB = OnlyStore->getParent();
+  int StoreIndex = -1;
+
+  // Clear out UsingBlocks.  We will reconstruct it here if needed.
+  Info.UsingBlocks.clear();
   
-  // Be aware of loads before the store.
-  SmallPtrSet<BasicBlock*, 32> ProcessedBlocks;
-  for (unsigned i = 0, e = Info.UsingBlocks.size(); i != e; ++i) {
-    BasicBlock *UseBlock = Info.UsingBlocks[i];
-    
-    // If we already processed this block, don't reprocess it.
-    if (!ProcessedBlocks.insert(UseBlock)) {
-      Info.UsingBlocks[i] = Info.UsingBlocks.back();
-      Info.UsingBlocks.pop_back();
-      --i; --e;
-      continue;
-    }
-    
-    // If the store dominates the block and if we haven't processed it yet,
-    // do so now.  We can't handle the case where the store doesn't dominate a
-    // block because there may be a path between the store and the use, but we
-    // may need to insert phi nodes to handle dominance properly.
-    if (!StoringGlobalVal && !dominates(OnlyStore->getParent(), UseBlock))
+  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E; ) {
+    Instruction *UserInst = cast<Instruction>(*UI++);
+    if (!isa<LoadInst>(UserInst)) {
+      assert(UserInst == OnlyStore && "Should only have load/stores");
       continue;
-    
-    // If the use and store are in the same block, do a quick scan to
-    // verify that there are no uses before the store.
-    if (UseBlock == OnlyStore->getParent()) {
-      BasicBlock::iterator I = UseBlock->begin();
-      for (; &*I != OnlyStore; ++I) { // scan block for store.
-        if (isa<LoadInst>(I) && I->getOperand(0) == AI)
-          break;
-      }
-      if (&*I != OnlyStore)
-        continue;  // Do not promote the uses of this in this block.
     }
+    LoadInst *LI = cast<LoadInst>(UserInst);
     
-    // Otherwise, if this is a different block or if all uses happen
-    // after the store, do a simple linear scan to replace loads with
-    // the stored value.
-    for (BasicBlock::iterator I = UseBlock->begin(), E = UseBlock->end();
-         I != E; ) {
-      if (LoadInst *LI = dyn_cast<LoadInst>(I++)) {
-        if (LI->getOperand(0) == AI) {
-          LI->replaceAllUsesWith(OnlyStore->getOperand(0));
-          if (AST && isa<PointerType>(LI->getType()))
-            AST->deleteValue(LI);
-          LI->eraseFromParent();
+    // Okay, if we have a load from the alloca, we want to replace it with the
+    // only value stored to the alloca.  We can do this if the value is
+    // dominated by the store.  If not, we use the rest of the mem2reg machinery
+    // to insert the phi nodes as needed.
+    if (!StoringGlobalVal) {  // Non-instructions are always dominated.
+      if (LI->getParent() == StoreBB) {
+        // If we have a use that is in the same block as the store, compare the
+        // indices of the two instructions to see which one came first.  If the
+        // load came before the store, we can't handle it.
+        if (StoreIndex == -1)
+          StoreIndex = LBI.getInstructionIndex(OnlyStore);
+
+        if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
+          // Can't handle this load, bail out.
+          Info.UsingBlocks.push_back(StoreBB);
+          continue;
         }
+        
+      } else if (LI->getParent() != StoreBB &&
+                 !dominates(StoreBB, LI->getParent())) {
+        // If the load and store are in different blocks, use BB dominance to
+        // check their relationships.  If the store doesn't dom the use, bail
+        // out.
+        Info.UsingBlocks.push_back(LI->getParent());
+        continue;
       }
     }
     
-    // Finally, remove this block from the UsingBlock set.
-    Info.UsingBlocks[i] = Info.UsingBlocks.back();
-    Info.UsingBlocks.pop_back();
-    --i; --e;
+    // Otherwise, we *can* safely rewrite this load.
+    Value *ReplVal = OnlyStore->getOperand(0);
+    // If the replacement value is the load, this must occur in unreachable
+    // code.
+    if (ReplVal == LI)
+      ReplVal = UndefValue::get(LI->getType());
+    LI->replaceAllUsesWith(ReplVal);
+    if (AST && LI->getType()->isPointerTy())
+      AST->deleteValue(LI);
+    LI->eraseFromParent();
+    LBI.deleteValue(LI);
   }
 }
 
+namespace {
 
-// MarkDominatingPHILive - Mem2Reg wants to construct "pruned" SSA form, not
-// "minimal" SSA form.  To do this, it inserts all of the PHI nodes on the IDF
-// as usual (inserting the PHI nodes in the DeadPHINodes set), then processes
-// each read of the variable.  For each block that reads the variable, this
-// function is called, which removes used PHI nodes from the DeadPHINodes set.
-// After all of the reads have been processed, any PHI nodes left in the
-// DeadPHINodes set are removed.
-//
-void PromoteMem2Reg::MarkDominatingPHILive(BasicBlock *BB, unsigned AllocaNum,
-                                      SmallPtrSet<PHINode*, 16> &DeadPHINodes) {
-  // Scan the immediate dominators of this block looking for a block which has a
-  // PHI node for Alloca num.  If we find it, mark the PHI node as being alive!
-  DomTreeNode *IDomNode = DT.getNode(BB);
-  for (DomTreeNode *IDom = IDomNode; IDom; IDom = IDom->getIDom()) {
-    BasicBlock *DomBB = IDom->getBlock();
-    DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator
-      I = NewPhiNodes.find(std::make_pair(DomBB, AllocaNum));
-    if (I == NewPhiNodes.end()) continue;
-    
-    // Ok, we found an inserted PHI node which dominates this value.
-    PHINode *DominatingPHI = I->second;
-
-    // Find out if we previously thought it was dead.  If so, mark it as being
-    // live by removing it from the DeadPHINodes set.
-    if (!DeadPHINodes.erase(DominatingPHI))
-      continue;
-    
-    // Now that we have marked the PHI node alive, also mark any PHI nodes
-    // which it might use as being alive as well.
-    for (pred_iterator PI = pred_begin(DomBB), PE = pred_end(DomBB);
-         PI != PE; ++PI)
-      MarkDominatingPHILive(*PI, AllocaNum, DeadPHINodes);
+/// StoreIndexSearchPredicate - This is a helper predicate used to search by the
+/// first element of a pair.
+struct StoreIndexSearchPredicate {
+  bool operator()(const std::pair<unsigned, StoreInst*> &LHS,
+                  const std::pair<unsigned, StoreInst*> &RHS) {
+    return LHS.first < RHS.first;
   }
+};
+
 }
 
-/// PromoteLocallyUsedAlloca - Many allocas are only used within a single basic
+/// PromoteSingleBlockAlloca - Many allocas are only used within a single basic
 /// block.  If this is the case, avoid traversing the CFG and inserting a lot of
 /// potentially useless PHI nodes by just performing a single linear pass over
 /// the basic block using the Alloca.
@@ -671,123 +919,78 @@ void PromoteMem2Reg::MarkDominatingPHILive(BasicBlock *BB, unsigned AllocaNum,
 ///
 /// ... so long as A is not used before undef is set.
 ///
-bool PromoteMem2Reg::PromoteLocallyUsedAlloca(BasicBlock *BB, AllocaInst *AI) {
-  assert(!AI->use_empty() && "There are no uses of the alloca!");
-
-  // Handle degenerate cases quickly.
-  if (AI->hasOneUse()) {
-    Instruction *U = cast<Instruction>(AI->use_back());
-    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
-      // Must be a load of uninitialized value.
-      LI->replaceAllUsesWith(UndefValue::get(AI->getAllocatedType()));
-      if (AST && isa<PointerType>(LI->getType()))
-        AST->deleteValue(LI);
-    } else {
-      // Otherwise it must be a store which is never read.
-      assert(isa<StoreInst>(U));
-    }
-    BB->getInstList().erase(U);
-  } else {
-    // Uses of the uninitialized memory location shall get undef.
-    Value *CurVal = 0;
-
-    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
-      Instruction *Inst = I++;
-      if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
-        if (LI->getOperand(0) == AI) {
-          if (!CurVal) return true;  // Could not locally promote!
-
-          // Loads just returns the "current value"...
-          LI->replaceAllUsesWith(CurVal);
-          if (AST && isa<PointerType>(LI->getType()))
-            AST->deleteValue(LI);
-          BB->getInstList().erase(LI);
-        }
-      } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
-        if (SI->getOperand(1) == AI) {
-          // Store updates the "current value"...
-          CurVal = SI->getOperand(0);
-          BB->getInstList().erase(SI);
-        }
-      }
-    }
-  }
-
-  // After traversing the basic block, there should be no more uses of the
-  // alloca: remove it now.
-  assert(AI->use_empty() && "Uses of alloca from more than one BB??");
-  if (AST) AST->deleteValue(AI);
-  AI->eraseFromParent();
+void PromoteMem2Reg::PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info,
+                                              LargeBlockInfo &LBI) {
+  // The trickiest case to handle is when we have large blocks. Because of this,
+  // this code is optimized assuming that large blocks happen.  This does not
+  // significantly pessimize the small block case.  This uses LargeBlockInfo to
+  // make it efficient to get the index of various operations in the block.
   
-  ++NumLocalPromoted;
-  return false;
-}
-
-/// PromoteLocallyUsedAllocas - This method is just like
-/// PromoteLocallyUsedAlloca, except that it processes multiple alloca
-/// instructions in parallel.  This is important in cases where we have large
-/// basic blocks, as we don't want to rescan the entire basic block for each
-/// alloca which is locally used in it (which might be a lot).
-void PromoteMem2Reg::
-PromoteLocallyUsedAllocas(BasicBlock *BB, const std::vector<AllocaInst*> &AIs) {
-  DenseMap<AllocaInst*, Value*> CurValues;
-  for (unsigned i = 0, e = AIs.size(); i != e; ++i)
-    CurValues[AIs[i]] = 0; // Insert with null value
-
-  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
-    Instruction *Inst = I++;
-    if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
-      // Is this a load of an alloca we are tracking?
-      if (AllocaInst *AI = dyn_cast<AllocaInst>(LI->getOperand(0))) {
-        DenseMap<AllocaInst*, Value*>::iterator AIt = CurValues.find(AI);
-        if (AIt != CurValues.end()) {
-          // If loading an uninitialized value, allow the inter-block case to
-          // handle it.  Due to control flow, this might actually be ok.
-          if (AIt->second == 0) {  // Use of locally uninitialized value??
-            RetryList.push_back(AI);   // Retry elsewhere.
-            CurValues.erase(AIt);   // Stop tracking this here.
-            if (CurValues.empty()) return;
-          } else {
-            // Loads just returns the "current value"...
-            LI->replaceAllUsesWith(AIt->second);
-            if (AST && isa<PointerType>(LI->getType()))
-              AST->deleteValue(LI);
-            BB->getInstList().erase(LI);
-          }
-        }
-      }
-    } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
-      if (AllocaInst *AI = dyn_cast<AllocaInst>(SI->getOperand(1))) {
-        DenseMap<AllocaInst*, Value*>::iterator AIt = CurValues.find(AI);
-        if (AIt != CurValues.end()) {
-          // Store updates the "current value"...
-          AIt->second = SI->getOperand(0);
-          SI->eraseFromParent();
-        }
+  // Clear out UsingBlocks.  We will reconstruct it here if needed.
+  Info.UsingBlocks.clear();
+  
+  // Walk the use-def list of the alloca, getting the locations of all stores.
+  typedef SmallVector<std::pair<unsigned, StoreInst*>, 64> StoresByIndexTy;
+  StoresByIndexTy StoresByIndex;
+  
+  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
+       UI != E; ++UI) 
+    if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
+      StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
+
+  // If there are no stores to the alloca, just replace any loads with undef.
+  if (StoresByIndex.empty()) {
+    for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) 
+      if (LoadInst *LI = dyn_cast<LoadInst>(*UI++)) {
+        LI->replaceAllUsesWith(UndefValue::get(LI->getType()));
+        if (AST && LI->getType()->isPointerTy())
+          AST->deleteValue(LI);
+        LBI.deleteValue(LI);
+        LI->eraseFromParent();
       }
-    }
+    return;
   }
   
-  // At the end of the block scan, all allocas in CurValues are dead.
-  for (DenseMap<AllocaInst*, Value*>::iterator I = CurValues.begin(),
-       E = CurValues.end(); I != E; ++I) {
-    AllocaInst *AI = I->first;
-    assert(AI->use_empty() && "Uses of alloca from more than one BB??");
-    if (AST) AST->deleteValue(AI);
-    AI->eraseFromParent();
+  // Sort the stores by their index, making it efficient to do a lookup with a
+  // binary search.
+  std::sort(StoresByIndex.begin(), StoresByIndex.end());
+  
+  // Walk all of the loads from this alloca, replacing them with the nearest
+  // store above them, if any.
+  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) {
+    LoadInst *LI = dyn_cast<LoadInst>(*UI++);
+    if (!LI) continue;
+    
+    unsigned LoadIdx = LBI.getInstructionIndex(LI);
+    
+    // Find the nearest store that has a lower than this load. 
+    StoresByIndexTy::iterator I = 
+      std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(),
+                       std::pair<unsigned, StoreInst*>(LoadIdx, static_cast<StoreInst*>(0)),
+                       StoreIndexSearchPredicate());
+    
+    // If there is no store before this load, then we can't promote this load.
+    if (I == StoresByIndex.begin()) {
+      // Can't handle this load, bail out.
+      Info.UsingBlocks.push_back(LI->getParent());
+      continue;
+    }
+      
+    // Otherwise, there was a store before this load, the load takes its value.
+    --I;
+    LI->replaceAllUsesWith(I->second->getOperand(0));
+    if (AST && LI->getType()->isPointerTy())
+      AST->deleteValue(LI);
+    LI->eraseFromParent();
+    LBI.deleteValue(LI);
   }
-
-  NumLocalPromoted += CurValues.size();
 }
 
-
-
 // QueuePhiNode - queues a phi-node to be added to a basic-block for a specific
 // Alloca returns true if there wasn't already a phi-node for that variable
 //
 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
-                                  unsigned &Version,
-                                  SmallPtrSet<PHINode*, 16> &InsertedPHINodes) {
+                                  unsigned &Version) {
   // Look up the basic-block in question.
   PHINode *&PN = NewPhiNodes[std::make_pair(BB, AllocaNo)];
 
@@ -796,21 +999,18 @@ bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
 
   // Create a PhiNode using the dereferenced type... and add the phi-node to the
   // BasicBlock.
-  PN = new PHINode(Allocas[AllocaNo]->getAllocatedType(),
-                   Allocas[AllocaNo]->getName() + "." +
-                   utostr(Version++), BB->begin());
+  PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB),
+                       Allocas[AllocaNo]->getName() + "." + Twine(Version++), 
+                       BB->begin());
+  ++NumPHIInsert;
   PhiToAllocaMap[PN] = AllocaNo;
-  PN->reserveOperandSpace(getNumPreds(BB));
-  
-  InsertedPHINodes.insert(PN);
 
-  if (AST && isa<PointerType>(PN->getType()))
+  if (AST && PN->getType()->isPointerTy())
     AST->copyValue(PointerAllocaValues[AllocaNo], PN);
 
   return true;
 }
 
-
 // RenamePass - Recursively traverse the CFG of the function, renaming loads and
 // stores to the allocas which we are promoting.  IncomingVals indicates what
 // value each Alloca contains on exit from the predecessor block Pred.
@@ -822,28 +1022,21 @@ NextIteration:
   // If we are inserting any phi nodes into this BB, they will already be in the
   // block.
   if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
-    // Pred may have multiple edges to BB.  If so, we want to add N incoming
-    // values to each PHI we are inserting on the first time we see the edge.
-    // Check to see if APN already has incoming values from Pred.  This also
-    // prevents us from modifying PHI nodes that are not currently being
-    // inserted.
-    bool HasPredEntries = false;
-    for (unsigned i = 0, e = APN->getNumIncomingValues(); i != e; ++i) {
-      if (APN->getIncomingBlock(i) == Pred) {
-        HasPredEntries = true;
-        break;
-      }
-    }
-    
     // If we have PHI nodes to update, compute the number of edges from Pred to
     // BB.
-    if (!HasPredEntries) {
-      TerminatorInst *PredTerm = Pred->getTerminator();
+    if (PhiToAllocaMap.count(APN)) {
+      // We want to be able to distinguish between PHI nodes being inserted by
+      // this invocation of mem2reg from those phi nodes that already existed in
+      // the IR before mem2reg was run.  We determine that APN is being inserted
+      // because it is missing incoming edges.  All other PHI nodes being
+      // inserted by this pass of mem2reg will have the same number of incoming
+      // operands so far.  Remember this count.
+      unsigned NewPHINumOperands = APN->getNumOperands();
+      
       unsigned NumEdges = 0;
-      for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
-        if (PredTerm->getSuccessor(i) == BB)
+      for (succ_iterator I = succ_begin(Pred), E = succ_end(Pred); I != E; ++I)
+        if (*I == BB)
           ++NumEdges;
-      }
       assert(NumEdges && "Must be at least one edge from Pred to BB!");
       
       // Add entries for all the phis.
@@ -863,16 +1056,9 @@ NextIteration:
         APN = dyn_cast<PHINode>(PNI);
         if (APN == 0) break;
         
-        // Verify it doesn't already have entries for Pred.  If it does, it is
-        // not being inserted by this mem2reg invocation.
-        HasPredEntries = false;
-        for (unsigned i = 0, e = APN->getNumIncomingValues(); i != e; ++i) {
-          if (APN->getIncomingBlock(i) == Pred) {
-            HasPredEntries = true;
-            break;
-          }
-        }
-      } while (!HasPredEntries);
+        // Verify that it is missing entries.  If not, it is not being inserted
+        // by this mem2reg invocation so we want to ignore it.
+      } while (APN->getNumOperands() == NewPHINumOperands);
     }
   }
   
@@ -886,14 +1072,14 @@ NextIteration:
       AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
       if (!Src) continue;
   
-      std::map<AllocaInst*, unsigned>::iterator AI = AllocaLookup.find(Src);
+      DenseMap<AllocaInst*, unsigned>::iterator AI = AllocaLookup.find(Src);
       if (AI == AllocaLookup.end()) continue;
 
       Value *V = IncomingVals[AI->second];
 
       // Anything using the load now uses the current value.
       LI->replaceAllUsesWith(V);
-      if (AST && isa<PointerType>(LI->getType()))
+      if (AST && LI->getType()->isPointerTy())
         AST->deleteValue(LI);
       BB->getInstList().erase(LI);
     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
@@ -902,66 +1088,54 @@ NextIteration:
       AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
       if (!Dest) continue;
       
-      std::map<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
+      DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
       if (ai == AllocaLookup.end())
         continue;
       
       // what value were we writing?
       IncomingVals[ai->second] = SI->getOperand(0);
+      // Record debuginfo for the store before removing it.
+      if (DbgDeclareInst *DDI = AllocaDbgDeclares[ai->second]) {
+        if (!DIB)
+          DIB = new DIBuilder(*SI->getParent()->getParent()->getParent());
+        ConvertDebugDeclareToDebugValue(DDI, SI, *DIB);
+      }
       BB->getInstList().erase(SI);
     }
   }
 
   // 'Recurse' to our successors.
-  TerminatorInst *TI = BB->getTerminator();
-  unsigned NumSuccs = TI->getNumSuccessors();
-  if (NumSuccs == 0) return;
-  
-  // Add all-but-one successor to the worklist.
-  for (unsigned i = 0; i != NumSuccs-1; i++)
-    Worklist.push_back(RenamePassData(TI->getSuccessor(i), BB, IncomingVals));
-  
-  // Handle the last successor without using the worklist.  This allows us to
-  // handle unconditional branches directly, for example.
+  succ_iterator I = succ_begin(BB), E = succ_end(BB);
+  if (I == E) return;
+
+  // Keep track of the successors so we don't visit the same successor twice
+  SmallPtrSet<BasicBlock*, 8> VisitedSuccs;
+
+  // Handle the first successor without using the worklist.
+  VisitedSuccs.insert(*I);
   Pred = BB;
-  BB = TI->getSuccessor(NumSuccs-1);
+  BB = *I;
+  ++I;
+
+  for (; I != E; ++I)
+    if (VisitedSuccs.insert(*I))
+      Worklist.push_back(RenamePassData(*I, Pred, IncomingVals));
+
   goto NextIteration;
 }
 
 /// PromoteMemToReg - Promote the specified list of alloca instructions into
-/// scalar registers, inserting PHI nodes as appropriate.  This function makes
-/// use of DominanceFrontier information.  This function does not modify the CFG
-/// of the function at all.  All allocas must be from the same function.
+/// scalar registers, inserting PHI nodes as appropriate.  This function does
+/// not modify the CFG of the function at all.  All allocas must be from the
+/// same function.
 ///
 /// If AST is specified, the specified tracker is updated to reflect changes
 /// made to the IR.
 ///
 void llvm::PromoteMemToReg(const std::vector<AllocaInst*> &Allocas,
-                           DominatorTree &DT, DominanceFrontier &DF,
-                           AliasSetTracker *AST) {
+                           DominatorTree &DT, AliasSetTracker *AST) {
   // If there is nothing to do, bail out...
   if (Allocas.empty()) return;
 
-  SmallVector<AllocaInst*, 16> RetryList;
-  PromoteMem2Reg(Allocas, RetryList, DT, DF, AST).run();
-
-  // PromoteMem2Reg may not have been able to promote all of the allocas in one
-  // pass, run it again if needed.
-  std::vector<AllocaInst*> NewAllocas;
-  while (!RetryList.empty()) {
-    // If we need to retry some allocas, this is due to there being no store
-    // before a read in a local block.  To counteract this, insert a store of
-    // undef into the alloca right after the alloca itself.
-    for (unsigned i = 0, e = RetryList.size(); i != e; ++i) {
-      BasicBlock::iterator BBI = RetryList[i];
-
-      new StoreInst(UndefValue::get(RetryList[i]->getAllocatedType()),
-                    RetryList[i], ++BBI);
-    }
-
-    NewAllocas.assign(RetryList.begin(), RetryList.end());
-    RetryList.clear();
-    PromoteMem2Reg(NewAllocas, RetryList, DT, DF, AST).run();
-    NewAllocas.clear();
-  }
+  PromoteMem2Reg(Allocas, DT, AST).run();
 }