Squelch warning
[oota-llvm.git] / lib / Transforms / Utils / SimplifyCFG.cpp
index 3518ee5689af8ee15c055f435a45ae2d97aee698..4b7071d4e18bb31e3a1d73c3684dc37972395193 100644 (file)
 //
 //===----------------------------------------------------------------------===//
 
+#define DEBUG_TYPE "simplifycfg"
 #include "llvm/Transforms/Utils/Local.h"
 #include "llvm/Constants.h"
 #include "llvm/Instructions.h"
+#include "llvm/Type.h"
 #include "llvm/Support/CFG.h"
+#include "llvm/Support/Debug.h"
 #include <algorithm>
 #include <functional>
+#include <set>
+#include <map>
 using namespace llvm;
 
-// PropagatePredecessors - This gets "Succ" ready to have the predecessors from
-// "BB".  This is a little tricky because "Succ" has PHI nodes, which need to
-// have extra slots added to them to hold the merge edges from BB's
-// predecessors, and BB itself might have had PHI nodes in it.  This function
-// returns true (failure) if the Succ BB already has a predecessor that is a
-// predecessor of BB and incoming PHI arguments would not be discernible.
+// PropagatePredecessorsForPHIs - This gets "Succ" ready to have the
+// predecessors from "BB".  This is a little tricky because "Succ" has PHI
+// nodes, which need to have extra slots added to them to hold the merge edges
+// from BB's predecessors, and BB itself might have had PHI nodes in it.  This
+// function returns true (failure) if the Succ BB already has a predecessor that
+// is a predecessor of BB and incoming PHI arguments would not be discernible.
 //
 // Assumption: Succ is the single successor for BB.
 //
@@ -44,11 +49,11 @@ static bool PropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
   // with incompatible values coming in from the two edges!
   //
   for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ); PI != PE; ++PI)
-    if (find(BBPreds.begin(), BBPreds.end(), *PI) != BBPreds.end()) {
+    if (std::find(BBPreds.begin(), BBPreds.end(), *PI) != BBPreds.end()) {
       // Loop over all of the PHI nodes checking to see if there are
       // incompatible values coming in.
-      for (BasicBlock::iterator I = Succ->begin();
-           PHINode *PN = dyn_cast<PHINode>(I); ++I) {
+      for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
+        PHINode *PN = cast<PHINode>(I);
         // Loop up the entries in the PHI node for BB and for *PI if the values
         // coming in are non-equal, we cannot merge these two blocks (instead we
         // should insert a conditional move or something, then merge the
@@ -62,19 +67,19 @@ static bool PropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
       }
     }
 
-  // Loop over all of the PHI nodes in the successor BB
-  for (BasicBlock::iterator I = Succ->begin();
-       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
+  // Loop over all of the PHI nodes in the successor BB.
+  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
+    PHINode *PN = cast<PHINode>(I);
     Value *OldVal = PN->removeIncomingValue(BB, false);
     assert(OldVal && "No entry in PHI for Pred BB!");
 
-    // If this incoming value is one of the PHI nodes in BB...
+    // If this incoming value is one of the PHI nodes in BB, the new entries in
+    // the PHI node are the entries from the old PHI.
     if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
       PHINode *OldValPN = cast<PHINode>(OldVal);
-      for (std::vector<BasicBlock*>::const_iterator PredI = BBPreds.begin(), 
-             End = BBPreds.end(); PredI != End; ++PredI) {
-        PN->addIncoming(OldValPN->getIncomingValueForBlock(*PredI), *PredI);
-      }
+      for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
+        PN->addIncoming(OldValPN->getIncomingValue(i),
+                        OldValPN->getIncomingBlock(i));
     } else {
       for (std::vector<BasicBlock*>::const_iterator PredI = BBPreds.begin(), 
              End = BBPreds.end(); PredI != End; ++PredI) {
@@ -180,26 +185,460 @@ static Value *GetIfCondition(BasicBlock *BB,
 // if the specified value dominates the block.  We don't handle the true
 // generality of domination here, just a special case which works well enough
 // for us.
-static bool DominatesMergePoint(Value *V, BasicBlock *BB) {
-  if (Instruction *I = dyn_cast<Instruction>(V)) {
-    BasicBlock *PBB = I->getParent();
-    // If this instruction is defined in a block that contains an unconditional
-    // branch to BB, then it must be in the 'conditional' part of the "if
-    // statement".
-    if (isa<BranchInst>(PBB->getTerminator()) && 
-        cast<BranchInst>(PBB->getTerminator())->isUnconditional() && 
-        cast<BranchInst>(PBB->getTerminator())->getSuccessor(0) == BB)
-      return false;
-
-    // We also don't want to allow wierd loops that might have the "if
-    // condition" in the bottom of this block.
-    if (PBB == BB) return false;
+//
+// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
+// see if V (which must be an instruction) is cheap to compute and is
+// non-trapping.  If both are true, the instruction is inserted into the set and
+// true is returned.
+static bool DominatesMergePoint(Value *V, BasicBlock *BB,
+                                std::set<Instruction*> *AggressiveInsts) {
+  Instruction *I = dyn_cast<Instruction>(V);
+  if (!I) return true;    // Non-instructions all dominate instructions.
+  BasicBlock *PBB = I->getParent();
+
+  // We don't want to allow wierd loops that might have the "if condition" in
+  // the bottom of this block.
+  if (PBB == BB) return false;
+
+  // If this instruction is defined in a block that contains an unconditional
+  // branch to BB, then it must be in the 'conditional' part of the "if
+  // statement".
+  if (BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()))
+    if (BI->isUnconditional() && BI->getSuccessor(0) == BB) {
+      if (!AggressiveInsts) return false;
+      // Okay, it looks like the instruction IS in the "condition".  Check to
+      // see if its a cheap instruction to unconditionally compute, and if it
+      // only uses stuff defined outside of the condition.  If so, hoist it out.
+      switch (I->getOpcode()) {
+      default: return false;  // Cannot hoist this out safely.
+      case Instruction::Load:
+        // We can hoist loads that are non-volatile and obviously cannot trap.
+        if (cast<LoadInst>(I)->isVolatile())
+          return false;
+        if (!isa<AllocaInst>(I->getOperand(0)) &&
+            !isa<Constant>(I->getOperand(0)))
+          return false;
+
+        // Finally, we have to check to make sure there are no instructions
+        // before the load in its basic block, as we are going to hoist the loop
+        // out to its predecessor.
+        if (PBB->begin() != BasicBlock::iterator(I))
+          return false;
+        break;
+      case Instruction::Add:
+      case Instruction::Sub:
+      case Instruction::And:
+      case Instruction::Or:
+      case Instruction::Xor:
+      case Instruction::Shl:
+      case Instruction::Shr:
+        break;   // These are all cheap and non-trapping instructions.
+      }
+      
+      // Okay, we can only really hoist these out if their operands are not
+      // defined in the conditional region.
+      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
+        if (!DominatesMergePoint(I->getOperand(i), BB, 0))
+          return false;
+      // Okay, it's safe to do this!  Remember this instruction.
+      AggressiveInsts->insert(I);
+    }
+
+  return true;
+}
+
+// GatherConstantSetEQs - Given a potentially 'or'd together collection of seteq
+// instructions that compare a value against a constant, return the value being
+// compared, and stick the constant into the Values vector.
+static Value *GatherConstantSetEQs(Value *V, std::vector<ConstantInt*> &Values){
+  if (Instruction *Inst = dyn_cast<Instruction>(V))
+    if (Inst->getOpcode() == Instruction::SetEQ) {
+      if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
+        Values.push_back(C);
+        return Inst->getOperand(0);
+      } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
+        Values.push_back(C);
+        return Inst->getOperand(1);
+      }
+    } else if (Inst->getOpcode() == Instruction::Or) {
+      if (Value *LHS = GatherConstantSetEQs(Inst->getOperand(0), Values))
+        if (Value *RHS = GatherConstantSetEQs(Inst->getOperand(1), Values))
+          if (LHS == RHS)
+            return LHS;
+    }
+  return 0;
+}
+
+// GatherConstantSetNEs - Given a potentially 'and'd together collection of
+// setne instructions that compare a value against a constant, return the value
+// being compared, and stick the constant into the Values vector.
+static Value *GatherConstantSetNEs(Value *V, std::vector<ConstantInt*> &Values){
+  if (Instruction *Inst = dyn_cast<Instruction>(V))
+    if (Inst->getOpcode() == Instruction::SetNE) {
+      if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
+        Values.push_back(C);
+        return Inst->getOperand(0);
+      } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
+        Values.push_back(C);
+        return Inst->getOperand(1);
+      }
+    } else if (Inst->getOpcode() == Instruction::Cast) {
+      // Cast of X to bool is really a comparison against zero.
+      assert(Inst->getType() == Type::BoolTy && "Can only handle bool values!");
+      Values.push_back(ConstantInt::get(Inst->getOperand(0)->getType(), 0));
+      return Inst->getOperand(0);
+    } else if (Inst->getOpcode() == Instruction::And) {
+      if (Value *LHS = GatherConstantSetNEs(Inst->getOperand(0), Values))
+        if (Value *RHS = GatherConstantSetNEs(Inst->getOperand(1), Values))
+          if (LHS == RHS)
+            return LHS;
+    }
+  return 0;
+}
+
+
+
+/// GatherValueComparisons - If the specified Cond is an 'and' or 'or' of a
+/// bunch of comparisons of one value against constants, return the value and
+/// the constants being compared.
+static bool GatherValueComparisons(Instruction *Cond, Value *&CompVal,
+                                   std::vector<ConstantInt*> &Values) {
+  if (Cond->getOpcode() == Instruction::Or) {
+    CompVal = GatherConstantSetEQs(Cond, Values);
+
+    // Return true to indicate that the condition is true if the CompVal is
+    // equal to one of the constants.
+    return true;
+  } else if (Cond->getOpcode() == Instruction::And) {
+    CompVal = GatherConstantSetNEs(Cond, Values);
+        
+    // Return false to indicate that the condition is false if the CompVal is
+    // equal to one of the constants.
+    return false;
   }
+  return false;
+}
+
+/// ErasePossiblyDeadInstructionTree - If the specified instruction is dead and
+/// has no side effects, nuke it.  If it uses any instructions that become dead
+/// because the instruction is now gone, nuke them too.
+static void ErasePossiblyDeadInstructionTree(Instruction *I) {
+  if (isInstructionTriviallyDead(I)) {
+    std::vector<Value*> Operands(I->op_begin(), I->op_end());
+    I->getParent()->getInstList().erase(I);
+    for (unsigned i = 0, e = Operands.size(); i != e; ++i)
+      if (Instruction *OpI = dyn_cast<Instruction>(Operands[i]))
+        ErasePossiblyDeadInstructionTree(OpI);
+  }
+}
 
-  // Non-instructions all dominate instructions.
+/// SafeToMergeTerminators - Return true if it is safe to merge these two
+/// terminator instructions together.
+///
+static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
+  if (SI1 == SI2) return false;  // Can't merge with self!
+
+  // It is not safe to merge these two switch instructions if they have a common
+  // successor, and if that successor has a PHI node, and if *that* PHI node has
+  // conflicting incoming values from the two switch blocks.
+  BasicBlock *SI1BB = SI1->getParent();
+  BasicBlock *SI2BB = SI2->getParent();
+  std::set<BasicBlock*> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
+
+  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
+    if (SI1Succs.count(*I))
+      for (BasicBlock::iterator BBI = (*I)->begin();
+           isa<PHINode>(BBI); ++BBI) {
+        PHINode *PN = cast<PHINode>(BBI);
+        if (PN->getIncomingValueForBlock(SI1BB) !=
+            PN->getIncomingValueForBlock(SI2BB))
+          return false;
+      }
+        
   return true;
 }
 
+/// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
+/// now be entries in it from the 'NewPred' block.  The values that will be
+/// flowing into the PHI nodes will be the same as those coming in from
+/// ExistPred, an existing predecessor of Succ.
+static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
+                                  BasicBlock *ExistPred) {
+  assert(std::find(succ_begin(ExistPred), succ_end(ExistPred), Succ) !=
+         succ_end(ExistPred) && "ExistPred is not a predecessor of Succ!");
+  if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
+
+  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
+    PHINode *PN = cast<PHINode>(I);
+    Value *V = PN->getIncomingValueForBlock(ExistPred);
+    PN->addIncoming(V, NewPred);
+  }
+}
+
+// isValueEqualityComparison - Return true if the specified terminator checks to
+// see if a value is equal to constant integer value.
+static Value *isValueEqualityComparison(TerminatorInst *TI) {
+  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
+    // Do not permit merging of large switch instructions into their
+    // predecessors unless there is only one predecessor.
+    if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
+                                               pred_end(SI->getParent())) > 128)
+      return 0;
+
+    return SI->getCondition();
+  }
+  if (BranchInst *BI = dyn_cast<BranchInst>(TI))
+    if (BI->isConditional() && BI->getCondition()->hasOneUse())
+      if (SetCondInst *SCI = dyn_cast<SetCondInst>(BI->getCondition()))
+        if ((SCI->getOpcode() == Instruction::SetEQ ||
+             SCI->getOpcode() == Instruction::SetNE) && 
+            isa<ConstantInt>(SCI->getOperand(1)))
+          return SCI->getOperand(0);
+  return 0;
+}
+
+// Given a value comparison instruction, decode all of the 'cases' that it
+// represents and return the 'default' block.
+static BasicBlock *
+GetValueEqualityComparisonCases(TerminatorInst *TI, 
+                                std::vector<std::pair<ConstantInt*,
+                                                      BasicBlock*> > &Cases) {
+  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
+    Cases.reserve(SI->getNumCases());
+    for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
+      Cases.push_back(std::make_pair(cast<ConstantInt>(SI->getCaseValue(i)),
+                                     SI->getSuccessor(i)));
+    return SI->getDefaultDest();
+  }
+
+  BranchInst *BI = cast<BranchInst>(TI);
+  SetCondInst *SCI = cast<SetCondInst>(BI->getCondition());
+  Cases.push_back(std::make_pair(cast<ConstantInt>(SCI->getOperand(1)),
+                                 BI->getSuccessor(SCI->getOpcode() ==
+                                                        Instruction::SetNE)));
+  return BI->getSuccessor(SCI->getOpcode() == Instruction::SetEQ);
+}
+
+
+// FoldValueComparisonIntoPredecessors - The specified terminator is a value
+// equality comparison instruction (either a switch or a branch on "X == c").
+// See if any of the predecessors of the terminator block are value comparisons
+// on the same value.  If so, and if safe to do so, fold them together.
+static bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI) {
+  BasicBlock *BB = TI->getParent();
+  Value *CV = isValueEqualityComparison(TI);  // CondVal
+  assert(CV && "Not a comparison?");
+  bool Changed = false;
+
+  std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
+  while (!Preds.empty()) {
+    BasicBlock *Pred = Preds.back();
+    Preds.pop_back();
+    
+    // See if the predecessor is a comparison with the same value.
+    TerminatorInst *PTI = Pred->getTerminator();
+    Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
+
+    if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
+      // Figure out which 'cases' to copy from SI to PSI.
+      std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases;
+      BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
+
+      std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
+      BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
+
+      // Based on whether the default edge from PTI goes to BB or not, fill in
+      // PredCases and PredDefault with the new switch cases we would like to
+      // build.
+      std::vector<BasicBlock*> NewSuccessors;
+
+      if (PredDefault == BB) {
+        // If this is the default destination from PTI, only the edges in TI
+        // that don't occur in PTI, or that branch to BB will be activated.
+        std::set<ConstantInt*> PTIHandled;
+        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
+          if (PredCases[i].second != BB)
+            PTIHandled.insert(PredCases[i].first);
+          else {
+            // The default destination is BB, we don't need explicit targets.
+            std::swap(PredCases[i], PredCases.back());
+            PredCases.pop_back();
+            --i; --e;
+          }
+
+        // Reconstruct the new switch statement we will be building.
+        if (PredDefault != BBDefault) {
+          PredDefault->removePredecessor(Pred);
+          PredDefault = BBDefault;
+          NewSuccessors.push_back(BBDefault);
+        }
+        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
+          if (!PTIHandled.count(BBCases[i].first) &&
+              BBCases[i].second != BBDefault) {
+            PredCases.push_back(BBCases[i]);
+            NewSuccessors.push_back(BBCases[i].second);
+          }
+
+      } else {
+        // If this is not the default destination from PSI, only the edges
+        // in SI that occur in PSI with a destination of BB will be
+        // activated.
+        std::set<ConstantInt*> PTIHandled;
+        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
+          if (PredCases[i].second == BB) {
+            PTIHandled.insert(PredCases[i].first);
+            std::swap(PredCases[i], PredCases.back());
+            PredCases.pop_back();
+            --i; --e;
+          }
+
+        // Okay, now we know which constants were sent to BB from the
+        // predecessor.  Figure out where they will all go now.
+        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
+          if (PTIHandled.count(BBCases[i].first)) {
+            // If this is one we are capable of getting...
+            PredCases.push_back(BBCases[i]);
+            NewSuccessors.push_back(BBCases[i].second);
+            PTIHandled.erase(BBCases[i].first);// This constant is taken care of
+          }
+
+        // If there are any constants vectored to BB that TI doesn't handle,
+        // they must go to the default destination of TI.
+        for (std::set<ConstantInt*>::iterator I = PTIHandled.begin(),
+               E = PTIHandled.end(); I != E; ++I) {
+          PredCases.push_back(std::make_pair(*I, BBDefault));
+          NewSuccessors.push_back(BBDefault);
+        }
+      }
+
+      // Okay, at this point, we know which new successor Pred will get.  Make
+      // sure we update the number of entries in the PHI nodes for these
+      // successors.
+      for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
+        AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
+
+      // Now that the successors are updated, create the new Switch instruction.
+      SwitchInst *NewSI = new SwitchInst(CV, PredDefault, PTI);
+      for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
+        NewSI->addCase(PredCases[i].first, PredCases[i].second);
+      Pred->getInstList().erase(PTI);
+
+      // Okay, last check.  If BB is still a successor of PSI, then we must
+      // have an infinite loop case.  If so, add an infinitely looping block
+      // to handle the case to preserve the behavior of the code.
+      BasicBlock *InfLoopBlock = 0;
+      for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
+        if (NewSI->getSuccessor(i) == BB) {
+          if (InfLoopBlock == 0) {
+            // Insert it at the end of the loop, because it's either code,
+            // or it won't matter if it's hot. :)
+            InfLoopBlock = new BasicBlock("infloop", BB->getParent());
+            new BranchInst(InfLoopBlock, InfLoopBlock);
+          }
+          NewSI->setSuccessor(i, InfLoopBlock);
+        }
+          
+      Changed = true;
+    }
+  }
+  return Changed;
+}
+
+/// HoistThenElseCodeToIf - Given a conditional branch that codes to BB1 and
+/// BB2, hoist any common code in the two blocks up into the branch block.  The
+/// caller of this function guarantees that BI's block dominates BB1 and BB2.
+static bool HoistThenElseCodeToIf(BranchInst *BI) {
+  // This does very trivial matching, with limited scanning, to find identical
+  // instructions in the two blocks.  In particular, we don't want to get into
+  // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
+  // such, we currently just scan for obviously identical instructions in an
+  // identical order.
+  BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
+  BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination
+
+  Instruction *I1 = BB1->begin(), *I2 = BB2->begin();
+  if (I1->getOpcode() != I2->getOpcode() || !I1->isIdenticalTo(I2))
+    return false;
+
+  // If we get here, we can hoist at least one instruction.
+  BasicBlock *BIParent = BI->getParent();
+
+  do {
+    // If we are hoisting the terminator instruction, don't move one (making a
+    // broken BB), instead clone it, and remove BI.
+    if (isa<TerminatorInst>(I1))
+      goto HoistTerminator;
+   
+    // For a normal instruction, we just move one to right before the branch,
+    // then replace all uses of the other with the first.  Finally, we remove
+    // the now redundant second instruction.
+    BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
+    if (!I2->use_empty())
+      I2->replaceAllUsesWith(I1);
+    BB2->getInstList().erase(I2);
+    
+    I1 = BB1->begin();
+    I2 = BB2->begin();
+  } while (I1->getOpcode() == I2->getOpcode() && I1->isIdenticalTo(I2));
+
+  return true;
+
+HoistTerminator:
+  // Okay, it is safe to hoist the terminator.
+  Instruction *NT = I1->clone();
+  BIParent->getInstList().insert(BI, NT);
+  if (NT->getType() != Type::VoidTy) {
+    I1->replaceAllUsesWith(NT);
+    I2->replaceAllUsesWith(NT);
+    NT->setName(I1->getName());
+  }
+
+  // Hoisting one of the terminators from our successor is a great thing.
+  // Unfortunately, the successors of the if/else blocks may have PHI nodes in
+  // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
+  // nodes, so we insert select instruction to compute the final result.
+  std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
+  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
+    PHINode *PN;
+    for (BasicBlock::iterator BBI = SI->begin();
+         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
+      Value *BB1V = PN->getIncomingValueForBlock(BB1);
+      Value *BB2V = PN->getIncomingValueForBlock(BB2);
+      if (BB1V != BB2V) {
+        // These values do not agree.  Insert a select instruction before NT
+        // that determines the right value.
+        SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
+        if (SI == 0)
+          SI = new SelectInst(BI->getCondition(), BB1V, BB2V,
+                              BB1V->getName()+"."+BB2V->getName(), NT);
+        // Make the PHI node use the select for all incoming values for BB1/BB2
+        for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
+          if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
+            PN->setIncomingValue(i, SI);
+      }
+    }
+  }
+
+  // Update any PHI nodes in our new successors.
+  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
+    AddPredecessorToBlock(*SI, BIParent, BB1);
+  
+  BI->eraseFromParent();
+  return true;
+}
+
+namespace {
+  /// ConstantIntOrdering - This class implements a stable ordering of constant
+  /// integers that does not depend on their address.  This is important for
+  /// applications that sort ConstantInt's to ensure uniqueness.
+  struct ConstantIntOrdering {
+    bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
+      return LHS->getRawValue() < RHS->getRawValue();
+    }
+  };
+}
+
+
 // SimplifyCFG - This function is used to do simplification of a CFG.  For
 // example, it adjusts branches to branches to eliminate the extra hop, it
 // eliminates unreachable basic blocks, and does other "peephole" optimization
@@ -215,39 +654,10 @@ bool llvm::SimplifyCFG(BasicBlock *BB) {
   assert(BB->getTerminator() && "Degenerate basic block encountered!");
   assert(&BB->getParent()->front() != BB && "Can't Simplify entry block!");
 
-  // Check to see if the first instruction in this block is just an unwind.  If
-  // so, replace any invoke instructions which use this as an exception
-  // destination with call instructions.
-  //
-  if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator()))
-    if (BB->begin() == BasicBlock::iterator(UI)) {  // Empty block?
-      std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
-      while (!Preds.empty()) {
-        BasicBlock *Pred = Preds.back();
-        if (InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
-          if (II->getUnwindDest() == BB) {
-            // Insert a new branch instruction before the invoke, because this
-            // is now a fall through...
-            BranchInst *BI = new BranchInst(II->getNormalDest(), II);
-            Pred->getInstList().remove(II);   // Take out of symbol table
-            
-            // Insert the call now...
-            std::vector<Value*> Args(II->op_begin()+3, II->op_end());
-            CallInst *CI = new CallInst(II->getCalledValue(), Args,
-                                        II->getName(), BI);
-            // If the invoke produced a value, the Call now does instead
-            II->replaceAllUsesWith(CI);
-            delete II;
-            Changed = true;
-          }
-        
-        Preds.pop_back();
-      }
-    }
-
   // Remove basic blocks that have no predecessors... which are unreachable.
-  if (pred_begin(BB) == pred_end(BB)) {
-    //cerr << "Removing BB: \n" << BB;
+  if (pred_begin(BB) == pred_end(BB) ||
+      *pred_begin(BB) == BB && ++pred_begin(BB) == pred_end(BB)) {
+    DEBUG(std::cerr << "Removing BB: \n" << *BB);
 
     // Loop through all of our successors and make sure they know that one
     // of their predecessors is going away.
@@ -281,31 +691,29 @@ bool llvm::SimplifyCFG(BasicBlock *BB) {
   // to the successor.
   succ_iterator SI(succ_begin(BB));
   if (SI != succ_end(BB) && ++SI == succ_end(BB)) {  // One succ?
-
     BasicBlock::iterator BBI = BB->begin();  // Skip over phi nodes...
     while (isa<PHINode>(*BBI)) ++BBI;
 
-    if (BBI->isTerminator()) {   // Terminator is the only non-phi instruction!
-      BasicBlock *Succ = *succ_begin(BB); // There is exactly one successor
-     
-      if (Succ != BB) {   // Arg, don't hurt infinite loops!
-        // If our successor has PHI nodes, then we need to update them to
-        // include entries for BB's predecessors, not for BB itself.
-        // Be careful though, if this transformation fails (returns true) then
-        // we cannot do this transformation!
-        //
-       if (!PropagatePredecessorsForPHIs(BB, Succ)) {
-          //cerr << "Killing Trivial BB: \n" << BB;
-          std::string OldName = BB->getName();
-
+    BasicBlock *Succ = *succ_begin(BB); // There is exactly one successor.
+    if (BBI->isTerminator() &&  // Terminator is the only non-phi instruction!
+        Succ != BB) {           // Don't hurt infinite loops!
+      // If our successor has PHI nodes, then we need to update them to include
+      // entries for BB's predecessors, not for BB itself.  Be careful though,
+      // if this transformation fails (returns true) then we cannot do this
+      // transformation!
+      //
+      if (!PropagatePredecessorsForPHIs(BB, Succ)) {
+        DEBUG(std::cerr << "Killing Trivial BB: \n" << *BB);
+        
+        if (isa<PHINode>(&BB->front())) {
           std::vector<BasicBlock*>
             OldSuccPreds(pred_begin(Succ), pred_end(Succ));
-
+        
           // Move all PHI nodes in BB to Succ if they are alive, otherwise
           // delete them.
           while (PHINode *PN = dyn_cast<PHINode>(&BB->front()))
             if (PN->use_empty())
-              BB->getInstList().erase(BB->begin());  // Nuke instruction...
+              BB->getInstList().erase(BB->begin());  // Nuke instruction.
             else {
               // The instruction is alive, so this means that Succ must have
               // *ONLY* had BB as a predecessor, and the PHI node is still valid
@@ -313,31 +721,379 @@ bool llvm::SimplifyCFG(BasicBlock *BB) {
               // strictly dominated Succ.
               BB->getInstList().remove(BB->begin());
               Succ->getInstList().push_front(PN);
-
+              
               // We need to add new entries for the PHI node to account for
               // predecessors of Succ that the PHI node does not take into
               // account.  At this point, since we know that BB dominated succ,
               // this means that we should any newly added incoming edges should
               // use the PHI node as the value for these edges, because they are
               // loop back edges.
-              
               for (unsigned i = 0, e = OldSuccPreds.size(); i != e; ++i)
                 if (OldSuccPreds[i] != BB)
                   PN->addIncoming(PN, OldSuccPreds[i]);
             }
+        }
+        
+        // Everything that jumped to BB now goes to Succ.
+        std::string OldName = BB->getName();
+        BB->replaceAllUsesWith(Succ);
+        BB->eraseFromParent();              // Delete the old basic block.
+
+        if (!OldName.empty() && !Succ->hasName())  // Transfer name if we can
+          Succ->setName(OldName);
+        return true;
+      }
+    }
+  }
 
-          // Everything that jumped to BB now goes to Succ...
-          BB->replaceAllUsesWith(Succ);
+  // If this is a returning block with only PHI nodes in it, fold the return
+  // instruction into any unconditional branch predecessors.
+  //
+  // If any predecessor is a conditional branch that just selects among
+  // different return values, fold the replace the branch/return with a select
+  // and return.
+  if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
+    BasicBlock::iterator BBI = BB->getTerminator();
+    if (BBI == BB->begin() || isa<PHINode>(--BBI)) {
+      // Find predecessors that end with branches.
+      std::vector<BasicBlock*> UncondBranchPreds;
+      std::vector<BranchInst*> CondBranchPreds;
+      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
+        TerminatorInst *PTI = (*PI)->getTerminator();
+        if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
+          if (BI->isUnconditional())
+            UncondBranchPreds.push_back(*PI);
+          else
+            CondBranchPreds.push_back(BI);
+      }
+      
+      // If we found some, do the transformation!
+      if (!UncondBranchPreds.empty()) {
+        while (!UncondBranchPreds.empty()) {
+          BasicBlock *Pred = UncondBranchPreds.back();
+          UncondBranchPreds.pop_back();
+          Instruction *UncondBranch = Pred->getTerminator();
+          // Clone the return and add it to the end of the predecessor.
+          Instruction *NewRet = RI->clone();
+          Pred->getInstList().push_back(NewRet);
 
-          // Delete the old basic block...
+          // If the return instruction returns a value, and if the value was a
+          // PHI node in "BB", propagate the right value into the return.
+          if (NewRet->getNumOperands() == 1)
+            if (PHINode *PN = dyn_cast<PHINode>(NewRet->getOperand(0)))
+              if (PN->getParent() == BB)
+                NewRet->setOperand(0, PN->getIncomingValueForBlock(Pred));
+          // Update any PHI nodes in the returning block to realize that we no
+          // longer branch to them.
+          BB->removePredecessor(Pred);
+          Pred->getInstList().erase(UncondBranch);
+        }
+
+        // If we eliminated all predecessors of the block, delete the block now.
+        if (pred_begin(BB) == pred_end(BB))
+          // We know there are no successors, so just nuke the block.
           M->getBasicBlockList().erase(BB);
-       
-          if (!OldName.empty() && !Succ->hasName())  // Transfer name if we can
-            Succ->setName(OldName);
+
+        return true;
+      }
+
+      // Check out all of the conditional branches going to this return
+      // instruction.  If any of them just select between returns, change the
+      // branch itself into a select/return pair.
+      while (!CondBranchPreds.empty()) {
+        BranchInst *BI = CondBranchPreds.back();
+        CondBranchPreds.pop_back();
+        BasicBlock *TrueSucc = BI->getSuccessor(0);
+        BasicBlock *FalseSucc = BI->getSuccessor(1);
+        BasicBlock *OtherSucc = TrueSucc == BB ? FalseSucc : TrueSucc;
+
+        // Check to see if the non-BB successor is also a return block.
+        if (isa<ReturnInst>(OtherSucc->getTerminator())) {
+          // Check to see if there are only PHI instructions in this block.
+          BasicBlock::iterator OSI = OtherSucc->getTerminator();
+          if (OSI == OtherSucc->begin() || isa<PHINode>(--OSI)) {
+            // Okay, we found a branch that is going to two return nodes.  If
+            // there is no return value for this function, just change the
+            // branch into a return.
+            if (RI->getNumOperands() == 0) {
+              TrueSucc->removePredecessor(BI->getParent());
+              FalseSucc->removePredecessor(BI->getParent());
+              new ReturnInst(0, BI);
+              BI->getParent()->getInstList().erase(BI);
+              return true;
+            }
+
+            // Otherwise, figure out what the true and false return values are
+            // so we can insert a new select instruction.
+            Value *TrueValue = TrueSucc->getTerminator()->getOperand(0);
+            Value *FalseValue = FalseSucc->getTerminator()->getOperand(0);
+
+            // Unwrap any PHI nodes in the return blocks.
+            if (PHINode *TVPN = dyn_cast<PHINode>(TrueValue))
+              if (TVPN->getParent() == TrueSucc)
+                TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
+            if (PHINode *FVPN = dyn_cast<PHINode>(FalseValue))
+              if (FVPN->getParent() == FalseSucc)
+                FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
+
+            TrueSucc->removePredecessor(BI->getParent());
+            FalseSucc->removePredecessor(BI->getParent());
+
+            // Insert a new select instruction.
+            Value *NewRetVal;
+            Value *BrCond = BI->getCondition();
+            if (TrueValue != FalseValue)
+              NewRetVal = new SelectInst(BrCond, TrueValue,
+                                         FalseValue, "retval", BI);
+            else
+              NewRetVal = TrueValue;
+
+            new ReturnInst(NewRetVal, BI);
+            BI->getParent()->getInstList().erase(BI);
+            if (BrCond->use_empty())
+              if (Instruction *BrCondI = dyn_cast<Instruction>(BrCond))
+                BrCondI->getParent()->getInstList().erase(BrCondI);
+            return true;
+          }
+        }
+      }
+    }
+  } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->begin())) {
+    // Check to see if the first instruction in this block is just an unwind.
+    // If so, replace any invoke instructions which use this as an exception
+    // destination with call instructions, and any unconditional branch
+    // predecessor with an unwind.
+    //
+    std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
+    while (!Preds.empty()) {
+      BasicBlock *Pred = Preds.back();
+      if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator())) {
+        if (BI->isUnconditional()) {
+          Pred->getInstList().pop_back();  // nuke uncond branch
+          new UnwindInst(Pred);            // Use unwind.
+          Changed = true;
+        }
+      } else if (InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
+        if (II->getUnwindDest() == BB) {
+          // Insert a new branch instruction before the invoke, because this
+          // is now a fall through...
+          BranchInst *BI = new BranchInst(II->getNormalDest(), II);
+          Pred->getInstList().remove(II);   // Take out of symbol table
           
-          //cerr << "Function after removal: \n" << M;
-          return true;
-       }
+          // Insert the call now...
+          std::vector<Value*> Args(II->op_begin()+3, II->op_end());
+          CallInst *CI = new CallInst(II->getCalledValue(), Args,
+                                      II->getName(), BI);
+          // If the invoke produced a value, the Call now does instead
+          II->replaceAllUsesWith(CI);
+          delete II;
+          Changed = true;
+        }
+      
+      Preds.pop_back();
+    }
+
+    // If this block is now dead, remove it.
+    if (pred_begin(BB) == pred_end(BB)) {
+      // We know there are no successors, so just nuke the block.
+      M->getBasicBlockList().erase(BB);
+      return true;
+    }
+
+  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->begin())) {
+    if (isValueEqualityComparison(SI))
+      if (FoldValueComparisonIntoPredecessors(SI))
+        return SimplifyCFG(BB) || 1;
+  } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
+    if (BI->isConditional()) {
+      if (Value *CompVal = isValueEqualityComparison(BI)) {
+        // This block must be empty, except for the setcond inst, if it exists.
+        BasicBlock::iterator I = BB->begin();
+        if (&*I == BI ||
+            (&*I == cast<Instruction>(BI->getCondition()) &&
+             &*++I == BI))
+          if (FoldValueComparisonIntoPredecessors(BI))
+            return SimplifyCFG(BB) | true;
+      }
+
+      // If this basic block is ONLY a setcc and a branch, and if a predecessor
+      // branches to us and one of our successors, fold the setcc into the
+      // predecessor and use logical operations to pick the right destination.
+      BasicBlock *TrueDest  = BI->getSuccessor(0);
+      BasicBlock *FalseDest = BI->getSuccessor(1);
+      if (BinaryOperator *Cond = dyn_cast<BinaryOperator>(BI->getCondition()))
+        if (Cond->getParent() == BB && &BB->front() == Cond &&
+            Cond->getNext() == BI && Cond->hasOneUse() &&
+            TrueDest != BB && FalseDest != BB)
+          for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI!=E; ++PI)
+            if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
+              if (PBI->isConditional() && SafeToMergeTerminators(BI, PBI)) {
+                BasicBlock *PredBlock = *PI;
+                if (PBI->getSuccessor(0) == FalseDest ||
+                    PBI->getSuccessor(1) == TrueDest) {
+                  // Invert the predecessors condition test (xor it with true),
+                  // which allows us to write this code once.
+                  Value *NewCond =
+                    BinaryOperator::createNot(PBI->getCondition(),
+                                    PBI->getCondition()->getName()+".not", PBI);
+                  PBI->setCondition(NewCond);
+                  BasicBlock *OldTrue = PBI->getSuccessor(0);
+                  BasicBlock *OldFalse = PBI->getSuccessor(1);
+                  PBI->setSuccessor(0, OldFalse);
+                  PBI->setSuccessor(1, OldTrue);
+                }
+
+                if (PBI->getSuccessor(0) == TrueDest ||
+                    PBI->getSuccessor(1) == FalseDest) {
+                  // Clone Cond into the predecessor basic block, and or/and the
+                  // two conditions together.
+                  Instruction *New = Cond->clone();
+                  New->setName(Cond->getName());
+                  Cond->setName(Cond->getName()+".old");
+                  PredBlock->getInstList().insert(PBI, New);
+                  Instruction::BinaryOps Opcode =
+                    PBI->getSuccessor(0) == TrueDest ?
+                    Instruction::Or : Instruction::And;
+                  Value *NewCond = 
+                    BinaryOperator::create(Opcode, PBI->getCondition(),
+                                           New, "bothcond", PBI);
+                  PBI->setCondition(NewCond);
+                  if (PBI->getSuccessor(0) == BB) {
+                    AddPredecessorToBlock(TrueDest, PredBlock, BB);
+                    PBI->setSuccessor(0, TrueDest);
+                  }
+                  if (PBI->getSuccessor(1) == BB) {
+                    AddPredecessorToBlock(FalseDest, PredBlock, BB);
+                    PBI->setSuccessor(1, FalseDest);
+                  }
+                  return SimplifyCFG(BB) | 1;
+                }
+              }
+
+      // If this block ends with a branch instruction, and if there is one
+      // predecessor, see if the previous block ended with a branch on the same
+      // condition, which makes this conditional branch redundant.
+      pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
+      BasicBlock *OnlyPred = *PI++;
+      for (; PI != PE; ++PI)// Search all predecessors, see if they are all same
+        if (*PI != OnlyPred) {
+          OnlyPred = 0;       // There are multiple different predecessors...
+          break;
+        }
+      
+      if (OnlyPred)
+        if (BranchInst *PBI = dyn_cast<BranchInst>(OnlyPred->getTerminator()))
+          if (PBI->isConditional() &&
+              PBI->getCondition() == BI->getCondition() &&
+              (PBI->getSuccessor(0) != BB || PBI->getSuccessor(1) != BB)) {
+            // Okay, the outcome of this conditional branch is statically
+            // knowable.  Delete the outgoing CFG edge that is impossible to
+            // execute.
+            bool CondIsTrue = PBI->getSuccessor(0) == BB;
+            BI->getSuccessor(CondIsTrue)->removePredecessor(BB);
+            new BranchInst(BI->getSuccessor(!CondIsTrue), BB);
+            BB->getInstList().erase(BI);
+            return SimplifyCFG(BB) | true;
+          }
+    }
+  } else if (isa<UnreachableInst>(BB->getTerminator())) {
+    // If there are any instructions immediately before the unreachable that can
+    // be removed, do so.
+    Instruction *Unreachable = BB->getTerminator();
+    while (Unreachable != BB->begin()) {
+      BasicBlock::iterator BBI = Unreachable;
+      --BBI;
+      if (isa<CallInst>(BBI)) break;
+      // Delete this instruction
+      BB->getInstList().erase(BBI);
+      Changed = true;
+    }
+
+    // If the unreachable instruction is the first in the block, take a gander
+    // at all of the predecessors of this instruction, and simplify them.
+    if (&BB->front() == Unreachable) {
+      std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
+      for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
+        TerminatorInst *TI = Preds[i]->getTerminator();
+
+        if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
+          if (BI->isUnconditional()) {
+            if (BI->getSuccessor(0) == BB) {
+              new UnreachableInst(TI);
+              TI->eraseFromParent();
+              Changed = true;
+            }
+          } else {
+            if (BI->getSuccessor(0) == BB) {
+              new BranchInst(BI->getSuccessor(1), BI);
+              BI->eraseFromParent();
+            } else if (BI->getSuccessor(1) == BB) {
+              new BranchInst(BI->getSuccessor(0), BI);
+              BI->eraseFromParent();
+              Changed = true;
+            }
+          }
+        } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
+          for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
+            if (SI->getSuccessor(i) == BB) {
+              SI->removeCase(i);
+              --i; --e;
+              Changed = true;
+            }
+          // If the default value is unreachable, figure out the most popular
+          // destination and make it the default.
+          if (SI->getSuccessor(0) == BB) {
+            std::map<BasicBlock*, unsigned> Popularity;
+            for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
+              Popularity[SI->getSuccessor(i)]++;
+
+            // Find the most popular block.
+            unsigned MaxPop = 0;
+            BasicBlock *MaxBlock = 0;
+            for (std::map<BasicBlock*, unsigned>::iterator
+                   I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
+              if (I->second > MaxPop) {
+                MaxPop = I->second;
+                MaxBlock = I->first;
+              }
+            }
+            if (MaxBlock) {
+              // Make this the new default, allowing us to delete any explicit
+              // edges to it.
+              SI->setSuccessor(0, MaxBlock);
+              Changed = true;
+
+              for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
+                if (SI->getSuccessor(i) == MaxBlock) {
+                  SI->removeCase(i);
+                  --i; --e;
+                }
+            }
+          }
+        } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
+          if (II->getUnwindDest() == BB) {
+            // Convert the invoke to a call instruction.  This would be a good
+            // place to note that the call does not throw though.
+            BranchInst *BI = new BranchInst(II->getNormalDest(), II);
+            II->removeFromParent();   // Take out of symbol table
+          
+            // Insert the call now...
+            std::vector<Value*> Args(II->op_begin()+3, II->op_end());
+            CallInst *CI = new CallInst(II->getCalledValue(), Args,
+                                        II->getName(), BI);
+            // If the invoke produced a value, the Call does now instead.
+            II->replaceAllUsesWith(CI);
+            delete II;
+            Changed = true;
+          }
+        }
+      }
+
+      // If this block is now dead, remove it.
+      if (pred_begin(BB) == pred_end(BB)) {
+        // We know there are no successors, so just nuke the block.
+        M->getBasicBlockList().erase(BB);
+        return true;
       }
     }
   }
@@ -353,7 +1109,7 @@ bool llvm::SimplifyCFG(BasicBlock *BB) {
       OnlyPred = 0;       // There are multiple different predecessors...
       break;
     }
-  
+
   BasicBlock *OnlySucc = 0;
   if (OnlyPred && OnlyPred != BB &&    // Don't break self loops
       OnlyPred->getTerminator()->getOpcode() != Instruction::Invoke) {
@@ -368,7 +1124,7 @@ bool llvm::SimplifyCFG(BasicBlock *BB) {
   }
 
   if (OnlySucc) {
-    //cerr << "Merging: " << BB << "into: " << OnlyPred;
+    DEBUG(std::cerr << "Merging: " << *BB << "into: " << *OnlyPred);
     TerminatorInst *Term = OnlyPred->getTerminator();
 
     // Resolve any PHI nodes at the start of the block.  They are all
@@ -404,6 +1160,75 @@ bool llvm::SimplifyCFG(BasicBlock *BB) {
     return true;
   }
 
+  // Otherwise, if this block only has a single predecessor, and if that block
+  // is a conditional branch, see if we can hoist any code from this block up
+  // into our predecessor.
+  if (OnlyPred)
+    if (BranchInst *BI = dyn_cast<BranchInst>(OnlyPred->getTerminator())) {
+      // This is guaranteed to be a condbr at this point.
+      assert(BI->isConditional() && "Should have folded bb into pred!");
+      // Get the other block.
+      BasicBlock *OtherBB = BI->getSuccessor(BI->getSuccessor(0) == BB);
+      PI = pred_begin(OtherBB);
+      ++PI;
+      if (PI == pred_end(OtherBB)) {
+        // We have a conditional branch to two blocks that are only reachable
+        // from the condbr.  We know that the condbr dominates the two blocks,
+        // so see if there is any identical code in the "then" and "else"
+        // blocks.  If so, we can hoist it up to the branching block.
+        Changed |= HoistThenElseCodeToIf(BI);
+      }
+    }
+
+  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
+    if (BranchInst *BI = dyn_cast<BranchInst>((*PI)->getTerminator()))
+      // Change br (X == 0 | X == 1), T, F into a switch instruction.
+      if (BI->isConditional() && isa<Instruction>(BI->getCondition())) {
+        Instruction *Cond = cast<Instruction>(BI->getCondition());
+        // If this is a bunch of seteq's or'd together, or if it's a bunch of
+        // 'setne's and'ed together, collect them.
+        Value *CompVal = 0;
+        std::vector<ConstantInt*> Values;
+        bool TrueWhenEqual = GatherValueComparisons(Cond, CompVal, Values);
+        if (CompVal && CompVal->getType()->isInteger()) {
+          // There might be duplicate constants in the list, which the switch
+          // instruction can't handle, remove them now.
+          std::sort(Values.begin(), Values.end(), ConstantIntOrdering());
+          Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
+          
+          // Figure out which block is which destination.
+          BasicBlock *DefaultBB = BI->getSuccessor(1);
+          BasicBlock *EdgeBB    = BI->getSuccessor(0);
+          if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
+          
+          // Create the new switch instruction now.
+          SwitchInst *New = new SwitchInst(CompVal, DefaultBB, BI);
+          
+          // Add all of the 'cases' to the switch instruction.
+          for (unsigned i = 0, e = Values.size(); i != e; ++i)
+            New->addCase(Values[i], EdgeBB);
+          
+          // We added edges from PI to the EdgeBB.  As such, if there were any
+          // PHI nodes in EdgeBB, they need entries to be added corresponding to
+          // the number of edges added.
+          for (BasicBlock::iterator BBI = EdgeBB->begin();
+               isa<PHINode>(BBI); ++BBI) {
+            PHINode *PN = cast<PHINode>(BBI);
+            Value *InVal = PN->getIncomingValueForBlock(*PI);
+            for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
+              PN->addIncoming(InVal, *PI);
+          }
+
+          // Erase the old branch instruction.
+          (*PI)->getInstList().erase(BI);
+
+          // Erase the potentially condition tree that was used to computed the
+          // branch condition.
+          ErasePossiblyDeadInstructionTree(Cond);
+          return true;
+        }
+      }
+
   // If there is a trivial two-entry PHI node in this basic block, and we can
   // eliminate it, do so now.
   if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
@@ -417,108 +1242,102 @@ bool llvm::SimplifyCFG(BasicBlock *BB) {
       //
       BasicBlock *IfTrue, *IfFalse;
       if (Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse)) {
-        //std::cerr << "FOUND IF CONDITION!  " << *IfCond << "  T: "
-        //       << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n";
+        DEBUG(std::cerr << "FOUND IF CONDITION!  " << *IfCond << "  T: "
+              << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
+
+        // Loop over the PHI's seeing if we can promote them all to select
+        // instructions.  While we are at it, keep track of the instructions
+        // that need to be moved to the dominating block.
+        std::set<Instruction*> AggressiveInsts;
+        bool CanPromote = true;
 
-        // Figure out where to insert instructions as necessary.
         BasicBlock::iterator AfterPHIIt = BB->begin();
-        while (isa<PHINode>(AfterPHIIt)) ++AfterPHIIt;
+        while (isa<PHINode>(AfterPHIIt)) {
+          PHINode *PN = cast<PHINode>(AfterPHIIt++);
+          if (PN->getIncomingValue(0) == PN->getIncomingValue(1))
+            PN->replaceAllUsesWith(PN->getIncomingValue(0));
+          else if (!DominatesMergePoint(PN->getIncomingValue(0), BB,
+                                        &AggressiveInsts) ||
+                   !DominatesMergePoint(PN->getIncomingValue(1), BB,
+                                        &AggressiveInsts)) {
+            CanPromote = false;
+            break;
+          }
+        }
 
-        BasicBlock::iterator I = BB->begin();
-        while (PHINode *PN = dyn_cast<PHINode>(I)) {
-          ++I;
-
-          // If we can eliminate this PHI by directly computing it based on the
-          // condition, do so now.  We can't eliminate PHI nodes where the
-          // incoming values are defined in the conditional parts of the branch,
-          // so check for this.
-          //
-          if (DominatesMergePoint(PN->getIncomingValue(0), BB) &&
-              DominatesMergePoint(PN->getIncomingValue(1), BB)) {
+        // Did we eliminate all PHI's?
+        CanPromote |= AfterPHIIt == BB->begin();
+
+        // If we all PHI nodes are promotable, check to make sure that all
+        // instructions in the predecessor blocks can be promoted as well.  If
+        // not, we won't be able to get rid of the control flow, so it's not
+        // worth promoting to select instructions.
+        BasicBlock *DomBlock = 0, *IfBlock1 = 0, *IfBlock2 = 0;
+        if (CanPromote) {
+          PN = cast<PHINode>(BB->begin());
+          BasicBlock *Pred = PN->getIncomingBlock(0);
+          if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
+            IfBlock1 = Pred;
+            DomBlock = *pred_begin(Pred);
+            for (BasicBlock::iterator I = Pred->begin();
+                 !isa<TerminatorInst>(I); ++I)
+              if (!AggressiveInsts.count(I)) {
+                // This is not an aggressive instruction that we can promote.
+                // Because of this, we won't be able to get rid of the control
+                // flow, so the xform is not worth it.
+                CanPromote = false;
+                break;
+              }
+          }
+
+          Pred = PN->getIncomingBlock(1);
+          if (CanPromote && 
+              cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
+            IfBlock2 = Pred;
+            DomBlock = *pred_begin(Pred);
+            for (BasicBlock::iterator I = Pred->begin();
+                 !isa<TerminatorInst>(I); ++I)
+              if (!AggressiveInsts.count(I)) {
+                // This is not an aggressive instruction that we can promote.
+                // Because of this, we won't be able to get rid of the control
+                // flow, so the xform is not worth it.
+                CanPromote = false;
+                break;
+              }
+          }
+        }
+
+        // If we can still promote the PHI nodes after this gauntlet of tests,
+        // do all of the PHI's now.
+        if (CanPromote) {
+          // Move all 'aggressive' instructions, which are defined in the
+          // conditional parts of the if's up to the dominating block.
+          if (IfBlock1) {
+            DomBlock->getInstList().splice(DomBlock->getTerminator(),
+                                           IfBlock1->getInstList(),
+                                           IfBlock1->begin(),
+                                           IfBlock1->getTerminator());
+          }
+          if (IfBlock2) {
+            DomBlock->getInstList().splice(DomBlock->getTerminator(),
+                                           IfBlock2->getInstList(),
+                                           IfBlock2->begin(),
+                                           IfBlock2->getTerminator());
+          }
+
+          while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
+            // Change the PHI node into a select instruction.
             Value *TrueVal =
               PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
             Value *FalseVal =
               PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
 
-            // FIXME: when we have a 'select' statement, we can be completely
-            // generic and clean here and let the instcombine pass clean up
-            // after us, by folding the select instructions away when possible.
-            //
-            if (TrueVal == FalseVal) {
-              // Degenerate case...
-              PN->replaceAllUsesWith(TrueVal);
-              BB->getInstList().erase(PN);
-              Changed = true;
-            } else if (isa<ConstantBool>(TrueVal) &&
-                       isa<ConstantBool>(FalseVal)) {
-              if (TrueVal == ConstantBool::True) {
-                // The PHI node produces the same thing as the condition.
-                PN->replaceAllUsesWith(IfCond);
-              } else {
-                // The PHI node produces the inverse of the condition.  Insert a
-                // "NOT" instruction, which is really a XOR.
-                Value *InverseCond =
-                  BinaryOperator::createNot(IfCond, IfCond->getName()+".inv",
-                                            AfterPHIIt);
-                PN->replaceAllUsesWith(InverseCond);
-              }
-              BB->getInstList().erase(PN);
-              Changed = true;
-            } else if (isa<ConstantInt>(TrueVal) && isa<ConstantInt>(FalseVal)){
-              // If this is a PHI of two constant integers, we insert a cast of
-              // the boolean to the integer type in question, giving us 0 or 1.
-              // Then we multiply this by the difference of the two constants,
-              // giving us 0 if false, and the difference if true.  We add this
-              // result to the base constant, giving us our final value.  We
-              // rely on the instruction combiner to eliminate many special
-              // cases, like turning multiplies into shifts when possible.
-              std::string Name = PN->getName(); PN->setName("");
-              Value *TheCast = new CastInst(IfCond, TrueVal->getType(),
-                                            Name, AfterPHIIt);
-              Constant *TheDiff = ConstantExpr::get(Instruction::Sub,
-                                                    cast<Constant>(TrueVal),
-                                                    cast<Constant>(FalseVal));
-              Value *V = TheCast;
-              if (TheDiff != ConstantInt::get(TrueVal->getType(), 1))
-                V = BinaryOperator::create(Instruction::Mul, TheCast,
-                                           TheDiff, TheCast->getName()+".scale",
-                                           AfterPHIIt);
-              if (!cast<Constant>(FalseVal)->isNullValue())
-                V = BinaryOperator::create(Instruction::Add, V, FalseVal,
-                                           V->getName()+".offs", AfterPHIIt);
-              PN->replaceAllUsesWith(V);
-              BB->getInstList().erase(PN);
-              Changed = true;
-            } else if (isa<ConstantInt>(FalseVal) &&
-                       cast<Constant>(FalseVal)->isNullValue()) {
-              // If the false condition is an integral zero value, we can
-              // compute the PHI by multiplying the condition by the other
-              // value.
-              std::string Name = PN->getName(); PN->setName("");
-              Value *TheCast = new CastInst(IfCond, TrueVal->getType(),
-                                            Name+".c", AfterPHIIt);
-              Value *V = BinaryOperator::create(Instruction::Mul, TrueVal,
-                                                TheCast, Name, AfterPHIIt);
-              PN->replaceAllUsesWith(V);
-              BB->getInstList().erase(PN);
-              Changed = true;
-            } else if (isa<ConstantInt>(TrueVal) &&
-                       cast<Constant>(TrueVal)->isNullValue()) {
-              // If the true condition is an integral zero value, we can compute
-              // the PHI by multiplying the inverse condition by the other
-              // value.
-              std::string Name = PN->getName(); PN->setName("");
-              Value *NotCond = BinaryOperator::createNot(IfCond, Name+".inv",
-                                                         AfterPHIIt);
-              Value *TheCast = new CastInst(NotCond, TrueVal->getType(),
-                                            Name+".inv", AfterPHIIt);
-              Value *V = BinaryOperator::create(Instruction::Mul, FalseVal,
-                                                TheCast, Name, AfterPHIIt);
-              PN->replaceAllUsesWith(V);
-              BB->getInstList().erase(PN);
-              Changed = true;
-            }
+            std::string Name = PN->getName(); PN->setName("");
+            PN->replaceAllUsesWith(new SelectInst(IfCond, TrueVal, FalseVal,
+                                                  Name, AfterPHIIt));
+            BB->getInstList().erase(PN);
           }
+          Changed = true;
         }
       }
     }