Removed assert that doesn't typecheck and breaks debug MSVC build.
[oota-llvm.git] / lib / Transforms / Vectorize / LoopVectorize.cpp
index 006efba6a06b39453c15f4ab9b987d69943c1402..f6b60569149f0ccf4821779ed5938e46de02a342 100644 (file)
@@ -55,7 +55,7 @@
 #include "llvm/ADT/StringExtras.h"
 #include "llvm/Analysis/AliasAnalysis.h"
 #include "llvm/Analysis/AliasSetTracker.h"
-#include "llvm/Analysis/AssumptionTracker.h"
+#include "llvm/Analysis/AssumptionCache.h"
 #include "llvm/Analysis/BlockFrequencyInfo.h"
 #include "llvm/Analysis/CodeMetrics.h"
 #include "llvm/Analysis/LoopInfo.h"
@@ -355,10 +355,9 @@ protected:
   /// element.
   virtual Value *getBroadcastInstrs(Value *V);
 
-  /// This function adds 0, 1, 2 ... to each vector element, starting at zero.
-  /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...).
-  /// The sequence starts at StartIndex.
-  virtual Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate);
+  /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...)
+  /// to each vector element of Val. The sequence starts at StartIndex.
+  virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step);
 
   /// When we go over instructions in the basic block we rely on previous
   /// values within the current basic block or on loop invariant values.
@@ -479,7 +478,7 @@ private:
                             bool IfPredicateStore = false) override;
   void vectorizeMemoryInstruction(Instruction *Instr) override;
   Value *getBroadcastInstrs(Value *V) override;
-  Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate) override;
+  Value *getStepVector(Value *Val, int StartIdx, Value *Step) override;
   Value *reverseVector(Value *Vec) override;
 };
 
@@ -603,11 +602,9 @@ public:
 
   /// This enum represents the kinds of inductions that we support.
   enum InductionKind {
-    IK_NoInduction,         ///< Not an induction variable.
-    IK_IntInduction,        ///< Integer induction variable. Step = 1.
-    IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1.
-    IK_PtrInduction,        ///< Pointer induction var. Step = sizeof(elem).
-    IK_ReversePtrInduction  ///< Reverse ptr indvar. Step = - sizeof(elem).
+    IK_NoInduction,  ///< Not an induction variable.
+    IK_IntInduction, ///< Integer induction variable. Step = C.
+    IK_PtrInduction  ///< Pointer induction var. Step = C / sizeof(elem).
   };
 
   // This enum represents the kind of minmax reduction.
@@ -697,12 +694,67 @@ public:
 
   /// A struct for saving information about induction variables.
   struct InductionInfo {
-    InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {}
-    InductionInfo() : StartValue(nullptr), IK(IK_NoInduction) {}
+    InductionInfo(Value *Start, InductionKind K, ConstantInt *Step)
+        : StartValue(Start), IK(K), StepValue(Step) {
+      assert(IK != IK_NoInduction && "Not an induction");
+      assert(StartValue && "StartValue is null");
+      assert(StepValue && !StepValue->isZero() && "StepValue is zero");
+      assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
+             "StartValue is not a pointer for pointer induction");
+      assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
+             "StartValue is not an integer for integer induction");
+      assert(StepValue->getType()->isIntegerTy() &&
+             "StepValue is not an integer");
+    }
+    InductionInfo()
+        : StartValue(nullptr), IK(IK_NoInduction), StepValue(nullptr) {}
+
+    /// Get the consecutive direction. Returns:
+    ///   0 - unknown or non-consecutive.
+    ///   1 - consecutive and increasing.
+    ///  -1 - consecutive and decreasing.
+    int getConsecutiveDirection() const {
+      if (StepValue && (StepValue->isOne() || StepValue->isMinusOne()))
+        return StepValue->getSExtValue();
+      return 0;
+    }
+
+    /// Compute the transformed value of Index at offset StartValue using step
+    /// StepValue.
+    /// For integer induction, returns StartValue + Index * StepValue.
+    /// For pointer induction, returns StartValue[Index * StepValue].
+    /// FIXME: The newly created binary instructions should contain nsw/nuw
+    /// flags, which can be found from the original scalar operations.
+    Value *transform(IRBuilder<> &B, Value *Index) const {
+      switch (IK) {
+      case IK_IntInduction:
+        assert(Index->getType() == StartValue->getType() &&
+               "Index type does not match StartValue type");
+        if (StepValue->isMinusOne())
+          return B.CreateSub(StartValue, Index);
+        if (!StepValue->isOne())
+          Index = B.CreateMul(Index, StepValue);
+        return B.CreateAdd(StartValue, Index);
+
+      case IK_PtrInduction:
+        if (StepValue->isMinusOne())
+          Index = B.CreateNeg(Index);
+        else if (!StepValue->isOne())
+          Index = B.CreateMul(Index, StepValue);
+        return B.CreateGEP(StartValue, Index);
+
+      case IK_NoInduction:
+        return nullptr;
+      }
+      llvm_unreachable("invalid enum");
+    }
+
     /// Start value.
     TrackingVH<Value> StartValue;
     /// Induction kind.
     InductionKind IK;
+    /// Step value.
+    ConstantInt *StepValue;
   };
 
   /// ReductionList contains the reduction descriptors for all
@@ -822,15 +874,15 @@ private:
   /// pattern corresponding to a min(X, Y) or max(X, Y).
   static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I,
                                                     ReductionInstDesc &Prev);
-  /// Returns the induction kind of Phi. This function may return NoInduction
-  /// if the PHI is not an induction variable.
-  InductionKind isInductionVariable(PHINode *Phi);
+  /// Returns the induction kind of Phi and record the step. This function may
+  /// return NoInduction if the PHI is not an induction variable.
+  InductionKind isInductionVariable(PHINode *Phi, ConstantInt *&StepValue);
 
   /// \brief Collect memory access with loop invariant strides.
   ///
   /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop
   /// invariant.
-  void collectStridedAcccess(Value *LoadOrStoreInst);
+  void collectStridedAccess(Value *LoadOrStoreInst);
 
   /// Report an analysis message to assist the user in diagnosing loops that are
   /// not vectorized.
@@ -908,11 +960,11 @@ public:
                              LoopVectorizationLegality *Legal,
                              const TargetTransformInfo &TTI,
                              const DataLayout *DL, const TargetLibraryInfo *TLI,
-                             AssumptionTracker *AT, const Function *F,
+                             AssumptionCache *AC, const Function *F,
                              const LoopVectorizeHints *Hints)
       : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI),
         TheFunction(F), Hints(Hints) {
-    CodeMetrics::collectEphemeralValues(L, AT, EphValues);
+    CodeMetrics::collectEphemeralValues(L, AC, EphValues);
   }
 
   /// Information about vectorization costs
@@ -1267,7 +1319,7 @@ struct LoopVectorize : public FunctionPass {
   BlockFrequencyInfo *BFI;
   TargetLibraryInfo *TLI;
   AliasAnalysis *AA;
-  AssumptionTracker *AT;
+  AssumptionCache *AC;
   bool DisableUnrolling;
   bool AlwaysVectorize;
 
@@ -1277,13 +1329,14 @@ struct LoopVectorize : public FunctionPass {
     SE = &getAnalysis<ScalarEvolution>();
     DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
     DL = DLP ? &DLP->getDataLayout() : nullptr;
-    LI = &getAnalysis<LoopInfo>();
-    TTI = &getAnalysis<TargetTransformInfo>();
+    LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
+    TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI();
     DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
     BFI = &getAnalysis<BlockFrequencyInfo>();
-    TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
+    auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
+    TLI = TLIP ? &TLIP->getTLI() : nullptr;
     AA = &getAnalysis<AliasAnalysis>();
-    AT = &getAnalysis<AssumptionTracker>();
+    AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
 
     // Compute some weights outside of the loop over the loops. Compute this
     // using a BranchProbability to re-use its scaling math.
@@ -1402,7 +1455,7 @@ struct LoopVectorize : public FunctionPass {
     }
 
     // Use the cost model.
-    LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI, AT, F,
+    LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI, AC, F,
                                   &Hints);
 
     // Check the function attributes to find out if this function should be
@@ -1490,16 +1543,16 @@ struct LoopVectorize : public FunctionPass {
   }
 
   void getAnalysisUsage(AnalysisUsage &AU) const override {
-    AU.addRequired<AssumptionTracker>();
+    AU.addRequired<AssumptionCacheTracker>();
     AU.addRequiredID(LoopSimplifyID);
     AU.addRequiredID(LCSSAID);
     AU.addRequired<BlockFrequencyInfo>();
     AU.addRequired<DominatorTreeWrapperPass>();
-    AU.addRequired<LoopInfo>();
+    AU.addRequired<LoopInfoWrapperPass>();
     AU.addRequired<ScalarEvolution>();
-    AU.addRequired<TargetTransformInfo>();
+    AU.addRequired<TargetTransformInfoWrapperPass>();
     AU.addRequired<AliasAnalysis>();
-    AU.addPreserved<LoopInfo>();
+    AU.addPreserved<LoopInfoWrapperPass>();
     AU.addPreserved<DominatorTreeWrapperPass>();
     AU.addPreserved<AliasAnalysis>();
   }
@@ -1591,11 +1644,13 @@ Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
   return Shuf;
 }
 
-Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, int StartIdx,
-                                                 bool Negate) {
+Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx,
+                                          Value *Step) {
   assert(Val->getType()->isVectorTy() && "Must be a vector");
   assert(Val->getType()->getScalarType()->isIntegerTy() &&
          "Elem must be an integer");
+  assert(Step->getType() == Val->getType()->getScalarType() &&
+         "Step has wrong type");
   // Create the types.
   Type *ITy = Val->getType()->getScalarType();
   VectorType *Ty = cast<VectorType>(Val->getType());
@@ -1603,15 +1658,18 @@ Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, int StartIdx,
   SmallVector<Constant*, 8> Indices;
 
   // Create a vector of consecutive numbers from zero to VF.
-  for (int i = 0; i < VLen; ++i) {
-    int64_t Idx = Negate ? (-i) : i;
-    Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx, Negate));
-  }
+  for (int i = 0; i < VLen; ++i)
+    Indices.push_back(ConstantInt::get(ITy, StartIdx + i));
 
   // Add the consecutive indices to the vector value.
   Constant *Cv = ConstantVector::get(Indices);
   assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
-  return Builder.CreateAdd(Val, Cv, "induction");
+  Step = Builder.CreateVectorSplat(VLen, Step);
+  assert(Step->getType() == Val->getType() && "Invalid step vec");
+  // FIXME: The newly created binary instructions should contain nsw/nuw flags,
+  // which can be found from the original scalar operations.
+  Step = Builder.CreateMul(Cv, Step);
+  return Builder.CreateAdd(Val, Step, "induction");
 }
 
 /// \brief Find the operand of the GEP that should be checked for consecutive
@@ -1649,10 +1707,7 @@ int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
   PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
   if (Phi && Inductions.count(Phi)) {
     InductionInfo II = Inductions[Phi];
-    if (IK_PtrInduction == II.IK)
-      return 1;
-    else if (IK_ReversePtrInduction == II.IK)
-      return -1;
+    return II.getConsecutiveDirection();
   }
 
   GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr);
@@ -1677,10 +1732,7 @@ int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
         return 0;
 
     InductionInfo II = Inductions[Phi];
-    if (IK_PtrInduction == II.IK)
-      return 1;
-    else if (IK_ReversePtrInduction == II.IK)
-      return -1;
+    return II.getConsecutiveDirection();
   }
 
   unsigned InductionOperand = getGEPInductionOperand(DL, Gep);
@@ -1874,6 +1926,7 @@ void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) {
         // wide store needs to start at the last vector element.
         PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
         PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
+        Mask[Part] = reverseVector(Mask[Part]);
       }
 
       Value *VecPtr = Builder.CreateBitCast(PartPtr,
@@ -1902,6 +1955,7 @@ void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) {
       // wide load needs to start at the last vector element.
       PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
       PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
+      Mask[Part] = reverseVector(Mask[Part]);
     }
 
     Instruction* NewLI;
@@ -1990,7 +2044,7 @@ void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, bool IfPredic
         Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, ConstantInt::get(Cmp->getType(), 1));
         CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store");
         LoopVectorBody.push_back(CondBlock);
-        VectorLp->addBasicBlockToLoop(CondBlock, LI->getBase());
+        VectorLp->addBasicBlockToLoop(CondBlock, *LI);
         // Update Builder with newly created basic block.
         Builder.SetInsertPoint(InsertPt);
       }
@@ -2019,7 +2073,7 @@ void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, bool IfPredic
       if (IfPredicateStore) {
          BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else");
          LoopVectorBody.push_back(NewIfBlock);
-         VectorLp->addBasicBlockToLoop(NewIfBlock, LI->getBase());
+         VectorLp->addBasicBlockToLoop(NewIfBlock, *LI);
          Builder.SetInsertPoint(InsertPt);
          Instruction *OldBr = IfBlock->getTerminator();
          BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
@@ -2297,13 +2351,13 @@ void InnerLoopVectorizer::createEmptyLoop() {
   // before calling any utilities such as SCEV that require valid LoopInfo.
   if (ParentLoop) {
     ParentLoop->addChildLoop(Lp);
-    ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase());
-    ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase());
-    ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase());
+    ParentLoop->addBasicBlockToLoop(ScalarPH, *LI);
+    ParentLoop->addBasicBlockToLoop(VectorPH, *LI);
+    ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI);
   } else {
     LI->addTopLevelLoop(Lp);
   }
-  Lp->addBasicBlockToLoop(VecBody, LI->getBase());
+  Lp->addBasicBlockToLoop(VecBody, *LI);
 
   // Use this IR builder to create the loop instructions (Phi, Br, Cmp)
   // inside the loop.
@@ -2358,7 +2412,7 @@ void InnerLoopVectorizer::createEmptyLoop() {
     BasicBlock *CheckBlock =
       LastBypassBlock->splitBasicBlock(PastOverflowCheck, "overflow.checked");
     if (ParentLoop)
-      ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase());
+      ParentLoop->addBasicBlockToLoop(CheckBlock, *LI);
     LoopBypassBlocks.push_back(CheckBlock);
     Instruction *OldTerm = LastBypassBlock->getTerminator();
     BranchInst::Create(ScalarPH, CheckBlock, CheckBCOverflow, OldTerm);
@@ -2378,7 +2432,7 @@ void InnerLoopVectorizer::createEmptyLoop() {
     BasicBlock *CheckBlock =
         LastBypassBlock->splitBasicBlock(FirstCheckInst, "vector.stridecheck");
     if (ParentLoop)
-      ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase());
+      ParentLoop->addBasicBlockToLoop(CheckBlock, *LI);
     LoopBypassBlocks.push_back(CheckBlock);
 
     // Replace the branch into the memory check block with a conditional branch
@@ -2402,7 +2456,7 @@ void InnerLoopVectorizer::createEmptyLoop() {
     BasicBlock *CheckBlock =
         LastBypassBlock->splitBasicBlock(MemRuntimeCheck, "vector.memcheck");
     if (ParentLoop)
-      ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase());
+      ParentLoop->addBasicBlockToLoop(CheckBlock, *LI);
     LoopBypassBlocks.push_back(CheckBlock);
 
     // Replace the branch into the memory check block with a conditional branch
@@ -2493,33 +2547,13 @@ void InnerLoopVectorizer::createEmptyLoop() {
       Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown,
                                                    II.StartValue->getType(),
                                                    "cast.crd");
-      EndValue = BypassBuilder.CreateAdd(CRD, II.StartValue , "ind.end");
-      break;
-    }
-    case LoopVectorizationLegality::IK_ReverseIntInduction: {
-      // Convert the CountRoundDown variable to the PHI size.
-      Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown,
-                                                   II.StartValue->getType(),
-                                                   "cast.crd");
-      // Handle reverse integer induction counter.
-      EndValue = BypassBuilder.CreateSub(II.StartValue, CRD, "rev.ind.end");
+      EndValue = II.transform(BypassBuilder, CRD);
+      EndValue->setName("ind.end");
       break;
     }
     case LoopVectorizationLegality::IK_PtrInduction: {
-      // For pointer induction variables, calculate the offset using
-      // the end index.
-      EndValue = BypassBuilder.CreateGEP(II.StartValue, CountRoundDown,
-                                         "ptr.ind.end");
-      break;
-    }
-    case LoopVectorizationLegality::IK_ReversePtrInduction: {
-      // The value at the end of the loop for the reverse pointer is calculated
-      // by creating a GEP with a negative index starting from the start value.
-      Value *Zero = ConstantInt::get(CountRoundDown->getType(), 0);
-      Value *NegIdx = BypassBuilder.CreateSub(Zero, CountRoundDown,
-                                              "rev.ind.end");
-      EndValue = BypassBuilder.CreateGEP(II.StartValue, NegIdx,
-                                         "rev.ptr.ind.end");
+      EndValue = II.transform(BypassBuilder, CountRoundDown);
+      EndValue->setName("ptr.ind.end");
       break;
     }
     }// end of case
@@ -3134,6 +3168,8 @@ void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
   LoopVectorizationLegality::InductionInfo II =
   Legal->getInductionVars()->lookup(P);
 
+  // FIXME: The newly created binary instructions should contain nsw/nuw flags,
+  // which can be found from the original scalar operations.
   switch (II.IK) {
     case LoopVectorizationLegality::IK_NoInduction:
       llvm_unreachable("Unknown induction");
@@ -3151,80 +3187,42 @@ void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
         Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx,
                                                  "normalized.idx");
         NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy);
-        Broadcasted = Builder.CreateAdd(II.StartValue, NormalizedIdx,
-                                        "offset.idx");
+        Broadcasted = II.transform(Builder, NormalizedIdx);
+        Broadcasted->setName("offset.idx");
       }
       Broadcasted = getBroadcastInstrs(Broadcasted);
       // After broadcasting the induction variable we need to make the vector
       // consecutive by adding 0, 1, 2, etc.
       for (unsigned part = 0; part < UF; ++part)
-        Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false);
+        Entry[part] = getStepVector(Broadcasted, VF * part, II.StepValue);
       return;
     }
-    case LoopVectorizationLegality::IK_ReverseIntInduction:
     case LoopVectorizationLegality::IK_PtrInduction:
-    case LoopVectorizationLegality::IK_ReversePtrInduction:
-      // Handle reverse integer and pointer inductions.
-      Value *StartIdx = ExtendedIdx;
-      // This is the normalized GEP that starts counting at zero.
-      Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx,
-                                               "normalized.idx");
-
-      // Handle the reverse integer induction variable case.
-      if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) {
-        IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType());
-        Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy,
-                                               "resize.norm.idx");
-        Value *ReverseInd  = Builder.CreateSub(II.StartValue, CNI,
-                                               "reverse.idx");
-
-        // This is a new value so do not hoist it out.
-        Value *Broadcasted = getBroadcastInstrs(ReverseInd);
-        // After broadcasting the induction variable we need to make the
-        // vector consecutive by adding  ... -3, -2, -1, 0.
-        for (unsigned part = 0; part < UF; ++part)
-          Entry[part] = getConsecutiveVector(Broadcasted, -(int)VF * part,
-                                             true);
-        return;
-      }
-
       // Handle the pointer induction variable case.
       assert(P->getType()->isPointerTy() && "Unexpected type.");
-
-      // Is this a reverse induction ptr or a consecutive induction ptr.
-      bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction ==
-                      II.IK);
-
+      // This is the normalized GEP that starts counting at zero.
+      Value *NormalizedIdx =
+          Builder.CreateSub(Induction, ExtendedIdx, "normalized.idx");
       // This is the vector of results. Notice that we don't generate
       // vector geps because scalar geps result in better code.
       for (unsigned part = 0; part < UF; ++part) {
         if (VF == 1) {
-          int EltIndex = (part) * (Reverse ? -1 : 1);
+          int EltIndex = part;
           Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
-          Value *GlobalIdx;
-          if (Reverse)
-            GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx");
-          else
-            GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
-
-          Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
-                                             "next.gep");
+          Value *GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx);
+          Value *SclrGep = II.transform(Builder, GlobalIdx);
+          SclrGep->setName("next.gep");
           Entry[part] = SclrGep;
           continue;
         }
 
         Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
         for (unsigned int i = 0; i < VF; ++i) {
-          int EltIndex = (i + part * VF) * (Reverse ? -1 : 1);
+          int EltIndex = i + part * VF;
           Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
-          Value *GlobalIdx;
-          if (!Reverse)
-            GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
-          else
-            GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx");
-
-          Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
-                                             "next.gep");
+          Value *GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx);
+          Value *SclrGep = II.transform(Builder, GlobalIdx);
+          SclrGep->setName("next.gep");
           VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
                                                Builder.getInt32(i),
                                                "insert.gep");
@@ -3244,7 +3242,7 @@ void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) {
       // Nothing to do for PHIs and BR, since we already took care of the
       // loop control flow instructions.
       continue;
-    case Instruction::PHI:{
+    case Instruction::PHI: {
       // Vectorize PHINodes.
       widenPHIInstruction(it, Entry, UF, VF, PV);
       continue;
@@ -3365,8 +3363,12 @@ void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) {
         Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction,
                                                CI->getType());
         Value *Broadcasted = getBroadcastInstrs(ScalarCast);
+        LoopVectorizationLegality::InductionInfo II =
+            Legal->getInductionVars()->lookup(OldInduction);
+        Constant *Step =
+            ConstantInt::getSigned(CI->getType(), II.StepValue->getSExtValue());
         for (unsigned Part = 0; Part < UF; ++Part)
-          Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false);
+          Entry[Part] = getStepVector(Broadcasted, VF * Part, Step);
         propagateMetadata(Entry, it);
         break;
       }
@@ -3548,7 +3550,7 @@ bool LoopVectorizationLegality::canVectorize() {
   }
 
   // We can only vectorize innermost loops.
-  if (TheLoop->getSubLoopsVector().size()) {
+  if (!TheLoop->getSubLoopsVector().empty()) {
     emitAnalysis(Report() << "loop is not the innermost loop");
     return false;
   }
@@ -3703,7 +3705,7 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
           return false;
         }
 
-        // We only allow if-converted PHIs with more than two incoming values.
+        // We only allow if-converted PHIs with exactly two incoming values.
         if (Phi->getNumIncomingValues() != 2) {
           emitAnalysis(Report(it)
                        << "control flow not understood by vectorizer");
@@ -3713,8 +3715,9 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
 
         // This is the value coming from the preheader.
         Value *StartValue = Phi->getIncomingValueForBlock(PreHeader);
+        ConstantInt *StepValue = nullptr;
         // Check if this is an induction variable.
-        InductionKind IK = isInductionVariable(Phi);
+        InductionKind IK = isInductionVariable(Phi, StepValue);
 
         if (IK_NoInduction != IK) {
           // Get the widest type.
@@ -3724,7 +3727,7 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
             WidestIndTy = getWiderType(*DL, PhiTy, WidestIndTy);
 
           // Int inductions are special because we only allow one IV.
-          if (IK == IK_IntInduction) {
+          if (IK == IK_IntInduction && StepValue->isOne()) {
             // Use the phi node with the widest type as induction. Use the last
             // one if there are multiple (no good reason for doing this other
             // than it is expedient).
@@ -3733,7 +3736,7 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
           }
 
           DEBUG(dbgs() << "LV: Found an induction variable.\n");
-          Inductions[Phi] = InductionInfo(StartValue, IK);
+          Inductions[Phi] = InductionInfo(StartValue, IK, StepValue);
 
           // Until we explicitly handle the case of an induction variable with
           // an outside loop user we have to give up vectorizing this loop.
@@ -3829,12 +3832,12 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
           return false;
         }
         if (EnableMemAccessVersioning)
-          collectStridedAcccess(ST);
+          collectStridedAccess(ST);
       }
 
       if (EnableMemAccessVersioning)
         if (LoadInst *LI = dyn_cast<LoadInst>(it))
-          collectStridedAcccess(LI);
+          collectStridedAccess(LI);
 
       // Reduction instructions are allowed to have exit users.
       // All other instructions must not have external users.
@@ -3972,7 +3975,7 @@ static Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE,
   return Stride;
 }
 
-void LoopVectorizationLegality::collectStridedAcccess(Value *MemAccess) {
+void LoopVectorizationLegality::collectStridedAccess(Value *MemAccess) {
   Value *Ptr = nullptr;
   if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess))
     Ptr = LI->getPointerOperand();
@@ -4010,7 +4013,7 @@ void LoopVectorizationLegality::collectLoopUniforms() {
       if (I->getType()->isPointerTy() && isConsecutivePtr(I))
         Worklist.insert(Worklist.end(), I->op_begin(), I->op_end());
 
-  while (Worklist.size()) {
+  while (!Worklist.empty()) {
     Instruction *I = dyn_cast<Instruction>(Worklist.back());
     Worklist.pop_back();
 
@@ -4268,57 +4271,66 @@ void AccessAnalysis::processMemAccesses() {
       bool UseDeferred = SetIteration > 0;
       PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
 
-      for (auto A : AS) {
-        Value *Ptr = A.getValue();
-        bool IsWrite = S.count(MemAccessInfo(Ptr, true));
+      for (auto AV : AS) {
+        Value *Ptr = AV.getValue();
 
-        // If we're using the deferred access set, then it contains only reads.
-        bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
-        if (UseDeferred && !IsReadOnlyPtr)
-          continue;
-        // Otherwise, the pointer must be in the PtrAccessSet, either as a read
-        // or a write.
-        assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
-                 S.count(MemAccessInfo(Ptr, false))) &&
-               "Alias-set pointer not in the access set?");
-
-        MemAccessInfo Access(Ptr, IsWrite);
-        DepCands.insert(Access);
-
-        // Memorize read-only pointers for later processing and skip them in the
-        // first round (they need to be checked after we have seen all write
-        // pointers). Note: we also mark pointer that are not consecutive as
-        // "read-only" pointers (so that we check "a[b[i]] +="). Hence, we need
-        // the second check for "!IsWrite".
-        if (!UseDeferred && IsReadOnlyPtr) {
-          DeferredAccesses.insert(Access);
-          continue;
-        }
+        // For a single memory access in AliasSetTracker, Accesses may contain
+        // both read and write, and they both need to be handled for CheckDeps.
+        for (auto AC : S) {
+          if (AC.getPointer() != Ptr)
+            continue;
 
-        // If this is a write - check other reads and writes for conflicts.  If
-        // this is a read only check other writes for conflicts (but only if
-        // there is no other write to the ptr - this is an optimization to
-        // catch "a[i] = a[i] + " without having to do a dependence check).
-        if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
-          CheckDeps.insert(Access);
-          IsRTCheckNeeded = true;
-        }
+          bool IsWrite = AC.getInt();
+
+          // If we're using the deferred access set, then it contains only
+          // reads.
+          bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
+          if (UseDeferred && !IsReadOnlyPtr)
+            continue;
+          // Otherwise, the pointer must be in the PtrAccessSet, either as a
+          // read or a write.
+          assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
+                  S.count(MemAccessInfo(Ptr, false))) &&
+                 "Alias-set pointer not in the access set?");
+
+          MemAccessInfo Access(Ptr, IsWrite);
+          DepCands.insert(Access);
+
+          // Memorize read-only pointers for later processing and skip them in
+          // the first round (they need to be checked after we have seen all
+          // write pointers). Note: we also mark pointer that are not
+          // consecutive as "read-only" pointers (so that we check
+          // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
+          if (!UseDeferred && IsReadOnlyPtr) {
+            DeferredAccesses.insert(Access);
+            continue;
+          }
+
+          // If this is a write - check other reads and writes for conflicts. If
+          // this is a read only check other writes for conflicts (but only if
+          // there is no other write to the ptr - this is an optimization to
+          // catch "a[i] = a[i] + " without having to do a dependence check).
+          if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
+            CheckDeps.insert(Access);
+            IsRTCheckNeeded = true;
+          }
 
-        if (IsWrite)
-          SetHasWrite = true;
-
-        // Create sets of pointers connected by a shared alias set and
-        // underlying object.
-        typedef SmallVector<Value *, 16> ValueVector;
-        ValueVector TempObjects;
-        GetUnderlyingObjects(Ptr, TempObjects, DL);
-        for (Value *UnderlyingObj : TempObjects) {
-          UnderlyingObjToAccessMap::iterator Prev =
-            ObjToLastAccess.find(UnderlyingObj);
-          if (Prev != ObjToLastAccess.end())
-            DepCands.unionSets(Access, Prev->second);
-
-          ObjToLastAccess[UnderlyingObj] = Access;
+          if (IsWrite)
+            SetHasWrite = true;
+
+          // Create sets of pointers connected by a shared alias set and
+          // underlying object.
+          typedef SmallVector<Value *, 16> ValueVector;
+          ValueVector TempObjects;
+          GetUnderlyingObjects(Ptr, TempObjects, DL);
+          for (Value *UnderlyingObj : TempObjects) {
+            UnderlyingObjToAccessMap::iterator Prev =
+                ObjToLastAccess.find(UnderlyingObj);
+            if (Prev != ObjToLastAccess.end())
+              DepCands.unionSets(Access, Prev->second);
+
+            ObjToLastAccess[UnderlyingObj] = Access;
+          }
         }
       }
     }
@@ -5275,7 +5287,8 @@ LoopVectorizationLegality::isReductionInstr(Instruction *I,
 }
 
 LoopVectorizationLegality::InductionKind
-LoopVectorizationLegality::isInductionVariable(PHINode *Phi) {
+LoopVectorizationLegality::isInductionVariable(PHINode *Phi,
+                                               ConstantInt *&StepValue) {
   Type *PhiTy = Phi->getType();
   // We only handle integer and pointer inductions variables.
   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
@@ -5288,22 +5301,19 @@ LoopVectorizationLegality::isInductionVariable(PHINode *Phi) {
     DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
     return IK_NoInduction;
   }
-  const SCEV *Step = AR->getStepRecurrence(*SE);
-
-  // Integer inductions need to have a stride of one.
-  if (PhiTy->isIntegerTy()) {
-    if (Step->isOne())
-      return IK_IntInduction;
-    if (Step->isAllOnesValue())
-      return IK_ReverseIntInduction;
-    return IK_NoInduction;
-  }
 
+  const SCEV *Step = AR->getStepRecurrence(*SE);
   // Calculate the pointer stride and check if it is consecutive.
   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
   if (!C)
     return IK_NoInduction;
 
+  ConstantInt *CV = C->getValue();
+  if (PhiTy->isIntegerTy()) {
+    StepValue = CV;
+    return IK_IntInduction;
+  }
+
   assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
   Type *PointerElementType = PhiTy->getPointerElementType();
   // The pointer stride cannot be determined if the pointer element type is not
@@ -5311,13 +5321,12 @@ LoopVectorizationLegality::isInductionVariable(PHINode *Phi) {
   if (!PointerElementType->isSized())
     return IK_NoInduction;
 
-  uint64_t Size = DL->getTypeAllocSize(PointerElementType);
-  if (C->getValue()->equalsInt(Size))
-    return IK_PtrInduction;
-  else if (C->getValue()->equalsInt(0 - Size))
-    return IK_ReversePtrInduction;
-
-  return IK_NoInduction;
+  int64_t Size = static_cast<int64_t>(DL->getTypeAllocSize(PointerElementType));
+  int64_t CVSize = CV->getSExtValue();
+  if (CVSize % Size)
+    return IK_NoInduction;
+  StepValue = ConstantInt::getSigned(CV->getType(), CVSize / Size);
+  return IK_PtrInduction;
 }
 
 bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
@@ -6143,14 +6152,14 @@ Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) {
 char LoopVectorize::ID = 0;
 static const char lv_name[] = "Loop Vectorization";
 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
-INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
+INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
-INITIALIZE_PASS_DEPENDENCY(AssumptionTracker)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfo)
 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
 INITIALIZE_PASS_DEPENDENCY(LCSSA)
-INITIALIZE_PASS_DEPENDENCY(LoopInfo)
+INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
 
@@ -6248,7 +6257,7 @@ void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr,
                                ConstantInt::get(Cond[Part]->getType(), 1));
       CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store");
       LoopVectorBody.push_back(CondBlock);
-      VectorLp->addBasicBlockToLoop(CondBlock, LI->getBase());
+      VectorLp->addBasicBlockToLoop(CondBlock, *LI);
       // Update Builder with newly created basic block.
       Builder.SetInsertPoint(InsertPt);
     }
@@ -6274,7 +6283,7 @@ void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr,
       if (IfPredicateStore) {
         BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else");
         LoopVectorBody.push_back(NewIfBlock);
-        VectorLp->addBasicBlockToLoop(NewIfBlock, LI->getBase());
+        VectorLp->addBasicBlockToLoop(NewIfBlock, *LI);
         Builder.SetInsertPoint(InsertPt);
         Instruction *OldBr = IfBlock->getTerminator();
         BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
@@ -6299,11 +6308,10 @@ Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) {
   return V;
 }
 
-Value *InnerLoopUnroller::getConsecutiveVector(Value* Val, int StartIdx,
-                                               bool Negate) {
+Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step) {
   // When unrolling and the VF is 1, we only need to add a simple scalar.
   Type *ITy = Val->getType();
   assert(!ITy->isVectorTy() && "Val must be a scalar");
-  Constant *C = ConstantInt::get(ITy, StartIdx, Negate);
-  return Builder.CreateAdd(Val, C, "induction");
+  Constant *C = ConstantInt::get(ITy, StartIdx);
+  return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
 }