Merge alignment of common GlobalValue.
[oota-llvm.git] / lib / Transforms / Vectorize / SLPVectorizer.cpp
index 4b61dc912020985d04b996076788b2d3feb05972..76b46779535d8c475ddee27fb041e9de4dad1e2b 100644 (file)
 //  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
 //
 //===----------------------------------------------------------------------===//
-#define SV_NAME "slp-vectorizer"
-#define DEBUG_TYPE SV_NAME
-
-#include "VecUtils.h"
 #include "llvm/Transforms/Vectorize.h"
+#include "llvm/ADT/MapVector.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/Statistic.h"
 #include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/LoopInfo.h"
 #include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
 #include "llvm/Analysis/TargetTransformInfo.h"
-#include "llvm/Analysis/Verifier.h"
+#include "llvm/Analysis/ValueTracking.h"
 #include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/IRBuilder.h"
 #include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
 #include "llvm/IR/Module.h"
+#include "llvm/IR/NoFolder.h"
 #include "llvm/IR/Type.h"
 #include "llvm/IR/Value.h"
+#include "llvm/IR/Verifier.h"
 #include "llvm/Pass.h"
 #include "llvm/Support/CommandLine.h"
 #include "llvm/Support/Debug.h"
 #include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/VectorUtils.h"
+#include <algorithm>
 #include <map>
+#include <memory>
+
+using namespace llvm;
+
+#define SV_NAME "slp-vectorizer"
+#define DEBUG_TYPE "SLP"
+
+STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
+
+static cl::opt<int>
+    SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
+                     cl::desc("Only vectorize if you gain more than this "
+                              "number "));
+
+static cl::opt<bool>
+ShouldVectorizeHor("slp-vectorize-hor", cl::init(false), cl::Hidden,
+                   cl::desc("Attempt to vectorize horizontal reductions"));
+
+static cl::opt<bool> ShouldStartVectorizeHorAtStore(
+    "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
+    cl::desc(
+        "Attempt to vectorize horizontal reductions feeding into a store"));
+
+namespace {
+
+static const unsigned MinVecRegSize = 128;
+
+static const unsigned RecursionMaxDepth = 12;
+
+/// \returns the parent basic block if all of the instructions in \p VL
+/// are in the same block or null otherwise.
+static BasicBlock *getSameBlock(ArrayRef<Value *> VL) {
+  Instruction *I0 = dyn_cast<Instruction>(VL[0]);
+  if (!I0)
+    return nullptr;
+  BasicBlock *BB = I0->getParent();
+  for (int i = 1, e = VL.size(); i < e; i++) {
+    Instruction *I = dyn_cast<Instruction>(VL[i]);
+    if (!I)
+      return nullptr;
+
+    if (BB != I->getParent())
+      return nullptr;
+  }
+  return BB;
+}
+
+/// \returns True if all of the values in \p VL are constants.
+static bool allConstant(ArrayRef<Value *> VL) {
+  for (unsigned i = 0, e = VL.size(); i < e; ++i)
+    if (!isa<Constant>(VL[i]))
+      return false;
+  return true;
+}
+
+/// \returns True if all of the values in \p VL are identical.
+static bool isSplat(ArrayRef<Value *> VL) {
+  for (unsigned i = 1, e = VL.size(); i < e; ++i)
+    if (VL[i] != VL[0])
+      return false;
+  return true;
+}
+
+///\returns Opcode that can be clubbed with \p Op to create an alternate
+/// sequence which can later be merged as a ShuffleVector instruction.
+static unsigned getAltOpcode(unsigned Op) {
+  switch (Op) {
+  case Instruction::FAdd:
+    return Instruction::FSub;
+  case Instruction::FSub:
+    return Instruction::FAdd;
+  case Instruction::Add:
+    return Instruction::Sub;
+  case Instruction::Sub:
+    return Instruction::Add;
+  default:
+    return 0;
+  }
+}
+
+///\returns bool representing if Opcode \p Op can be part
+/// of an alternate sequence which can later be merged as
+/// a ShuffleVector instruction.
+static bool canCombineAsAltInst(unsigned Op) {
+  if (Op == Instruction::FAdd || Op == Instruction::FSub ||
+      Op == Instruction::Sub || Op == Instruction::Add)
+    return true;
+  return false;
+}
+
+/// \returns ShuffleVector instruction if intructions in \p VL have
+///  alternate fadd,fsub / fsub,fadd/add,sub/sub,add sequence.
+/// (i.e. e.g. opcodes of fadd,fsub,fadd,fsub...)
+static unsigned isAltInst(ArrayRef<Value *> VL) {
+  Instruction *I0 = dyn_cast<Instruction>(VL[0]);
+  unsigned Opcode = I0->getOpcode();
+  unsigned AltOpcode = getAltOpcode(Opcode);
+  for (int i = 1, e = VL.size(); i < e; i++) {
+    Instruction *I = dyn_cast<Instruction>(VL[i]);
+    if (!I || I->getOpcode() != ((i & 1) ? AltOpcode : Opcode))
+      return 0;
+  }
+  return Instruction::ShuffleVector;
+}
+
+/// \returns The opcode if all of the Instructions in \p VL have the same
+/// opcode, or zero.
+static unsigned getSameOpcode(ArrayRef<Value *> VL) {
+  Instruction *I0 = dyn_cast<Instruction>(VL[0]);
+  if (!I0)
+    return 0;
+  unsigned Opcode = I0->getOpcode();
+  for (int i = 1, e = VL.size(); i < e; i++) {
+    Instruction *I = dyn_cast<Instruction>(VL[i]);
+    if (!I || Opcode != I->getOpcode()) {
+      if (canCombineAsAltInst(Opcode) && i == 1)
+        return isAltInst(VL);
+      return 0;
+    }
+  }
+  return Opcode;
+}
+
+/// Get the intersection (logical and) of all of the potential IR flags
+/// of each scalar operation (VL) that will be converted into a vector (I).
+/// Flag set: NSW, NUW, exact, and all of fast-math.
+static void propagateIRFlags(Value *I, ArrayRef<Value *> VL) {
+  if (auto *VecOp = dyn_cast<BinaryOperator>(I)) {
+    if (auto *Intersection = dyn_cast<BinaryOperator>(VL[0])) {
+      // Intersection is initialized to the 0th scalar,
+      // so start counting from index '1'.
+      for (int i = 1, e = VL.size(); i < e; ++i) {
+        if (auto *Scalar = dyn_cast<BinaryOperator>(VL[i]))
+          Intersection->andIRFlags(Scalar);
+      }
+      VecOp->copyIRFlags(Intersection);
+    }
+  }
+}
+  
+/// \returns \p I after propagating metadata from \p VL.
+static Instruction *propagateMetadata(Instruction *I, ArrayRef<Value *> VL) {
+  Instruction *I0 = cast<Instruction>(VL[0]);
+  SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
+  I0->getAllMetadataOtherThanDebugLoc(Metadata);
+
+  for (unsigned i = 0, n = Metadata.size(); i != n; ++i) {
+    unsigned Kind = Metadata[i].first;
+    MDNode *MD = Metadata[i].second;
+
+    for (int i = 1, e = VL.size(); MD && i != e; i++) {
+      Instruction *I = cast<Instruction>(VL[i]);
+      MDNode *IMD = I->getMetadata(Kind);
+
+      switch (Kind) {
+      default:
+        MD = nullptr; // Remove unknown metadata
+        break;
+      case LLVMContext::MD_tbaa:
+        MD = MDNode::getMostGenericTBAA(MD, IMD);
+        break;
+      case LLVMContext::MD_alias_scope:
+      case LLVMContext::MD_noalias:
+        MD = MDNode::intersect(MD, IMD);
+        break;
+      case LLVMContext::MD_fpmath:
+        MD = MDNode::getMostGenericFPMath(MD, IMD);
+        break;
+      }
+    }
+    I->setMetadata(Kind, MD);
+  }
+  return I;
+}
+
+/// \returns The type that all of the values in \p VL have or null if there
+/// are different types.
+static Type* getSameType(ArrayRef<Value *> VL) {
+  Type *Ty = VL[0]->getType();
+  for (int i = 1, e = VL.size(); i < e; i++)
+    if (VL[i]->getType() != Ty)
+      return nullptr;
+
+  return Ty;
+}
+
+/// \returns True if the ExtractElement instructions in VL can be vectorized
+/// to use the original vector.
+static bool CanReuseExtract(ArrayRef<Value *> VL) {
+  assert(Instruction::ExtractElement == getSameOpcode(VL) && "Invalid opcode");
+  // Check if all of the extracts come from the same vector and from the
+  // correct offset.
+  Value *VL0 = VL[0];
+  ExtractElementInst *E0 = cast<ExtractElementInst>(VL0);
+  Value *Vec = E0->getOperand(0);
+
+  // We have to extract from the same vector type.
+  unsigned NElts = Vec->getType()->getVectorNumElements();
+
+  if (NElts != VL.size())
+    return false;
+
+  // Check that all of the indices extract from the correct offset.
+  ConstantInt *CI = dyn_cast<ConstantInt>(E0->getOperand(1));
+  if (!CI || CI->getZExtValue())
+    return false;
+
+  for (unsigned i = 1, e = VL.size(); i < e; ++i) {
+    ExtractElementInst *E = cast<ExtractElementInst>(VL[i]);
+    ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1));
+
+    if (!CI || CI->getZExtValue() != i || E->getOperand(0) != Vec)
+      return false;
+  }
+
+  return true;
+}
+
+static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
+                                           SmallVectorImpl<Value *> &Left,
+                                           SmallVectorImpl<Value *> &Right) {
+
+  SmallVector<Value *, 16> OrigLeft, OrigRight;
+
+  bool AllSameOpcodeLeft = true;
+  bool AllSameOpcodeRight = true;
+  for (unsigned i = 0, e = VL.size(); i != e; ++i) {
+    Instruction *I = cast<Instruction>(VL[i]);
+    Value *V0 = I->getOperand(0);
+    Value *V1 = I->getOperand(1);
+
+    OrigLeft.push_back(V0);
+    OrigRight.push_back(V1);
+
+    Instruction *I0 = dyn_cast<Instruction>(V0);
+    Instruction *I1 = dyn_cast<Instruction>(V1);
+
+    // Check whether all operands on one side have the same opcode. In this case
+    // we want to preserve the original order and not make things worse by
+    // reordering.
+    AllSameOpcodeLeft = I0;
+    AllSameOpcodeRight = I1;
+
+    if (i && AllSameOpcodeLeft) {
+      if(Instruction *P0 = dyn_cast<Instruction>(OrigLeft[i-1])) {
+        if(P0->getOpcode() != I0->getOpcode())
+          AllSameOpcodeLeft = false;
+      } else
+        AllSameOpcodeLeft = false;
+    }
+    if (i && AllSameOpcodeRight) {
+      if(Instruction *P1 = dyn_cast<Instruction>(OrigRight[i-1])) {
+        if(P1->getOpcode() != I1->getOpcode())
+          AllSameOpcodeRight = false;
+      } else
+        AllSameOpcodeRight = false;
+    }
+
+    // Sort two opcodes. In the code below we try to preserve the ability to use
+    // broadcast of values instead of individual inserts.
+    // vl1 = load
+    // vl2 = phi
+    // vr1 = load
+    // vr2 = vr2
+    //    = vl1 x vr1
+    //    = vl2 x vr2
+    // If we just sorted according to opcode we would leave the first line in
+    // tact but we would swap vl2 with vr2 because opcode(phi) > opcode(load).
+    //    = vl1 x vr1
+    //    = vr2 x vl2
+    // Because vr2 and vr1 are from the same load we loose the opportunity of a
+    // broadcast for the packed right side in the backend: we have [vr1, vl2]
+    // instead of [vr1, vr2=vr1].
+    if (I0 && I1) {
+       if(!i && I0->getOpcode() > I1->getOpcode()) {
+         Left.push_back(I1);
+         Right.push_back(I0);
+       } else if (i && I0->getOpcode() > I1->getOpcode() && Right[i-1] != I1) {
+         // Try not to destroy a broad cast for no apparent benefit.
+         Left.push_back(I1);
+         Right.push_back(I0);
+       } else if (i && I0->getOpcode() == I1->getOpcode() && Right[i-1] ==  I0) {
+         // Try preserve broadcasts.
+         Left.push_back(I1);
+         Right.push_back(I0);
+       } else if (i && I0->getOpcode() == I1->getOpcode() && Left[i-1] == I1) {
+         // Try preserve broadcasts.
+         Left.push_back(I1);
+         Right.push_back(I0);
+       } else {
+         Left.push_back(I0);
+         Right.push_back(I1);
+       }
+       continue;
+    }
+    // One opcode, put the instruction on the right.
+    if (I0) {
+      Left.push_back(V1);
+      Right.push_back(I0);
+      continue;
+    }
+    Left.push_back(V0);
+    Right.push_back(V1);
+  }
+
+  bool LeftBroadcast = isSplat(Left);
+  bool RightBroadcast = isSplat(Right);
+
+  // Don't reorder if the operands where good to begin with.
+  if (!(LeftBroadcast || RightBroadcast) &&
+      (AllSameOpcodeRight || AllSameOpcodeLeft)) {
+    Left = OrigLeft;
+    Right = OrigRight;
+  }
+}
+
+/// \returns True if in-tree use also needs extract. This refers to
+/// possible scalar operand in vectorized instruction.
+static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
+                                    TargetLibraryInfo *TLI) {
+
+  unsigned Opcode = UserInst->getOpcode();
+  switch (Opcode) {
+  case Instruction::Load: {
+    LoadInst *LI = cast<LoadInst>(UserInst);
+    return (LI->getPointerOperand() == Scalar);
+  }
+  case Instruction::Store: {
+    StoreInst *SI = cast<StoreInst>(UserInst);
+    return (SI->getPointerOperand() == Scalar);
+  }
+  case Instruction::Call: {
+    CallInst *CI = cast<CallInst>(UserInst);
+    Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
+    if (hasVectorInstrinsicScalarOpd(ID, 1)) {
+      return (CI->getArgOperand(1) == Scalar);
+    }
+  }
+  default:
+    return false;
+  }
+}
+
+/// Bottom Up SLP Vectorizer.
+class BoUpSLP {
+public:
+  typedef SmallVector<Value *, 8> ValueList;
+  typedef SmallVector<Instruction *, 16> InstrList;
+  typedef SmallPtrSet<Value *, 16> ValueSet;
+  typedef SmallVector<StoreInst *, 8> StoreList;
+
+  BoUpSLP(Function *Func, ScalarEvolution *Se, const DataLayout *Dl,
+          TargetTransformInfo *Tti, TargetLibraryInfo *TLi, AliasAnalysis *Aa,
+          LoopInfo *Li, DominatorTree *Dt)
+      : NumLoadsWantToKeepOrder(0), NumLoadsWantToChangeOrder(0),
+        F(Func), SE(Se), DL(Dl), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt),
+        Builder(Se->getContext()) {}
+
+  /// \brief Vectorize the tree that starts with the elements in \p VL.
+  /// Returns the vectorized root.
+  Value *vectorizeTree();
+
+  /// \returns the cost incurred by unwanted spills and fills, caused by
+  /// holding live values over call sites.
+  int getSpillCost();
+
+  /// \returns the vectorization cost of the subtree that starts at \p VL.
+  /// A negative number means that this is profitable.
+  int getTreeCost();
+
+  /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
+  /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
+  void buildTree(ArrayRef<Value *> Roots,
+                 ArrayRef<Value *> UserIgnoreLst = None);
+
+  /// Clear the internal data structures that are created by 'buildTree'.
+  void deleteTree() {
+    VectorizableTree.clear();
+    ScalarToTreeEntry.clear();
+    MustGather.clear();
+    ExternalUses.clear();
+    NumLoadsWantToKeepOrder = 0;
+    NumLoadsWantToChangeOrder = 0;
+    for (auto &Iter : BlocksSchedules) {
+      BlockScheduling *BS = Iter.second.get();
+      BS->clear();
+    }
+  }
+
+  /// \returns true if the memory operations A and B are consecutive.
+  bool isConsecutiveAccess(Value *A, Value *B);
+
+  /// \brief Perform LICM and CSE on the newly generated gather sequences.
+  void optimizeGatherSequence();
+
+  /// \returns true if it is benefitial to reverse the vector order.
+  bool shouldReorder() const {
+    return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder;
+  }
+
+private:
+  struct TreeEntry;
+
+  /// \returns the cost of the vectorizable entry.
+  int getEntryCost(TreeEntry *E);
+
+  /// This is the recursive part of buildTree.
+  void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth);
+
+  /// Vectorize a single entry in the tree.
+  Value *vectorizeTree(TreeEntry *E);
+
+  /// Vectorize a single entry in the tree, starting in \p VL.
+  Value *vectorizeTree(ArrayRef<Value *> VL);
+
+  /// \returns the pointer to the vectorized value if \p VL is already
+  /// vectorized, or NULL. They may happen in cycles.
+  Value *alreadyVectorized(ArrayRef<Value *> VL) const;
+
+  /// \brief Take the pointer operand from the Load/Store instruction.
+  /// \returns NULL if this is not a valid Load/Store instruction.
+  static Value *getPointerOperand(Value *I);
+
+  /// \brief Take the address space operand from the Load/Store instruction.
+  /// \returns -1 if this is not a valid Load/Store instruction.
+  static unsigned getAddressSpaceOperand(Value *I);
+
+  /// \returns the scalarization cost for this type. Scalarization in this
+  /// context means the creation of vectors from a group of scalars.
+  int getGatherCost(Type *Ty);
+
+  /// \returns the scalarization cost for this list of values. Assuming that
+  /// this subtree gets vectorized, we may need to extract the values from the
+  /// roots. This method calculates the cost of extracting the values.
+  int getGatherCost(ArrayRef<Value *> VL);
+
+  /// \brief Set the Builder insert point to one after the last instruction in
+  /// the bundle
+  void setInsertPointAfterBundle(ArrayRef<Value *> VL);
+
+  /// \returns a vector from a collection of scalars in \p VL.
+  Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
+
+  /// \returns whether the VectorizableTree is fully vectoriable and will
+  /// be beneficial even the tree height is tiny.
+  bool isFullyVectorizableTinyTree();
+
+  struct TreeEntry {
+    TreeEntry() : Scalars(), VectorizedValue(nullptr),
+    NeedToGather(0) {}
+
+    /// \returns true if the scalars in VL are equal to this entry.
+    bool isSame(ArrayRef<Value *> VL) const {
+      assert(VL.size() == Scalars.size() && "Invalid size");
+      return std::equal(VL.begin(), VL.end(), Scalars.begin());
+    }
+
+    /// A vector of scalars.
+    ValueList Scalars;
+
+    /// The Scalars are vectorized into this value. It is initialized to Null.
+    Value *VectorizedValue;
+
+    /// Do we need to gather this sequence ?
+    bool NeedToGather;
+  };
+
+  /// Create a new VectorizableTree entry.
+  TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) {
+    VectorizableTree.push_back(TreeEntry());
+    int idx = VectorizableTree.size() - 1;
+    TreeEntry *Last = &VectorizableTree[idx];
+    Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
+    Last->NeedToGather = !Vectorized;
+    if (Vectorized) {
+      for (int i = 0, e = VL.size(); i != e; ++i) {
+        assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!");
+        ScalarToTreeEntry[VL[i]] = idx;
+      }
+    } else {
+      MustGather.insert(VL.begin(), VL.end());
+    }
+    return Last;
+  }
+  
+  /// -- Vectorization State --
+  /// Holds all of the tree entries.
+  std::vector<TreeEntry> VectorizableTree;
+
+  /// Maps a specific scalar to its tree entry.
+  SmallDenseMap<Value*, int> ScalarToTreeEntry;
+
+  /// A list of scalars that we found that we need to keep as scalars.
+  ValueSet MustGather;
+
+  /// This POD struct describes one external user in the vectorized tree.
+  struct ExternalUser {
+    ExternalUser (Value *S, llvm::User *U, int L) :
+      Scalar(S), User(U), Lane(L){};
+    // Which scalar in our function.
+    Value *Scalar;
+    // Which user that uses the scalar.
+    llvm::User *User;
+    // Which lane does the scalar belong to.
+    int Lane;
+  };
+  typedef SmallVector<ExternalUser, 16> UserList;
+
+  /// A list of values that need to extracted out of the tree.
+  /// This list holds pairs of (Internal Scalar : External User).
+  UserList ExternalUses;
+
+  /// Holds all of the instructions that we gathered.
+  SetVector<Instruction *> GatherSeq;
+  /// A list of blocks that we are going to CSE.
+  SetVector<BasicBlock *> CSEBlocks;
+
+  /// Contains all scheduling relevant data for an instruction.
+  /// A ScheduleData either represents a single instruction or a member of an
+  /// instruction bundle (= a group of instructions which is combined into a
+  /// vector instruction).
+  struct ScheduleData {
+
+    // The initial value for the dependency counters. It means that the
+    // dependencies are not calculated yet.
+    enum { InvalidDeps = -1 };
+
+    ScheduleData()
+        : Inst(nullptr), FirstInBundle(nullptr), NextInBundle(nullptr),
+          NextLoadStore(nullptr), SchedulingRegionID(0), SchedulingPriority(0),
+          Dependencies(InvalidDeps), UnscheduledDeps(InvalidDeps),
+          UnscheduledDepsInBundle(InvalidDeps), IsScheduled(false) {}
+
+    void init(int BlockSchedulingRegionID) {
+      FirstInBundle = this;
+      NextInBundle = nullptr;
+      NextLoadStore = nullptr;
+      IsScheduled = false;
+      SchedulingRegionID = BlockSchedulingRegionID;
+      UnscheduledDepsInBundle = UnscheduledDeps;
+      clearDependencies();
+    }
+
+    /// Returns true if the dependency information has been calculated.
+    bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
+
+    /// Returns true for single instructions and for bundle representatives
+    /// (= the head of a bundle).
+    bool isSchedulingEntity() const { return FirstInBundle == this; }
+
+    /// Returns true if it represents an instruction bundle and not only a
+    /// single instruction.
+    bool isPartOfBundle() const {
+      return NextInBundle != nullptr || FirstInBundle != this;
+    }
+
+    /// Returns true if it is ready for scheduling, i.e. it has no more
+    /// unscheduled depending instructions/bundles.
+    bool isReady() const {
+      assert(isSchedulingEntity() &&
+             "can't consider non-scheduling entity for ready list");
+      return UnscheduledDepsInBundle == 0 && !IsScheduled;
+    }
+
+    /// Modifies the number of unscheduled dependencies, also updating it for
+    /// the whole bundle.
+    int incrementUnscheduledDeps(int Incr) {
+      UnscheduledDeps += Incr;
+      return FirstInBundle->UnscheduledDepsInBundle += Incr;
+    }
+
+    /// Sets the number of unscheduled dependencies to the number of
+    /// dependencies.
+    void resetUnscheduledDeps() {
+      incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
+    }
+
+    /// Clears all dependency information.
+    void clearDependencies() {
+      Dependencies = InvalidDeps;
+      resetUnscheduledDeps();
+      MemoryDependencies.clear();
+    }
+
+    void dump(raw_ostream &os) const {
+      if (!isSchedulingEntity()) {
+        os << "/ " << *Inst;
+      } else if (NextInBundle) {
+        os << '[' << *Inst;
+        ScheduleData *SD = NextInBundle;
+        while (SD) {
+          os << ';' << *SD->Inst;
+          SD = SD->NextInBundle;
+        }
+        os << ']';
+      } else {
+        os << *Inst;
+      }
+    }
+
+    Instruction *Inst;
+
+    /// Points to the head in an instruction bundle (and always to this for
+    /// single instructions).
+    ScheduleData *FirstInBundle;
+
+    /// Single linked list of all instructions in a bundle. Null if it is a
+    /// single instruction.
+    ScheduleData *NextInBundle;
+
+    /// Single linked list of all memory instructions (e.g. load, store, call)
+    /// in the block - until the end of the scheduling region.
+    ScheduleData *NextLoadStore;
+
+    /// The dependent memory instructions.
+    /// This list is derived on demand in calculateDependencies().
+    SmallVector<ScheduleData *, 4> MemoryDependencies;
+
+    /// This ScheduleData is in the current scheduling region if this matches
+    /// the current SchedulingRegionID of BlockScheduling.
+    int SchedulingRegionID;
+
+    /// Used for getting a "good" final ordering of instructions.
+    int SchedulingPriority;
+
+    /// The number of dependencies. Constitutes of the number of users of the
+    /// instruction plus the number of dependent memory instructions (if any).
+    /// This value is calculated on demand.
+    /// If InvalidDeps, the number of dependencies is not calculated yet.
+    ///
+    int Dependencies;
+
+    /// The number of dependencies minus the number of dependencies of scheduled
+    /// instructions. As soon as this is zero, the instruction/bundle gets ready
+    /// for scheduling.
+    /// Note that this is negative as long as Dependencies is not calculated.
+    int UnscheduledDeps;
+
+    /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
+    /// single instructions.
+    int UnscheduledDepsInBundle;
+
+    /// True if this instruction is scheduled (or considered as scheduled in the
+    /// dry-run).
+    bool IsScheduled;
+  };
+
+#ifndef NDEBUG
+  friend raw_ostream &operator<<(raw_ostream &os,
+                                 const BoUpSLP::ScheduleData &SD);
+#endif
+
+  /// Contains all scheduling data for a basic block.
+  ///
+  struct BlockScheduling {
+
+    BlockScheduling(BasicBlock *BB)
+        : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize),
+          ScheduleStart(nullptr), ScheduleEnd(nullptr),
+          FirstLoadStoreInRegion(nullptr), LastLoadStoreInRegion(nullptr),
+          // Make sure that the initial SchedulingRegionID is greater than the
+          // initial SchedulingRegionID in ScheduleData (which is 0).
+          SchedulingRegionID(1) {}
+
+    void clear() {
+      ReadyInsts.clear();
+      ScheduleStart = nullptr;
+      ScheduleEnd = nullptr;
+      FirstLoadStoreInRegion = nullptr;
+      LastLoadStoreInRegion = nullptr;
+
+      // Make a new scheduling region, i.e. all existing ScheduleData is not
+      // in the new region yet.
+      ++SchedulingRegionID;
+    }
+
+    ScheduleData *getScheduleData(Value *V) {
+      ScheduleData *SD = ScheduleDataMap[V];
+      if (SD && SD->SchedulingRegionID == SchedulingRegionID)
+        return SD;
+      return nullptr;
+    }
+
+    bool isInSchedulingRegion(ScheduleData *SD) {
+      return SD->SchedulingRegionID == SchedulingRegionID;
+    }
+
+    /// Marks an instruction as scheduled and puts all dependent ready
+    /// instructions into the ready-list.
+    template <typename ReadyListType>
+    void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
+      SD->IsScheduled = true;
+      DEBUG(dbgs() << "SLP:   schedule " << *SD << "\n");
+
+      ScheduleData *BundleMember = SD;
+      while (BundleMember) {
+        // Handle the def-use chain dependencies.
+        for (Use &U : BundleMember->Inst->operands()) {
+          ScheduleData *OpDef = getScheduleData(U.get());
+          if (OpDef && OpDef->hasValidDependencies() &&
+              OpDef->incrementUnscheduledDeps(-1) == 0) {
+            // There are no more unscheduled dependencies after decrementing,
+            // so we can put the dependent instruction into the ready list.
+            ScheduleData *DepBundle = OpDef->FirstInBundle;
+            assert(!DepBundle->IsScheduled &&
+                   "already scheduled bundle gets ready");
+            ReadyList.insert(DepBundle);
+            DEBUG(dbgs() << "SLP:    gets ready (def): " << *DepBundle << "\n");
+          }
+        }
+        // Handle the memory dependencies.
+        for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
+          if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
+            // There are no more unscheduled dependencies after decrementing,
+            // so we can put the dependent instruction into the ready list.
+            ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
+            assert(!DepBundle->IsScheduled &&
+                   "already scheduled bundle gets ready");
+            ReadyList.insert(DepBundle);
+            DEBUG(dbgs() << "SLP:    gets ready (mem): " << *DepBundle << "\n");
+          }
+        }
+        BundleMember = BundleMember->NextInBundle;
+      }
+    }
+
+    /// Put all instructions into the ReadyList which are ready for scheduling.
+    template <typename ReadyListType>
+    void initialFillReadyList(ReadyListType &ReadyList) {
+      for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
+        ScheduleData *SD = getScheduleData(I);
+        if (SD->isSchedulingEntity() && SD->isReady()) {
+          ReadyList.insert(SD);
+          DEBUG(dbgs() << "SLP:    initially in ready list: " << *I << "\n");
+        }
+      }
+    }
+
+    /// Checks if a bundle of instructions can be scheduled, i.e. has no
+    /// cyclic dependencies. This is only a dry-run, no instructions are
+    /// actually moved at this stage.
+    bool tryScheduleBundle(ArrayRef<Value *> VL, AliasAnalysis *AA);
+
+    /// Un-bundles a group of instructions.
+    void cancelScheduling(ArrayRef<Value *> VL);
+
+    /// Extends the scheduling region so that V is inside the region.
+    void extendSchedulingRegion(Value *V);
+
+    /// Initialize the ScheduleData structures for new instructions in the
+    /// scheduling region.
+    void initScheduleData(Instruction *FromI, Instruction *ToI,
+                          ScheduleData *PrevLoadStore,
+                          ScheduleData *NextLoadStore);
+
+    /// Updates the dependency information of a bundle and of all instructions/
+    /// bundles which depend on the original bundle.
+    void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
+                               AliasAnalysis *AA);
+
+    /// Sets all instruction in the scheduling region to un-scheduled.
+    void resetSchedule();
+
+    BasicBlock *BB;
+
+    /// Simple memory allocation for ScheduleData.
+    std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
+
+    /// The size of a ScheduleData array in ScheduleDataChunks.
+    int ChunkSize;
+
+    /// The allocator position in the current chunk, which is the last entry
+    /// of ScheduleDataChunks.
+    int ChunkPos;
+
+    /// Attaches ScheduleData to Instruction.
+    /// Note that the mapping survives during all vectorization iterations, i.e.
+    /// ScheduleData structures are recycled.
+    DenseMap<Value *, ScheduleData *> ScheduleDataMap;
+
+    struct ReadyList : SmallVector<ScheduleData *, 8> {
+      void insert(ScheduleData *SD) { push_back(SD); }
+    };
+
+    /// The ready-list for scheduling (only used for the dry-run).
+    ReadyList ReadyInsts;
+
+    /// The first instruction of the scheduling region.
+    Instruction *ScheduleStart;
+
+    /// The first instruction _after_ the scheduling region.
+    Instruction *ScheduleEnd;
+
+    /// The first memory accessing instruction in the scheduling region
+    /// (can be null).
+    ScheduleData *FirstLoadStoreInRegion;
+
+    /// The last memory accessing instruction in the scheduling region
+    /// (can be null).
+    ScheduleData *LastLoadStoreInRegion;
+
+    /// The ID of the scheduling region. For a new vectorization iteration this
+    /// is incremented which "removes" all ScheduleData from the region.
+    int SchedulingRegionID;
+  };
+
+  /// Attaches the BlockScheduling structures to basic blocks.
+  DenseMap<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
+
+  /// Performs the "real" scheduling. Done before vectorization is actually
+  /// performed in a basic block.
+  void scheduleBlock(BlockScheduling *BS);
+
+  /// List of users to ignore during scheduling and that don't need extracting.
+  ArrayRef<Value *> UserIgnoreList;
+
+  // Number of load-bundles, which contain consecutive loads.
+  int NumLoadsWantToKeepOrder;
+
+  // Number of load-bundles of size 2, which are consecutive loads if reversed.
+  int NumLoadsWantToChangeOrder;
+
+  // Analysis and block reference.
+  Function *F;
+  ScalarEvolution *SE;
+  const DataLayout *DL;
+  TargetTransformInfo *TTI;
+  TargetLibraryInfo *TLI;
+  AliasAnalysis *AA;
+  LoopInfo *LI;
+  DominatorTree *DT;
+  /// Instruction builder to construct the vectorized tree.
+  IRBuilder<> Builder;
+};
+
+#ifndef NDEBUG
+raw_ostream &operator<<(raw_ostream &os, const BoUpSLP::ScheduleData &SD) {
+  SD.dump(os);
+  return os;
+}
+#endif
+
+void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
+                        ArrayRef<Value *> UserIgnoreLst) {
+  deleteTree();
+  UserIgnoreList = UserIgnoreLst;
+  if (!getSameType(Roots))
+    return;
+  buildTree_rec(Roots, 0);
+
+  // Collect the values that we need to extract from the tree.
+  for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
+    TreeEntry *Entry = &VectorizableTree[EIdx];
+
+    // For each lane:
+    for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
+      Value *Scalar = Entry->Scalars[Lane];
+
+      // No need to handle users of gathered values.
+      if (Entry->NeedToGather)
+        continue;
+
+      for (User *U : Scalar->users()) {
+        DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
+
+        Instruction *UserInst = dyn_cast<Instruction>(U);
+        if (!UserInst)
+          continue;
+
+        // Skip in-tree scalars that become vectors
+        if (ScalarToTreeEntry.count(U)) {
+          int Idx = ScalarToTreeEntry[U];
+          TreeEntry *UseEntry = &VectorizableTree[Idx];
+          Value *UseScalar = UseEntry->Scalars[0];
+          // Some in-tree scalars will remain as scalar in vectorized
+          // instructions. If that is the case, the one in Lane 0 will
+          // be used.
+          if (UseScalar != U ||
+              !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
+            DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
+                         << ".\n");
+            assert(!VectorizableTree[Idx].NeedToGather && "Bad state");
+            continue;
+          }
+        }
+
+        // Ignore users in the user ignore list.
+        if (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), UserInst) !=
+            UserIgnoreList.end())
+          continue;
+
+        DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " <<
+              Lane << " from " << *Scalar << ".\n");
+        ExternalUses.push_back(ExternalUser(Scalar, U, Lane));
+      }
+    }
+  }
+}
+
+
+void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
+  bool SameTy = getSameType(VL); (void)SameTy;
+  bool isAltShuffle = false;
+  assert(SameTy && "Invalid types!");
+
+  if (Depth == RecursionMaxDepth) {
+    DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
+    newTreeEntry(VL, false);
+    return;
+  }
+
+  // Don't handle vectors.
+  if (VL[0]->getType()->isVectorTy()) {
+    DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
+    newTreeEntry(VL, false);
+    return;
+  }
+
+  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
+    if (SI->getValueOperand()->getType()->isVectorTy()) {
+      DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
+      newTreeEntry(VL, false);
+      return;
+    }
+  unsigned Opcode = getSameOpcode(VL);
+
+  // Check that this shuffle vector refers to the alternate
+  // sequence of opcodes.
+  if (Opcode == Instruction::ShuffleVector) {
+    Instruction *I0 = dyn_cast<Instruction>(VL[0]);
+    unsigned Op = I0->getOpcode();
+    if (Op != Instruction::ShuffleVector)
+      isAltShuffle = true;
+  }
+
+  // If all of the operands are identical or constant we have a simple solution.
+  if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) || !Opcode) {
+    DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
+    newTreeEntry(VL, false);
+    return;
+  }
+
+  // We now know that this is a vector of instructions of the same type from
+  // the same block.
+
+  // Check if this is a duplicate of another entry.
+  if (ScalarToTreeEntry.count(VL[0])) {
+    int Idx = ScalarToTreeEntry[VL[0]];
+    TreeEntry *E = &VectorizableTree[Idx];
+    for (unsigned i = 0, e = VL.size(); i != e; ++i) {
+      DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n");
+      if (E->Scalars[i] != VL[i]) {
+        DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
+        newTreeEntry(VL, false);
+        return;
+      }
+    }
+    DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n");
+    return;
+  }
+
+  // Check that none of the instructions in the bundle are already in the tree.
+  for (unsigned i = 0, e = VL.size(); i != e; ++i) {
+    if (ScalarToTreeEntry.count(VL[i])) {
+      DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
+            ") is already in tree.\n");
+      newTreeEntry(VL, false);
+      return;
+    }
+  }
+
+  // If any of the scalars appears in the table OR it is marked as a value that
+  // needs to stat scalar then we need to gather the scalars.
+  for (unsigned i = 0, e = VL.size(); i != e; ++i) {
+    if (ScalarToTreeEntry.count(VL[i]) || MustGather.count(VL[i])) {
+      DEBUG(dbgs() << "SLP: Gathering due to gathered scalar. \n");
+      newTreeEntry(VL, false);
+      return;
+    }
+  }
+
+  // Check that all of the users of the scalars that we want to vectorize are
+  // schedulable.
+  Instruction *VL0 = cast<Instruction>(VL[0]);
+  BasicBlock *BB = cast<Instruction>(VL0)->getParent();
+
+  if (!DT->isReachableFromEntry(BB)) {
+    // Don't go into unreachable blocks. They may contain instructions with
+    // dependency cycles which confuse the final scheduling.
+    DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
+    newTreeEntry(VL, false);
+    return;
+  }
+  
+  // Check that every instructions appears once in this bundle.
+  for (unsigned i = 0, e = VL.size(); i < e; ++i)
+    for (unsigned j = i+1; j < e; ++j)
+      if (VL[i] == VL[j]) {
+        DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
+        newTreeEntry(VL, false);
+        return;
+      }
+
+  auto &BSRef = BlocksSchedules[BB];
+  if (!BSRef) {
+    BSRef = llvm::make_unique<BlockScheduling>(BB);
+  }
+  BlockScheduling &BS = *BSRef.get();
+
+  if (!BS.tryScheduleBundle(VL, AA)) {
+    DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
+    BS.cancelScheduling(VL);
+    newTreeEntry(VL, false);
+    return;
+  }
+  DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
+
+  switch (Opcode) {
+    case Instruction::PHI: {
+      PHINode *PH = dyn_cast<PHINode>(VL0);
+
+      // Check for terminator values (e.g. invoke).
+      for (unsigned j = 0; j < VL.size(); ++j)
+        for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
+          TerminatorInst *Term = dyn_cast<TerminatorInst>(
+              cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i)));
+          if (Term) {
+            DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n");
+            BS.cancelScheduling(VL);
+            newTreeEntry(VL, false);
+            return;
+          }
+        }
+
+      newTreeEntry(VL, true);
+      DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
+
+      for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
+        ValueList Operands;
+        // Prepare the operand vector.
+        for (unsigned j = 0; j < VL.size(); ++j)
+          Operands.push_back(cast<PHINode>(VL[j])->getIncomingValueForBlock(
+              PH->getIncomingBlock(i)));
+
+        buildTree_rec(Operands, Depth + 1);
+      }
+      return;
+    }
+    case Instruction::ExtractElement: {
+      bool Reuse = CanReuseExtract(VL);
+      if (Reuse) {
+        DEBUG(dbgs() << "SLP: Reusing extract sequence.\n");
+      } else {
+        BS.cancelScheduling(VL);
+      }
+      newTreeEntry(VL, Reuse);
+      return;
+    }
+    case Instruction::Load: {
+      // Check if the loads are consecutive or of we need to swizzle them.
+      for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) {
+        LoadInst *L = cast<LoadInst>(VL[i]);
+        if (!L->isSimple()) {
+          BS.cancelScheduling(VL);
+          newTreeEntry(VL, false);
+          DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
+          return;
+        }
+        if (!isConsecutiveAccess(VL[i], VL[i + 1])) {
+          if (VL.size() == 2 && isConsecutiveAccess(VL[1], VL[0])) {
+            ++NumLoadsWantToChangeOrder;
+          }
+          BS.cancelScheduling(VL);
+          newTreeEntry(VL, false);
+          DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
+          return;
+        }
+      }
+      ++NumLoadsWantToKeepOrder;
+      newTreeEntry(VL, true);
+      DEBUG(dbgs() << "SLP: added a vector of loads.\n");
+      return;
+    }
+    case Instruction::ZExt:
+    case Instruction::SExt:
+    case Instruction::FPToUI:
+    case Instruction::FPToSI:
+    case Instruction::FPExt:
+    case Instruction::PtrToInt:
+    case Instruction::IntToPtr:
+    case Instruction::SIToFP:
+    case Instruction::UIToFP:
+    case Instruction::Trunc:
+    case Instruction::FPTrunc:
+    case Instruction::BitCast: {
+      Type *SrcTy = VL0->getOperand(0)->getType();
+      for (unsigned i = 0; i < VL.size(); ++i) {
+        Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType();
+        if (Ty != SrcTy || Ty->isAggregateType() || Ty->isVectorTy()) {
+          BS.cancelScheduling(VL);
+          newTreeEntry(VL, false);
+          DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n");
+          return;
+        }
+      }
+      newTreeEntry(VL, true);
+      DEBUG(dbgs() << "SLP: added a vector of casts.\n");
+
+      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
+        ValueList Operands;
+        // Prepare the operand vector.
+        for (unsigned j = 0; j < VL.size(); ++j)
+          Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
+
+        buildTree_rec(Operands, Depth+1);
+      }
+      return;
+    }
+    case Instruction::ICmp:
+    case Instruction::FCmp: {
+      // Check that all of the compares have the same predicate.
+      CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate();
+      Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType();
+      for (unsigned i = 1, e = VL.size(); i < e; ++i) {
+        CmpInst *Cmp = cast<CmpInst>(VL[i]);
+        if (Cmp->getPredicate() != P0 ||
+            Cmp->getOperand(0)->getType() != ComparedTy) {
+          BS.cancelScheduling(VL);
+          newTreeEntry(VL, false);
+          DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n");
+          return;
+        }
+      }
+
+      newTreeEntry(VL, true);
+      DEBUG(dbgs() << "SLP: added a vector of compares.\n");
+
+      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
+        ValueList Operands;
+        // Prepare the operand vector.
+        for (unsigned j = 0; j < VL.size(); ++j)
+          Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
+
+        buildTree_rec(Operands, Depth+1);
+      }
+      return;
+    }
+    case Instruction::Select:
+    case Instruction::Add:
+    case Instruction::FAdd:
+    case Instruction::Sub:
+    case Instruction::FSub:
+    case Instruction::Mul:
+    case Instruction::FMul:
+    case Instruction::UDiv:
+    case Instruction::SDiv:
+    case Instruction::FDiv:
+    case Instruction::URem:
+    case Instruction::SRem:
+    case Instruction::FRem:
+    case Instruction::Shl:
+    case Instruction::LShr:
+    case Instruction::AShr:
+    case Instruction::And:
+    case Instruction::Or:
+    case Instruction::Xor: {
+      newTreeEntry(VL, true);
+      DEBUG(dbgs() << "SLP: added a vector of bin op.\n");
+
+      // Sort operands of the instructions so that each side is more likely to
+      // have the same opcode.
+      if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
+        ValueList Left, Right;
+        reorderInputsAccordingToOpcode(VL, Left, Right);
+        buildTree_rec(Left, Depth + 1);
+        buildTree_rec(Right, Depth + 1);
+        return;
+      }
+
+      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
+        ValueList Operands;
+        // Prepare the operand vector.
+        for (unsigned j = 0; j < VL.size(); ++j)
+          Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
+
+        buildTree_rec(Operands, Depth+1);
+      }
+      return;
+    }
+    case Instruction::GetElementPtr: {
+      // We don't combine GEPs with complicated (nested) indexing.
+      for (unsigned j = 0; j < VL.size(); ++j) {
+        if (cast<Instruction>(VL[j])->getNumOperands() != 2) {
+          DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
+          BS.cancelScheduling(VL);
+          newTreeEntry(VL, false);
+          return;
+        }
+      }
+
+      // We can't combine several GEPs into one vector if they operate on
+      // different types.
+      Type *Ty0 = cast<Instruction>(VL0)->getOperand(0)->getType();
+      for (unsigned j = 0; j < VL.size(); ++j) {
+        Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType();
+        if (Ty0 != CurTy) {
+          DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n");
+          BS.cancelScheduling(VL);
+          newTreeEntry(VL, false);
+          return;
+        }
+      }
+
+      // We don't combine GEPs with non-constant indexes.
+      for (unsigned j = 0; j < VL.size(); ++j) {
+        auto Op = cast<Instruction>(VL[j])->getOperand(1);
+        if (!isa<ConstantInt>(Op)) {
+          DEBUG(
+              dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n");
+          BS.cancelScheduling(VL);
+          newTreeEntry(VL, false);
+          return;
+        }
+      }
+
+      newTreeEntry(VL, true);
+      DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
+      for (unsigned i = 0, e = 2; i < e; ++i) {
+        ValueList Operands;
+        // Prepare the operand vector.
+        for (unsigned j = 0; j < VL.size(); ++j)
+          Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
+
+        buildTree_rec(Operands, Depth + 1);
+      }
+      return;
+    }
+    case Instruction::Store: {
+      // Check if the stores are consecutive or of we need to swizzle them.
+      for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
+        if (!isConsecutiveAccess(VL[i], VL[i + 1])) {
+          BS.cancelScheduling(VL);
+          newTreeEntry(VL, false);
+          DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
+          return;
+        }
+
+      newTreeEntry(VL, true);
+      DEBUG(dbgs() << "SLP: added a vector of stores.\n");
+
+      ValueList Operands;
+      for (unsigned j = 0; j < VL.size(); ++j)
+        Operands.push_back(cast<Instruction>(VL[j])->getOperand(0));
+
+      buildTree_rec(Operands, Depth + 1);
+      return;
+    }
+    case Instruction::Call: {
+      // Check if the calls are all to the same vectorizable intrinsic.
+      CallInst *CI = cast<CallInst>(VL[0]);
+      // Check if this is an Intrinsic call or something that can be
+      // represented by an intrinsic call
+      Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
+      if (!isTriviallyVectorizable(ID)) {
+        BS.cancelScheduling(VL);
+        newTreeEntry(VL, false);
+        DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
+        return;
+      }
+      Function *Int = CI->getCalledFunction();
+      Value *A1I = nullptr;
+      if (hasVectorInstrinsicScalarOpd(ID, 1))
+        A1I = CI->getArgOperand(1);
+      for (unsigned i = 1, e = VL.size(); i != e; ++i) {
+        CallInst *CI2 = dyn_cast<CallInst>(VL[i]);
+        if (!CI2 || CI2->getCalledFunction() != Int ||
+            getIntrinsicIDForCall(CI2, TLI) != ID) {
+          BS.cancelScheduling(VL);
+          newTreeEntry(VL, false);
+          DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i]
+                       << "\n");
+          return;
+        }
+        // ctlz,cttz and powi are special intrinsics whose second argument
+        // should be same in order for them to be vectorized.
+        if (hasVectorInstrinsicScalarOpd(ID, 1)) {
+          Value *A1J = CI2->getArgOperand(1);
+          if (A1I != A1J) {
+            BS.cancelScheduling(VL);
+            newTreeEntry(VL, false);
+            DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
+                         << " argument "<< A1I<<"!=" << A1J
+                         << "\n");
+            return;
+          }
+        }
+      }
+
+      newTreeEntry(VL, true);
+      for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
+        ValueList Operands;
+        // Prepare the operand vector.
+        for (unsigned j = 0; j < VL.size(); ++j) {
+          CallInst *CI2 = dyn_cast<CallInst>(VL[j]);
+          Operands.push_back(CI2->getArgOperand(i));
+        }
+        buildTree_rec(Operands, Depth + 1);
+      }
+      return;
+    }
+    case Instruction::ShuffleVector: {
+      // If this is not an alternate sequence of opcode like add-sub
+      // then do not vectorize this instruction.
+      if (!isAltShuffle) {
+        BS.cancelScheduling(VL);
+        newTreeEntry(VL, false);
+        DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
+        return;
+      }
+      newTreeEntry(VL, true);
+      DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
+      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
+        ValueList Operands;
+        // Prepare the operand vector.
+        for (unsigned j = 0; j < VL.size(); ++j)
+          Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
+
+        buildTree_rec(Operands, Depth + 1);
+      }
+      return;
+    }
+    default:
+      BS.cancelScheduling(VL);
+      newTreeEntry(VL, false);
+      DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
+      return;
+  }
+}
+
+int BoUpSLP::getEntryCost(TreeEntry *E) {
+  ArrayRef<Value*> VL = E->Scalars;
+
+  Type *ScalarTy = VL[0]->getType();
+  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
+    ScalarTy = SI->getValueOperand()->getType();
+  VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
+
+  if (E->NeedToGather) {
+    if (allConstant(VL))
+      return 0;
+    if (isSplat(VL)) {
+      return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
+    }
+    return getGatherCost(E->Scalars);
+  }
+  unsigned Opcode = getSameOpcode(VL);
+  assert(Opcode && getSameType(VL) && getSameBlock(VL) && "Invalid VL");
+  Instruction *VL0 = cast<Instruction>(VL[0]);
+  switch (Opcode) {
+    case Instruction::PHI: {
+      return 0;
+    }
+    case Instruction::ExtractElement: {
+      if (CanReuseExtract(VL)) {
+        int DeadCost = 0;
+        for (unsigned i = 0, e = VL.size(); i < e; ++i) {
+          ExtractElementInst *E = cast<ExtractElementInst>(VL[i]);
+          if (E->hasOneUse())
+            // Take credit for instruction that will become dead.
+            DeadCost +=
+                TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i);
+        }
+        return -DeadCost;
+      }
+      return getGatherCost(VecTy);
+    }
+    case Instruction::ZExt:
+    case Instruction::SExt:
+    case Instruction::FPToUI:
+    case Instruction::FPToSI:
+    case Instruction::FPExt:
+    case Instruction::PtrToInt:
+    case Instruction::IntToPtr:
+    case Instruction::SIToFP:
+    case Instruction::UIToFP:
+    case Instruction::Trunc:
+    case Instruction::FPTrunc:
+    case Instruction::BitCast: {
+      Type *SrcTy = VL0->getOperand(0)->getType();
+
+      // Calculate the cost of this instruction.
+      int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(),
+                                                         VL0->getType(), SrcTy);
+
+      VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
+      int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy);
+      return VecCost - ScalarCost;
+    }
+    case Instruction::FCmp:
+    case Instruction::ICmp:
+    case Instruction::Select:
+    case Instruction::Add:
+    case Instruction::FAdd:
+    case Instruction::Sub:
+    case Instruction::FSub:
+    case Instruction::Mul:
+    case Instruction::FMul:
+    case Instruction::UDiv:
+    case Instruction::SDiv:
+    case Instruction::FDiv:
+    case Instruction::URem:
+    case Instruction::SRem:
+    case Instruction::FRem:
+    case Instruction::Shl:
+    case Instruction::LShr:
+    case Instruction::AShr:
+    case Instruction::And:
+    case Instruction::Or:
+    case Instruction::Xor: {
+      // Calculate the cost of this instruction.
+      int ScalarCost = 0;
+      int VecCost = 0;
+      if (Opcode == Instruction::FCmp || Opcode == Instruction::ICmp ||
+          Opcode == Instruction::Select) {
+        VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
+        ScalarCost = VecTy->getNumElements() *
+        TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty());
+        VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy);
+      } else {
+        // Certain instructions can be cheaper to vectorize if they have a
+        // constant second vector operand.
+        TargetTransformInfo::OperandValueKind Op1VK =
+            TargetTransformInfo::OK_AnyValue;
+        TargetTransformInfo::OperandValueKind Op2VK =
+            TargetTransformInfo::OK_UniformConstantValue;
+        TargetTransformInfo::OperandValueProperties Op1VP =
+            TargetTransformInfo::OP_None;
+        TargetTransformInfo::OperandValueProperties Op2VP =
+            TargetTransformInfo::OP_None;
+
+        // If all operands are exactly the same ConstantInt then set the
+        // operand kind to OK_UniformConstantValue.
+        // If instead not all operands are constants, then set the operand kind
+        // to OK_AnyValue. If all operands are constants but not the same,
+        // then set the operand kind to OK_NonUniformConstantValue.
+        ConstantInt *CInt = nullptr;
+        for (unsigned i = 0; i < VL.size(); ++i) {
+          const Instruction *I = cast<Instruction>(VL[i]);
+          if (!isa<ConstantInt>(I->getOperand(1))) {
+            Op2VK = TargetTransformInfo::OK_AnyValue;
+            break;
+          }
+          if (i == 0) {
+            CInt = cast<ConstantInt>(I->getOperand(1));
+            continue;
+          }
+          if (Op2VK == TargetTransformInfo::OK_UniformConstantValue &&
+              CInt != cast<ConstantInt>(I->getOperand(1)))
+            Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
+        }
+        // FIXME: Currently cost of model modification for division by
+        // power of 2 is handled only for X86. Add support for other targets.
+        if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt &&
+            CInt->getValue().isPowerOf2())
+          Op2VP = TargetTransformInfo::OP_PowerOf2;
+
+        ScalarCost = VecTy->getNumElements() *
+                     TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, Op2VK,
+                                                 Op1VP, Op2VP);
+        VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK,
+                                              Op1VP, Op2VP);
+      }
+      return VecCost - ScalarCost;
+    }
+    case Instruction::GetElementPtr: {
+      TargetTransformInfo::OperandValueKind Op1VK =
+          TargetTransformInfo::OK_AnyValue;
+      TargetTransformInfo::OperandValueKind Op2VK =
+          TargetTransformInfo::OK_UniformConstantValue;
+
+      int ScalarCost =
+          VecTy->getNumElements() *
+          TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK);
+      int VecCost =
+          TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK);
+
+      return VecCost - ScalarCost;
+    }
+    case Instruction::Load: {
+      // Cost of wide load - cost of scalar loads.
+      int ScalarLdCost = VecTy->getNumElements() *
+      TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0);
+      int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, 1, 0);
+      return VecLdCost - ScalarLdCost;
+    }
+    case Instruction::Store: {
+      // We know that we can merge the stores. Calculate the cost.
+      int ScalarStCost = VecTy->getNumElements() *
+      TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0);
+      int VecStCost = TTI->getMemoryOpCost(Instruction::Store, VecTy, 1, 0);
+      return VecStCost - ScalarStCost;
+    }
+    case Instruction::Call: {
+      CallInst *CI = cast<CallInst>(VL0);
+      Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
+
+      // Calculate the cost of the scalar and vector calls.
+      SmallVector<Type*, 4> ScalarTys, VecTys;
+      for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) {
+        ScalarTys.push_back(CI->getArgOperand(op)->getType());
+        VecTys.push_back(VectorType::get(CI->getArgOperand(op)->getType(),
+                                         VecTy->getNumElements()));
+      }
+
+      int ScalarCallCost = VecTy->getNumElements() *
+          TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys);
+
+      int VecCallCost = TTI->getIntrinsicInstrCost(ID, VecTy, VecTys);
+
+      DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost
+            << " (" << VecCallCost  << "-" <<  ScalarCallCost << ")"
+            << " for " << *CI << "\n");
+
+      return VecCallCost - ScalarCallCost;
+    }
+    case Instruction::ShuffleVector: {
+      TargetTransformInfo::OperandValueKind Op1VK =
+          TargetTransformInfo::OK_AnyValue;
+      TargetTransformInfo::OperandValueKind Op2VK =
+          TargetTransformInfo::OK_AnyValue;
+      int ScalarCost = 0;
+      int VecCost = 0;
+      for (unsigned i = 0; i < VL.size(); ++i) {
+        Instruction *I = cast<Instruction>(VL[i]);
+        if (!I)
+          break;
+        ScalarCost +=
+            TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK);
+      }
+      // VecCost is equal to sum of the cost of creating 2 vectors
+      // and the cost of creating shuffle.
+      Instruction *I0 = cast<Instruction>(VL[0]);
+      VecCost =
+          TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK);
+      Instruction *I1 = cast<Instruction>(VL[1]);
+      VecCost +=
+          TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK);
+      VecCost +=
+          TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0);
+      return VecCost - ScalarCost;
+    }
+    default:
+      llvm_unreachable("Unknown instruction");
+  }
+}
+
+bool BoUpSLP::isFullyVectorizableTinyTree() {
+  DEBUG(dbgs() << "SLP: Check whether the tree with height " <<
+        VectorizableTree.size() << " is fully vectorizable .\n");
+
+  // We only handle trees of height 2.
+  if (VectorizableTree.size() != 2)
+    return false;
+
+  // Handle splat stores.
+  if (!VectorizableTree[0].NeedToGather && isSplat(VectorizableTree[1].Scalars))
+    return true;
+
+  // Gathering cost would be too much for tiny trees.
+  if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather)
+    return false;
+
+  return true;
+}
+
+int BoUpSLP::getSpillCost() {
+  // Walk from the bottom of the tree to the top, tracking which values are
+  // live. When we see a call instruction that is not part of our tree,
+  // query TTI to see if there is a cost to keeping values live over it
+  // (for example, if spills and fills are required).
+  unsigned BundleWidth = VectorizableTree.front().Scalars.size();
+  int Cost = 0;
+
+  SmallPtrSet<Instruction*, 4> LiveValues;
+  Instruction *PrevInst = nullptr; 
+
+  for (unsigned N = 0; N < VectorizableTree.size(); ++N) {
+    Instruction *Inst = dyn_cast<Instruction>(VectorizableTree[N].Scalars[0]);
+    if (!Inst)
+      continue;
+
+    if (!PrevInst) {
+      PrevInst = Inst;
+      continue;
+    }
+
+    DEBUG(
+      dbgs() << "SLP: #LV: " << LiveValues.size();
+      for (auto *X : LiveValues)
+        dbgs() << " " << X->getName();
+      dbgs() << ", Looking at ";
+      Inst->dump();
+      );
+
+    // Update LiveValues.
+    LiveValues.erase(PrevInst);
+    for (auto &J : PrevInst->operands()) {
+      if (isa<Instruction>(&*J) && ScalarToTreeEntry.count(&*J))
+        LiveValues.insert(cast<Instruction>(&*J));
+    }    
+
+    // Now find the sequence of instructions between PrevInst and Inst.
+    BasicBlock::reverse_iterator InstIt(Inst), PrevInstIt(PrevInst);
+    --PrevInstIt;
+    while (InstIt != PrevInstIt) {
+      if (PrevInstIt == PrevInst->getParent()->rend()) {
+        PrevInstIt = Inst->getParent()->rbegin();
+        continue;
+      }
+
+      if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) {
+        SmallVector<Type*, 4> V;
+        for (auto *II : LiveValues)
+          V.push_back(VectorType::get(II->getType(), BundleWidth));
+        Cost += TTI->getCostOfKeepingLiveOverCall(V);
+      }
+
+      ++PrevInstIt;
+    }
+
+    PrevInst = Inst;
+  }
+
+  DEBUG(dbgs() << "SLP: SpillCost=" << Cost << "\n");
+  return Cost;
+}
+
+int BoUpSLP::getTreeCost() {
+  int Cost = 0;
+  DEBUG(dbgs() << "SLP: Calculating cost for tree of size " <<
+        VectorizableTree.size() << ".\n");
+
+  // We only vectorize tiny trees if it is fully vectorizable.
+  if (VectorizableTree.size() < 3 && !isFullyVectorizableTinyTree()) {
+    if (!VectorizableTree.size()) {
+      assert(!ExternalUses.size() && "We should not have any external users");
+    }
+    return INT_MAX;
+  }
+
+  unsigned BundleWidth = VectorizableTree[0].Scalars.size();
+
+  for (unsigned i = 0, e = VectorizableTree.size(); i != e; ++i) {
+    int C = getEntryCost(&VectorizableTree[i]);
+    DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with "
+          << *VectorizableTree[i].Scalars[0] << " .\n");
+    Cost += C;
+  }
+
+  SmallSet<Value *, 16> ExtractCostCalculated;
+  int ExtractCost = 0;
+  for (UserList::iterator I = ExternalUses.begin(), E = ExternalUses.end();
+       I != E; ++I) {
+    // We only add extract cost once for the same scalar.
+    if (!ExtractCostCalculated.insert(I->Scalar))
+      continue;
+
+    VectorType *VecTy = VectorType::get(I->Scalar->getType(), BundleWidth);
+    ExtractCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
+                                           I->Lane);
+  }
+
+  Cost += getSpillCost();
+
+  DEBUG(dbgs() << "SLP: Total Cost " << Cost + ExtractCost<< ".\n");
+  return  Cost + ExtractCost;
+}
+
+int BoUpSLP::getGatherCost(Type *Ty) {
+  int Cost = 0;
+  for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
+    Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
+  return Cost;
+}
+
+int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) {
+  // Find the type of the operands in VL.
+  Type *ScalarTy = VL[0]->getType();
+  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
+    ScalarTy = SI->getValueOperand()->getType();
+  VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
+  // Find the cost of inserting/extracting values from the vector.
+  return getGatherCost(VecTy);
+}
+
+Value *BoUpSLP::getPointerOperand(Value *I) {
+  if (LoadInst *LI = dyn_cast<LoadInst>(I))
+    return LI->getPointerOperand();
+  if (StoreInst *SI = dyn_cast<StoreInst>(I))
+    return SI->getPointerOperand();
+  return nullptr;
+}
+
+unsigned BoUpSLP::getAddressSpaceOperand(Value *I) {
+  if (LoadInst *L = dyn_cast<LoadInst>(I))
+    return L->getPointerAddressSpace();
+  if (StoreInst *S = dyn_cast<StoreInst>(I))
+    return S->getPointerAddressSpace();
+  return -1;
+}
+
+bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B) {
+  Value *PtrA = getPointerOperand(A);
+  Value *PtrB = getPointerOperand(B);
+  unsigned ASA = getAddressSpaceOperand(A);
+  unsigned ASB = getAddressSpaceOperand(B);
+
+  // Check that the address spaces match and that the pointers are valid.
+  if (!PtrA || !PtrB || (ASA != ASB))
+    return false;
+
+  // Make sure that A and B are different pointers of the same type.
+  if (PtrA == PtrB || PtrA->getType() != PtrB->getType())
+    return false;
+
+  unsigned PtrBitWidth = DL->getPointerSizeInBits(ASA);
+  Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
+  APInt Size(PtrBitWidth, DL->getTypeStoreSize(Ty));
+
+  APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
+  PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(*DL, OffsetA);
+  PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(*DL, OffsetB);
+
+  APInt OffsetDelta = OffsetB - OffsetA;
+
+  // Check if they are based on the same pointer. That makes the offsets
+  // sufficient.
+  if (PtrA == PtrB)
+    return OffsetDelta == Size;
+
+  // Compute the necessary base pointer delta to have the necessary final delta
+  // equal to the size.
+  APInt BaseDelta = Size - OffsetDelta;
+
+  // Otherwise compute the distance with SCEV between the base pointers.
+  const SCEV *PtrSCEVA = SE->getSCEV(PtrA);
+  const SCEV *PtrSCEVB = SE->getSCEV(PtrB);
+  const SCEV *C = SE->getConstant(BaseDelta);
+  const SCEV *X = SE->getAddExpr(PtrSCEVA, C);
+  return X == PtrSCEVB;
+}
+
+void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) {
+  Instruction *VL0 = cast<Instruction>(VL[0]);
+  BasicBlock::iterator NextInst = VL0;
+  ++NextInst;
+  Builder.SetInsertPoint(VL0->getParent(), NextInst);
+  Builder.SetCurrentDebugLocation(VL0->getDebugLoc());
+}
+
+Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
+  Value *Vec = UndefValue::get(Ty);
+  // Generate the 'InsertElement' instruction.
+  for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
+    Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
+    if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) {
+      GatherSeq.insert(Insrt);
+      CSEBlocks.insert(Insrt->getParent());
+
+      // Add to our 'need-to-extract' list.
+      if (ScalarToTreeEntry.count(VL[i])) {
+        int Idx = ScalarToTreeEntry[VL[i]];
+        TreeEntry *E = &VectorizableTree[Idx];
+        // Find which lane we need to extract.
+        int FoundLane = -1;
+        for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) {
+          // Is this the lane of the scalar that we are looking for ?
+          if (E->Scalars[Lane] == VL[i]) {
+            FoundLane = Lane;
+            break;
+          }
+        }
+        assert(FoundLane >= 0 && "Could not find the correct lane");
+        ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
+      }
+    }
+  }
+
+  return Vec;
+}
+
+Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const {
+  SmallDenseMap<Value*, int>::const_iterator Entry
+    = ScalarToTreeEntry.find(VL[0]);
+  if (Entry != ScalarToTreeEntry.end()) {
+    int Idx = Entry->second;
+    const TreeEntry *En = &VectorizableTree[Idx];
+    if (En->isSame(VL) && En->VectorizedValue)
+      return En->VectorizedValue;
+  }
+  return nullptr;
+}
+
+Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
+  if (ScalarToTreeEntry.count(VL[0])) {
+    int Idx = ScalarToTreeEntry[VL[0]];
+    TreeEntry *E = &VectorizableTree[Idx];
+    if (E->isSame(VL))
+      return vectorizeTree(E);
+  }
+
+  Type *ScalarTy = VL[0]->getType();
+  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
+    ScalarTy = SI->getValueOperand()->getType();
+  VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
+
+  return Gather(VL, VecTy);
+}
+
+Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
+  IRBuilder<>::InsertPointGuard Guard(Builder);
+
+  if (E->VectorizedValue) {
+    DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
+    return E->VectorizedValue;
+  }
+
+  Instruction *VL0 = cast<Instruction>(E->Scalars[0]);
+  Type *ScalarTy = VL0->getType();
+  if (StoreInst *SI = dyn_cast<StoreInst>(VL0))
+    ScalarTy = SI->getValueOperand()->getType();
+  VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
+
+  if (E->NeedToGather) {
+    setInsertPointAfterBundle(E->Scalars);
+    return Gather(E->Scalars, VecTy);
+  }
+
+  unsigned Opcode = getSameOpcode(E->Scalars);
+
+  switch (Opcode) {
+    case Instruction::PHI: {
+      PHINode *PH = dyn_cast<PHINode>(VL0);
+      Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
+      Builder.SetCurrentDebugLocation(PH->getDebugLoc());
+      PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
+      E->VectorizedValue = NewPhi;
+
+      // PHINodes may have multiple entries from the same block. We want to
+      // visit every block once.
+      SmallSet<BasicBlock*, 4> VisitedBBs;
+
+      for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
+        ValueList Operands;
+        BasicBlock *IBB = PH->getIncomingBlock(i);
+
+        if (!VisitedBBs.insert(IBB)) {
+          NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
+          continue;
+        }
+
+        // Prepare the operand vector.
+        for (unsigned j = 0; j < E->Scalars.size(); ++j)
+          Operands.push_back(cast<PHINode>(E->Scalars[j])->
+                             getIncomingValueForBlock(IBB));
+
+        Builder.SetInsertPoint(IBB->getTerminator());
+        Builder.SetCurrentDebugLocation(PH->getDebugLoc());
+        Value *Vec = vectorizeTree(Operands);
+        NewPhi->addIncoming(Vec, IBB);
+      }
+
+      assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
+             "Invalid number of incoming values");
+      return NewPhi;
+    }
+
+    case Instruction::ExtractElement: {
+      if (CanReuseExtract(E->Scalars)) {
+        Value *V = VL0->getOperand(0);
+        E->VectorizedValue = V;
+        return V;
+      }
+      return Gather(E->Scalars, VecTy);
+    }
+    case Instruction::ZExt:
+    case Instruction::SExt:
+    case Instruction::FPToUI:
+    case Instruction::FPToSI:
+    case Instruction::FPExt:
+    case Instruction::PtrToInt:
+    case Instruction::IntToPtr:
+    case Instruction::SIToFP:
+    case Instruction::UIToFP:
+    case Instruction::Trunc:
+    case Instruction::FPTrunc:
+    case Instruction::BitCast: {
+      ValueList INVL;
+      for (int i = 0, e = E->Scalars.size(); i < e; ++i)
+        INVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
+
+      setInsertPointAfterBundle(E->Scalars);
+
+      Value *InVec = vectorizeTree(INVL);
+
+      if (Value *V = alreadyVectorized(E->Scalars))
+        return V;
+
+      CastInst *CI = dyn_cast<CastInst>(VL0);
+      Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
+      E->VectorizedValue = V;
+      ++NumVectorInstructions;
+      return V;
+    }
+    case Instruction::FCmp:
+    case Instruction::ICmp: {
+      ValueList LHSV, RHSV;
+      for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
+        LHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
+        RHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
+      }
+
+      setInsertPointAfterBundle(E->Scalars);
+
+      Value *L = vectorizeTree(LHSV);
+      Value *R = vectorizeTree(RHSV);
+
+      if (Value *V = alreadyVectorized(E->Scalars))
+        return V;
+
+      CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate();
+      Value *V;
+      if (Opcode == Instruction::FCmp)
+        V = Builder.CreateFCmp(P0, L, R);
+      else
+        V = Builder.CreateICmp(P0, L, R);
+
+      E->VectorizedValue = V;
+      ++NumVectorInstructions;
+      return V;
+    }
+    case Instruction::Select: {
+      ValueList TrueVec, FalseVec, CondVec;
+      for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
+        CondVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
+        TrueVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
+        FalseVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(2));
+      }
+
+      setInsertPointAfterBundle(E->Scalars);
+
+      Value *Cond = vectorizeTree(CondVec);
+      Value *True = vectorizeTree(TrueVec);
+      Value *False = vectorizeTree(FalseVec);
+
+      if (Value *V = alreadyVectorized(E->Scalars))
+        return V;
+
+      Value *V = Builder.CreateSelect(Cond, True, False);
+      E->VectorizedValue = V;
+      ++NumVectorInstructions;
+      return V;
+    }
+    case Instruction::Add:
+    case Instruction::FAdd:
+    case Instruction::Sub:
+    case Instruction::FSub:
+    case Instruction::Mul:
+    case Instruction::FMul:
+    case Instruction::UDiv:
+    case Instruction::SDiv:
+    case Instruction::FDiv:
+    case Instruction::URem:
+    case Instruction::SRem:
+    case Instruction::FRem:
+    case Instruction::Shl:
+    case Instruction::LShr:
+    case Instruction::AShr:
+    case Instruction::And:
+    case Instruction::Or:
+    case Instruction::Xor: {
+      ValueList LHSVL, RHSVL;
+      if (isa<BinaryOperator>(VL0) && VL0->isCommutative())
+        reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL);
+      else
+        for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
+          LHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
+          RHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
+        }
+
+      setInsertPointAfterBundle(E->Scalars);
+
+      Value *LHS = vectorizeTree(LHSVL);
+      Value *RHS = vectorizeTree(RHSVL);
+
+      if (LHS == RHS && isa<Instruction>(LHS)) {
+        assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order");
+      }
+
+      if (Value *V = alreadyVectorized(E->Scalars))
+        return V;
+
+      BinaryOperator *BinOp = cast<BinaryOperator>(VL0);
+      Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS);
+      E->VectorizedValue = V;
+      propagateIRFlags(E->VectorizedValue, E->Scalars);
+      ++NumVectorInstructions;
+
+      if (Instruction *I = dyn_cast<Instruction>(V))
+        return propagateMetadata(I, E->Scalars);
+
+      return V;
+    }
+    case Instruction::Load: {
+      // Loads are inserted at the head of the tree because we don't want to
+      // sink them all the way down past store instructions.
+      setInsertPointAfterBundle(E->Scalars);
+
+      LoadInst *LI = cast<LoadInst>(VL0);
+      Type *ScalarLoadTy = LI->getType();
+      unsigned AS = LI->getPointerAddressSpace();
+
+      Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
+                                            VecTy->getPointerTo(AS));
+
+      // The pointer operand uses an in-tree scalar so we add the new BitCast to
+      // ExternalUses list to make sure that an extract will be generated in the
+      // future.
+      if (ScalarToTreeEntry.count(LI->getPointerOperand()))
+        ExternalUses.push_back(
+            ExternalUser(LI->getPointerOperand(), cast<User>(VecPtr), 0));
+
+      unsigned Alignment = LI->getAlignment();
+      LI = Builder.CreateLoad(VecPtr);
+      if (!Alignment)
+        Alignment = DL->getABITypeAlignment(ScalarLoadTy);
+      LI->setAlignment(Alignment);
+      E->VectorizedValue = LI;
+      ++NumVectorInstructions;
+      return propagateMetadata(LI, E->Scalars);
+    }
+    case Instruction::Store: {
+      StoreInst *SI = cast<StoreInst>(VL0);
+      unsigned Alignment = SI->getAlignment();
+      unsigned AS = SI->getPointerAddressSpace();
+
+      ValueList ValueOp;
+      for (int i = 0, e = E->Scalars.size(); i < e; ++i)
+        ValueOp.push_back(cast<StoreInst>(E->Scalars[i])->getValueOperand());
+
+      setInsertPointAfterBundle(E->Scalars);
+
+      Value *VecValue = vectorizeTree(ValueOp);
+      Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(),
+                                            VecTy->getPointerTo(AS));
+      StoreInst *S = Builder.CreateStore(VecValue, VecPtr);
+
+      // The pointer operand uses an in-tree scalar so we add the new BitCast to
+      // ExternalUses list to make sure that an extract will be generated in the
+      // future.
+      if (ScalarToTreeEntry.count(SI->getPointerOperand()))
+        ExternalUses.push_back(
+            ExternalUser(SI->getPointerOperand(), cast<User>(VecPtr), 0));
+
+      if (!Alignment)
+        Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType());
+      S->setAlignment(Alignment);
+      E->VectorizedValue = S;
+      ++NumVectorInstructions;
+      return propagateMetadata(S, E->Scalars);
+    }
+    case Instruction::GetElementPtr: {
+      setInsertPointAfterBundle(E->Scalars);
+
+      ValueList Op0VL;
+      for (int i = 0, e = E->Scalars.size(); i < e; ++i)
+        Op0VL.push_back(cast<GetElementPtrInst>(E->Scalars[i])->getOperand(0));
+
+      Value *Op0 = vectorizeTree(Op0VL);
+
+      std::vector<Value *> OpVecs;
+      for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
+           ++j) {
+        ValueList OpVL;
+        for (int i = 0, e = E->Scalars.size(); i < e; ++i)
+          OpVL.push_back(cast<GetElementPtrInst>(E->Scalars[i])->getOperand(j));
+
+        Value *OpVec = vectorizeTree(OpVL);
+        OpVecs.push_back(OpVec);
+      }
+
+      Value *V = Builder.CreateGEP(Op0, OpVecs);
+      E->VectorizedValue = V;
+      ++NumVectorInstructions;
+
+      if (Instruction *I = dyn_cast<Instruction>(V))
+        return propagateMetadata(I, E->Scalars);
+
+      return V;
+    }
+    case Instruction::Call: {
+      CallInst *CI = cast<CallInst>(VL0);
+      setInsertPointAfterBundle(E->Scalars);
+      Function *FI;
+      Intrinsic::ID IID  = Intrinsic::not_intrinsic;
+      Value *ScalarArg = nullptr;
+      if (CI && (FI = CI->getCalledFunction())) {
+        IID = (Intrinsic::ID) FI->getIntrinsicID();
+      }
+      std::vector<Value *> OpVecs;
+      for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
+        ValueList OpVL;
+        // ctlz,cttz and powi are special intrinsics whose second argument is
+        // a scalar. This argument should not be vectorized.
+        if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) {
+          CallInst *CEI = cast<CallInst>(E->Scalars[0]);
+          ScalarArg = CEI->getArgOperand(j);
+          OpVecs.push_back(CEI->getArgOperand(j));
+          continue;
+        }
+        for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
+          CallInst *CEI = cast<CallInst>(E->Scalars[i]);
+          OpVL.push_back(CEI->getArgOperand(j));
+        }
+
+        Value *OpVec = vectorizeTree(OpVL);
+        DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
+        OpVecs.push_back(OpVec);
+      }
+
+      Module *M = F->getParent();
+      Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
+      Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) };
+      Function *CF = Intrinsic::getDeclaration(M, ID, Tys);
+      Value *V = Builder.CreateCall(CF, OpVecs);
+
+      // The scalar argument uses an in-tree scalar so we add the new vectorized
+      // call to ExternalUses list to make sure that an extract will be
+      // generated in the future.
+      if (ScalarArg && ScalarToTreeEntry.count(ScalarArg))
+        ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
+
+      E->VectorizedValue = V;
+      ++NumVectorInstructions;
+      return V;
+    }
+    case Instruction::ShuffleVector: {
+      ValueList LHSVL, RHSVL;
+      for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
+        LHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
+        RHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
+      }
+      setInsertPointAfterBundle(E->Scalars);
+
+      Value *LHS = vectorizeTree(LHSVL);
+      Value *RHS = vectorizeTree(RHSVL);
+
+      if (Value *V = alreadyVectorized(E->Scalars))
+        return V;
+
+      // Create a vector of LHS op1 RHS
+      BinaryOperator *BinOp0 = cast<BinaryOperator>(VL0);
+      Value *V0 = Builder.CreateBinOp(BinOp0->getOpcode(), LHS, RHS);
+
+      // Create a vector of LHS op2 RHS
+      Instruction *VL1 = cast<Instruction>(E->Scalars[1]);
+      BinaryOperator *BinOp1 = cast<BinaryOperator>(VL1);
+      Value *V1 = Builder.CreateBinOp(BinOp1->getOpcode(), LHS, RHS);
+
+      // Create shuffle to take alternate operations from the vector.
+      // Also, gather up odd and even scalar ops to propagate IR flags to
+      // each vector operation.
+      ValueList OddScalars, EvenScalars;
+      unsigned e = E->Scalars.size();
+      SmallVector<Constant *, 8> Mask(e);
+      for (unsigned i = 0; i < e; ++i) {
+        if (i & 1) {
+          Mask[i] = Builder.getInt32(e + i);
+          OddScalars.push_back(E->Scalars[i]);
+        } else {
+          Mask[i] = Builder.getInt32(i);
+          EvenScalars.push_back(E->Scalars[i]);
+        }
+      }
+
+      Value *ShuffleMask = ConstantVector::get(Mask);
+      propagateIRFlags(V0, EvenScalars);
+      propagateIRFlags(V1, OddScalars);
+
+      Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask);
+      E->VectorizedValue = V;
+      ++NumVectorInstructions;
+      if (Instruction *I = dyn_cast<Instruction>(V))
+        return propagateMetadata(I, E->Scalars);
+
+      return V;
+    }
+    default:
+    llvm_unreachable("unknown inst");
+  }
+  return nullptr;
+}
+
+Value *BoUpSLP::vectorizeTree() {
+  
+  // All blocks must be scheduled before any instructions are inserted.
+  for (auto &BSIter : BlocksSchedules) {
+    scheduleBlock(BSIter.second.get());
+  }
+
+  Builder.SetInsertPoint(F->getEntryBlock().begin());
+  vectorizeTree(&VectorizableTree[0]);
+
+  DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n");
+
+  // Extract all of the elements with the external uses.
+  for (UserList::iterator it = ExternalUses.begin(), e = ExternalUses.end();
+       it != e; ++it) {
+    Value *Scalar = it->Scalar;
+    llvm::User *User = it->User;
+
+    // Skip users that we already RAUW. This happens when one instruction
+    // has multiple uses of the same value.
+    if (std::find(Scalar->user_begin(), Scalar->user_end(), User) ==
+        Scalar->user_end())
+      continue;
+    assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar");
+
+    int Idx = ScalarToTreeEntry[Scalar];
+    TreeEntry *E = &VectorizableTree[Idx];
+    assert(!E->NeedToGather && "Extracting from a gather list");
+
+    Value *Vec = E->VectorizedValue;
+    assert(Vec && "Can't find vectorizable value");
+
+    Value *Lane = Builder.getInt32(it->Lane);
+    // Generate extracts for out-of-tree users.
+    // Find the insertion point for the extractelement lane.
+    if (isa<Instruction>(Vec)){
+      if (PHINode *PH = dyn_cast<PHINode>(User)) {
+        for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
+          if (PH->getIncomingValue(i) == Scalar) {
+            Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
+            Value *Ex = Builder.CreateExtractElement(Vec, Lane);
+            CSEBlocks.insert(PH->getIncomingBlock(i));
+            PH->setOperand(i, Ex);
+          }
+        }
+      } else {
+        Builder.SetInsertPoint(cast<Instruction>(User));
+        Value *Ex = Builder.CreateExtractElement(Vec, Lane);
+        CSEBlocks.insert(cast<Instruction>(User)->getParent());
+        User->replaceUsesOfWith(Scalar, Ex);
+     }
+    } else {
+      Builder.SetInsertPoint(F->getEntryBlock().begin());
+      Value *Ex = Builder.CreateExtractElement(Vec, Lane);
+      CSEBlocks.insert(&F->getEntryBlock());
+      User->replaceUsesOfWith(Scalar, Ex);
+    }
+
+    DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
+  }
+
+  // For each vectorized value:
+  for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
+    TreeEntry *Entry = &VectorizableTree[EIdx];
+
+    // For each lane:
+    for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
+      Value *Scalar = Entry->Scalars[Lane];
+      // No need to handle users of gathered values.
+      if (Entry->NeedToGather)
+        continue;
+
+      assert(Entry->VectorizedValue && "Can't find vectorizable value");
+
+      Type *Ty = Scalar->getType();
+      if (!Ty->isVoidTy()) {
+#ifndef NDEBUG
+        for (User *U : Scalar->users()) {
+          DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
+
+          assert((ScalarToTreeEntry.count(U) ||
+                  // It is legal to replace users in the ignorelist by undef.
+                  (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), U) !=
+                   UserIgnoreList.end())) &&
+                 "Replacing out-of-tree value with undef");
+        }
+#endif
+        Value *Undef = UndefValue::get(Ty);
+        Scalar->replaceAllUsesWith(Undef);
+      }
+      DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
+      cast<Instruction>(Scalar)->eraseFromParent();
+    }
+  }
+
+  Builder.ClearInsertionPoint();
+
+  return VectorizableTree[0].VectorizedValue;
+}
+
+void BoUpSLP::optimizeGatherSequence() {
+  DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
+        << " gather sequences instructions.\n");
+  // LICM InsertElementInst sequences.
+  for (SetVector<Instruction *>::iterator it = GatherSeq.begin(),
+       e = GatherSeq.end(); it != e; ++it) {
+    InsertElementInst *Insert = dyn_cast<InsertElementInst>(*it);
+
+    if (!Insert)
+      continue;
+
+    // Check if this block is inside a loop.
+    Loop *L = LI->getLoopFor(Insert->getParent());
+    if (!L)
+      continue;
+
+    // Check if it has a preheader.
+    BasicBlock *PreHeader = L->getLoopPreheader();
+    if (!PreHeader)
+      continue;
+
+    // If the vector or the element that we insert into it are
+    // instructions that are defined in this basic block then we can't
+    // hoist this instruction.
+    Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0));
+    Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1));
+    if (CurrVec && L->contains(CurrVec))
+      continue;
+    if (NewElem && L->contains(NewElem))
+      continue;
+
+    // We can hoist this instruction. Move it to the pre-header.
+    Insert->moveBefore(PreHeader->getTerminator());
+  }
+
+  // Make a list of all reachable blocks in our CSE queue.
+  SmallVector<const DomTreeNode *, 8> CSEWorkList;
+  CSEWorkList.reserve(CSEBlocks.size());
+  for (BasicBlock *BB : CSEBlocks)
+    if (DomTreeNode *N = DT->getNode(BB)) {
+      assert(DT->isReachableFromEntry(N));
+      CSEWorkList.push_back(N);
+    }
+
+  // Sort blocks by domination. This ensures we visit a block after all blocks
+  // dominating it are visited.
+  std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(),
+                   [this](const DomTreeNode *A, const DomTreeNode *B) {
+    return DT->properlyDominates(A, B);
+  });
+
+  // Perform O(N^2) search over the gather sequences and merge identical
+  // instructions. TODO: We can further optimize this scan if we split the
+  // instructions into different buckets based on the insert lane.
+  SmallVector<Instruction *, 16> Visited;
+  for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
+    assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
+           "Worklist not sorted properly!");
+    BasicBlock *BB = (*I)->getBlock();
+    // For all instructions in blocks containing gather sequences:
+    for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
+      Instruction *In = it++;
+      if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
+        continue;
+
+      // Check if we can replace this instruction with any of the
+      // visited instructions.
+      for (SmallVectorImpl<Instruction *>::iterator v = Visited.begin(),
+                                                    ve = Visited.end();
+           v != ve; ++v) {
+        if (In->isIdenticalTo(*v) &&
+            DT->dominates((*v)->getParent(), In->getParent())) {
+          In->replaceAllUsesWith(*v);
+          In->eraseFromParent();
+          In = nullptr;
+          break;
+        }
+      }
+      if (In) {
+        assert(std::find(Visited.begin(), Visited.end(), In) == Visited.end());
+        Visited.push_back(In);
+      }
+    }
+  }
+  CSEBlocks.clear();
+  GatherSeq.clear();
+}
+
+// Groups the instructions to a bundle (which is then a single scheduling entity)
+// and schedules instructions until the bundle gets ready.
+bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL,
+                                                 AliasAnalysis *AA) {
+  if (isa<PHINode>(VL[0]))
+    return true;
+
+  // Initialize the instruction bundle.
+  Instruction *OldScheduleEnd = ScheduleEnd;
+  ScheduleData *PrevInBundle = nullptr;
+  ScheduleData *Bundle = nullptr;
+  bool ReSchedule = false;
+  DEBUG(dbgs() << "SLP:  bundle: " << *VL[0] << "\n");
+  for (Value *V : VL) {
+    extendSchedulingRegion(V);
+    ScheduleData *BundleMember = getScheduleData(V);
+    assert(BundleMember &&
+           "no ScheduleData for bundle member (maybe not in same basic block)");
+    if (BundleMember->IsScheduled) {
+      // A bundle member was scheduled as single instruction before and now
+      // needs to be scheduled as part of the bundle. We just get rid of the
+      // existing schedule.
+      DEBUG(dbgs() << "SLP:  reset schedule because " << *BundleMember
+                   << " was already scheduled\n");
+      ReSchedule = true;
+    }
+    assert(BundleMember->isSchedulingEntity() &&
+           "bundle member already part of other bundle");
+    if (PrevInBundle) {
+      PrevInBundle->NextInBundle = BundleMember;
+    } else {
+      Bundle = BundleMember;
+    }
+    BundleMember->UnscheduledDepsInBundle = 0;
+    Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
+
+    // Group the instructions to a bundle.
+    BundleMember->FirstInBundle = Bundle;
+    PrevInBundle = BundleMember;
+  }
+  if (ScheduleEnd != OldScheduleEnd) {
+    // The scheduling region got new instructions at the lower end (or it is a
+    // new region for the first bundle). This makes it necessary to
+    // recalculate all dependencies.
+    // It is seldom that this needs to be done a second time after adding the
+    // initial bundle to the region.
+    for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
+      ScheduleData *SD = getScheduleData(I);
+      SD->clearDependencies();
+    }
+    ReSchedule = true;
+  }
+  if (ReSchedule) {
+    resetSchedule();
+    initialFillReadyList(ReadyInsts);
+  }
+
+  DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block "
+               << BB->getName() << "\n");
+
+  calculateDependencies(Bundle, true, AA);
+
+  // Now try to schedule the new bundle. As soon as the bundle is "ready" it
+  // means that there are no cyclic dependencies and we can schedule it.
+  // Note that's important that we don't "schedule" the bundle yet (see
+  // cancelScheduling).
+  while (!Bundle->isReady() && !ReadyInsts.empty()) {
+
+    ScheduleData *pickedSD = ReadyInsts.back();
+    ReadyInsts.pop_back();
+
+    if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) {
+      schedule(pickedSD, ReadyInsts);
+    }
+  }
+  return Bundle->isReady();
+}
+
+void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL) {
+  if (isa<PHINode>(VL[0]))
+    return;
+
+  ScheduleData *Bundle = getScheduleData(VL[0]);
+  DEBUG(dbgs() << "SLP:  cancel scheduling of " << *Bundle << "\n");
+  assert(!Bundle->IsScheduled &&
+         "Can't cancel bundle which is already scheduled");
+  assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
+         "tried to unbundle something which is not a bundle");
+
+  // Un-bundle: make single instructions out of the bundle.
+  ScheduleData *BundleMember = Bundle;
+  while (BundleMember) {
+    assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
+    BundleMember->FirstInBundle = BundleMember;
+    ScheduleData *Next = BundleMember->NextInBundle;
+    BundleMember->NextInBundle = nullptr;
+    BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
+    if (BundleMember->UnscheduledDepsInBundle == 0) {
+      ReadyInsts.insert(BundleMember);
+    }
+    BundleMember = Next;
+  }
+}
+
+void BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V) {
+  if (getScheduleData(V))
+    return;
+  Instruction *I = dyn_cast<Instruction>(V);
+  assert(I && "bundle member must be an instruction");
+  assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled");
+  if (!ScheduleStart) {
+    // It's the first instruction in the new region.
+    initScheduleData(I, I->getNextNode(), nullptr, nullptr);
+    ScheduleStart = I;
+    ScheduleEnd = I->getNextNode();
+    assert(ScheduleEnd && "tried to vectorize a TerminatorInst?");
+    DEBUG(dbgs() << "SLP:  initialize schedule region to " << *I << "\n");
+    return;
+  }
+  // Search up and down at the same time, because we don't know if the new
+  // instruction is above or below the existing scheduling region.
+  BasicBlock::reverse_iterator UpIter(ScheduleStart);
+  BasicBlock::reverse_iterator UpperEnd = BB->rend();
+  BasicBlock::iterator DownIter(ScheduleEnd);
+  BasicBlock::iterator LowerEnd = BB->end();
+  for (;;) {
+    if (UpIter != UpperEnd) {
+      if (&*UpIter == I) {
+        initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
+        ScheduleStart = I;
+        DEBUG(dbgs() << "SLP:  extend schedule region start to " << *I << "\n");
+        return;
+      }
+      UpIter++;
+    }
+    if (DownIter != LowerEnd) {
+      if (&*DownIter == I) {
+        initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
+                         nullptr);
+        ScheduleEnd = I->getNextNode();
+        assert(ScheduleEnd && "tried to vectorize a TerminatorInst?");
+        DEBUG(dbgs() << "SLP:  extend schedule region end to " << *I << "\n");
+        return;
+      }
+      DownIter++;
+    }
+    assert((UpIter != UpperEnd || DownIter != LowerEnd) &&
+           "instruction not found in block");
+  }
+}
+
+void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
+                                                Instruction *ToI,
+                                                ScheduleData *PrevLoadStore,
+                                                ScheduleData *NextLoadStore) {
+  ScheduleData *CurrentLoadStore = PrevLoadStore;
+  for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
+    ScheduleData *SD = ScheduleDataMap[I];
+    if (!SD) {
+      // Allocate a new ScheduleData for the instruction.
+      if (ChunkPos >= ChunkSize) {
+        ScheduleDataChunks.push_back(
+            llvm::make_unique<ScheduleData[]>(ChunkSize));
+        ChunkPos = 0;
+      }
+      SD = &(ScheduleDataChunks.back()[ChunkPos++]);
+      ScheduleDataMap[I] = SD;
+      SD->Inst = I;
+    }
+    assert(!isInSchedulingRegion(SD) &&
+           "new ScheduleData already in scheduling region");
+    SD->init(SchedulingRegionID);
+
+    if (I->mayReadOrWriteMemory()) {
+      // Update the linked list of memory accessing instructions.
+      if (CurrentLoadStore) {
+        CurrentLoadStore->NextLoadStore = SD;
+      } else {
+        FirstLoadStoreInRegion = SD;
+      }
+      CurrentLoadStore = SD;
+    }
+  }
+  if (NextLoadStore) {
+    if (CurrentLoadStore)
+      CurrentLoadStore->NextLoadStore = NextLoadStore;
+  } else {
+    LastLoadStoreInRegion = CurrentLoadStore;
+  }
+}
+
+/// \returns the AA location that is being access by the instruction.
+static AliasAnalysis::Location getLocation(Instruction *I, AliasAnalysis *AA) {
+  if (StoreInst *SI = dyn_cast<StoreInst>(I))
+    return AA->getLocation(SI);
+  if (LoadInst *LI = dyn_cast<LoadInst>(I))
+    return AA->getLocation(LI);
+  return AliasAnalysis::Location();
+}
+
+void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
+                                                     bool InsertInReadyList,
+                                                     AliasAnalysis *AA) {
+  assert(SD->isSchedulingEntity());
+
+  SmallVector<ScheduleData *, 10> WorkList;
+  WorkList.push_back(SD);
+
+  while (!WorkList.empty()) {
+    ScheduleData *SD = WorkList.back();
+    WorkList.pop_back();
+
+    ScheduleData *BundleMember = SD;
+    while (BundleMember) {
+      assert(isInSchedulingRegion(BundleMember));
+      if (!BundleMember->hasValidDependencies()) {
+
+        DEBUG(dbgs() << "SLP:       update deps of " << *BundleMember << "\n");
+        BundleMember->Dependencies = 0;
+        BundleMember->resetUnscheduledDeps();
+
+        // Handle def-use chain dependencies.
+        for (User *U : BundleMember->Inst->users()) {
+          if (isa<Instruction>(U)) {
+            ScheduleData *UseSD = getScheduleData(U);
+            if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
+              BundleMember->Dependencies++;
+              ScheduleData *DestBundle = UseSD->FirstInBundle;
+              if (!DestBundle->IsScheduled) {
+                BundleMember->incrementUnscheduledDeps(1);
+              }
+              if (!DestBundle->hasValidDependencies()) {
+                WorkList.push_back(DestBundle);
+              }
+            }
+          } else {
+            // I'm not sure if this can ever happen. But we need to be safe.
+            // This lets the instruction/bundle never be scheduled and eventally
+            // disable vectorization.
+            BundleMember->Dependencies++;
+            BundleMember->incrementUnscheduledDeps(1);
+          }
+        }
+
+        // Handle the memory dependencies.
+        ScheduleData *DepDest = BundleMember->NextLoadStore;
+        if (DepDest) {
+          AliasAnalysis::Location SrcLoc = getLocation(BundleMember->Inst, AA);
+          bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
+
+          while (DepDest) {
+            assert(isInSchedulingRegion(DepDest));
+            if (SrcMayWrite || DepDest->Inst->mayWriteToMemory()) {
+              AliasAnalysis::Location DstLoc = getLocation(DepDest->Inst, AA);
+              if (!SrcLoc.Ptr || !DstLoc.Ptr || AA->alias(SrcLoc, DstLoc)) {
+                DepDest->MemoryDependencies.push_back(BundleMember);
+                BundleMember->Dependencies++;
+                ScheduleData *DestBundle = DepDest->FirstInBundle;
+                if (!DestBundle->IsScheduled) {
+                  BundleMember->incrementUnscheduledDeps(1);
+                }
+                if (!DestBundle->hasValidDependencies()) {
+                  WorkList.push_back(DestBundle);
+                }
+              }
+            }
+            DepDest = DepDest->NextLoadStore;
+          }
+        }
+      }
+      BundleMember = BundleMember->NextInBundle;
+    }
+    if (InsertInReadyList && SD->isReady()) {
+      ReadyInsts.push_back(SD);
+      DEBUG(dbgs() << "SLP:     gets ready on update: " << *SD->Inst << "\n");
+    }
+  }
+}
+
+void BoUpSLP::BlockScheduling::resetSchedule() {
+  assert(ScheduleStart &&
+         "tried to reset schedule on block which has not been scheduled");
+  for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
+    ScheduleData *SD = getScheduleData(I);
+    assert(isInSchedulingRegion(SD));
+    SD->IsScheduled = false;
+    SD->resetUnscheduledDeps();
+  }
+  ReadyInsts.clear();
+}
 
-using namespace llvm;
+void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
+  
+  if (!BS->ScheduleStart)
+    return;
+  
+  DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
 
-static cl::opt<int>
-SLPCostThreshold("slp-threshold", cl::init(1), cl::Hidden,
-                 cl::desc("Only vectorize trees if the gain is above this "
-                          "number. (gain = -cost of vectorization)"));
-namespace {
+  BS->resetSchedule();
+
+  // For the real scheduling we use a more sophisticated ready-list: it is
+  // sorted by the original instruction location. This lets the final schedule
+  // be as  close as possible to the original instruction order.
+  struct ScheduleDataCompare {
+    bool operator()(ScheduleData *SD1, ScheduleData *SD2) {
+      return SD2->SchedulingPriority < SD1->SchedulingPriority;
+    }
+  };
+  std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
+
+  // Ensure that all depencency data is updated and fill the ready-list with
+  // initial instructions.
+  int Idx = 0;
+  int NumToSchedule = 0;
+  for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
+       I = I->getNextNode()) {
+    ScheduleData *SD = BS->getScheduleData(I);
+    assert(
+        SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->Inst) != 0) &&
+        "scheduler and vectorizer have different opinion on what is a bundle");
+    SD->FirstInBundle->SchedulingPriority = Idx++;
+    if (SD->isSchedulingEntity()) {
+      BS->calculateDependencies(SD, false, AA);
+      NumToSchedule++;
+    }
+  }
+  BS->initialFillReadyList(ReadyInsts);
+
+  Instruction *LastScheduledInst = BS->ScheduleEnd;
+
+  // Do the "real" scheduling.
+  while (!ReadyInsts.empty()) {
+    ScheduleData *picked = *ReadyInsts.begin();
+    ReadyInsts.erase(ReadyInsts.begin());
+
+    // Move the scheduled instruction(s) to their dedicated places, if not
+    // there yet.
+    ScheduleData *BundleMember = picked;
+    while (BundleMember) {
+      Instruction *pickedInst = BundleMember->Inst;
+      if (LastScheduledInst->getNextNode() != pickedInst) {
+        BS->BB->getInstList().remove(pickedInst);
+        BS->BB->getInstList().insert(LastScheduledInst, pickedInst);
+      }
+      LastScheduledInst = pickedInst;
+      BundleMember = BundleMember->NextInBundle;
+    }
+
+    BS->schedule(picked, ReadyInsts);
+    NumToSchedule--;
+  }
+  assert(NumToSchedule == 0 && "could not schedule all instructions");
+
+  // Avoid duplicate scheduling of the block.
+  BS->ScheduleStart = nullptr;
+}
 
 /// The SLPVectorizer Pass.
-struct SLPVectorizer : public BasicBlockPass {
-  typedef std::map<Value*, BoUpSLP::StoreList> StoreListMap;
+struct SLPVectorizer : public FunctionPass {
+  typedef SmallVector<StoreInst *, 8> StoreList;
+  typedef MapVector<Value *, StoreList> StoreListMap;
 
   /// Pass identification, replacement for typeid
   static char ID;
 
-  explicit SLPVectorizer() : BasicBlockPass(ID) {
+  explicit SLPVectorizer() : FunctionPass(ID) {
     initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
   }
 
   ScalarEvolution *SE;
-  DataLayout *DL;
+  const DataLayout *DL;
   TargetTransformInfo *TTI;
+  TargetLibraryInfo *TLI;
   AliasAnalysis *AA;
+  LoopInfo *LI;
+  DominatorTree *DT;
+
+  bool runOnFunction(Function &F) override {
+    if (skipOptnoneFunction(F))
+      return false;
+
+    SE = &getAnalysis<ScalarEvolution>();
+    DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
+    DL = DLP ? &DLP->getDataLayout() : nullptr;
+    TTI = &getAnalysis<TargetTransformInfo>();
+    TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
+    AA = &getAnalysis<AliasAnalysis>();
+    LI = &getAnalysis<LoopInfo>();
+    DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+
+    StoreRefs.clear();
+    bool Changed = false;
+
+    // If the target claims to have no vector registers don't attempt
+    // vectorization.
+    if (!TTI->getNumberOfRegisters(true))
+      return false;
+
+    // Must have DataLayout. We can't require it because some tests run w/o
+    // triple.
+    if (!DL)
+      return false;
+
+    // Don't vectorize when the attribute NoImplicitFloat is used.
+    if (F.hasFnAttribute(Attribute::NoImplicitFloat))
+      return false;
+
+    DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
+
+    // Use the bottom up slp vectorizer to construct chains that start with
+    // store instructions.
+    BoUpSLP R(&F, SE, DL, TTI, TLI, AA, LI, DT);
+
+    // Scan the blocks in the function in post order.
+    for (po_iterator<BasicBlock*> it = po_begin(&F.getEntryBlock()),
+         e = po_end(&F.getEntryBlock()); it != e; ++it) {
+      BasicBlock *BB = *it;
+      // Vectorize trees that end at stores.
+      if (unsigned count = collectStores(BB, R)) {
+        (void)count;
+        DEBUG(dbgs() << "SLP: Found " << count << " stores to vectorize.\n");
+        Changed |= vectorizeStoreChains(R);
+      }
+
+      // Vectorize trees that end at reductions.
+      Changed |= vectorizeChainsInBlock(BB, R);
+    }
+
+    if (Changed) {
+      R.optimizeGatherSequence();
+      DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
+      DEBUG(verifyFunction(F));
+    }
+    return Changed;
+  }
+
+  void getAnalysisUsage(AnalysisUsage &AU) const override {
+    FunctionPass::getAnalysisUsage(AU);
+    AU.addRequired<ScalarEvolution>();
+    AU.addRequired<AliasAnalysis>();
+    AU.addRequired<TargetTransformInfo>();
+    AU.addRequired<LoopInfo>();
+    AU.addRequired<DominatorTreeWrapperPass>();
+    AU.addPreserved<LoopInfo>();
+    AU.addPreserved<DominatorTreeWrapperPass>();
+    AU.setPreservesCFG();
+  }
+
+private:
 
   /// \brief Collect memory references and sort them according to their base
   /// object. We sort the stores to their base objects to reduce the cost of the
   /// quadratic search on the stores. TODO: We can further reduce this cost
   /// if we flush the chain creation every time we run into a memory barrier.
-  bool CollectStores(BasicBlock *BB, BoUpSLP &R) {
-    for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
-      // Can't vectorize instructions with side effects.
-      if (it->mayThrow())
-        return false;
+  unsigned collectStores(BasicBlock *BB, BoUpSLP &R);
 
-      StoreInst *SI = dyn_cast<StoreInst>(it);
-      if (!SI)
-        continue;
+  /// \brief Try to vectorize a chain that starts at two arithmetic instrs.
+  bool tryToVectorizePair(Value *A, Value *B, BoUpSLP &R);
 
-      // Check that the pointer points to scalars.
-      if (SI->getValueOperand()->getType()->isAggregateType())
-        return false;
+  /// \brief Try to vectorize a list of operands.
+  /// \@param BuildVector A list of users to ignore for the purpose of
+  ///                     scheduling and that don't need extracting.
+  /// \returns true if a value was vectorized.
+  bool tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
+                          ArrayRef<Value *> BuildVector = None,
+                          bool allowReorder = false);
+
+  /// \brief Try to vectorize a chain that may start at the operands of \V;
+  bool tryToVectorize(BinaryOperator *V, BoUpSLP &R);
+
+  /// \brief Vectorize the stores that were collected in StoreRefs.
+  bool vectorizeStoreChains(BoUpSLP &R);
+
+  /// \brief Scan the basic block and look for patterns that are likely to start
+  /// a vectorization chain.
+  bool vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R);
+
+  bool vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold,
+                           BoUpSLP &R);
+
+  bool vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold,
+                       BoUpSLP &R);
+private:
+  StoreListMap StoreRefs;
+};
+
+/// \brief Check that the Values in the slice in VL array are still existent in
+/// the WeakVH array.
+/// Vectorization of part of the VL array may cause later values in the VL array
+/// to become invalid. We track when this has happened in the WeakVH array.
+static bool hasValueBeenRAUWed(ArrayRef<Value *> &VL,
+                               SmallVectorImpl<WeakVH> &VH,
+                               unsigned SliceBegin,
+                               unsigned SliceSize) {
+  for (unsigned i = SliceBegin; i < SliceBegin + SliceSize; ++i)
+    if (VH[i] != VL[i])
+      return true;
+
+  return false;
+}
 
-      // Find the base of the GEP.
-      Value *Ptr = SI->getPointerOperand();
-      if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
-        Ptr = GEP->getPointerOperand();
+bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain,
+                                          int CostThreshold, BoUpSLP &R) {
+  unsigned ChainLen = Chain.size();
+  DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
+        << "\n");
+  Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType();
+  unsigned Sz = DL->getTypeSizeInBits(StoreTy);
+  unsigned VF = MinVecRegSize / Sz;
 
-      // Save the store locations.
-      StoreRefs[Ptr].push_back(SI);
+  if (!isPowerOf2_32(Sz) || VF < 2)
+    return false;
+
+  // Keep track of values that were deleted by vectorizing in the loop below.
+  SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end());
+
+  bool Changed = false;
+  // Look for profitable vectorizable trees at all offsets, starting at zero.
+  for (unsigned i = 0, e = ChainLen; i < e; ++i) {
+    if (i + VF > e)
+      break;
+
+    // Check that a previous iteration of this loop did not delete the Value.
+    if (hasValueBeenRAUWed(Chain, TrackValues, i, VF))
+      continue;
+
+    DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i
+          << "\n");
+    ArrayRef<Value *> Operands = Chain.slice(i, VF);
+
+    R.buildTree(Operands);
+
+    int Cost = R.getTreeCost();
+
+    DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
+    if (Cost < CostThreshold) {
+      DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
+      R.vectorizeTree();
+
+      // Move to the next bundle.
+      i += VF - 1;
+      Changed = true;
     }
-    return true;
   }
 
-  bool RollStoreChains(BoUpSLP &R) {
-    bool Changed = false;
-    // Attempt to sort and vectorize each of the store-groups.
-    for (StoreListMap::iterator it = StoreRefs.begin(), e = StoreRefs.end();
-         it != e; ++it) {
-      if (it->second.size() < 2)
+  return Changed;
+}
+
+bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores,
+                                    int costThreshold, BoUpSLP &R) {
+  SetVector<Value *> Heads, Tails;
+  SmallDenseMap<Value *, Value *> ConsecutiveChain;
+
+  // We may run into multiple chains that merge into a single chain. We mark the
+  // stores that we vectorized so that we don't visit the same store twice.
+  BoUpSLP::ValueSet VectorizedStores;
+  bool Changed = false;
+
+  // Do a quadratic search on all of the given stores and find
+  // all of the pairs of stores that follow each other.
+  for (unsigned i = 0, e = Stores.size(); i < e; ++i) {
+    for (unsigned j = 0; j < e; ++j) {
+      if (i == j)
         continue;
-      Changed |= R.vectorizeStores(it->second, -SLPCostThreshold);
+
+      if (R.isConsecutiveAccess(Stores[i], Stores[j])) {
+        Tails.insert(Stores[j]);
+        Heads.insert(Stores[i]);
+        ConsecutiveChain[Stores[i]] = Stores[j];
+      }
     }
-    return Changed;
   }
 
-  virtual bool runOnBasicBlock(BasicBlock &BB) {
-    SE = &getAnalysis<ScalarEvolution>();
-    DL = getAnalysisIfAvailable<DataLayout>();
-    TTI = &getAnalysis<TargetTransformInfo>();
-    AA = &getAnalysis<AliasAnalysis>();
-    StoreRefs.clear();
+  // For stores that start but don't end a link in the chain:
+  for (SetVector<Value *>::iterator it = Heads.begin(), e = Heads.end();
+       it != e; ++it) {
+    if (Tails.count(*it))
+      continue;
+
+    // We found a store instr that starts a chain. Now follow the chain and try
+    // to vectorize it.
+    BoUpSLP::ValueList Operands;
+    Value *I = *it;
+    // Collect the chain into a list.
+    while (Tails.count(I) || Heads.count(I)) {
+      if (VectorizedStores.count(I))
+        break;
+      Operands.push_back(I);
+      // Move to the next value in the chain.
+      I = ConsecutiveChain[I];
+    }
+
+    bool Vectorized = vectorizeStoreChain(Operands, costThreshold, R);
+
+    // Mark the vectorized stores so that we don't vectorize them again.
+    if (Vectorized)
+      VectorizedStores.insert(Operands.begin(), Operands.end());
+    Changed |= Vectorized;
+  }
+
+  return Changed;
+}
+
+
+unsigned SLPVectorizer::collectStores(BasicBlock *BB, BoUpSLP &R) {
+  unsigned count = 0;
+  StoreRefs.clear();
+  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
+    StoreInst *SI = dyn_cast<StoreInst>(it);
+    if (!SI)
+      continue;
+
+    // Don't touch volatile stores.
+    if (!SI->isSimple())
+      continue;
+
+    // Check that the pointer points to scalars.
+    Type *Ty = SI->getValueOperand()->getType();
+    if (Ty->isAggregateType() || Ty->isVectorTy())
+      continue;
+
+    // Find the base pointer.
+    Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), DL);
 
-    // Use the bollom up slp vectorizer to construct chains that start with
-    // he store instructions.
-    BoUpSLP R(&BB, SE, DL, TTI, AA);
+    // Save the store locations.
+    StoreRefs[Ptr].push_back(SI);
+    count++;
+  }
+  return count;
+}
+
+bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
+  if (!A || !B)
+    return false;
+  Value *VL[] = { A, B };
+  return tryToVectorizeList(VL, R, None, true);
+}
+
+bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
+                                       ArrayRef<Value *> BuildVector,
+                                       bool allowReorder) {
+  if (VL.size() < 2)
+    return false;
+
+  DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n");
+
+  // Check that all of the parts are scalar instructions of the same type.
+  Instruction *I0 = dyn_cast<Instruction>(VL[0]);
+  if (!I0)
+    return false;
+
+  unsigned Opcode0 = I0->getOpcode();
 
-    if (!CollectStores(&BB, R))
+  Type *Ty0 = I0->getType();
+  unsigned Sz = DL->getTypeSizeInBits(Ty0);
+  unsigned VF = MinVecRegSize / Sz;
+
+  for (int i = 0, e = VL.size(); i < e; ++i) {
+    Type *Ty = VL[i]->getType();
+    if (Ty->isAggregateType() || Ty->isVectorTy())
+      return false;
+    Instruction *Inst = dyn_cast<Instruction>(VL[i]);
+    if (!Inst || Inst->getOpcode() != Opcode0)
       return false;
+  }
 
-    bool Changed = RollStoreChains(R);
-    if (Changed) {
-      DEBUG(dbgs()<<"Rolled chains in \""<<BB.getParent()->getName()<<"\"\n");
-      DEBUG(verifyFunction(*BB.getParent()));
+  bool Changed = false;
+
+  // Keep track of values that were deleted by vectorizing in the loop below.
+  SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end());
+
+  for (unsigned i = 0, e = VL.size(); i < e; ++i) {
+    unsigned OpsWidth = 0;
+
+    if (i + VF > e)
+      OpsWidth = e - i;
+    else
+      OpsWidth = VF;
+
+    if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
+      break;
+
+    // Check that a previous iteration of this loop did not delete the Value.
+    if (hasValueBeenRAUWed(VL, TrackValues, i, OpsWidth))
+      continue;
+
+    DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
+                 << "\n");
+    ArrayRef<Value *> Ops = VL.slice(i, OpsWidth);
+
+    ArrayRef<Value *> BuildVectorSlice;
+    if (!BuildVector.empty())
+      BuildVectorSlice = BuildVector.slice(i, OpsWidth);
+
+    R.buildTree(Ops, BuildVectorSlice);
+    // TODO: check if we can allow reordering also for other cases than
+    // tryToVectorizePair()
+    if (allowReorder && R.shouldReorder()) {
+      assert(Ops.size() == 2);
+      assert(BuildVectorSlice.empty());
+      Value *ReorderedOps[] = { Ops[1], Ops[0] };
+      R.buildTree(ReorderedOps, None);
     }
+    int Cost = R.getTreeCost();
 
-    return Changed;
+    if (Cost < -SLPCostThreshold) {
+      DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
+      Value *VectorizedRoot = R.vectorizeTree();
+
+      // Reconstruct the build vector by extracting the vectorized root. This
+      // way we handle the case where some elements of the vector are undefined.
+      //  (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2))
+      if (!BuildVectorSlice.empty()) {
+        // The insert point is the last build vector instruction. The vectorized
+        // root will precede it. This guarantees that we get an instruction. The
+        // vectorized tree could have been constant folded.
+        Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back());
+        unsigned VecIdx = 0;
+        for (auto &V : BuildVectorSlice) {
+          IRBuilder<true, NoFolder> Builder(
+              ++BasicBlock::iterator(InsertAfter));
+          InsertElementInst *IE = cast<InsertElementInst>(V);
+          Instruction *Extract = cast<Instruction>(Builder.CreateExtractElement(
+              VectorizedRoot, Builder.getInt32(VecIdx++)));
+          IE->setOperand(1, Extract);
+          IE->removeFromParent();
+          IE->insertAfter(Extract);
+          InsertAfter = IE;
+        }
+      }
+      // Move to the next bundle.
+      i += VF - 1;
+      Changed = true;
+    }
   }
 
-  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
-    BasicBlockPass::getAnalysisUsage(AU);
-    AU.addRequired<ScalarEvolution>();
-    AU.addRequired<AliasAnalysis>();
-    AU.addRequired<TargetTransformInfo>();
+  return Changed;
+}
+
+bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) {
+  if (!V)
+    return false;
+
+  // Try to vectorize V.
+  if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R))
+    return true;
+
+  BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0));
+  BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1));
+  // Try to skip B.
+  if (B && B->hasOneUse()) {
+    BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
+    BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
+    if (tryToVectorizePair(A, B0, R)) {
+      return true;
+    }
+    if (tryToVectorizePair(A, B1, R)) {
+      return true;
+    }
+  }
+
+  // Try to skip A.
+  if (A && A->hasOneUse()) {
+    BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
+    BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
+    if (tryToVectorizePair(A0, B, R)) {
+      return true;
+    }
+    if (tryToVectorizePair(A1, B, R)) {
+      return true;
+    }
+  }
+  return 0;
+}
+
+/// \brief Generate a shuffle mask to be used in a reduction tree.
+///
+/// \param VecLen The length of the vector to be reduced.
+/// \param NumEltsToRdx The number of elements that should be reduced in the
+///        vector.
+/// \param IsPairwise Whether the reduction is a pairwise or splitting
+///        reduction. A pairwise reduction will generate a mask of 
+///        <0,2,...> or <1,3,..> while a splitting reduction will generate
+///        <2,3, undef,undef> for a vector of 4 and NumElts = 2.
+/// \param IsLeft True will generate a mask of even elements, odd otherwise.
+static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
+                                   bool IsPairwise, bool IsLeft,
+                                   IRBuilder<> &Builder) {
+  assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");
+
+  SmallVector<Constant *, 32> ShuffleMask(
+      VecLen, UndefValue::get(Builder.getInt32Ty()));
+
+  if (IsPairwise)
+    // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
+    for (unsigned i = 0; i != NumEltsToRdx; ++i)
+      ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft);
+  else
+    // Move the upper half of the vector to the lower half.
+    for (unsigned i = 0; i != NumEltsToRdx; ++i)
+      ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i);
+
+  return ConstantVector::get(ShuffleMask);
+}
+
+
+/// Model horizontal reductions.
+///
+/// A horizontal reduction is a tree of reduction operations (currently add and
+/// fadd) that has operations that can be put into a vector as its leaf.
+/// For example, this tree:
+///
+/// mul mul mul mul
+///  \  /    \  /
+///   +       +
+///    \     /
+///       +
+/// This tree has "mul" as its reduced values and "+" as its reduction
+/// operations. A reduction might be feeding into a store or a binary operation
+/// feeding a phi.
+///    ...
+///    \  /
+///     +
+///     |
+///  phi +=
+///
+///  Or:
+///    ...
+///    \  /
+///     +
+///     |
+///   *p =
+///
+class HorizontalReduction {
+  SmallVector<Value *, 16> ReductionOps;
+  SmallVector<Value *, 32> ReducedVals;
+
+  BinaryOperator *ReductionRoot;
+  PHINode *ReductionPHI;
+
+  /// The opcode of the reduction.
+  unsigned ReductionOpcode;
+  /// The opcode of the values we perform a reduction on.
+  unsigned ReducedValueOpcode;
+  /// The width of one full horizontal reduction operation.
+  unsigned ReduxWidth;
+  /// Should we model this reduction as a pairwise reduction tree or a tree that
+  /// splits the vector in halves and adds those halves.
+  bool IsPairwiseReduction;
+
+public:
+  HorizontalReduction()
+    : ReductionRoot(nullptr), ReductionPHI(nullptr), ReductionOpcode(0),
+    ReducedValueOpcode(0), ReduxWidth(0), IsPairwiseReduction(false) {}
+
+  /// \brief Try to find a reduction tree.
+  bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B,
+                                 const DataLayout *DL) {
+    assert((!Phi ||
+            std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) &&
+           "Thi phi needs to use the binary operator");
+
+    // We could have a initial reductions that is not an add.
+    //  r *= v1 + v2 + v3 + v4
+    // In such a case start looking for a tree rooted in the first '+'.
+    if (Phi) {
+      if (B->getOperand(0) == Phi) {
+        Phi = nullptr;
+        B = dyn_cast<BinaryOperator>(B->getOperand(1));
+      } else if (B->getOperand(1) == Phi) {
+        Phi = nullptr;
+        B = dyn_cast<BinaryOperator>(B->getOperand(0));
+      }
+    }
+
+    if (!B)
+      return false;
+
+    Type *Ty = B->getType();
+    if (Ty->isVectorTy())
+      return false;
+
+    ReductionOpcode = B->getOpcode();
+    ReducedValueOpcode = 0;
+    ReduxWidth = MinVecRegSize / DL->getTypeSizeInBits(Ty);
+    ReductionRoot = B;
+    ReductionPHI = Phi;
+
+    if (ReduxWidth < 4)
+      return false;
+
+    // We currently only support adds.
+    if (ReductionOpcode != Instruction::Add &&
+        ReductionOpcode != Instruction::FAdd)
+      return false;
+
+    // Post order traverse the reduction tree starting at B. We only handle true
+    // trees containing only binary operators.
+    SmallVector<std::pair<BinaryOperator *, unsigned>, 32> Stack;
+    Stack.push_back(std::make_pair(B, 0));
+    while (!Stack.empty()) {
+      BinaryOperator *TreeN = Stack.back().first;
+      unsigned EdgeToVist = Stack.back().second++;
+      bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode;
+
+      // Only handle trees in the current basic block.
+      if (TreeN->getParent() != B->getParent())
+        return false;
+
+      // Each tree node needs to have one user except for the ultimate
+      // reduction.
+      if (!TreeN->hasOneUse() && TreeN != B)
+        return false;
+
+      // Postorder vist.
+      if (EdgeToVist == 2 || IsReducedValue) {
+        if (IsReducedValue) {
+          // Make sure that the opcodes of the operations that we are going to
+          // reduce match.
+          if (!ReducedValueOpcode)
+            ReducedValueOpcode = TreeN->getOpcode();
+          else if (ReducedValueOpcode != TreeN->getOpcode())
+            return false;
+          ReducedVals.push_back(TreeN);
+        } else {
+          // We need to be able to reassociate the adds.
+          if (!TreeN->isAssociative())
+            return false;
+          ReductionOps.push_back(TreeN);
+        }
+        // Retract.
+        Stack.pop_back();
+        continue;
+      }
+
+      // Visit left or right.
+      Value *NextV = TreeN->getOperand(EdgeToVist);
+      BinaryOperator *Next = dyn_cast<BinaryOperator>(NextV);
+      if (Next)
+        Stack.push_back(std::make_pair(Next, 0));
+      else if (NextV != Phi)
+        return false;
+    }
+    return true;
+  }
+
+  /// \brief Attempt to vectorize the tree found by
+  /// matchAssociativeReduction.
+  bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
+    if (ReducedVals.empty())
+      return false;
+
+    unsigned NumReducedVals = ReducedVals.size();
+    if (NumReducedVals < ReduxWidth)
+      return false;
+
+    Value *VectorizedTree = nullptr;
+    IRBuilder<> Builder(ReductionRoot);
+    FastMathFlags Unsafe;
+    Unsafe.setUnsafeAlgebra();
+    Builder.SetFastMathFlags(Unsafe);
+    unsigned i = 0;
+
+    for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) {
+      V.buildTree(makeArrayRef(&ReducedVals[i], ReduxWidth), ReductionOps);
+
+      // Estimate cost.
+      int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]);
+      if (Cost >= -SLPCostThreshold)
+        break;
+
+      DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost
+                   << ". (HorRdx)\n");
+
+      // Vectorize a tree.
+      DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
+      Value *VectorizedRoot = V.vectorizeTree();
+
+      // Emit a reduction.
+      Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder);
+      if (VectorizedTree) {
+        Builder.SetCurrentDebugLocation(Loc);
+        VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
+                                     ReducedSubTree, "bin.rdx");
+      } else
+        VectorizedTree = ReducedSubTree;
+    }
+
+    if (VectorizedTree) {
+      // Finish the reduction.
+      for (; i < NumReducedVals; ++i) {
+        Builder.SetCurrentDebugLocation(
+          cast<Instruction>(ReducedVals[i])->getDebugLoc());
+        VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
+                                     ReducedVals[i]);
+      }
+      // Update users.
+      if (ReductionPHI) {
+        assert(ReductionRoot && "Need a reduction operation");
+        ReductionRoot->setOperand(0, VectorizedTree);
+        ReductionRoot->setOperand(1, ReductionPHI);
+      } else
+        ReductionRoot->replaceAllUsesWith(VectorizedTree);
+    }
+    return VectorizedTree != nullptr;
   }
 
 private:
-  StoreListMap StoreRefs;
+
+  /// \brief Calcuate the cost of a reduction.
+  int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) {
+    Type *ScalarTy = FirstReducedVal->getType();
+    Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);
+
+    int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true);
+    int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false);
+
+    IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
+    int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
+
+    int ScalarReduxCost =
+        ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy);
+
+    DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
+                 << " for reduction that starts with " << *FirstReducedVal
+                 << " (It is a "
+                 << (IsPairwiseReduction ? "pairwise" : "splitting")
+                 << " reduction)\n");
+
+    return VecReduxCost - ScalarReduxCost;
+  }
+
+  static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L,
+                            Value *R, const Twine &Name = "") {
+    if (Opcode == Instruction::FAdd)
+      return Builder.CreateFAdd(L, R, Name);
+    return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name);
+  }
+
+  /// \brief Emit a horizontal reduction of the vectorized value.
+  Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) {
+    assert(VectorizedValue && "Need to have a vectorized tree node");
+    Instruction *ValToReduce = dyn_cast<Instruction>(VectorizedValue);
+    assert(isPowerOf2_32(ReduxWidth) &&
+           "We only handle power-of-two reductions for now");
+
+    Value *TmpVec = ValToReduce;
+    for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
+      if (IsPairwiseReduction) {
+        Value *LeftMask =
+          createRdxShuffleMask(ReduxWidth, i, true, true, Builder);
+        Value *RightMask =
+          createRdxShuffleMask(ReduxWidth, i, true, false, Builder);
+
+        Value *LeftShuf = Builder.CreateShuffleVector(
+          TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
+        Value *RightShuf = Builder.CreateShuffleVector(
+          TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
+          "rdx.shuf.r");
+        TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf,
+                             "bin.rdx");
+      } else {
+        Value *UpperHalf =
+          createRdxShuffleMask(ReduxWidth, i, false, false, Builder);
+        Value *Shuf = Builder.CreateShuffleVector(
+          TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf");
+        TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx");
+      }
+    }
+
+    // The result is in the first element of the vector.
+    return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
+  }
 };
 
+/// \brief Recognize construction of vectors like
+///  %ra = insertelement <4 x float> undef, float %s0, i32 0
+///  %rb = insertelement <4 x float> %ra, float %s1, i32 1
+///  %rc = insertelement <4 x float> %rb, float %s2, i32 2
+///  %rd = insertelement <4 x float> %rc, float %s3, i32 3
+///
+/// Returns true if it matches
+///
+static bool findBuildVector(InsertElementInst *FirstInsertElem,
+                            SmallVectorImpl<Value *> &BuildVector,
+                            SmallVectorImpl<Value *> &BuildVectorOpds) {
+  if (!isa<UndefValue>(FirstInsertElem->getOperand(0)))
+    return false;
+
+  InsertElementInst *IE = FirstInsertElem;
+  while (true) {
+    BuildVector.push_back(IE);
+    BuildVectorOpds.push_back(IE->getOperand(1));
+
+    if (IE->use_empty())
+      return false;
+
+    InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->user_back());
+    if (!NextUse)
+      return true;
+
+    // If this isn't the final use, make sure the next insertelement is the only
+    // use. It's OK if the final constructed vector is used multiple times
+    if (!IE->hasOneUse())
+      return false;
+
+    IE = NextUse;
+  }
+
+  return false;
+}
+
+static bool PhiTypeSorterFunc(Value *V, Value *V2) {
+  return V->getType() < V2->getType();
+}
+
+bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
+  bool Changed = false;
+  SmallVector<Value *, 4> Incoming;
+  SmallSet<Value *, 16> VisitedInstrs;
+
+  bool HaveVectorizedPhiNodes = true;
+  while (HaveVectorizedPhiNodes) {
+    HaveVectorizedPhiNodes = false;
+
+    // Collect the incoming values from the PHIs.
+    Incoming.clear();
+    for (BasicBlock::iterator instr = BB->begin(), ie = BB->end(); instr != ie;
+         ++instr) {
+      PHINode *P = dyn_cast<PHINode>(instr);
+      if (!P)
+        break;
+
+      if (!VisitedInstrs.count(P))
+        Incoming.push_back(P);
+    }
+
+    // Sort by type.
+    std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc);
+
+    // Try to vectorize elements base on their type.
+    for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
+                                           E = Incoming.end();
+         IncIt != E;) {
+
+      // Look for the next elements with the same type.
+      SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
+      while (SameTypeIt != E &&
+             (*SameTypeIt)->getType() == (*IncIt)->getType()) {
+        VisitedInstrs.insert(*SameTypeIt);
+        ++SameTypeIt;
+      }
+
+      // Try to vectorize them.
+      unsigned NumElts = (SameTypeIt - IncIt);
+      DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n");
+      if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R)) {
+        // Success start over because instructions might have been changed.
+        HaveVectorizedPhiNodes = true;
+        Changed = true;
+        break;
+      }
+
+      // Start over at the next instruction of a different type (or the end).
+      IncIt = SameTypeIt;
+    }
+  }
+
+  VisitedInstrs.clear();
+
+  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) {
+    // We may go through BB multiple times so skip the one we have checked.
+    if (!VisitedInstrs.insert(it))
+      continue;
+
+    if (isa<DbgInfoIntrinsic>(it))
+      continue;
+
+    // Try to vectorize reductions that use PHINodes.
+    if (PHINode *P = dyn_cast<PHINode>(it)) {
+      // Check that the PHI is a reduction PHI.
+      if (P->getNumIncomingValues() != 2)
+        return Changed;
+      Value *Rdx =
+          (P->getIncomingBlock(0) == BB
+               ? (P->getIncomingValue(0))
+               : (P->getIncomingBlock(1) == BB ? P->getIncomingValue(1)
+                                               : nullptr));
+      // Check if this is a Binary Operator.
+      BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx);
+      if (!BI)
+        continue;
+
+      // Try to match and vectorize a horizontal reduction.
+      HorizontalReduction HorRdx;
+      if (ShouldVectorizeHor &&
+          HorRdx.matchAssociativeReduction(P, BI, DL) &&
+          HorRdx.tryToReduce(R, TTI)) {
+        Changed = true;
+        it = BB->begin();
+        e = BB->end();
+        continue;
+      }
+
+     Value *Inst = BI->getOperand(0);
+      if (Inst == P)
+        Inst = BI->getOperand(1);
+
+      if (tryToVectorize(dyn_cast<BinaryOperator>(Inst), R)) {
+        // We would like to start over since some instructions are deleted
+        // and the iterator may become invalid value.
+        Changed = true;
+        it = BB->begin();
+        e = BB->end();
+        continue;
+      }
+
+      continue;
+    }
+
+    // Try to vectorize horizontal reductions feeding into a store.
+    if (ShouldStartVectorizeHorAtStore)
+      if (StoreInst *SI = dyn_cast<StoreInst>(it))
+        if (BinaryOperator *BinOp =
+                dyn_cast<BinaryOperator>(SI->getValueOperand())) {
+          HorizontalReduction HorRdx;
+          if (((HorRdx.matchAssociativeReduction(nullptr, BinOp, DL) &&
+                HorRdx.tryToReduce(R, TTI)) ||
+               tryToVectorize(BinOp, R))) {
+            Changed = true;
+            it = BB->begin();
+            e = BB->end();
+            continue;
+          }
+        }
+
+    // Try to vectorize trees that start at compare instructions.
+    if (CmpInst *CI = dyn_cast<CmpInst>(it)) {
+      if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) {
+        Changed = true;
+        // We would like to start over since some instructions are deleted
+        // and the iterator may become invalid value.
+        it = BB->begin();
+        e = BB->end();
+        continue;
+      }
+
+      for (int i = 0; i < 2; ++i) {
+        if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) {
+          if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) {
+            Changed = true;
+            // We would like to start over since some instructions are deleted
+            // and the iterator may become invalid value.
+            it = BB->begin();
+            e = BB->end();
+          }
+        }
+      }
+      continue;
+    }
+
+    // Try to vectorize trees that start at insertelement instructions.
+    if (InsertElementInst *FirstInsertElem = dyn_cast<InsertElementInst>(it)) {
+      SmallVector<Value *, 16> BuildVector;
+      SmallVector<Value *, 16> BuildVectorOpds;
+      if (!findBuildVector(FirstInsertElem, BuildVector, BuildVectorOpds))
+        continue;
+
+      // Vectorize starting with the build vector operands ignoring the
+      // BuildVector instructions for the purpose of scheduling and user
+      // extraction.
+      if (tryToVectorizeList(BuildVectorOpds, R, BuildVector)) {
+        Changed = true;
+        it = BB->begin();
+        e = BB->end();
+      }
+
+      continue;
+    }
+  }
+
+  return Changed;
+}
+
+bool SLPVectorizer::vectorizeStoreChains(BoUpSLP &R) {
+  bool Changed = false;
+  // Attempt to sort and vectorize each of the store-groups.
+  for (StoreListMap::iterator it = StoreRefs.begin(), e = StoreRefs.end();
+       it != e; ++it) {
+    if (it->second.size() < 2)
+      continue;
+
+    DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
+          << it->second.size() << ".\n");
+
+    // Process the stores in chunks of 16.
+    for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) {
+      unsigned Len = std::min<unsigned>(CE - CI, 16);
+      Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len),
+                                 -SLPCostThreshold, R);
+    }
+  }
+  return Changed;
+}
+
 } // end anonymous namespace
 
 char SLPVectorizer::ID = 0;
@@ -146,8 +3751,5 @@ INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
 
 namespace llvm {
-  Pass *createSLPVectorizerPass() {
-    return new SLPVectorizer();
-  }
+Pass *createSLPVectorizerPass() { return new SLPVectorizer(); }
 }
-