Allow the inverse transform x86_fp80 -> i80 (also
[oota-llvm.git] / lib / VMCore / ConstantFold.cpp
index 9f31bcdb75f30b115e77d2a77ab4c522c5b43e7d..ff4d897e54a8b945d1d49ff959a424f49452b943 100644 (file)
@@ -126,6 +126,7 @@ static Constant *FoldBitCast(Constant *V, const Type *DestTy) {
     if (const VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
       assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
              "Not cast between same sized vectors!");
+      SrcTy = NULL;
       // First, check for null.  Undef is already handled.
       if (isa<ConstantAggregateZero>(V))
         return Constant::getNullValue(DestTy);
@@ -133,6 +134,12 @@ static Constant *FoldBitCast(Constant *V, const Type *DestTy) {
       if (ConstantVector *CV = dyn_cast<ConstantVector>(V))
         return BitCastConstantVector(CV, DestPTy);
     }
+
+    // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
+    // This allows for other simplifications (although some of them
+    // can only be handled by Analysis/ConstantFolding.cpp).
+    if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
+      return ConstantExpr::getBitCast(ConstantVector::get(&V, 1), DestPTy);
   }
   
   // Finally, implement bitcast folding now.   The code below doesn't handle
@@ -146,26 +153,20 @@ static Constant *FoldBitCast(Constant *V, const Type *DestTy) {
       // Integral -> Integral. This is a no-op because the bit widths must
       // be the same. Consequently, we just fold to V.
       return V;
-    
-    if (DestTy->isFloatingPoint()) {
-      assert((DestTy == Type::DoubleTy || DestTy == Type::FloatTy) && 
-             "Unknown FP type!");
-      return ConstantFP::get(APFloat(CI->getValue()));
-    }
+
+    if (DestTy->isFloatingPoint())
+      return ConstantFP::get(APFloat(CI->getValue(),
+                                     DestTy != Type::PPC_FP128Ty));
+
     // Otherwise, can't fold this (vector?)
     return 0;
   }
-  
+
   // Handle ConstantFP input.
-  if (const ConstantFP *FP = dyn_cast<ConstantFP>(V)) {
+  if (const ConstantFP *FP = dyn_cast<ConstantFP>(V))
     // FP -> Integral.
-    if (DestTy == Type::Int32Ty) {
-      return ConstantInt::get(FP->getValueAPF().convertToAPInt());
-    } else {
-      assert(DestTy == Type::Int64Ty && "only support f32/f64 for now!");
-      return ConstantInt::get(FP->getValueAPF().convertToAPInt());
-    }
-  }
+    return ConstantInt::get(FP->getValueAPF().bitcastToAPInt());
+
   return 0;
 }
 
@@ -213,13 +214,14 @@ Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
   case Instruction::FPTrunc:
   case Instruction::FPExt:
     if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
+      bool ignored;
       APFloat Val = FPC->getValueAPF();
       Val.convert(DestTy == Type::FloatTy ? APFloat::IEEEsingle :
                   DestTy == Type::DoubleTy ? APFloat::IEEEdouble :
                   DestTy == Type::X86_FP80Ty ? APFloat::x87DoubleExtended :
                   DestTy == Type::FP128Ty ? APFloat::IEEEquad :
                   APFloat::Bogus,
-                  APFloat::rmNearestTiesToEven);
+                  APFloat::rmNearestTiesToEven, &ignored);
       return ConstantFP::get(Val);
     }
     return 0; // Can't fold.
@@ -227,10 +229,11 @@ Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
   case Instruction::FPToSI:
     if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
       const APFloat &V = FPC->getValueAPF();
+      bool ignored;
       uint64_t x[2]; 
       uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
       (void) V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI,
-                                APFloat::rmTowardZero);
+                                APFloat::rmTowardZero, &ignored);
       APInt Val(DestBitWidth, 2, x);
       return ConstantInt::get(Val);
     }
@@ -239,8 +242,7 @@ Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
       const VectorType *DestVecTy = cast<VectorType>(DestTy);
       const Type *DstEltTy = DestVecTy->getElementType();
       for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
-        res.push_back(ConstantFoldCastInstruction(opc, V->getOperand(i),
-                                                  DstEltTy));
+        res.push_back(ConstantExpr::getCast(opc, CV->getOperand(i), DstEltTy));
       return ConstantVector::get(DestVecTy, res);
     }
     return 0; // Can't fold.
@@ -269,8 +271,7 @@ Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
       const VectorType *DestVecTy = cast<VectorType>(DestTy);
       const Type *DstEltTy = DestVecTy->getElementType();
       for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
-        res.push_back(ConstantFoldCastInstruction(opc, V->getOperand(i),
-                                                  DstEltTy));
+        res.push_back(ConstantExpr::getCast(opc, CV->getOperand(i), DstEltTy));
       return ConstantVector::get(DestVecTy, res);
     }
     return 0;
@@ -332,10 +333,10 @@ Constant *llvm::ConstantFoldExtractElementInstruction(const Constant *Val,
   
   if (const ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
     if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
-      return const_cast<Constant*>(CVal->getOperand(CIdx->getZExtValue()));
+      return CVal->getOperand(CIdx->getZExtValue());
     } else if (isa<UndefValue>(Idx)) {
       // ee({w,x,y,z}, undef) -> w (an arbitrary value).
-      return const_cast<Constant*>(CVal->getOperand(0));
+      return CVal->getOperand(0);
     }
   }
   return 0;
@@ -394,6 +395,7 @@ Constant *llvm::ConstantFoldInsertElementInstruction(const Constant *Val,
     }
     return ConstantVector::get(Ops);
   }
+
   return 0;
 }
 
@@ -401,7 +403,7 @@ Constant *llvm::ConstantFoldInsertElementInstruction(const Constant *Val,
 /// return the specified element value.  Otherwise return null.
 static Constant *GetVectorElement(const Constant *C, unsigned EltNo) {
   if (const ConstantVector *CV = dyn_cast<ConstantVector>(C))
-    return const_cast<Constant*>(CV->getOperand(EltNo));
+    return CV->getOperand(EltNo);
   
   const Type *EltTy = cast<VectorType>(C->getType())->getElementType();
   if (isa<ConstantAggregateZero>(C))
@@ -416,24 +418,25 @@ Constant *llvm::ConstantFoldShuffleVectorInstruction(const Constant *V1,
                                                      const Constant *Mask) {
   // Undefined shuffle mask -> undefined value.
   if (isa<UndefValue>(Mask)) return UndefValue::get(V1->getType());
-  
-  unsigned NumElts = cast<VectorType>(V1->getType())->getNumElements();
+
+  unsigned MaskNumElts = cast<VectorType>(Mask->getType())->getNumElements();
+  unsigned SrcNumElts = cast<VectorType>(V1->getType())->getNumElements();
   const Type *EltTy = cast<VectorType>(V1->getType())->getElementType();
-  
+
   // Loop over the shuffle mask, evaluating each element.
   SmallVector<Constant*, 32> Result;
-  for (unsigned i = 0; i != NumElts; ++i) {
+  for (unsigned i = 0; i != MaskNumElts; ++i) {
     Constant *InElt = GetVectorElement(Mask, i);
     if (InElt == 0) return 0;
-    
+
     if (isa<UndefValue>(InElt))
       InElt = UndefValue::get(EltTy);
     else if (ConstantInt *CI = dyn_cast<ConstantInt>(InElt)) {
       unsigned Elt = CI->getZExtValue();
-      if (Elt >= NumElts*2)
+      if (Elt >= SrcNumElts*2)
         InElt = UndefValue::get(EltTy);
-      else if (Elt >= NumElts)
-        InElt = GetVectorElement(V2, Elt-NumElts);
+      else if (Elt >= SrcNumElts)
+        InElt = GetVectorElement(V2, Elt - SrcNumElts);
       else
         InElt = GetVectorElement(V1, Elt);
       if (InElt == 0) return 0;
@@ -443,10 +446,119 @@ Constant *llvm::ConstantFoldShuffleVectorInstruction(const Constant *V1,
     }
     Result.push_back(InElt);
   }
-  
+
   return ConstantVector::get(&Result[0], Result.size());
 }
 
+Constant *llvm::ConstantFoldExtractValueInstruction(const Constant *Agg,
+                                                    const unsigned *Idxs,
+                                                    unsigned NumIdx) {
+  // Base case: no indices, so return the entire value.
+  if (NumIdx == 0)
+    return const_cast<Constant *>(Agg);
+
+  if (isa<UndefValue>(Agg))  // ev(undef, x) -> undef
+    return UndefValue::get(ExtractValueInst::getIndexedType(Agg->getType(),
+                                                            Idxs,
+                                                            Idxs + NumIdx));
+
+  if (isa<ConstantAggregateZero>(Agg))  // ev(0, x) -> 0
+    return
+      Constant::getNullValue(ExtractValueInst::getIndexedType(Agg->getType(),
+                                                              Idxs,
+                                                              Idxs + NumIdx));
+
+  // Otherwise recurse.
+  return ConstantFoldExtractValueInstruction(Agg->getOperand(*Idxs),
+                                             Idxs+1, NumIdx-1);
+}
+
+Constant *llvm::ConstantFoldInsertValueInstruction(const Constant *Agg,
+                                                   const Constant *Val,
+                                                   const unsigned *Idxs,
+                                                   unsigned NumIdx) {
+  // Base case: no indices, so replace the entire value.
+  if (NumIdx == 0)
+    return const_cast<Constant *>(Val);
+
+  if (isa<UndefValue>(Agg)) {
+    // Insertion of constant into aggregate undef
+    // Optimize away insertion of undef
+    if (isa<UndefValue>(Val))
+      return const_cast<Constant*>(Agg);
+    // Otherwise break the aggregate undef into multiple undefs and do
+    // the insertion
+    const CompositeType *AggTy = cast<CompositeType>(Agg->getType());
+    unsigned numOps;
+    if (const ArrayType *AR = dyn_cast<ArrayType>(AggTy))
+      numOps = AR->getNumElements();
+    else
+      numOps = cast<StructType>(AggTy)->getNumElements();
+    std::vector<Constant*> Ops(numOps); 
+    for (unsigned i = 0; i < numOps; ++i) {
+      const Type *MemberTy = AggTy->getTypeAtIndex(i);
+      const Constant *Op =
+        (*Idxs == i) ?
+        ConstantFoldInsertValueInstruction(UndefValue::get(MemberTy),
+                                           Val, Idxs+1, NumIdx-1) :
+        UndefValue::get(MemberTy);
+      Ops[i] = const_cast<Constant*>(Op);
+    }
+    if (isa<StructType>(AggTy))
+      return ConstantStruct::get(Ops);
+    else
+      return ConstantArray::get(cast<ArrayType>(AggTy), Ops);
+  }
+  if (isa<ConstantAggregateZero>(Agg)) {
+    // Insertion of constant into aggregate zero
+    // Optimize away insertion of zero
+    if (Val->isNullValue())
+      return const_cast<Constant*>(Agg);
+    // Otherwise break the aggregate zero into multiple zeros and do
+    // the insertion
+    const CompositeType *AggTy = cast<CompositeType>(Agg->getType());
+    unsigned numOps;
+    if (const ArrayType *AR = dyn_cast<ArrayType>(AggTy))
+      numOps = AR->getNumElements();
+    else
+      numOps = cast<StructType>(AggTy)->getNumElements();
+    std::vector<Constant*> Ops(numOps);
+    for (unsigned i = 0; i < numOps; ++i) {
+      const Type *MemberTy = AggTy->getTypeAtIndex(i);
+      const Constant *Op =
+        (*Idxs == i) ?
+        ConstantFoldInsertValueInstruction(Constant::getNullValue(MemberTy),
+                                           Val, Idxs+1, NumIdx-1) :
+        Constant::getNullValue(MemberTy);
+      Ops[i] = const_cast<Constant*>(Op);
+    }
+    if (isa<StructType>(AggTy))
+      return ConstantStruct::get(Ops);
+    else
+      return ConstantArray::get(cast<ArrayType>(AggTy), Ops);
+  }
+  if (isa<ConstantStruct>(Agg) || isa<ConstantArray>(Agg)) {
+    // Insertion of constant into aggregate constant
+    std::vector<Constant*> Ops(Agg->getNumOperands());
+    for (unsigned i = 0; i < Agg->getNumOperands(); ++i) {
+      const Constant *Op =
+        (*Idxs == i) ?
+        ConstantFoldInsertValueInstruction(Agg->getOperand(i),
+                                           Val, Idxs+1, NumIdx-1) :
+        Agg->getOperand(i);
+      Ops[i] = const_cast<Constant*>(Op);
+    }
+    Constant *C;
+    if (isa<StructType>(Agg->getType()))
+      C = ConstantStruct::get(Ops);
+    else
+      C = ConstantArray::get(cast<ArrayType>(Agg->getType()), Ops);
+    return C;
+  }
+
+  return 0;
+}
+
 /// EvalVectorOp - Given two vector constants and a function pointer, apply the
 /// function pointer to each element pair, producing a new ConstantVector
 /// constant. Either or both of V1 and V2 may be NULL, meaning a
@@ -537,11 +649,15 @@ Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
     case Instruction::SDiv:
       if (CI2->equalsInt(1))
         return const_cast<Constant*>(C1);                     // X / 1 == X
+      if (CI2->equalsInt(0))
+        return UndefValue::get(CI2->getType());               // X / 0 == undef
       break;
     case Instruction::URem:
     case Instruction::SRem:
       if (CI2->equalsInt(1))
         return Constant::getNullValue(CI2->getType());        // X % 1 == 0
+      if (CI2->equalsInt(0))
+        return UndefValue::get(CI2->getType());               // X % 0 == undef
       break;
     case Instruction::And:
       if (CI2->isZero()) return const_cast<Constant*>(C2);    // X & 0 == 0
@@ -615,24 +731,20 @@ Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
       case Instruction::Mul:     
         return ConstantInt::get(C1V * C2V);
       case Instruction::UDiv:
-        if (CI2->isNullValue())                  
-          return 0;        // X / 0 -> can't fold
+        assert(!CI2->isNullValue() && "Div by zero handled above");
         return ConstantInt::get(C1V.udiv(C2V));
       case Instruction::SDiv:
-        if (CI2->isNullValue()) 
-          return 0;        // X / 0 -> can't fold
+        assert(!CI2->isNullValue() && "Div by zero handled above");
         if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
-          return 0;        // MIN_INT / -1 -> overflow
+          return UndefValue::get(CI1->getType());   // MIN_INT / -1 -> undef
         return ConstantInt::get(C1V.sdiv(C2V));
       case Instruction::URem:
-        if (C2->isNullValue()) 
-          return 0;        // X / 0 -> can't fold
+        assert(!CI2->isNullValue() && "Div by zero handled above");
         return ConstantInt::get(C1V.urem(C2V));
-      case Instruction::SRem:    
-        if (CI2->isNullValue()) 
-          return 0;        // X % 0 -> can't fold
+      case Instruction::SRem:
+        assert(!CI2->isNullValue() && "Div by zero handled above");
         if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
-          return 0;        // MIN_INT % -1 -> overflow
+          return UndefValue::get(CI1->getType());   // MIN_INT % -1 -> undef
         return ConstantInt::get(C1V.srem(C2V));
       case Instruction::And:
         return ConstantInt::get(C1V & C2V);
@@ -684,16 +796,6 @@ Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
         (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
         return ConstantFP::get(C3V);
       case Instruction::FRem:
-        if (C2V.isZero()) {
-          // IEEE 754, Section 7.1, #5
-          if (CFP1->getType() == Type::DoubleTy)
-            return ConstantFP::get(APFloat(std::numeric_limits<double>::
-                                           quiet_NaN()));
-          if (CFP1->getType() == Type::FloatTy)
-            return ConstantFP::get(APFloat(std::numeric_limits<float>::
-                                           quiet_NaN()));
-          break;
-        }
         (void)C3V.mod(C2V, APFloat::rmNearestTiesToEven);
         return ConstantFP::get(C3V);
       }
@@ -1128,10 +1230,30 @@ static ICmpInst::Predicate evaluateICmpRelation(const Constant *V1,
 Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred, 
                                                const Constant *C1, 
                                                const Constant *C2) {
-
+  // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
+  if (pred == FCmpInst::FCMP_FALSE) {
+    if (const VectorType *VT = dyn_cast<VectorType>(C1->getType()))
+      return Constant::getNullValue(VectorType::getInteger(VT));
+    else
+      return ConstantInt::getFalse();
+  }
+  
+  if (pred == FCmpInst::FCMP_TRUE) {
+    if (const VectorType *VT = dyn_cast<VectorType>(C1->getType()))
+      return Constant::getAllOnesValue(VectorType::getInteger(VT));
+    else
+      return ConstantInt::getTrue();
+  }
+      
   // Handle some degenerate cases first
-  if (isa<UndefValue>(C1) || isa<UndefValue>(C2))
+  if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
+    // vicmp/vfcmp -> [vector] undef
+    if (const VectorType *VTy = dyn_cast<VectorType>(C1->getType()))
+      return UndefValue::get(VectorType::getInteger(VTy));
+    
+    // icmp/fcmp -> i1 undef
     return UndefValue::get(Type::Int1Ty);
+  }
 
   // No compile-time operations on this type yet.
   if (C1->getType() == Type::PPC_FP128Ty)
@@ -1218,33 +1340,47 @@ Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
       return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpGreaterThan ||
                                             R==APFloat::cmpEqual);
     }
-  } else if (const ConstantVector *CP1 = dyn_cast<ConstantVector>(C1)) {
-    if (const ConstantVector *CP2 = dyn_cast<ConstantVector>(C2)) {
-      if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ) {
-        for (unsigned i = 0, e = CP1->getNumOperands(); i != e; ++i) {
-          Constant *C= ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ,
-              const_cast<Constant*>(CP1->getOperand(i)),
-              const_cast<Constant*>(CP2->getOperand(i)));
-          if (ConstantInt *CB = dyn_cast<ConstantInt>(C))
-            return CB;
-        }
-        // Otherwise, could not decide from any element pairs.
-        return 0;
-      } else if (pred == ICmpInst::ICMP_EQ) {
-        for (unsigned i = 0, e = CP1->getNumOperands(); i != e; ++i) {
-          Constant *C = ConstantExpr::getICmp(ICmpInst::ICMP_EQ,
-              const_cast<Constant*>(CP1->getOperand(i)),
-              const_cast<Constant*>(CP2->getOperand(i)));
-          if (ConstantInt *CB = dyn_cast<ConstantInt>(C))
-            return CB;
-        }
-        // Otherwise, could not decide from any element pairs.
-        return 0;
+  } else if (isa<VectorType>(C1->getType())) {
+    SmallVector<Constant*, 16> C1Elts, C2Elts;
+    C1->getVectorElements(C1Elts);
+    C2->getVectorElements(C2Elts);
+    
+    // If we can constant fold the comparison of each element, constant fold
+    // the whole vector comparison.
+    SmallVector<Constant*, 4> ResElts;
+    const Type *InEltTy = C1Elts[0]->getType();
+    bool isFP = InEltTy->isFloatingPoint();
+    const Type *ResEltTy = InEltTy;
+    if (isFP)
+      ResEltTy = IntegerType::get(InEltTy->getPrimitiveSizeInBits());
+    
+    for (unsigned i = 0, e = C1Elts.size(); i != e; ++i) {
+      // Compare the elements, producing an i1 result or constant expr.
+      Constant *C;
+      if (isFP)
+        C = ConstantExpr::getFCmp(pred, C1Elts[i], C2Elts[i]);
+      else
+        C = ConstantExpr::getICmp(pred, C1Elts[i], C2Elts[i]);
+
+      // If it is a bool or undef result, convert to the dest type.
+      if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
+        if (CI->isZero())
+          ResElts.push_back(Constant::getNullValue(ResEltTy));
+        else
+          ResElts.push_back(Constant::getAllOnesValue(ResEltTy));
+      } else if (isa<UndefValue>(C)) {
+        ResElts.push_back(UndefValue::get(ResEltTy));
+      } else {
+        break;
       }
     }
+    
+    if (ResElts.size() == C1Elts.size())
+      return ConstantVector::get(&ResElts[0], ResElts.size());
   }
 
   if (C1->getType()->isFloatingPoint()) {
+    int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
     switch (evaluateFCmpRelation(C1, C2)) {
     default: assert(0 && "Unknown relation!");
     case FCmpInst::FCMP_UNO:
@@ -1260,44 +1396,57 @@ Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
     case FCmpInst::BAD_FCMP_PREDICATE:
       break; // Couldn't determine anything about these constants.
     case FCmpInst::FCMP_OEQ: // We know that C1 == C2
-      return ConstantInt::get(Type::Int1Ty,
-          pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
-          pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
-          pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
+      Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
+                pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
+                pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
+      break;
     case FCmpInst::FCMP_OLT: // We know that C1 < C2
-      return ConstantInt::get(Type::Int1Ty,
-          pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
-          pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
-          pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
+      Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
+                pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
+                pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
+      break;
     case FCmpInst::FCMP_OGT: // We know that C1 > C2
-      return ConstantInt::get(Type::Int1Ty,
-          pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
-          pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
-          pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
+      Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
+                pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
+                pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
+      break;
     case FCmpInst::FCMP_OLE: // We know that C1 <= C2
       // We can only partially decide this relation.
       if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT) 
-        return ConstantInt::getFalse();
-      if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT) 
-        return ConstantInt::getTrue();
+        Result = 0;
+      else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT) 
+        Result = 1;
       break;
     case FCmpInst::FCMP_OGE: // We known that C1 >= C2
       // We can only partially decide this relation.
       if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT) 
-        return ConstantInt::getFalse();
-      if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT) 
-        return ConstantInt::getTrue();
+        Result = 0;
+      else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT) 
+        Result = 1;
       break;
     case ICmpInst::ICMP_NE: // We know that C1 != C2
       // We can only partially decide this relation.
       if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ) 
-        return ConstantInt::getFalse();
-      if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE) 
-        return ConstantInt::getTrue();
+        Result = 0;
+      else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE) 
+        Result = 1;
       break;
     }
+    
+    // If we evaluated the result, return it now.
+    if (Result != -1) {
+      if (const VectorType *VT = dyn_cast<VectorType>(C1->getType())) {
+        if (Result == 0)
+          return Constant::getNullValue(VectorType::getInteger(VT));
+        else
+          return Constant::getAllOnesValue(VectorType::getInteger(VT));
+      }
+      return ConstantInt::get(Type::Int1Ty, Result);
+    }
+    
   } else {
     // Evaluate the relation between the two constants, per the predicate.
+    int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
     switch (evaluateICmpRelation(C1, C2, CmpInst::isSigned(pred))) {
     default: assert(0 && "Unknown relational!");
     case ICmpInst::BAD_ICMP_PREDICATE:
@@ -1305,69 +1454,80 @@ Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
     case ICmpInst::ICMP_EQ:   // We know the constants are equal!
       // If we know the constants are equal, we can decide the result of this
       // computation precisely.
-      return ConstantInt::get(Type::Int1Ty, 
-                              pred == ICmpInst::ICMP_EQ  ||
-                              pred == ICmpInst::ICMP_ULE ||
-                              pred == ICmpInst::ICMP_SLE ||
-                              pred == ICmpInst::ICMP_UGE ||
-                              pred == ICmpInst::ICMP_SGE);
+      Result = (pred == ICmpInst::ICMP_EQ  ||
+                pred == ICmpInst::ICMP_ULE ||
+                pred == ICmpInst::ICMP_SLE ||
+                pred == ICmpInst::ICMP_UGE ||
+                pred == ICmpInst::ICMP_SGE);
+      break;
     case ICmpInst::ICMP_ULT:
       // If we know that C1 < C2, we can decide the result of this computation
       // precisely.
-      return ConstantInt::get(Type::Int1Ty, 
-                              pred == ICmpInst::ICMP_ULT ||
-                              pred == ICmpInst::ICMP_NE  ||
-                              pred == ICmpInst::ICMP_ULE);
+      Result = (pred == ICmpInst::ICMP_ULT ||
+                pred == ICmpInst::ICMP_NE  ||
+                pred == ICmpInst::ICMP_ULE);
+      break;
     case ICmpInst::ICMP_SLT:
       // If we know that C1 < C2, we can decide the result of this computation
       // precisely.
-      return ConstantInt::get(Type::Int1Ty,
-                              pred == ICmpInst::ICMP_SLT ||
-                              pred == ICmpInst::ICMP_NE  ||
-                              pred == ICmpInst::ICMP_SLE);
+      Result = (pred == ICmpInst::ICMP_SLT ||
+                pred == ICmpInst::ICMP_NE  ||
+                pred == ICmpInst::ICMP_SLE);
+      break;
     case ICmpInst::ICMP_UGT:
       // If we know that C1 > C2, we can decide the result of this computation
       // precisely.
-      return ConstantInt::get(Type::Int1Ty, 
-                              pred == ICmpInst::ICMP_UGT ||
-                              pred == ICmpInst::ICMP_NE  ||
-                              pred == ICmpInst::ICMP_UGE);
+      Result = (pred == ICmpInst::ICMP_UGT ||
+                pred == ICmpInst::ICMP_NE  ||
+                pred == ICmpInst::ICMP_UGE);
+      break;
     case ICmpInst::ICMP_SGT:
       // If we know that C1 > C2, we can decide the result of this computation
       // precisely.
-      return ConstantInt::get(Type::Int1Ty, 
-                              pred == ICmpInst::ICMP_SGT ||
-                              pred == ICmpInst::ICMP_NE  ||
-                              pred == ICmpInst::ICMP_SGE);
+      Result = (pred == ICmpInst::ICMP_SGT ||
+                pred == ICmpInst::ICMP_NE  ||
+                pred == ICmpInst::ICMP_SGE);
+      break;
     case ICmpInst::ICMP_ULE:
       // If we know that C1 <= C2, we can only partially decide this relation.
-      if (pred == ICmpInst::ICMP_UGT) return ConstantInt::getFalse();
-      if (pred == ICmpInst::ICMP_ULT) return ConstantInt::getTrue();
+      if (pred == ICmpInst::ICMP_UGT) Result = 0;
+      if (pred == ICmpInst::ICMP_ULT) Result = 1;
       break;
     case ICmpInst::ICMP_SLE:
       // If we know that C1 <= C2, we can only partially decide this relation.
-      if (pred == ICmpInst::ICMP_SGT) return ConstantInt::getFalse();
-      if (pred == ICmpInst::ICMP_SLT) return ConstantInt::getTrue();
+      if (pred == ICmpInst::ICMP_SGT) Result = 0;
+      if (pred == ICmpInst::ICMP_SLT) Result = 1;
       break;
 
     case ICmpInst::ICMP_UGE:
       // If we know that C1 >= C2, we can only partially decide this relation.
-      if (pred == ICmpInst::ICMP_ULT) return ConstantInt::getFalse();
-      if (pred == ICmpInst::ICMP_UGT) return ConstantInt::getTrue();
+      if (pred == ICmpInst::ICMP_ULT) Result = 0;
+      if (pred == ICmpInst::ICMP_UGT) Result = 1;
       break;
     case ICmpInst::ICMP_SGE:
       // If we know that C1 >= C2, we can only partially decide this relation.
-      if (pred == ICmpInst::ICMP_SLT) return ConstantInt::getFalse();
-      if (pred == ICmpInst::ICMP_SGT) return ConstantInt::getTrue();
+      if (pred == ICmpInst::ICMP_SLT) Result = 0;
+      if (pred == ICmpInst::ICMP_SGT) Result = 1;
       break;
 
     case ICmpInst::ICMP_NE:
       // If we know that C1 != C2, we can only partially decide this relation.
-      if (pred == ICmpInst::ICMP_EQ) return ConstantInt::getFalse();
-      if (pred == ICmpInst::ICMP_NE) return ConstantInt::getTrue();
+      if (pred == ICmpInst::ICMP_EQ) Result = 0;
+      if (pred == ICmpInst::ICMP_NE) Result = 1;
       break;
     }
-
+    
+    // If we evaluated the result, return it now.
+    if (Result != -1) {
+      if (const VectorType *VT = dyn_cast<VectorType>(C1->getType())) {
+        if (Result == 0)
+          return Constant::getNullValue(VT);
+        else
+          return Constant::getAllOnesValue(VT);
+      }
+      return ConstantInt::get(Type::Int1Ty, Result);
+    }
+    
     if (!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) {
       // If C2 is a constant expr and C1 isn't, flop them around and fold the
       // other way if possible.
@@ -1408,8 +1568,7 @@ Constant *llvm::ConstantFoldGetElementPtr(const Constant *C,
     const PointerType *Ptr = cast<PointerType>(C->getType());
     const Type *Ty = GetElementPtrInst::getIndexedType(Ptr,
                                                        (Value **)Idxs,
-                                                       (Value **)Idxs+NumIdx,
-                                                       true);
+                                                       (Value **)Idxs+NumIdx);
     assert(Ty != 0 && "Invalid indices for GEP!");
     return UndefValue::get(PointerType::get(Ty, Ptr->getAddressSpace()));
   }
@@ -1426,8 +1585,7 @@ Constant *llvm::ConstantFoldGetElementPtr(const Constant *C,
       const PointerType *Ptr = cast<PointerType>(C->getType());
       const Type *Ty = GetElementPtrInst::getIndexedType(Ptr,
                                                          (Value**)Idxs,
-                                                         (Value**)Idxs+NumIdx,
-                                                         true);
+                                                         (Value**)Idxs+NumIdx);
       assert(Ty != 0 && "Invalid indices for GEP!");
       return 
         ConstantPointerNull::get(PointerType::get(Ty,Ptr->getAddressSpace()));