merge of use-diet branch to trunk
[oota-llvm.git] / lib / VMCore / Constants.cpp
index 9d9cc5a2ec0348c0c5550ab179dee3104aac7bad..d0c837335dcee118e4accb91a1451a9e34b9797c 100644 (file)
@@ -2,8 +2,8 @@
 //
 //                     The LLVM Compiler Infrastructure
 //
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
 //
 //===----------------------------------------------------------------------===//
 //
@@ -90,14 +90,33 @@ bool Constant::canTrap() const {
   }
 }
 
+/// ContaintsRelocations - Return true if the constant value contains
+/// relocations which cannot be resolved at compile time.
+bool Constant::ContainsRelocations() const {
+  if (isa<GlobalValue>(this))
+    return true;
+  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
+    if (getOperand(i)->ContainsRelocations())
+      return true;
+  return false;
+}
+
 // Static constructor to create a '0' constant of arbitrary type...
 Constant *Constant::getNullValue(const Type *Ty) {
+  static uint64_t zero[2] = {0, 0};
   switch (Ty->getTypeID()) {
   case Type::IntegerTyID:
     return ConstantInt::get(Ty, 0);
   case Type::FloatTyID:
+    return ConstantFP::get(APFloat(APInt(32, 0)));
   case Type::DoubleTyID:
-    return ConstantFP::get(Ty, 0.0);
+    return ConstantFP::get(APFloat(APInt(64, 0)));
+  case Type::X86_FP80TyID:
+    return ConstantFP::get(APFloat(APInt(80, 2, zero)));
+  case Type::FP128TyID:
+    return ConstantFP::get(APFloat(APInt(128, 2, zero), true));
+  case Type::PPC_FP128TyID:
+    return ConstantFP::get(APFloat(APInt(128, 2, zero)));
   case Type::PointerTyID:
     return ConstantPointerNull::get(cast<PointerType>(Ty));
   case Type::StructTyID:
@@ -111,6 +130,11 @@ Constant *Constant::getNullValue(const Type *Ty) {
   }
 }
 
+Constant *Constant::getAllOnesValue(const Type *Ty) {
+  if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty))
+    return ConstantInt::get(APInt::getAllOnesValue(ITy->getBitWidth()));
+  return ConstantVector::getAllOnesValue(cast<VectorType>(Ty));
+}
 
 // Static constructor to create an integral constant with all bits set
 ConstantInt *ConstantInt::getAllOnesValue(const Type *Ty) {
@@ -119,14 +143,14 @@ ConstantInt *ConstantInt::getAllOnesValue(const Type *Ty) {
   return 0;
 }
 
-/// @returns the value for an packed integer constant of the given type that
+/// @returns the value for a vector integer constant of the given type that
 /// has all its bits set to true.
 /// @brief Get the all ones value
 ConstantVector *ConstantVector::getAllOnesValue(const VectorType *Ty) {
   std::vector<Constant*> Elts;
   Elts.resize(Ty->getNumElements(),
               ConstantInt::getAllOnesValue(Ty->getElementType()));
-  assert(Elts[0] && "Not a packed integer type!");
+  assert(Elts[0] && "Not a vector integer type!");
   return cast<ConstantVector>(ConstantVector::get(Elts));
 }
 
@@ -180,10 +204,13 @@ namespace {
     static inline KeyTy getEmptyKey() { return KeyTy(APInt(1,0), 0); }
     static inline KeyTy getTombstoneKey() { return KeyTy(APInt(1,1), 0); }
     static unsigned getHashValue(const KeyTy &Key) {
-      return DenseMapKeyInfo<void*>::getHashValue(Key.type) ^ 
+      return DenseMapInfo<void*>::getHashValue(Key.type) ^ 
         Key.val.getHashValue();
     }
-    static bool isPod() { return true; }
+    static bool isEqual(const KeyTy &LHS, const KeyTy &RHS) {
+      return LHS == RHS;
+    }
+    static bool isPod() { return false; }
   };
 }
 
@@ -192,13 +219,13 @@ typedef DenseMap<DenseMapAPIntKeyInfo::KeyTy, ConstantInt*,
                  DenseMapAPIntKeyInfo> IntMapTy;
 static ManagedStatic<IntMapTy> IntConstants;
 
-ConstantInt *ConstantInt::get(const Type *Ty, uint64_t V) {
+ConstantInt *ConstantInt::get(const Type *Ty, uint64_t V, bool isSigned) {
   const IntegerType *ITy = cast<IntegerType>(Ty);
-  return get(APInt(ITy->getBitWidth(), V));
+  return get(APInt(ITy->getBitWidth(), V, isSigned));
 }
 
 // Get a ConstantInt from an APInt. Note that the value stored in the DenseMap 
-// as the key, is a DensMapAPIntKeyInfo::KeyTy which has provided the
+// as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
 // operator== and operator!= to ensure that the DenseMap doesn't attempt to
 // compare APInt's of different widths, which would violate an APInt class
 // invariant which generates an assertion.
@@ -219,68 +246,106 @@ ConstantInt *ConstantInt::get(const APInt& V) {
 //                                ConstantFP
 //===----------------------------------------------------------------------===//
 
+static const fltSemantics *TypeToFloatSemantics(const Type *Ty) {
+  if (Ty == Type::FloatTy)
+    return &APFloat::IEEEsingle;
+  if (Ty == Type::DoubleTy)
+    return &APFloat::IEEEdouble;
+  if (Ty == Type::X86_FP80Ty)
+    return &APFloat::x87DoubleExtended;
+  else if (Ty == Type::FP128Ty)
+    return &APFloat::IEEEquad;
+  
+  assert(Ty == Type::PPC_FP128Ty && "Unknown FP format");
+  return &APFloat::PPCDoubleDouble;
+}
 
-ConstantFP::ConstantFP(const Type *Ty, double V)
-  : Constant(Ty, ConstantFPVal, 0, 0) {
-  Val = V;
+ConstantFP::ConstantFP(const Type *Ty, const APFloat& V)
+  : Constant(Ty, ConstantFPVal, 0, 0), Val(V) {
+  assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
+         "FP type Mismatch");
 }
 
 bool ConstantFP::isNullValue() const {
-  return DoubleToBits(Val) == 0;
+  return Val.isZero() && !Val.isNegative();
 }
 
-bool ConstantFP::isExactlyValue(double V) const {
-  return DoubleToBits(V) == DoubleToBits(Val);
+ConstantFP *ConstantFP::getNegativeZero(const Type *Ty) {
+  APFloat apf = cast <ConstantFP>(Constant::getNullValue(Ty))->getValueAPF();
+  apf.changeSign();
+  return ConstantFP::get(apf);
 }
 
+bool ConstantFP::isExactlyValue(const APFloat& V) const {
+  return Val.bitwiseIsEqual(V);
+}
 
 namespace {
-  struct DenseMapInt64KeyInfo {
-    typedef std::pair<uint64_t, const Type*> KeyTy;
-    static inline KeyTy getEmptyKey() { return KeyTy(0, 0); }
-    static inline KeyTy getTombstoneKey() { return KeyTy(1, 0); }
-    static unsigned getHashValue(const KeyTy &Key) {
-      return DenseMapKeyInfo<void*>::getHashValue(Key.second) ^ Key.first;
+  struct DenseMapAPFloatKeyInfo {
+    struct KeyTy {
+      APFloat val;
+      KeyTy(const APFloat& V) : val(V){}
+      KeyTy(const KeyTy& that) : val(that.val) {}
+      bool operator==(const KeyTy& that) const {
+        return this->val.bitwiseIsEqual(that.val);
+      }
+      bool operator!=(const KeyTy& that) const {
+        return !this->operator==(that);
+      }
+    };
+    static inline KeyTy getEmptyKey() { 
+      return KeyTy(APFloat(APFloat::Bogus,1));
+    }
+    static inline KeyTy getTombstoneKey() { 
+      return KeyTy(APFloat(APFloat::Bogus,2)); 
     }
-    static bool isPod() { return true; }
-  };
-  struct DenseMapInt32KeyInfo {
-    typedef std::pair<uint32_t, const Type*> KeyTy;
-    static inline KeyTy getEmptyKey() { return KeyTy(0, 0); }
-    static inline KeyTy getTombstoneKey() { return KeyTy(1, 0); }
     static unsigned getHashValue(const KeyTy &Key) {
-      return DenseMapKeyInfo<void*>::getHashValue(Key.second) ^ Key.first;
+      return Key.val.getHashValue();
     }
-    static bool isPod() { return true; }
+    static bool isEqual(const KeyTy &LHS, const KeyTy &RHS) {
+      return LHS == RHS;
+    }
+    static bool isPod() { return false; }
   };
 }
 
 //---- ConstantFP::get() implementation...
 //
-typedef DenseMap<DenseMapInt32KeyInfo::KeyTy, ConstantFP*, 
-                 DenseMapInt32KeyInfo> FloatMapTy;
-typedef DenseMap<DenseMapInt64KeyInfo::KeyTy, ConstantFP*, 
-                 DenseMapInt64KeyInfo> DoubleMapTy;
+typedef DenseMap<DenseMapAPFloatKeyInfo::KeyTy, ConstantFP*, 
+                 DenseMapAPFloatKeyInfo> FPMapTy;
 
-static ManagedStatic<FloatMapTy> FloatConstants;
-static ManagedStatic<DoubleMapTy> DoubleConstants;
+static ManagedStatic<FPMapTy> FPConstants;
 
-ConstantFP *ConstantFP::get(const Type *Ty, double V) {
-  if (Ty == Type::FloatTy) {
-    uint32_t IntVal = FloatToBits((float)V);
-    
-    ConstantFP *&Slot = (*FloatConstants)[std::make_pair(IntVal, Ty)];
-    if (Slot) return Slot;
-    return Slot = new ConstantFP(Ty, (float)V);
-  } else {
-    assert(Ty == Type::DoubleTy);
-    uint64_t IntVal = DoubleToBits(V);
-    ConstantFP *&Slot = (*DoubleConstants)[std::make_pair(IntVal, Ty)];
-    if (Slot) return Slot;
-    return Slot = new ConstantFP(Ty, V);
+ConstantFP *ConstantFP::get(const APFloat &V) {
+  DenseMapAPFloatKeyInfo::KeyTy Key(V);
+  ConstantFP *&Slot = (*FPConstants)[Key];
+  if (Slot) return Slot;
+  
+  const Type *Ty;
+  if (&V.getSemantics() == &APFloat::IEEEsingle)
+    Ty = Type::FloatTy;
+  else if (&V.getSemantics() == &APFloat::IEEEdouble)
+    Ty = Type::DoubleTy;
+  else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
+    Ty = Type::X86_FP80Ty;
+  else if (&V.getSemantics() == &APFloat::IEEEquad)
+    Ty = Type::FP128Ty;
+  else {
+    assert(&V.getSemantics() == &APFloat::PPCDoubleDouble&&"Unknown FP format");
+    Ty = Type::PPC_FP128Ty;
   }
+  
+  return Slot = new ConstantFP(Ty, V);
 }
 
+/// get() - This returns a constant fp for the specified value in the
+/// specified type.  This should only be used for simple constant values like
+/// 2.0/1.0 etc, that are known-valid both as double and as the target format.
+ConstantFP *ConstantFP::get(const Type *Ty, double V) {
+  APFloat FV(V);
+  FV.convert(*TypeToFloatSemantics(Ty), APFloat::rmNearestTiesToEven);
+  return get(FV);
+}
 
 //===----------------------------------------------------------------------===//
 //                            ConstantXXX Classes
@@ -289,7 +354,9 @@ ConstantFP *ConstantFP::get(const Type *Ty, double V) {
 
 ConstantArray::ConstantArray(const ArrayType *T,
                              const std::vector<Constant*> &V)
-  : Constant(T, ConstantArrayVal, new Use[V.size()], V.size()) {
+  : Constant(T, ConstantArrayVal,
+             OperandTraits<ConstantArray>::op_end(this) - V.size(),
+             V.size()) {
   assert(V.size() == T->getNumElements() &&
          "Invalid initializer vector for constant array");
   Use *OL = OperandList;
@@ -304,13 +371,12 @@ ConstantArray::ConstantArray(const ArrayType *T,
   }
 }
 
-ConstantArray::~ConstantArray() {
-  delete [] OperandList;
-}
 
 ConstantStruct::ConstantStruct(const StructType *T,
                                const std::vector<Constant*> &V)
-  : Constant(T, ConstantStructVal, new Use[V.size()], V.size()) {
+  : Constant(T, ConstantStructVal,
+             OperandTraits<ConstantStruct>::op_end(this) - V.size(),
+             V.size()) {
   assert(V.size() == T->getNumElements() &&
          "Invalid initializer vector for constant structure");
   Use *OL = OperandList;
@@ -327,14 +393,12 @@ ConstantStruct::ConstantStruct(const StructType *T,
   }
 }
 
-ConstantStruct::~ConstantStruct() {
-  delete [] OperandList;
-}
-
 
 ConstantVector::ConstantVector(const VectorType *T,
                                const std::vector<Constant*> &V)
-  : Constant(T, ConstantVectorVal, new Use[V.size()], V.size()) {
+  : Constant(T, ConstantVectorVal,
+             OperandTraits<ConstantVector>::op_end(this) - V.size(),
+             V.size()) {
   Use *OL = OperandList;
     for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
          I != E; ++I, ++OL) {
@@ -342,15 +406,13 @@ ConstantVector::ConstantVector(const VectorType *T,
       assert((C->getType() == T->getElementType() ||
             (T->isAbstract() &&
              C->getType()->getTypeID() == T->getElementType()->getTypeID())) &&
-           "Initializer for packed element doesn't match packed element type!");
+           "Initializer for vector element doesn't match vector element type!");
     OL->init(C, this);
   }
 }
 
-ConstantVector::~ConstantVector() {
-  delete [] OperandList;
-}
 
+namespace llvm {
 // We declare several classes private to this file, so use an anonymous
 // namespace
 namespace {
@@ -358,113 +420,214 @@ namespace {
 /// UnaryConstantExpr - This class is private to Constants.cpp, and is used
 /// behind the scenes to implement unary constant exprs.
 class VISIBILITY_HIDDEN UnaryConstantExpr : public ConstantExpr {
-  Use Op;
+  void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 public:
+  // allocate space for exactly one operand
+  void *operator new(size_t s) {
+    return User::operator new(s, 1);
+  }
   UnaryConstantExpr(unsigned Opcode, Constant *C, const Type *Ty)
-    : ConstantExpr(Ty, Opcode, &Op, 1), Op(C, this) {}
+    : ConstantExpr(Ty, Opcode, &Op<0>(), 1) {
+    Op<0>() = C;
+  }
+  /// Transparently provide more efficient getOperand methods.
+  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 };
 
 /// BinaryConstantExpr - This class is private to Constants.cpp, and is used
 /// behind the scenes to implement binary constant exprs.
 class VISIBILITY_HIDDEN BinaryConstantExpr : public ConstantExpr {
-  Use Ops[2];
+  void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 public:
+  // allocate space for exactly two operands
+  void *operator new(size_t s) {
+    return User::operator new(s, 2);
+  }
   BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2)
-    : ConstantExpr(C1->getType(), Opcode, Ops, 2) {
-    Ops[0].init(C1, this);
-    Ops[1].init(C2, this);
+    : ConstantExpr(C1->getType(), Opcode, &Op<0>(), 2) {
+    Op<0>().init(C1, this);
+    Op<1>().init(C2, this);
   }
+  /// Transparently provide more efficient getOperand methods.
+  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 };
 
 /// SelectConstantExpr - This class is private to Constants.cpp, and is used
 /// behind the scenes to implement select constant exprs.
 class VISIBILITY_HIDDEN SelectConstantExpr : public ConstantExpr {
-  Use Ops[3];
+  void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 public:
+  // allocate space for exactly three operands
+  void *operator new(size_t s) {
+    return User::operator new(s, 3);
+  }
   SelectConstantExpr(Constant *C1, Constant *C2, Constant *C3)
-    : ConstantExpr(C2->getType(), Instruction::Select, Ops, 3) {
-    Ops[0].init(C1, this);
-    Ops[1].init(C2, this);
-    Ops[2].init(C3, this);
+    : ConstantExpr(C2->getType(), Instruction::Select, &Op<0>(), 3) {
+    Op<0>().init(C1, this);
+    Op<1>().init(C2, this);
+    Op<2>().init(C3, this);
   }
+  /// Transparently provide more efficient getOperand methods.
+  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 };
 
 /// ExtractElementConstantExpr - This class is private to
 /// Constants.cpp, and is used behind the scenes to implement
 /// extractelement constant exprs.
 class VISIBILITY_HIDDEN ExtractElementConstantExpr : public ConstantExpr {
-  Use Ops[2];
+  void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 public:
+  // allocate space for exactly two operands
+  void *operator new(size_t s) {
+    return User::operator new(s, 2);
+  }
   ExtractElementConstantExpr(Constant *C1, Constant *C2)
     : ConstantExpr(cast<VectorType>(C1->getType())->getElementType(), 
-                   Instruction::ExtractElement, Ops, 2) {
-    Ops[0].init(C1, this);
-    Ops[1].init(C2, this);
+                   Instruction::ExtractElement, &Op<0>(), 2) {
+    Op<0>().init(C1, this);
+    Op<1>().init(C2, this);
   }
+  /// Transparently provide more efficient getOperand methods.
+  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 };
 
 /// InsertElementConstantExpr - This class is private to
 /// Constants.cpp, and is used behind the scenes to implement
 /// insertelement constant exprs.
 class VISIBILITY_HIDDEN InsertElementConstantExpr : public ConstantExpr {
-  Use Ops[3];
+  void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 public:
+  // allocate space for exactly three operands
+  void *operator new(size_t s) {
+    return User::operator new(s, 3);
+  }
   InsertElementConstantExpr(Constant *C1, Constant *C2, Constant *C3)
     : ConstantExpr(C1->getType(), Instruction::InsertElement, 
-                   Ops, 3) {
-    Ops[0].init(C1, this);
-    Ops[1].init(C2, this);
-    Ops[2].init(C3, this);
+                   &Op<0>(), 3) {
+    Op<0>().init(C1, this);
+    Op<1>().init(C2, this);
+    Op<2>().init(C3, this);
   }
+  /// Transparently provide more efficient getOperand methods.
+  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 };
 
 /// ShuffleVectorConstantExpr - This class is private to
 /// Constants.cpp, and is used behind the scenes to implement
 /// shufflevector constant exprs.
 class VISIBILITY_HIDDEN ShuffleVectorConstantExpr : public ConstantExpr {
-  Use Ops[3];
+  void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 public:
+  // allocate space for exactly three operands
+  void *operator new(size_t s) {
+    return User::operator new(s, 3);
+  }
   ShuffleVectorConstantExpr(Constant *C1, Constant *C2, Constant *C3)
   : ConstantExpr(C1->getType(), Instruction::ShuffleVector, 
-                 Ops, 3) {
-    Ops[0].init(C1, this);
-    Ops[1].init(C2, this);
-    Ops[2].init(C3, this);
+                 &Op<0>(), 3) {
+    Op<0>().init(C1, this);
+    Op<1>().init(C2, this);
+    Op<2>().init(C3, this);
   }
+  /// Transparently provide more efficient getOperand methods.
+  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 };
 
 /// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is
 /// used behind the scenes to implement getelementpr constant exprs.
-struct VISIBILITY_HIDDEN GetElementPtrConstantExpr : public ConstantExpr {
+class VISIBILITY_HIDDEN GetElementPtrConstantExpr : public ConstantExpr {
   GetElementPtrConstantExpr(Constant *C, const std::vector<Constant*> &IdxList,
-                            const Type *DestTy)
-    : ConstantExpr(DestTy, Instruction::GetElementPtr,
-                   new Use[IdxList.size()+1], IdxList.size()+1) {
-    OperandList[0].init(C, this);
-    for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
-      OperandList[i+1].init(IdxList[i], this);
-  }
-  ~GetElementPtrConstantExpr() {
-    delete [] OperandList;
+                            const Type *DestTy);
+public:
+  static GetElementPtrConstantExpr *Create(Constant *C, const std::vector<Constant*> &IdxList,
+                                           const Type *DestTy) {
+    return new(IdxList.size() + 1) GetElementPtrConstantExpr(C, IdxList, DestTy);
   }
+  /// Transparently provide more efficient getOperand methods.
+  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 };
 
 // CompareConstantExpr - This class is private to Constants.cpp, and is used
 // behind the scenes to implement ICmp and FCmp constant expressions. This is
 // needed in order to store the predicate value for these instructions.
 struct VISIBILITY_HIDDEN CompareConstantExpr : public ConstantExpr {
+  void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
+  // allocate space for exactly two operands
+  void *operator new(size_t s) {
+    return User::operator new(s, 2);
+  }
   unsigned short predicate;
-  Use Ops[2];
   CompareConstantExpr(Instruction::OtherOps opc, unsigned short pred, 
                       Constant* LHS, Constant* RHS)
-    : ConstantExpr(Type::Int1Ty, opc, Ops, 2), predicate(pred) {
-    OperandList[0].init(LHS, this);
-    OperandList[1].init(RHS, this);
+    : ConstantExpr(Type::Int1Ty, opc, &Op<0>(), 2), predicate(pred) {
+    Op<0>().init(LHS, this);
+    Op<1>().init(RHS, this);
   }
+  /// Transparently provide more efficient getOperand methods.
+  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 };
 
 } // end anonymous namespace
 
+template <>
+struct OperandTraits<UnaryConstantExpr> : FixedNumOperandTraits<1> {
+};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryConstantExpr, Value)
+
+template <>
+struct OperandTraits<BinaryConstantExpr> : FixedNumOperandTraits<2> {
+};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryConstantExpr, Value)
+
+template <>
+struct OperandTraits<SelectConstantExpr> : FixedNumOperandTraits<3> {
+};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectConstantExpr, Value)
+
+template <>
+struct OperandTraits<ExtractElementConstantExpr> : FixedNumOperandTraits<2> {
+};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementConstantExpr, Value)
+
+template <>
+struct OperandTraits<InsertElementConstantExpr> : FixedNumOperandTraits<3> {
+};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementConstantExpr, Value)
+
+template <>
+struct OperandTraits<ShuffleVectorConstantExpr> : FixedNumOperandTraits<3> {
+};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorConstantExpr, Value)
+
+
+template <>
+struct OperandTraits<GetElementPtrConstantExpr> : VariadicOperandTraits<1> {
+};
+
+GetElementPtrConstantExpr::GetElementPtrConstantExpr
+  (Constant *C,
+   const std::vector<Constant*> &IdxList,
+   const Type *DestTy)
+    : ConstantExpr(DestTy, Instruction::GetElementPtr,
+                   OperandTraits<GetElementPtrConstantExpr>::op_end(this)
+                   - (IdxList.size()+1),
+                   IdxList.size()+1) {
+  OperandList[0].init(C, this);
+  for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
+    OperandList[i+1].init(IdxList[i], this);
+}
+
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrConstantExpr, Value)
+
+
+template <>
+struct OperandTraits<CompareConstantExpr> : FixedNumOperandTraits<2> {
+};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CompareConstantExpr, Value)
+
+
+} // End llvm namespace
+
 
 // Utility function for determining if a ConstantExpr is a CastOp or not. This
 // can't be inline because we don't want to #include Instruction.h into
@@ -486,7 +649,7 @@ Constant *ConstantExpr::getNeg(Constant *C) {
              C);
 }
 Constant *ConstantExpr::getNot(Constant *C) {
-  assert(isa<ConstantInt>(C) && "Cannot NOT a nonintegral type!");
+  assert(isa<IntegerType>(C->getType()) && "Cannot NOT a nonintegral value!");
   return get(Instruction::Xor, C,
              ConstantInt::getAllOnesValue(C->getType()));
 }
@@ -528,7 +691,7 @@ Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
 }
 unsigned ConstantExpr::getPredicate() const {
   assert(getOpcode() == Instruction::FCmp || getOpcode() == Instruction::ICmp);
-  return dynamic_cast<const CompareConstantExpr*>(this)->predicate;
+  return ((const CompareConstantExpr*)this)->predicate;
 }
 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2) {
   return get(Instruction::Shl, C1, C2);
@@ -675,31 +838,64 @@ bool ConstantInt::isValueValidForType(const Type *Ty, int64_t Val) {
   return (Val >= Min && Val <= Max);
 }
 
-bool ConstantFP::isValueValidForType(const Type *Ty, double Val) {
+bool ConstantFP::isValueValidForType(const Type *Ty, const APFloat& Val) {
+  // convert modifies in place, so make a copy.
+  APFloat Val2 = APFloat(Val);
   switch (Ty->getTypeID()) {
   default:
     return false;         // These can't be represented as floating point!
 
-    // TODO: Figure out how to test if a double can be cast to a float!
+  // FIXME rounding mode needs to be more flexible
   case Type::FloatTyID:
+    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
+           Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven) == 
+              APFloat::opOK;
   case Type::DoubleTyID:
-    return true;          // This is the largest type...
+    return &Val2.getSemantics() == &APFloat::IEEEsingle || 
+           &Val2.getSemantics() == &APFloat::IEEEdouble ||
+           Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven) == 
+             APFloat::opOK;
+  case Type::X86_FP80TyID:
+    return &Val2.getSemantics() == &APFloat::IEEEsingle || 
+           &Val2.getSemantics() == &APFloat::IEEEdouble ||
+           &Val2.getSemantics() == &APFloat::x87DoubleExtended;
+  case Type::FP128TyID:
+    return &Val2.getSemantics() == &APFloat::IEEEsingle || 
+           &Val2.getSemantics() == &APFloat::IEEEdouble ||
+           &Val2.getSemantics() == &APFloat::IEEEquad;
+  case Type::PPC_FP128TyID:
+    return &Val2.getSemantics() == &APFloat::IEEEsingle || 
+           &Val2.getSemantics() == &APFloat::IEEEdouble ||
+           &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
   }
 }
 
 //===----------------------------------------------------------------------===//
 //                      Factory Function Implementation
 
+
+// The number of operands for each ConstantCreator::create method is
+// determined by the ConstantTraits template.
 // ConstantCreator - A class that is used to create constants by
 // ValueMap*.  This class should be partially specialized if there is
 // something strange that needs to be done to interface to the ctor for the
 // constant.
 //
 namespace llvm {
+  template<class ValType>
+  struct ConstantTraits;
+
+  template<typename T, typename Alloc>
+  struct VISIBILITY_HIDDEN ConstantTraits< std::vector<T, Alloc> > {
+    static unsigned uses(const std::vector<T, Alloc>& v) {
+      return v.size();
+    }
+  };
+
   template<class ConstantClass, class TypeClass, class ValType>
   struct VISIBILITY_HIDDEN ConstantCreator {
     static ConstantClass *create(const TypeClass *Ty, const ValType &V) {
-      return new ConstantClass(Ty, V);
+      return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V);
     }
   };
 
@@ -1174,7 +1370,7 @@ static ManagedStatic<ValueMap<std::vector<Constant*>, VectorType,
 
 Constant *ConstantVector::get(const VectorType *Ty,
                               const std::vector<Constant*> &V) {
-  // If this is an all-zero packed, return a ConstantAggregateZero object
+  // If this is an all-zero vector, return a ConstantAggregateZero object
   if (!V.empty()) {
     Constant *C = V[0];
     if (!C->isNullValue())
@@ -1198,7 +1394,7 @@ void ConstantVector::destroyConstant() {
   destroyConstantImpl();
 }
 
-/// This function will return true iff every element in this packed constant
+/// This function will return true iff every element in this vector constant
 /// is set to all ones.
 /// @returns true iff this constant's emements are all set to all ones.
 /// @brief Determine if the value is all ones.
@@ -1214,6 +1410,17 @@ bool ConstantVector::isAllOnesValue() const {
   return true;
 }
 
+/// getSplatValue - If this is a splat constant, where all of the
+/// elements have the same value, return that value. Otherwise return null.
+Constant *ConstantVector::getSplatValue() {
+  // Check out first element.
+  Constant *Elt = getOperand(0);
+  // Then make sure all remaining elements point to the same value.
+  for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
+    if (getOperand(I) != Elt) return 0;
+  return Elt;
+}
+
 //---- ConstantPointerNull::get() implementation...
 //
 
@@ -1350,7 +1557,7 @@ namespace llvm {
                                              V.operands[2]);
       if (V.opcode == Instruction::GetElementPtr) {
         std::vector<Constant*> IdxList(V.operands.begin()+1, V.operands.end());
-        return new GetElementPtrConstantExpr(V.operands[0], IdxList, Ty);
+        return GetElementPtrConstantExpr::Create(V.operands[0], IdxList, Ty);
       }
 
       // The compare instructions are weird. We have to encode the predicate
@@ -1427,7 +1634,7 @@ static ManagedStatic<ValueMap<ExprMapKeyType, Type,
                               ConstantExpr> > ExprConstants;
 
 /// This is a utility function to handle folding of casts and lookup of the
-/// cast in the ExprConstants map. It is usedby the various get* methods below.
+/// cast in the ExprConstants map. It is used by the various get* methods below.
 static inline Constant *getFoldedCast(
   Instruction::CastOps opc, Constant *C, const Type *Ty) {
   assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
@@ -1560,26 +1767,38 @@ Constant *ConstantExpr::getFPExtend(Constant *C, const Type *Ty) {
 }
 
 Constant *ConstantExpr::getUIToFP(Constant *C, const Type *Ty) {
-  assert(C->getType()->isInteger() && Ty->isFloatingPoint() &&
-         "This is an illegal i32 to floating point cast!");
+  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
+  bool toVec = Ty->getTypeID() == Type::VectorTyID;
+  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
+  assert(C->getType()->isIntOrIntVector() && Ty->isFPOrFPVector() &&
+         "This is an illegal uint to floating point cast!");
   return getFoldedCast(Instruction::UIToFP, C, Ty);
 }
 
 Constant *ConstantExpr::getSIToFP(Constant *C, const Type *Ty) {
-  assert(C->getType()->isInteger() && Ty->isFloatingPoint() &&
+  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
+  bool toVec = Ty->getTypeID() == Type::VectorTyID;
+  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
+  assert(C->getType()->isIntOrIntVector() && Ty->isFPOrFPVector() &&
          "This is an illegal sint to floating point cast!");
   return getFoldedCast(Instruction::SIToFP, C, Ty);
 }
 
 Constant *ConstantExpr::getFPToUI(Constant *C, const Type *Ty) {
-  assert(C->getType()->isFloatingPoint() && Ty->isInteger() &&
-         "This is an illegal floating point to i32 cast!");
+  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
+  bool toVec = Ty->getTypeID() == Type::VectorTyID;
+  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
+  assert(C->getType()->isFPOrFPVector() && Ty->isIntOrIntVector() &&
+         "This is an illegal floating point to uint cast!");
   return getFoldedCast(Instruction::FPToUI, C, Ty);
 }
 
 Constant *ConstantExpr::getFPToSI(Constant *C, const Type *Ty) {
-  assert(C->getType()->isFloatingPoint() && Ty->isInteger() &&
-         "This is an illegal floating point to i32 cast!");
+  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
+  bool toVec = Ty->getTypeID() == Type::VectorTyID;
+  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
+  assert(C->getType()->isFPOrFPVector() && Ty->isIntOrIntVector() &&
+         "This is an illegal floating point to sint cast!");
   return getFoldedCast(Instruction::FPToSI, C, Ty);
 }
 
@@ -1612,10 +1831,10 @@ Constant *ConstantExpr::getBitCast(Constant *C, const Type *DstTy) {
 }
 
 Constant *ConstantExpr::getSizeOf(const Type *Ty) {
-  // sizeof is implemented as: (ulong) gep (Ty*)null, 1
+  // sizeof is implemented as: (i64) gep (Ty*)null, 1
   Constant *GEPIdx = ConstantInt::get(Type::Int32Ty, 1);
   Constant *GEP =
-    getGetElementPtr(getNullValue(PointerType::get(Ty)), &GEPIdx, 1);
+    getGetElementPtr(getNullValue(PointerType::getUnqual(Ty)), &GEPIdx, 1);
   return getCast(Instruction::PtrToInt, GEP, Type::Int64Ty);
 }
 
@@ -1741,7 +1960,7 @@ Constant *ConstantExpr::getSelectTy(const Type *ReqTy, Constant *C,
 Constant *ConstantExpr::getGetElementPtrTy(const Type *ReqTy, Constant *C,
                                            Value* const *Idxs,
                                            unsigned NumIdx) {
-  assert(GetElementPtrInst::getIndexedType(C->getType(), Idxs, NumIdx, true) &&
+  assert(GetElementPtrInst::getIndexedType(C->getType(), Idxs, Idxs+NumIdx, true) &&
          "GEP indices invalid!");
 
   if (Constant *FC = ConstantFoldGetElementPtr(C, (Constant**)Idxs, NumIdx))
@@ -1763,9 +1982,10 @@ Constant *ConstantExpr::getGetElementPtr(Constant *C, Value* const *Idxs,
                                          unsigned NumIdx) {
   // Get the result type of the getelementptr!
   const Type *Ty = 
-    GetElementPtrInst::getIndexedType(C->getType(), Idxs, NumIdx, true);
+    GetElementPtrInst::getIndexedType(C->getType(), Idxs, Idxs+NumIdx, true);
   assert(Ty && "GEP indices invalid!");
-  return getGetElementPtrTy(PointerType::get(Ty), C, Idxs, NumIdx);
+  unsigned As = cast<PointerType>(C->getType())->getAddressSpace();
+  return getGetElementPtrTy(PointerType::get(Ty, As), C, Idxs, NumIdx);
 }
 
 Constant *ConstantExpr::getGetElementPtr(Constant *C, Constant* const *Idxs,
@@ -1876,12 +2096,12 @@ Constant *ConstantExpr::getZeroValueForNegationExpr(const Type *Ty) {
   if (const VectorType *PTy = dyn_cast<VectorType>(Ty))
     if (PTy->getElementType()->isFloatingPoint()) {
       std::vector<Constant*> zeros(PTy->getNumElements(),
-                                   ConstantFP::get(PTy->getElementType(),-0.0));
+                           ConstantFP::getNegativeZero(PTy->getElementType()));
       return ConstantVector::get(PTy, zeros);
     }
 
-  if (Ty->isFloatingPoint())
-    return ConstantFP::get(Ty, -0.0);
+  if (Ty->isFloatingPoint()) 
+    return ConstantFP::getNegativeZero(Ty);
 
   return Constant::getNullValue(Ty);
 }
@@ -1900,14 +2120,21 @@ const char *ConstantExpr::getOpcodeName() const {
 //===----------------------------------------------------------------------===//
 //                replaceUsesOfWithOnConstant implementations
 
+/// replaceUsesOfWithOnConstant - Update this constant array to change uses of
+/// 'From' to be uses of 'To'.  This must update the uniquing data structures
+/// etc.
+///
+/// Note that we intentionally replace all uses of From with To here.  Consider
+/// a large array that uses 'From' 1000 times.  By handling this case all here,
+/// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
+/// single invocation handles all 1000 uses.  Handling them one at a time would
+/// work, but would be really slow because it would have to unique each updated
+/// array instance.
 void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
                                                 Use *U) {
   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
   Constant *ToC = cast<Constant>(To);
 
-  unsigned OperandToUpdate = U-OperandList;
-  assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
-
   std::pair<ArrayConstantsTy::MapKey, Constant*> Lookup;
   Lookup.first.first = getType();
   Lookup.second = this;
@@ -1918,18 +2145,28 @@ void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
   // Fill values with the modified operands of the constant array.  Also, 
   // compute whether this turns into an all-zeros array.
   bool isAllZeros = false;
+  unsigned NumUpdated = 0;
   if (!ToC->isNullValue()) {
-    for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O)
-      Values.push_back(cast<Constant>(O->get()));
+    for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
+      Constant *Val = cast<Constant>(O->get());
+      if (Val == From) {
+        Val = ToC;
+        ++NumUpdated;
+      }
+      Values.push_back(Val);
+    }
   } else {
     isAllZeros = true;
     for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
       Constant *Val = cast<Constant>(O->get());
+      if (Val == From) {
+        Val = ToC;
+        ++NumUpdated;
+      }
       Values.push_back(Val);
       if (isAllZeros) isAllZeros = Val->isNullValue();
     }
   }
-  Values[OperandToUpdate] = ToC;
   
   Constant *Replacement = 0;
   if (isAllZeros) {
@@ -1949,8 +2186,18 @@ void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
       // in place!
       ArrayConstants->MoveConstantToNewSlot(this, I);
       
-      // Update to the new value.
-      setOperand(OperandToUpdate, ToC);
+      // Update to the new value.  Optimize for the case when we have a single
+      // operand that we're changing, but handle bulk updates efficiently.
+      if (NumUpdated == 1) {
+        unsigned OperandToUpdate = U-OperandList;
+        assert(getOperand(OperandToUpdate) == From &&
+               "ReplaceAllUsesWith broken!");
+        setOperand(OperandToUpdate, ToC);
+      } else {
+        for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
+          if (getOperand(i) == From)
+            setOperand(i, ToC);
+      }
       return;
     }
   }
@@ -2158,18 +2405,14 @@ std::string Constant::getStringValue(bool Chop, unsigned Offset) {
         }
       }
     }
-  } else if (Constant *C = dyn_cast<Constant>(this)) {
-    if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
-      return GV->getStringValue(Chop, Offset);
-    else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
-      if (CE->getOpcode() == Instruction::GetElementPtr) {
-        // Turn a gep into the specified offset.
-        if (CE->getNumOperands() == 3 &&
-            cast<Constant>(CE->getOperand(1))->isNullValue() &&
-            isa<ConstantInt>(CE->getOperand(2))) {
-          Offset += cast<ConstantInt>(CE->getOperand(2))->getZExtValue();
-          return CE->getOperand(0)->getStringValue(Chop, Offset);
-        }
+  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(this)) {
+    if (CE->getOpcode() == Instruction::GetElementPtr) {
+      // Turn a gep into the specified offset.
+      if (CE->getNumOperands() == 3 &&
+          cast<Constant>(CE->getOperand(1))->isNullValue() &&
+          isa<ConstantInt>(CE->getOperand(2))) {
+        Offset += cast<ConstantInt>(CE->getOperand(2))->getZExtValue();
+        return CE->getOperand(0)->getStringValue(Chop, Offset);
       }
     }
   }