Update PassManagerImpl_New::analysisCurrentlyAvailable to check all
[oota-llvm.git] / lib / VMCore / Dominators.cpp
index b9eee7f4598cafaeb03eb25f36114a756cd14c3f..c3e0099ee02ca28429616a78c3eedfac9748fdef 100644 (file)
@@ -1,10 +1,10 @@
 //===- Dominators.cpp - Dominator Calculation -----------------------------===//
-// 
+//
 //                     The LLVM Compiler Infrastructure
 //
 // This file was developed by the LLVM research group and is distributed under
 // the University of Illinois Open Source License. See LICENSE.TXT for details.
-// 
+//
 //===----------------------------------------------------------------------===//
 //
 // This file implements simple dominator construction algorithms for finding
 #include "llvm/Analysis/Dominators.h"
 #include "llvm/Support/CFG.h"
 #include "llvm/Assembly/Writer.h"
-#include "Support/DepthFirstIterator.h"
-#include "Support/SetOperations.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/SetOperations.h"
 #include <algorithm>
+#include <iostream>
 using namespace llvm;
 
 //===----------------------------------------------------------------------===//
@@ -43,7 +44,7 @@ using namespace llvm;
 //
 //===----------------------------------------------------------------------===//
 
-static RegisterAnalysis<ImmediateDominators>
+static RegisterPass<ImmediateDominators>
 C("idom", "Immediate Dominators Construction", true);
 
 unsigned ImmediateDominators::DFSPass(BasicBlock *V, InfoRec &VInfo,
@@ -74,7 +75,7 @@ void ImmediateDominators::Compress(BasicBlock *V, InfoRec &VInfo) {
 
   Compress(VAncestor, VAInfo);
 
-  BasicBlock *VAncestorLabel = VAInfo.Label; 
+  BasicBlock *VAncestorLabel = VAInfo.Label;
   BasicBlock *VLabel = VInfo.Label;
   if (Info[VAncestorLabel].Semi < Info[VLabel].Semi)
     VInfo.Label = VAncestorLabel;
@@ -115,10 +116,10 @@ void ImmediateDominators::Link(BasicBlock *V, BasicBlock *W, InfoRec &WInfo){
   unsigned WLabelSemi = Info[WLabel].Semi;
   BasicBlock *S = W;
   InfoRec *SInfo = &Info[S];
-  
+
   BasicBlock *SChild = SInfo->Child;
   InfoRec *SChildInfo = &Info[SChild];
-  
+
   while (WLabelSemi < Info[SChildInfo->Label].Semi) {
     BasicBlock *SChildChild = SChildInfo->Child;
     if (SInfo->Size+Info[SChildChild].Size >= 2*SChildInfo->Size) {
@@ -133,17 +134,17 @@ void ImmediateDominators::Link(BasicBlock *V, BasicBlock *W, InfoRec &WInfo){
       SChildInfo = &Info[SChild];
     }
   }
-  
+
   InfoRec &VInfo = Info[V];
   SInfo->Label = WLabel;
-  
+
   assert(V != W && "The optimization here will not work in this case!");
   unsigned WSize = WInfo.Size;
   unsigned VSize = (VInfo.Size += WSize);
-  
+
   if (VSize < 2*WSize)
     std::swap(S, VInfo.Child);
-  
+
   while (S) {
     SInfo = &Info[S];
     SInfo->Ancestor = V;
@@ -161,7 +162,7 @@ bool ImmediateDominators::runOnFunction(Function &F) {
   Roots.push_back(Root);
 
   Vertex.push_back(0);
-  
+
   // Step #1: Number blocks in depth-first order and initialize variables used
   // in later stages of the algorithm.
   unsigned N = 0;
@@ -179,7 +180,7 @@ bool ImmediateDominators::runOnFunction(Function &F) {
         if (SemiU < WInfo.Semi)
           WInfo.Semi = SemiU;
       }
-    
+
     Info[Vertex[WInfo.Semi]].Bucket.push_back(W);
 
     BasicBlock *WParent = WInfo.Parent;
@@ -210,7 +211,18 @@ bool ImmediateDominators::runOnFunction(Function &F) {
   return false;
 }
 
-void ImmediateDominatorsBase::print(std::ostream &o) const {
+/// dominates - Return true if A dominates B.
+///
+bool ImmediateDominatorsBase::dominates(BasicBlock *A, BasicBlock *B) const {
+  assert(A && B && "Null pointers?");
+  
+  // Walk up the dominator tree from B to determine if A dom B.
+  while (A != B && B)
+    B = get(B);
+  return A == B;
+}
+
+void ImmediateDominatorsBase::print(std::ostream &o, const Module* ) const {
   Function *F = getRoots()[0]->getParent();
   for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) {
     o << "  Immediate Dominator For Basic Block:";
@@ -231,7 +243,7 @@ void ImmediateDominatorsBase::print(std::ostream &o) const {
 //  DominatorSet Implementation
 //===----------------------------------------------------------------------===//
 
-static RegisterAnalysis<DominatorSet>
+static RegisterPass<DominatorSet>
 B("domset", "Dominator Set Construction", true);
 
 // dominates - Return true if A dominates B.  This performs the special checks
@@ -240,13 +252,18 @@ B("domset", "Dominator Set Construction", true);
 bool DominatorSetBase::dominates(Instruction *A, Instruction *B) const {
   BasicBlock *BBA = A->getParent(), *BBB = B->getParent();
   if (BBA != BBB) return dominates(BBA, BBB);
-  
+
   // Loop through the basic block until we find A or B.
   BasicBlock::iterator I = BBA->begin();
   for (; &*I != A && &*I != B; ++I) /*empty*/;
-  
-  // A dominates B if it is found first in the basic block...
-  return &*I == A;
+
+  if(!IsPostDominators) {
+    // A dominates B if it is found first in the basic block.
+    return &*I == A;
+  } else {
+    // A post-dominates B if B is found first in the basic block.
+    return &*I == B;
+  }
 }
 
 
@@ -258,7 +275,7 @@ bool DominatorSet::runOnFunction(Function &F) {
   Roots.clear();
   Roots.push_back(Root);
   assert(pred_begin(Root) == pred_end(Root) &&
-        "Root node has predecessors in function!");
+         "Root node has predecessors in function!");
 
   ImmediateDominators &ID = getAnalysis<ImmediateDominators>();
   Doms.clear();
@@ -275,8 +292,8 @@ bool DominatorSet::runOnFunction(Function &F) {
       DomSetType &DS = Doms[I];
       assert(DS.empty() && "Domset already filled in for this block?");
       DS.insert(I);  // Blocks always dominate themselves
-      
-      // Insert all dominators into the set... 
+
+      // Insert all dominators into the set...
       while (IDom) {
         // If we have already computed the dominator sets for our immediate
         // dominator, just use it instead of walking all the way up to the root.
@@ -311,7 +328,7 @@ static std::ostream &operator<<(std::ostream &o,
 }
 }
 
-void DominatorSetBase::print(std::ostream &o) const {
+void DominatorSetBase::print(std::ostream &o, const Module* ) const {
   for (const_iterator I = begin(), E = end(); I != E; ++I) {
     o << "  DomSet For BB: ";
     if (I->first)
@@ -326,12 +343,12 @@ void DominatorSetBase::print(std::ostream &o) const {
 //  DominatorTree Implementation
 //===----------------------------------------------------------------------===//
 
-static RegisterAnalysis<DominatorTree>
+static RegisterPass<DominatorTree>
 E("domtree", "Dominator Tree Construction", true);
 
 // DominatorTreeBase::reset - Free all of the tree node memory.
 //
-void DominatorTreeBase::reset() { 
+void DominatorTreeBase::reset() {
   for (NodeMapType::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I)
     delete I->second;
   Nodes.clear();
@@ -362,7 +379,7 @@ DominatorTreeBase::Node *DominatorTree::getNodeForBlock(BasicBlock *BB) {
   // immediate dominator.
   BasicBlock *IDom = getAnalysis<ImmediateDominators>()[BB];
   Node *IDomNode = getNodeForBlock(IDom);
-    
+
   // Add a new tree node for this BasicBlock, and link it as a child of
   // IDomNode
   return BBNode = IDomNode->addChild(new Node(BB, IDomNode));
@@ -401,12 +418,12 @@ static std::ostream &operator<<(std::ostream &o,
 static void PrintDomTree(const DominatorTreeBase::Node *N, std::ostream &o,
                          unsigned Lev) {
   o << std::string(2*Lev, ' ') << "[" << Lev << "] " << N;
-  for (DominatorTreeBase::Node::const_iterator I = N->begin(), E = N->end(); 
+  for (DominatorTreeBase::Node::const_iterator I = N->begin(), E = N->end();
        I != E; ++I)
     PrintDomTree(*I, o, Lev+1);
 }
 
-void DominatorTreeBase::print(std::ostream &o) const {
+void DominatorTreeBase::print(std::ostream &o, const Module* ) const {
   o << "=============================--------------------------------\n"
     << "Inorder Dominator Tree:\n";
   PrintDomTree(getRootNode(), o, 1);
@@ -417,11 +434,11 @@ void DominatorTreeBase::print(std::ostream &o) const {
 //  DominanceFrontier Implementation
 //===----------------------------------------------------------------------===//
 
-static RegisterAnalysis<DominanceFrontier>
+static RegisterPass<DominanceFrontier>
 G("domfrontier", "Dominance Frontier Construction", true);
 
 const DominanceFrontier::DomSetType &
-DominanceFrontier::calculate(const DominatorTree &DT, 
+DominanceFrontier::calculate(const DominatorTree &DT,
                              const DominatorTree::Node *Node) {
   // Loop over CFG successors to calculate DFlocal[Node]
   BasicBlock *BB = Node->getBlock();
@@ -445,15 +462,15 @@ DominanceFrontier::calculate(const DominatorTree &DT,
 
     DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end();
     for (; CDFI != CDFE; ++CDFI) {
-      if (!Node->dominates(DT[*CDFI]))
-       S.insert(*CDFI);
+      if (!Node->properlyDominates(DT[*CDFI]))
+        S.insert(*CDFI);
     }
   }
 
   return S;
 }
 
-void DominanceFrontierBase::print(std::ostream &o) const {
+void DominanceFrontierBase::print(std::ostream &o, const Module* ) const {
   for (const_iterator I = begin(), E = end(); I != E; ++I) {
     o << "  DomFrontier for BB";
     if (I->first)
@@ -464,3 +481,513 @@ void DominanceFrontierBase::print(std::ostream &o) const {
   }
 }
 
+//===----------------------------------------------------------------------===//
+// ETOccurrence Implementation
+//===----------------------------------------------------------------------===//
+
+void ETOccurrence::Splay() {
+  ETOccurrence *father;
+  ETOccurrence *grandfather;
+  int occdepth;
+  int fatherdepth;
+  
+  while (Parent) {
+    occdepth = Depth;
+    
+    father = Parent;
+    fatherdepth = Parent->Depth;
+    grandfather = father->Parent;
+    
+    // If we have no grandparent, a single zig or zag will do.
+    if (!grandfather) {
+      setDepthAdd(fatherdepth);
+      MinOccurrence = father->MinOccurrence;
+      Min = father->Min;
+      
+      // See what we have to rotate
+      if (father->Left == this) {
+        // Zig
+        father->setLeft(Right);
+        setRight(father);
+        if (father->Left)
+          father->Left->setDepthAdd(occdepth);
+      } else {
+        // Zag
+        father->setRight(Left);
+        setLeft(father);
+        if (father->Right)
+          father->Right->setDepthAdd(occdepth);
+      }
+      father->setDepth(-occdepth);
+      Parent = NULL;
+      
+      father->recomputeMin();
+      return;
+    }
+    
+    // If we have a grandfather, we need to do some
+    // combination of zig and zag.
+    int grandfatherdepth = grandfather->Depth;
+    
+    setDepthAdd(fatherdepth + grandfatherdepth);
+    MinOccurrence = grandfather->MinOccurrence;
+    Min = grandfather->Min;
+    
+    ETOccurrence *greatgrandfather = grandfather->Parent;
+    
+    if (grandfather->Left == father) {
+      if (father->Left == this) {
+        // Zig zig
+        grandfather->setLeft(father->Right);
+        father->setLeft(Right);
+        setRight(father);
+        father->setRight(grandfather);
+        
+        father->setDepth(-occdepth);
+        
+        if (father->Left)
+          father->Left->setDepthAdd(occdepth);
+        
+        grandfather->setDepth(-fatherdepth);
+        if (grandfather->Left)
+          grandfather->Left->setDepthAdd(fatherdepth);
+      } else {
+        // Zag zig
+        grandfather->setLeft(Right);
+        father->setRight(Left);
+        setLeft(father);
+        setRight(grandfather);
+        
+        father->setDepth(-occdepth);
+        if (father->Right)
+          father->Right->setDepthAdd(occdepth);
+        grandfather->setDepth(-occdepth - fatherdepth);
+        if (grandfather->Left)
+          grandfather->Left->setDepthAdd(occdepth + fatherdepth);
+      }
+    } else {
+      if (father->Left == this) {
+        // Zig zag
+        grandfather->setRight(Left);
+        father->setLeft(Right);
+        setLeft(grandfather);
+        setRight(father);
+        
+        father->setDepth(-occdepth);
+        if (father->Left)
+          father->Left->setDepthAdd(occdepth);
+        grandfather->setDepth(-occdepth - fatherdepth);
+        if (grandfather->Right)
+          grandfather->Right->setDepthAdd(occdepth + fatherdepth);
+      } else {              // Zag Zag
+        grandfather->setRight(father->Left);
+        father->setRight(Left);
+        setLeft(father);
+        father->setLeft(grandfather);
+        
+        father->setDepth(-occdepth);
+        if (father->Right)
+          father->Right->setDepthAdd(occdepth);
+        grandfather->setDepth(-fatherdepth);
+        if (grandfather->Right)
+          grandfather->Right->setDepthAdd(fatherdepth);
+      }
+    }
+    
+    // Might need one more rotate depending on greatgrandfather.
+    setParent(greatgrandfather);
+    if (greatgrandfather) {
+      if (greatgrandfather->Left == grandfather)
+        greatgrandfather->Left = this;
+      else
+        greatgrandfather->Right = this;
+      
+    }
+    grandfather->recomputeMin();
+    father->recomputeMin();
+  }
+}
+
+//===----------------------------------------------------------------------===//
+// ETNode implementation
+//===----------------------------------------------------------------------===//
+
+void ETNode::Split() {
+  ETOccurrence *right, *left;
+  ETOccurrence *rightmost = RightmostOcc;
+  ETOccurrence *parent;
+
+  // Update the occurrence tree first.
+  RightmostOcc->Splay();
+
+  // Find the leftmost occurrence in the rightmost subtree, then splay
+  // around it.
+  for (right = rightmost->Right; right->Left; right = right->Left);
+
+  right->Splay();
+
+  // Start splitting
+  right->Left->Parent = NULL;
+  parent = ParentOcc;
+  parent->Splay();
+  ParentOcc = NULL;
+
+  left = parent->Left;
+  parent->Right->Parent = NULL;
+
+  right->setLeft(left);
+
+  right->recomputeMin();
+
+  rightmost->Splay();
+  rightmost->Depth = 0;
+  rightmost->Min = 0;
+
+  delete parent;
+
+  // Now update *our* tree
+
+  if (Father->Son == this)
+    Father->Son = Right;
+
+  if (Father->Son == this)
+    Father->Son = NULL;
+  else {
+    Left->Right = Right;
+    Right->Left = Left;
+  }
+  Left = Right = NULL;
+  Father = NULL;
+}
+
+void ETNode::setFather(ETNode *NewFather) {
+  ETOccurrence *rightmost;
+  ETOccurrence *leftpart;
+  ETOccurrence *NewFatherOcc;
+  ETOccurrence *temp;
+
+  // First update the path in the splay tree
+  NewFatherOcc = new ETOccurrence(NewFather);
+
+  rightmost = NewFather->RightmostOcc;
+  rightmost->Splay();
+
+  leftpart = rightmost->Left;
+
+  temp = RightmostOcc;
+  temp->Splay();
+
+  NewFatherOcc->setLeft(leftpart);
+  NewFatherOcc->setRight(temp);
+
+  temp->Depth++;
+  temp->Min++;
+  NewFatherOcc->recomputeMin();
+
+  rightmost->setLeft(NewFatherOcc);
+
+  if (NewFatherOcc->Min + rightmost->Depth < rightmost->Min) {
+    rightmost->Min = NewFatherOcc->Min + rightmost->Depth;
+    rightmost->MinOccurrence = NewFatherOcc->MinOccurrence;
+  }
+
+  delete ParentOcc;
+  ParentOcc = NewFatherOcc;
+
+  // Update *our* tree
+  ETNode *left;
+  ETNode *right;
+
+  Father = NewFather;
+  right = Father->Son;
+
+  if (right)
+    left = right->Left;
+  else
+    left = right = this;
+
+  left->Right = this;
+  right->Left = this;
+  Left = left;
+  Right = right;
+
+  Father->Son = this;
+}
+
+bool ETNode::Below(ETNode *other) {
+  ETOccurrence *up = other->RightmostOcc;
+  ETOccurrence *down = RightmostOcc;
+
+  if (this == other)
+    return true;
+
+  up->Splay();
+
+  ETOccurrence *left, *right;
+  left = up->Left;
+  right = up->Right;
+
+  if (!left)
+    return false;
+
+  left->Parent = NULL;
+
+  if (right)
+    right->Parent = NULL;
+
+  down->Splay();
+
+  if (left == down || left->Parent != NULL) {
+    if (right)
+      right->Parent = up;
+    up->setLeft(down);
+  } else {
+    left->Parent = up;
+
+    // If the two occurrences are in different trees, put things
+    // back the way they were.
+    if (right && right->Parent != NULL)
+      up->setRight(down);
+    else
+      up->setRight(right);
+    return false;
+  }
+
+  if (down->Depth <= 0)
+    return false;
+
+  return !down->Right || down->Right->Min + down->Depth >= 0;
+}
+
+ETNode *ETNode::NCA(ETNode *other) {
+  ETOccurrence *occ1 = RightmostOcc;
+  ETOccurrence *occ2 = other->RightmostOcc;
+  
+  ETOccurrence *left, *right, *ret;
+  ETOccurrence *occmin;
+  int mindepth;
+  
+  if (this == other)
+    return this;
+  
+  occ1->Splay();
+  left = occ1->Left;
+  right = occ1->Right;
+  
+  if (left)
+    left->Parent = NULL;
+  
+  if (right)
+    right->Parent = NULL;
+  occ2->Splay();
+
+  if (left == occ2 || (left && left->Parent != NULL)) {
+    ret = occ2->Right;
+    
+    occ1->setLeft(occ2);
+    if (right)
+      right->Parent = occ1;
+  } else {
+    ret = occ2->Left;
+    
+    occ1->setRight(occ2);
+    if (left)
+      left->Parent = occ1;
+  }
+
+  if (occ2->Depth > 0) {
+    occmin = occ1;
+    mindepth = occ1->Depth;
+  } else {
+    occmin = occ2;
+    mindepth = occ2->Depth + occ1->Depth;
+  }
+  
+  if (ret && ret->Min + occ1->Depth + occ2->Depth < mindepth)
+    return ret->MinOccurrence->OccFor;
+  else
+    return occmin->OccFor;
+}
+
+void ETNode::assignDFSNumber(int num) {
+  std::vector<ETNode *>  workStack;
+  std::set<ETNode *> visitedNodes;
+  
+  workStack.push_back(this);
+  visitedNodes.insert(this);
+  this->DFSNumIn = num++;
+
+  while (!workStack.empty()) {
+    ETNode  *Node = workStack.back();
+    
+    // If this is leaf node then set DFSNumOut and pop the stack
+    if (!Node->Son) {
+      Node->DFSNumOut = num++;
+      workStack.pop_back();
+      continue;
+    }
+    
+    ETNode *son = Node->Son;
+    
+    // Visit Node->Son first
+    if (visitedNodes.count(son) == 0) {
+      son->DFSNumIn = num++;
+      workStack.push_back(son);
+      visitedNodes.insert(son);
+      continue;
+    }
+    
+    bool visitChild = false;
+    // Visit remaining children
+    for (ETNode *s = son->Right;  s != son && !visitChild; s = s->Right) {
+      if (visitedNodes.count(s) == 0) {
+        visitChild = true;
+        s->DFSNumIn = num++;
+        workStack.push_back(s);
+        visitedNodes.insert(s);
+      }
+    }
+    
+    if (!visitChild) {
+      // If we reach here means all children are visited
+      Node->DFSNumOut = num++;
+      workStack.pop_back();
+    }
+  }
+}
+
+//===----------------------------------------------------------------------===//
+// ETForest implementation
+//===----------------------------------------------------------------------===//
+
+static RegisterPass<ETForest>
+D("etforest", "ET Forest Construction", true);
+
+void ETForestBase::reset() {
+  for (ETMapType::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I)
+    delete I->second;
+  Nodes.clear();
+}
+
+void ETForestBase::updateDFSNumbers()
+{
+  int dfsnum = 0;
+  // Iterate over all nodes in depth first order.
+  for (unsigned i = 0, e = Roots.size(); i != e; ++i)
+    for (df_iterator<BasicBlock*> I = df_begin(Roots[i]),
+           E = df_end(Roots[i]); I != E; ++I) {
+      BasicBlock *BB = *I;
+      if (!getNode(BB)->hasFather())
+        getNode(BB)->assignDFSNumber(dfsnum);    
+  }
+  SlowQueries = 0;
+  DFSInfoValid = true;
+}
+
+ETNode *ETForest::getNodeForBlock(BasicBlock *BB) {
+  ETNode *&BBNode = Nodes[BB];
+  if (BBNode) return BBNode;
+
+  // Haven't calculated this node yet?  Get or calculate the node for the
+  // immediate dominator.
+  BasicBlock *IDom = getAnalysis<ImmediateDominators>()[BB];
+
+  // If we are unreachable, we may not have an immediate dominator.
+  if (!IDom)
+    return BBNode = new ETNode(BB);
+  else {
+    ETNode *IDomNode = getNodeForBlock(IDom);
+    
+    // Add a new tree node for this BasicBlock, and link it as a child of
+    // IDomNode
+    BBNode = new ETNode(BB);
+    BBNode->setFather(IDomNode);
+    return BBNode;
+  }
+}
+
+void ETForest::calculate(const ImmediateDominators &ID) {
+  assert(Roots.size() == 1 && "ETForest should have 1 root block!");
+  BasicBlock *Root = Roots[0];
+  Nodes[Root] = new ETNode(Root); // Add a node for the root
+
+  Function *F = Root->getParent();
+  // Loop over all of the reachable blocks in the function...
+  for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
+    if (BasicBlock *ImmDom = ID.get(I)) {  // Reachable block.
+      ETNode *&BBNode = Nodes[I];
+      if (!BBNode) {  // Haven't calculated this node yet?
+        // Get or calculate the node for the immediate dominator
+        ETNode *IDomNode =  getNodeForBlock(ImmDom);
+
+        // Add a new ETNode for this BasicBlock, and set it's parent
+        // to it's immediate dominator.
+        BBNode = new ETNode(I);
+        BBNode->setFather(IDomNode);
+      }
+    }
+
+  // Make sure we've got nodes around for every block
+  for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) {
+    ETNode *&BBNode = Nodes[I];
+    if (!BBNode)
+      BBNode = new ETNode(I);
+  }
+
+  updateDFSNumbers ();
+}
+
+//===----------------------------------------------------------------------===//
+// ETForestBase Implementation
+//===----------------------------------------------------------------------===//
+
+void ETForestBase::addNewBlock(BasicBlock *BB, BasicBlock *IDom) {
+  ETNode *&BBNode = Nodes[BB];
+  assert(!BBNode && "BasicBlock already in ET-Forest");
+
+  BBNode = new ETNode(BB);
+  BBNode->setFather(getNode(IDom));
+  DFSInfoValid = false;
+}
+
+void ETForestBase::setImmediateDominator(BasicBlock *BB, BasicBlock *newIDom) {
+  assert(getNode(BB) && "BasicBlock not in ET-Forest");
+  assert(getNode(newIDom) && "IDom not in ET-Forest");
+  
+  ETNode *Node = getNode(BB);
+  if (Node->hasFather()) {
+    if (Node->getFather()->getData<BasicBlock>() == newIDom)
+      return;
+    Node->Split();
+  }
+  Node->setFather(getNode(newIDom));
+  DFSInfoValid= false;
+}
+
+void ETForestBase::print(std::ostream &o, const Module *) const {
+  o << "=============================--------------------------------\n";
+  o << "ET Forest:\n";
+  o << "DFS Info ";
+  if (DFSInfoValid)
+    o << "is";
+  else
+    o << "is not";
+  o << " up to date\n";
+
+  Function *F = getRoots()[0]->getParent();
+  for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) {
+    o << "  DFS Numbers For Basic Block:";
+    WriteAsOperand(o, I, false);
+    o << " are:";
+    if (ETNode *EN = getNode(I)) {
+      o << "In: " << EN->getDFSNumIn();
+      o << " Out: " << EN->getDFSNumOut() << "\n";
+    } else {
+      o << "No associated ETNode";
+    }
+    o << "\n";
+  }
+  o << "\n";
+}
+
+DEFINING_FILE_FOR(DominatorSet)