Fix broken isCopy handling in TrimLiveIntervalToLastUse.
[oota-llvm.git] / lib / VMCore / Type.cpp
index ac55096ac8aa68beed78d646804131d208f4575b..845b523c24216930905b45f20b78c777603807bc 100644 (file)
@@ -27,8 +27,6 @@
 #include "llvm/Support/ManagedStatic.h"
 #include "llvm/Support/MathExtras.h"
 #include "llvm/Support/raw_ostream.h"
-#include "llvm/System/Mutex.h"
-#include "llvm/System/RWMutex.h"
 #include "llvm/System/Threading.h"
 #include <algorithm>
 #include <cstdarg>
@@ -42,40 +40,34 @@ using namespace llvm;
 
 AbstractTypeUser::~AbstractTypeUser() {}
 
+void AbstractTypeUser::setType(Value *V, const Type *NewTy) {
+  V->VTy = NewTy;
+}
 
 //===----------------------------------------------------------------------===//
 //                         Type Class Implementation
 //===----------------------------------------------------------------------===//
 
-// Lock used for guarding access to the type maps.
-static ManagedStatic<sys::SmartMutex<true> > TypeMapLock;
-
-// Recursive lock used for guarding access to AbstractTypeUsers.
-// NOTE: The true template parameter means this will no-op when we're not in
-// multithreaded mode.
-static ManagedStatic<sys::SmartMutex<true> > AbstractTypeUsersLock;
-
-// Concrete/Abstract TypeDescriptions - We lazily calculate type descriptions
-// for types as they are needed.  Because resolution of types must invalidate
-// all of the abstract type descriptions, we keep them in a seperate map to make
-// this easy.
-static ManagedStatic<TypePrinting> ConcreteTypeDescriptions;
-static ManagedStatic<TypePrinting> AbstractTypeDescriptions;
-
 /// Because of the way Type subclasses are allocated, this function is necessary
 /// to use the correct kind of "delete" operator to deallocate the Type object.
-/// Some type objects (FunctionTy, StructTy) allocate additional space after 
-/// the space for their derived type to hold the contained types array of
+/// Some type objects (FunctionTy, StructTy, UnionTy) allocate additional space
+/// after the space for their derived type to hold the contained types array of
 /// PATypeHandles. Using this allocation scheme means all the PATypeHandles are
 /// allocated with the type object, decreasing allocations and eliminating the
 /// need for a std::vector to be used in the Type class itself. 
 /// @brief Type destruction function
 void Type::destroy() const {
+  // Nothing calls getForwardedType from here on.
+  if (ForwardType && ForwardType->isAbstract()) {
+    ForwardType->dropRef();
+    ForwardType = NULL;
+  }
 
   // Structures and Functions allocate their contained types past the end of
   // the type object itself. These need to be destroyed differently than the
   // other types.
-  if (isa<FunctionType>(this) || isa<StructType>(this)) {
+  if (this->isFunctionTy() || this->isStructTy() ||
+      this->isUnionTy()) {
     // First, make sure we destruct any PATypeHandles allocated by these
     // subclasses.  They must be manually destructed. 
     for (unsigned i = 0; i < NumContainedTys; ++i)
@@ -83,16 +75,21 @@ void Type::destroy() const {
 
     // Now call the destructor for the subclass directly because we're going
     // to delete this as an array of char.
-    if (isa<FunctionType>(this))
+    if (this->isFunctionTy())
       static_cast<const FunctionType*>(this)->FunctionType::~FunctionType();
-    else
+    else if (this->isStructTy())
       static_cast<const StructType*>(this)->StructType::~StructType();
+    else
+      static_cast<const UnionType*>(this)->UnionType::~UnionType();
 
     // Finally, remove the memory as an array deallocation of the chars it was
     // constructed from.
     operator delete(const_cast<Type *>(this));
 
     return;
+  } else if (const OpaqueType *opaque_this = dyn_cast<OpaqueType>(this)) {
+    LLVMContextImpl *pImpl = this->getContext().pImpl;
+    pImpl->OpaqueTypes.erase(opaque_this);
   }
 
   // For all the other type subclasses, there is either no contained types or 
@@ -103,26 +100,26 @@ void Type::destroy() const {
   delete this; 
 }
 
-const Type *Type::getPrimitiveType(TypeID IDNumber) {
+const Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) {
   switch (IDNumber) {
-  case VoidTyID      : return VoidTy;
-  case FloatTyID     : return FloatTy;
-  case DoubleTyID    : return DoubleTy;
-  case X86_FP80TyID  : return X86_FP80Ty;
-  case FP128TyID     : return FP128Ty;
-  case PPC_FP128TyID : return PPC_FP128Ty;
-  case LabelTyID     : return LabelTy;
-  case MetadataTyID  : return MetadataTy;
+  case VoidTyID      : return getVoidTy(C);
+  case FloatTyID     : return getFloatTy(C);
+  case DoubleTyID    : return getDoubleTy(C);
+  case X86_FP80TyID  : return getX86_FP80Ty(C);
+  case FP128TyID     : return getFP128Ty(C);
+  case PPC_FP128TyID : return getPPC_FP128Ty(C);
+  case LabelTyID     : return getLabelTy(C);
+  case MetadataTyID  : return getMetadataTy(C);
   default:
     return 0;
   }
 }
 
-const Type *Type::getVAArgsPromotedType() const {
+const Type *Type::getVAArgsPromotedType(LLVMContext &C) const {
   if (ID == IntegerTyID && getSubclassData() < 32)
-    return Type::Int32Ty;
+    return Type::getInt32Ty(C);
   else if (ID == FloatTyID)
-    return Type::DoubleTy;
+    return Type::getDoubleTy(C);
   else
     return this;
 }
@@ -135,27 +132,32 @@ const Type *Type::getScalarType() const {
   return this;
 }
 
-/// isIntOrIntVector - Return true if this is an integer type or a vector of
+/// isIntegerTy - Return true if this is an IntegerType of the specified width.
+bool Type::isIntegerTy(unsigned Bitwidth) const {
+  return isIntegerTy() && cast<IntegerType>(this)->getBitWidth() == Bitwidth;
+}
+
+/// isIntOrIntVectorTy - Return true if this is an integer type or a vector of
 /// integer types.
 ///
-bool Type::isIntOrIntVector() const {
-  if (isInteger())
+bool Type::isIntOrIntVectorTy() const {
+  if (isIntegerTy())
     return true;
   if (ID != Type::VectorTyID) return false;
   
-  return cast<VectorType>(this)->getElementType()->isInteger();
+  return cast<VectorType>(this)->getElementType()->isIntegerTy();
 }
 
-/// isFPOrFPVector - Return true if this is a FP type or a vector of FP types.
+/// isFPOrFPVectorTy - Return true if this is a FP type or a vector of FP types.
 ///
-bool Type::isFPOrFPVector() const {
+bool Type::isFPOrFPVectorTy() const {
   if (ID == Type::FloatTyID || ID == Type::DoubleTyID || 
       ID == Type::FP128TyID || ID == Type::X86_FP80TyID || 
       ID == Type::PPC_FP128TyID)
     return true;
   if (ID != Type::VectorTyID) return false;
   
-  return cast<VectorType>(this)->getElementType()->isFloatingPoint();
+  return cast<VectorType>(this)->getElementType()->isFloatingPointTy();
 }
 
 // canLosslesslyBitCastTo - Return true if this type can be converted to
@@ -179,8 +181,8 @@ bool Type::canLosslesslyBitCastTo(const Type *Ty) const {
   // At this point we have only various mismatches of the first class types
   // remaining and ptr->ptr. Just select the lossless conversions. Everything
   // else is not lossless.
-  if (isa<PointerType>(this))
-    return isa<PointerType>(Ty);
+  if (this->isPointerTy())
+    return Ty->isPointerTy();
   return false;  // Other types have no identity values
 }
 
@@ -210,7 +212,7 @@ unsigned Type::getScalarSizeInBits() const {
 int Type::getFPMantissaWidth() const {
   if (const VectorType *VTy = dyn_cast<VectorType>(this))
     return VTy->getElementType()->getFPMantissaWidth();
-  assert(isFloatingPoint() && "Not a floating point type!");
+  assert(isFloatingPointTy() && "Not a floating point type!");
   if (ID == FloatTyID) return 24;
   if (ID == DoubleTyID) return 53;
   if (ID == X86_FP80TyID) return 64;
@@ -223,7 +225,7 @@ int Type::getFPMantissaWidth() const {
 /// iff all of the members of the type are sized as well.  Since asking for
 /// their size is relatively uncommon, move this operation out of line.
 bool Type::isSizedDerivedType() const {
-  if (isa<IntegerType>(this))
+  if (this->isIntegerTy())
     return true;
 
   if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
@@ -232,7 +234,7 @@ bool Type::isSizedDerivedType() const {
   if (const VectorType *PTy = dyn_cast<VectorType>(this))
     return PTy->getElementType()->isSized();
 
-  if (!isa<StructType>(this)) 
+  if (!this->isStructTy() && !this->isUnionTy()) 
     return false;
 
   // Okay, our struct is sized if all of the elements are...
@@ -257,10 +259,12 @@ const Type *Type::getForwardedTypeInternal() const {
   // Yes, it is forwarded again.  First thing, add the reference to the new
   // forward type.
   if (RealForwardedType->isAbstract())
-    cast<DerivedType>(RealForwardedType)->addRef();
+    RealForwardedType->addRef();
 
   // Now drop the old reference.  This could cause ForwardType to get deleted.
-  cast<DerivedType>(ForwardType)->dropRef();
+  // ForwardType must be abstract because only abstract types can have their own
+  // ForwardTypes.
+  ForwardType->dropRef();
 
   // Return the updated type.
   ForwardType = RealForwardedType;
@@ -276,8 +280,11 @@ void Type::typeBecameConcrete(const DerivedType *AbsTy) {
 
 
 std::string Type::getDescription() const {
+  LLVMContextImpl *pImpl = getContext().pImpl;
   TypePrinting &Map =
-    isAbstract() ? *AbstractTypeDescriptions : *ConcreteTypeDescriptions;
+    isAbstract() ?
+      pImpl->AbstractTypeDescriptions :
+      pImpl->ConcreteTypeDescriptions;
   
   std::string DescStr;
   raw_string_ostream DescOS(DescStr);
@@ -288,7 +295,7 @@ std::string Type::getDescription() const {
 
 bool StructType::indexValid(const Value *V) const {
   // Structure indexes require 32-bit integer constants.
-  if (V->getType() == Type::Int32Ty)
+  if (V->getType()->isIntegerTy(32))
     if (const ConstantInt *CU = dyn_cast<ConstantInt>(V))
       return indexValid(CU->getZExtValue());
   return false;
@@ -311,29 +318,135 @@ const Type *StructType::getTypeAtIndex(unsigned Idx) const {
   return ContainedTys[Idx];
 }
 
+
+bool UnionType::indexValid(const Value *V) const {
+  // Union indexes require 32-bit integer constants.
+  if (V->getType()->isIntegerTy(32))
+    if (const ConstantInt *CU = dyn_cast<ConstantInt>(V))
+      return indexValid(CU->getZExtValue());
+  return false;
+}
+
+bool UnionType::indexValid(unsigned V) const {
+  return V < NumContainedTys;
+}
+
+// getTypeAtIndex - Given an index value into the type, return the type of the
+// element.  For a structure type, this must be a constant value...
+//
+const Type *UnionType::getTypeAtIndex(const Value *V) const {
+  unsigned Idx = (unsigned)cast<ConstantInt>(V)->getZExtValue();
+  return getTypeAtIndex(Idx);
+}
+
+const Type *UnionType::getTypeAtIndex(unsigned Idx) const {
+  assert(indexValid(Idx) && "Invalid structure index!");
+  return ContainedTys[Idx];
+}
+
 //===----------------------------------------------------------------------===//
 //                          Primitive 'Type' data
 //===----------------------------------------------------------------------===//
 
-const Type *Type::VoidTy       = new Type(Type::VoidTyID);
-const Type *Type::FloatTy      = new Type(Type::FloatTyID);
-const Type *Type::DoubleTy     = new Type(Type::DoubleTyID);
-const Type *Type::X86_FP80Ty   = new Type(Type::X86_FP80TyID);
-const Type *Type::FP128Ty      = new Type(Type::FP128TyID);
-const Type *Type::PPC_FP128Ty  = new Type(Type::PPC_FP128TyID);
-const Type *Type::LabelTy      = new Type(Type::LabelTyID);
-const Type *Type::MetadataTy   = new Type(Type::MetadataTyID);
+const Type *Type::getVoidTy(LLVMContext &C) {
+  return &C.pImpl->VoidTy;
+}
 
-namespace {
-  struct BuiltinIntegerType : public IntegerType {
-    explicit BuiltinIntegerType(unsigned W) : IntegerType(W) {}
-  };
+const Type *Type::getLabelTy(LLVMContext &C) {
+  return &C.pImpl->LabelTy;
+}
+
+const Type *Type::getFloatTy(LLVMContext &C) {
+  return &C.pImpl->FloatTy;
+}
+
+const Type *Type::getDoubleTy(LLVMContext &C) {
+  return &C.pImpl->DoubleTy;
+}
+
+const Type *Type::getMetadataTy(LLVMContext &C) {
+  return &C.pImpl->MetadataTy;
+}
+
+const Type *Type::getX86_FP80Ty(LLVMContext &C) {
+  return &C.pImpl->X86_FP80Ty;
+}
+
+const Type *Type::getFP128Ty(LLVMContext &C) {
+  return &C.pImpl->FP128Ty;
+}
+
+const Type *Type::getPPC_FP128Ty(LLVMContext &C) {
+  return &C.pImpl->PPC_FP128Ty;
+}
+
+const IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) {
+  return IntegerType::get(C, N);
+}
+
+const IntegerType *Type::getInt1Ty(LLVMContext &C) {
+  return &C.pImpl->Int1Ty;
+}
+
+const IntegerType *Type::getInt8Ty(LLVMContext &C) {
+  return &C.pImpl->Int8Ty;
+}
+
+const IntegerType *Type::getInt16Ty(LLVMContext &C) {
+  return &C.pImpl->Int16Ty;
+}
+
+const IntegerType *Type::getInt32Ty(LLVMContext &C) {
+  return &C.pImpl->Int32Ty;
+}
+
+const IntegerType *Type::getInt64Ty(LLVMContext &C) {
+  return &C.pImpl->Int64Ty;
+}
+
+const PointerType *Type::getFloatPtrTy(LLVMContext &C, unsigned AS) {
+  return getFloatTy(C)->getPointerTo(AS);
+}
+
+const PointerType *Type::getDoublePtrTy(LLVMContext &C, unsigned AS) {
+  return getDoubleTy(C)->getPointerTo(AS);
+}
+
+const PointerType *Type::getX86_FP80PtrTy(LLVMContext &C, unsigned AS) {
+  return getX86_FP80Ty(C)->getPointerTo(AS);
+}
+
+const PointerType *Type::getFP128PtrTy(LLVMContext &C, unsigned AS) {
+  return getFP128Ty(C)->getPointerTo(AS);
+}
+
+const PointerType *Type::getPPC_FP128PtrTy(LLVMContext &C, unsigned AS) {
+  return getPPC_FP128Ty(C)->getPointerTo(AS);
+}
+
+const PointerType *Type::getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS) {
+  return getIntNTy(C, N)->getPointerTo(AS);
+}
+
+const PointerType *Type::getInt1PtrTy(LLVMContext &C, unsigned AS) {
+  return getInt1Ty(C)->getPointerTo(AS);
+}
+
+const PointerType *Type::getInt8PtrTy(LLVMContext &C, unsigned AS) {
+  return getInt8Ty(C)->getPointerTo(AS);
+}
+
+const PointerType *Type::getInt16PtrTy(LLVMContext &C, unsigned AS) {
+  return getInt16Ty(C)->getPointerTo(AS);
+}
+
+const PointerType *Type::getInt32PtrTy(LLVMContext &C, unsigned AS) {
+  return getInt32Ty(C)->getPointerTo(AS);
+}
+
+const PointerType *Type::getInt64PtrTy(LLVMContext &C, unsigned AS) {
+  return getInt64Ty(C)->getPointerTo(AS);
 }
-const IntegerType *Type::Int1Ty  = new BuiltinIntegerType(1);
-const IntegerType *Type::Int8Ty  = new BuiltinIntegerType(8);
-const IntegerType *Type::Int16Ty = new BuiltinIntegerType(16);
-const IntegerType *Type::Int32Ty = new BuiltinIntegerType(32);
-const IntegerType *Type::Int64Ty = new BuiltinIntegerType(64);
 
 //===----------------------------------------------------------------------===//
 //                          Derived Type Constructors
@@ -342,42 +455,20 @@ const IntegerType *Type::Int64Ty = new BuiltinIntegerType(64);
 /// isValidReturnType - Return true if the specified type is valid as a return
 /// type.
 bool FunctionType::isValidReturnType(const Type *RetTy) {
-  if (RetTy->isFirstClassType()) {
-    if (const PointerType *PTy = dyn_cast<PointerType>(RetTy))
-      return PTy->getElementType() != Type::MetadataTy;
-    return true;
-  }
-  if (RetTy == Type::VoidTy || RetTy == Type::MetadataTy ||
-      isa<OpaqueType>(RetTy))
-    return true;
-  
-  // If this is a multiple return case, verify that each return is a first class
-  // value and that there is at least one value.
-  const StructType *SRetTy = dyn_cast<StructType>(RetTy);
-  if (SRetTy == 0 || SRetTy->getNumElements() == 0)
-    return false;
-  
-  for (unsigned i = 0, e = SRetTy->getNumElements(); i != e; ++i)
-    if (!SRetTy->getElementType(i)->isFirstClassType())
-      return false;
-  return true;
+  return RetTy->getTypeID() != LabelTyID &&
+         RetTy->getTypeID() != MetadataTyID;
 }
 
 /// isValidArgumentType - Return true if the specified type is valid as an
 /// argument type.
 bool FunctionType::isValidArgumentType(const Type *ArgTy) {
-  if ((!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy)) ||
-      (isa<PointerType>(ArgTy) &&
-       cast<PointerType>(ArgTy)->getElementType() == Type::MetadataTy))
-    return false;
-
-  return true;
+  return ArgTy->isFirstClassType() || ArgTy->isOpaqueTy();
 }
 
 FunctionType::FunctionType(const Type *Result,
                            const std::vector<const Type*> &Params,
                            bool IsVarArgs)
-  : DerivedType(FunctionTyID), isVarArgs(IsVarArgs) {
+  : DerivedType(Result->getContext(), FunctionTyID), isVarArgs(IsVarArgs) {
   ContainedTys = reinterpret_cast<PATypeHandle*>(this+1);
   NumContainedTys = Params.size() + 1; // + 1 for result type
   assert(isValidReturnType(Result) && "invalid return type for function");
@@ -397,8 +488,9 @@ FunctionType::FunctionType(const Type *Result,
   setAbstract(isAbstract);
 }
 
-StructType::StructType(const std::vector<const Type*> &Types, bool isPacked)
-  : CompositeType(StructTyID) {
+StructType::StructType(LLVMContext &C, 
+                       const std::vector<const Type*> &Types, bool isPacked)
+  : CompositeType(C, StructTyID) {
   ContainedTys = reinterpret_cast<PATypeHandle*>(this + 1);
   NumContainedTys = Types.size();
   setSubclassData(isPacked);
@@ -415,6 +507,23 @@ StructType::StructType(const std::vector<const Type*> &Types, bool isPacked)
   setAbstract(isAbstract);
 }
 
+UnionType::UnionType(LLVMContext &C,const Type* const* Types, unsigned NumTypes)
+  : CompositeType(C, UnionTyID) {
+  ContainedTys = reinterpret_cast<PATypeHandle*>(this + 1);
+  NumContainedTys = NumTypes;
+  bool isAbstract = false;
+  for (unsigned i = 0; i < NumTypes; ++i) {
+    assert(Types[i] && "<null> type for union field!");
+    assert(isValidElementType(Types[i]) &&
+           "Invalid type for union element!");
+    new (&ContainedTys[i]) PATypeHandle(Types[i], this);
+    isAbstract |= Types[i]->isAbstract();
+  }
+
+  // Calculate whether or not this type is abstract
+  setAbstract(isAbstract);
+}
+
 ArrayType::ArrayType(const Type *ElType, uint64_t NumEl)
   : SequentialType(ArrayTyID, ElType) {
   NumElements = NumEl;
@@ -441,10 +550,10 @@ PointerType::PointerType(const Type *E, unsigned AddrSpace)
   setAbstract(E->isAbstract());
 }
 
-OpaqueType::OpaqueType() : DerivedType(OpaqueTyID) {
+OpaqueType::OpaqueType(LLVMContext &C) : DerivedType(C, OpaqueTyID) {
   setAbstract(true);
 #ifdef DEBUG_MERGE_TYPES
-  DOUT << "Derived new type: " << *this << "\n";
+  DEBUG(dbgs() << "Derived new type: " << *this << "\n");
 #endif
 }
 
@@ -459,36 +568,15 @@ void DerivedType::dropAllTypeUses() {
   if (NumContainedTys != 0) {
     // The type must stay abstract.  To do this, we insert a pointer to a type
     // that will never get resolved, thus will always be abstract.
-    static Type *AlwaysOpaqueTy = 0;
-    static PATypeHolder* Holder = 0;
-    Type *tmp = AlwaysOpaqueTy;
-    if (llvm_is_multithreaded()) {
-      sys::MemoryFence();
-      if (!tmp) {
-        llvm_acquire_global_lock();
-        tmp = AlwaysOpaqueTy;
-        if (!tmp) {
-          tmp = OpaqueType::get();
-          PATypeHolder* tmp2 = new PATypeHolder(AlwaysOpaqueTy);
-          sys::MemoryFence();
-          AlwaysOpaqueTy = tmp;
-          Holder = tmp2;
-        }
-      
-        llvm_release_global_lock();
-      }
-    } else {
-      AlwaysOpaqueTy = OpaqueType::get();
-      Holder = new PATypeHolder(AlwaysOpaqueTy);
-    } 
-        
-    ContainedTys[0] = AlwaysOpaqueTy;
+    ContainedTys[0] = getContext().pImpl->AlwaysOpaqueTy;
 
     // Change the rest of the types to be Int32Ty's.  It doesn't matter what we
     // pick so long as it doesn't point back to this type.  We choose something
-    // concrete to avoid overhead for adding to AbstracTypeUser lists and stuff.
+    // concrete to avoid overhead for adding to AbstractTypeUser lists and
+    // stuff.
+    const Type *ConcreteTy = Type::getInt32Ty(getContext());
     for (unsigned i = 1, e = NumContainedTys; i != e; ++i)
-      ContainedTys[i] = Type::Int32Ty;
+      ContainedTys[i] = ConcreteTy;
   }
 }
 
@@ -540,7 +628,7 @@ void Type::PromoteAbstractToConcrete() {
     // Concrete types are leaves in the tree.  Since an SCC will either be all
     // abstract or all concrete, we only need to check one type.
     if (SCC[0]->isAbstract()) {
-      if (isa<OpaqueType>(SCC[0]))
+      if (SCC[0]->isOpaqueTy())
         return;     // Not going to be concrete, sorry.
 
       // If all of the children of all of the types in this SCC are concrete,
@@ -587,7 +675,7 @@ static bool TypesEqual(const Type *Ty, const Type *Ty2,
                        std::map<const Type *, const Type *> &EqTypes) {
   if (Ty == Ty2) return true;
   if (Ty->getTypeID() != Ty2->getTypeID()) return false;
-  if (isa<OpaqueType>(Ty))
+  if (Ty->isOpaqueTy())
     return false;  // Two unequal opaque types are never equal
 
   std::map<const Type*, const Type*>::iterator It = EqTypes.find(Ty);
@@ -617,6 +705,13 @@ static bool TypesEqual(const Type *Ty, const Type *Ty2,
       if (!TypesEqual(STy->getElementType(i), STy2->getElementType(i), EqTypes))
         return false;
     return true;
+  } else if (const UnionType *UTy = dyn_cast<UnionType>(Ty)) {
+    const UnionType *UTy2 = cast<UnionType>(Ty2);
+    if (UTy->getNumElements() != UTy2->getNumElements()) return false;
+    for (unsigned i = 0, e = UTy2->getNumElements(); i != e; ++i)
+      if (!TypesEqual(UTy->getElementType(i), UTy2->getElementType(i), EqTypes))
+        return false;
+    return true;
   } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
     const ArrayType *ATy2 = cast<ArrayType>(Ty2);
     return ATy->getNumElements() == ATy2->getNumElements() &&
@@ -642,9 +737,11 @@ static bool TypesEqual(const Type *Ty, const Type *Ty2,
   }
 }
 
+namespace llvm { // in namespace llvm so findable by ADL
 static bool TypesEqual(const Type *Ty, const Type *Ty2) {
   std::map<const Type *, const Type *> EqTypes;
-  return TypesEqual(Ty, Ty2, EqTypes);
+  return ::TypesEqual(Ty, Ty2, EqTypes);
+}
 }
 
 // AbstractTypeHasCycleThrough - Return true there is a path from CurTy to
@@ -680,8 +777,10 @@ static bool ConcreteTypeHasCycleThrough(const Type *TargetTy, const Type *CurTy,
   return false;
 }
 
-/// TypeHasCycleThroughItself - Return true if the specified type has a cycle
-/// back to itself.
+/// TypeHasCycleThroughItself - Return true if the specified type has
+/// a cycle back to itself.
+
+namespace llvm { // in namespace llvm so it's findable by ADL
 static bool TypeHasCycleThroughItself(const Type *Ty) {
   SmallPtrSet<const Type*, 128> VisitedTypes;
 
@@ -698,43 +797,42 @@ static bool TypeHasCycleThroughItself(const Type *Ty) {
   }
   return false;
 }
+}
 
 //===----------------------------------------------------------------------===//
 // Function Type Factory and Value Class...
 //
-
-static ManagedStatic<TypeMap<IntegerValType, IntegerType> > IntegerTypes;
-
-const IntegerType *IntegerType::get(unsigned NumBits) {
+const IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) {
   assert(NumBits >= MIN_INT_BITS && "bitwidth too small");
   assert(NumBits <= MAX_INT_BITS && "bitwidth too large");
 
   // Check for the built-in integer types
   switch (NumBits) {
-    case  1: return cast<IntegerType>(Type::Int1Ty);
-    case  8: return cast<IntegerType>(Type::Int8Ty);
-    case 16: return cast<IntegerType>(Type::Int16Ty);
-    case 32: return cast<IntegerType>(Type::Int32Ty);
-    case 64: return cast<IntegerType>(Type::Int64Ty);
+    case  1: return cast<IntegerType>(Type::getInt1Ty(C));
+    case  8: return cast<IntegerType>(Type::getInt8Ty(C));
+    case 16: return cast<IntegerType>(Type::getInt16Ty(C));
+    case 32: return cast<IntegerType>(Type::getInt32Ty(C));
+    case 64: return cast<IntegerType>(Type::getInt64Ty(C));
     default: 
       break;
   }
+
+  LLVMContextImpl *pImpl = C.pImpl;
   
   IntegerValType IVT(NumBits);
   IntegerType *ITy = 0;
   
   // First, see if the type is already in the table, for which
   // a reader lock suffices.
-  sys::SmartScopedLock<true> L(*TypeMapLock);
-  ITy = IntegerTypes->get(IVT);
+  ITy = pImpl->IntegerTypes.get(IVT);
     
   if (!ITy) {
     // Value not found.  Derive a new type!
-    ITy = new IntegerType(NumBits);
-    IntegerTypes->add(IVT, ITy);
+    ITy = new IntegerType(C, NumBits);
+    pImpl->IntegerTypes.add(IVT, ITy);
   }
 #ifdef DEBUG_MERGE_TYPES
-  DOUT << "Derived new type: " << *ITy << "\n";
+  DEBUG(dbgs() << "Derived new type: " << *ITy << "\n");
 #endif
   return ITy;
 }
@@ -767,7 +865,6 @@ FunctionType *FunctionType::get(const Type *ReturnType,
   
   LLVMContextImpl *pImpl = ReturnType->getContext().pImpl;
   
-  sys::SmartScopedLock<true> L(*TypeMapLock);
   FT = pImpl->FunctionTypes.get(VT);
   
   if (!FT) {
@@ -778,7 +875,7 @@ FunctionType *FunctionType::get(const Type *ReturnType,
   }
 
 #ifdef DEBUG_MERGE_TYPES
-  DOUT << "Derived new type: " << FT << "\n";
+  DEBUG(dbgs() << "Derived new type: " << FT << "\n");
 #endif
   return FT;
 }
@@ -792,7 +889,6 @@ ArrayType *ArrayType::get(const Type *ElementType, uint64_t NumElements) {
 
   LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
   
-  sys::SmartScopedLock<true> L(*TypeMapLock);
   AT = pImpl->ArrayTypes.get(AVT);
       
   if (!AT) {
@@ -800,21 +896,14 @@ ArrayType *ArrayType::get(const Type *ElementType, uint64_t NumElements) {
     pImpl->ArrayTypes.add(AVT, AT = new ArrayType(ElementType, NumElements));
   }
 #ifdef DEBUG_MERGE_TYPES
-  DOUT << "Derived new type: " << *AT << "\n";
+  DEBUG(dbgs() << "Derived new type: " << *AT << "\n");
 #endif
   return AT;
 }
 
 bool ArrayType::isValidElementType(const Type *ElemTy) {
-  if (ElemTy == Type::VoidTy || ElemTy == Type::LabelTy ||
-      ElemTy == Type::MetadataTy)
-    return false;
-
-  if (const PointerType *PTy = dyn_cast<PointerType>(ElemTy))
-    if (PTy->getElementType() == Type::MetadataTy)
-      return false;
-
-  return true;
+  return ElemTy->getTypeID() != VoidTyID && ElemTy->getTypeID() != LabelTyID &&
+         ElemTy->getTypeID() != MetadataTyID && !ElemTy->isFunctionTy();
 }
 
 VectorType *VectorType::get(const Type *ElementType, unsigned NumElements) {
@@ -825,24 +914,20 @@ VectorType *VectorType::get(const Type *ElementType, unsigned NumElements) {
   
   LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
   
-  sys::SmartScopedLock<true> L(*TypeMapLock);
   PT = pImpl->VectorTypes.get(PVT);
     
   if (!PT) {
     pImpl->VectorTypes.add(PVT, PT = new VectorType(ElementType, NumElements));
   }
 #ifdef DEBUG_MERGE_TYPES
-  DOUT << "Derived new type: " << *PT << "\n";
+  DEBUG(dbgs() << "Derived new type: " << *PT << "\n");
 #endif
   return PT;
 }
 
 bool VectorType::isValidElementType(const Type *ElemTy) {
-  if (ElemTy->isInteger() || ElemTy->isFloatingPoint() ||
-      isa<OpaqueType>(ElemTy))
-    return true;
-
-  return false;
+  return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() ||
+         ElemTy->isOpaqueTy();
 }
 
 //===----------------------------------------------------------------------===//
@@ -857,18 +942,17 @@ StructType *StructType::get(LLVMContext &Context,
   
   LLVMContextImpl *pImpl = Context.pImpl;
   
-  sys::SmartScopedLock<true> L(*TypeMapLock);
   ST = pImpl->StructTypes.get(STV);
     
   if (!ST) {
     // Value not found.  Derive a new type!
     ST = (StructType*) operator new(sizeof(StructType) +
                                     sizeof(PATypeHandle) * ETypes.size());
-    new (ST) StructType(ETypes, isPacked);
+    new (ST) StructType(Context, ETypes, isPacked);
     pImpl->StructTypes.add(STV, ST);
   }
 #ifdef DEBUG_MERGE_TYPES
-  DOUT << "Derived new type: " << *ST << "\n";
+  DEBUG(dbgs() << "Derived new type: " << *ST << "\n");
 #endif
   return ST;
 }
@@ -885,17 +969,64 @@ StructType *StructType::get(LLVMContext &Context, const Type *type, ...) {
 }
 
 bool StructType::isValidElementType(const Type *ElemTy) {
-  if (ElemTy == Type::VoidTy || ElemTy == Type::LabelTy ||
-      ElemTy == Type::MetadataTy)
-    return false;
+  return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
+         !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy();
+}
 
-  if (const PointerType *PTy = dyn_cast<PointerType>(ElemTy))
-    if (PTy->getElementType() == Type::MetadataTy)
-      return false;
 
-  return true;
+//===----------------------------------------------------------------------===//
+// Union Type Factory...
+//
+
+UnionType *UnionType::get(const Type* const* Types, unsigned NumTypes) {
+  assert(NumTypes > 0 && "union must have at least one member type!");
+  UnionValType UTV(Types, NumTypes);
+  UnionType *UT = 0;
+  
+  LLVMContextImpl *pImpl = Types[0]->getContext().pImpl;
+  
+  UT = pImpl->UnionTypes.get(UTV);
+    
+  if (!UT) {
+    // Value not found.  Derive a new type!
+    UT = (UnionType*) operator new(sizeof(UnionType) +
+                                   sizeof(PATypeHandle) * NumTypes);
+    new (UT) UnionType(Types[0]->getContext(), Types, NumTypes);
+    pImpl->UnionTypes.add(UTV, UT);
+  }
+#ifdef DEBUG_MERGE_TYPES
+  DEBUG(dbgs() << "Derived new type: " << *UT << "\n");
+#endif
+  return UT;
 }
 
+UnionType *UnionType::get(const Type *type, ...) {
+  va_list ap;
+  SmallVector<const llvm::Type*, 8> UnionFields;
+  va_start(ap, type);
+  while (type) {
+    UnionFields.push_back(type);
+    type = va_arg(ap, llvm::Type*);
+  }
+  unsigned NumTypes = UnionFields.size();
+  assert(NumTypes > 0 && "union must have at least one member type!");
+  return llvm::UnionType::get(&UnionFields[0], NumTypes);
+}
+
+bool UnionType::isValidElementType(const Type *ElemTy) {
+  return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
+         !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy();
+}
+
+int UnionType::getElementTypeIndex(const Type *ElemTy) const {
+  int index = 0;
+  for (UnionType::element_iterator I = element_begin(), E = element_end();
+       I != E; ++I, ++index) {
+     if (ElemTy == *I) return index;
+  }
+  
+  return -1;
+}
 
 //===----------------------------------------------------------------------===//
 // Pointer Type Factory...
@@ -903,7 +1034,7 @@ bool StructType::isValidElementType(const Type *ElemTy) {
 
 PointerType *PointerType::get(const Type *ValueType, unsigned AddressSpace) {
   assert(ValueType && "Can't get a pointer to <null> type!");
-  assert(ValueType != Type::VoidTy &&
+  assert(ValueType->getTypeID() != VoidTyID &&
          "Pointer to void is not valid, use i8* instead!");
   assert(isValidElementType(ValueType) && "Invalid type for pointer element!");
   PointerValType PVT(ValueType, AddressSpace);
@@ -912,7 +1043,6 @@ PointerType *PointerType::get(const Type *ValueType, unsigned AddressSpace) {
   
   LLVMContextImpl *pImpl = ValueType->getContext().pImpl;
   
-  sys::SmartScopedLock<true> L(*TypeMapLock);
   PT = pImpl->PointerTypes.get(PVT);
   
   if (!PT) {
@@ -920,27 +1050,36 @@ PointerType *PointerType::get(const Type *ValueType, unsigned AddressSpace) {
     pImpl->PointerTypes.add(PVT, PT = new PointerType(ValueType, AddressSpace));
   }
 #ifdef DEBUG_MERGE_TYPES
-  DOUT << "Derived new type: " << *PT << "\n";
+  DEBUG(dbgs() << "Derived new type: " << *PT << "\n");
 #endif
   return PT;
 }
 
-PointerType *Type::getPointerTo(unsigned addrs) const {
+const PointerType *Type::getPointerTo(unsigned addrs) const {
   return PointerType::get(this, addrs);
 }
 
 bool PointerType::isValidElementType(const Type *ElemTy) {
-  if (ElemTy == Type::VoidTy || ElemTy == Type::LabelTy)
-    return false;
+  return ElemTy->getTypeID() != VoidTyID &&
+         ElemTy->getTypeID() != LabelTyID &&
+         ElemTy->getTypeID() != MetadataTyID;
+}
 
-  if (const PointerType *PTy = dyn_cast<PointerType>(ElemTy))
-    if (PTy->getElementType() == Type::MetadataTy)
-      return false;
 
-  return true;
+//===----------------------------------------------------------------------===//
+// Opaque Type Factory...
+//
+
+OpaqueType *OpaqueType::get(LLVMContext &C) {
+  OpaqueType *OT = new OpaqueType(C);           // All opaque types are distinct
+  
+  LLVMContextImpl *pImpl = C.pImpl;
+  pImpl->OpaqueTypes.insert(OT);
+  return OT;
 }
 
 
+
 //===----------------------------------------------------------------------===//
 //                     Derived Type Refinement Functions
 //===----------------------------------------------------------------------===//
@@ -949,9 +1088,7 @@ bool PointerType::isValidElementType(const Type *ElemTy) {
 // it.  This function is called primarily by the PATypeHandle class.
 void Type::addAbstractTypeUser(AbstractTypeUser *U) const {
   assert(isAbstract() && "addAbstractTypeUser: Current type not abstract!");
-  AbstractTypeUsersLock->acquire();
   AbstractTypeUsers.push_back(U);
-  AbstractTypeUsersLock->release();
 }
 
 
@@ -961,7 +1098,6 @@ void Type::addAbstractTypeUser(AbstractTypeUser *U) const {
 // is annihilated, because there is no way to get a reference to it ever again.
 //
 void Type::removeAbstractTypeUser(AbstractTypeUser *U) const {
-  AbstractTypeUsersLock->acquire();
   
   // Search from back to front because we will notify users from back to
   // front.  Also, it is likely that there will be a stack like behavior to
@@ -977,20 +1113,19 @@ void Type::removeAbstractTypeUser(AbstractTypeUser *U) const {
   AbstractTypeUsers.erase(AbstractTypeUsers.begin()+i);
 
 #ifdef DEBUG_MERGE_TYPES
-  DOUT << "  remAbstractTypeUser[" << (void*)this << ", "
-       << *this << "][" << i << "] User = " << U << "\n";
+  DEBUG(dbgs() << "  remAbstractTypeUser[" << (void*)this << ", "
+               << *this << "][" << i << "] User = " << U << "\n");
 #endif
 
   if (AbstractTypeUsers.empty() && getRefCount() == 0 && isAbstract()) {
 #ifdef DEBUG_MERGE_TYPES
-    DOUT << "DELETEing unused abstract type: <" << *this
-         << ">[" << (void*)this << "]" << "\n";
+    DEBUG(dbgs() << "DELETEing unused abstract type: <" << *this
+                 << ">[" << (void*)this << "]" << "\n");
 #endif
   
   this->destroy();
   }
   
-  AbstractTypeUsersLock->release();
 }
 
 // unlockedRefineAbstractTypeTo - This function is used when it is discovered
@@ -1004,25 +1139,26 @@ void DerivedType::unlockedRefineAbstractTypeTo(const Type *NewType) {
   assert(this != NewType && "Can't refine to myself!");
   assert(ForwardType == 0 && "This type has already been refined!");
 
+  LLVMContextImpl *pImpl = getContext().pImpl;
+
   // The descriptions may be out of date.  Conservatively clear them all!
-  if (AbstractTypeDescriptions.isConstructed())
-    AbstractTypeDescriptions->clear();
+  pImpl->AbstractTypeDescriptions.clear();
 
 #ifdef DEBUG_MERGE_TYPES
-  DOUT << "REFINING abstract type [" << (void*)this << " "
-       << *this << "] to [" << (void*)NewType << " "
-       << *NewType << "]!\n";
+  DEBUG(dbgs() << "REFINING abstract type [" << (void*)this << " "
+               << *this << "] to [" << (void*)NewType << " "
+               << *NewType << "]!\n");
 #endif
 
   // Make sure to put the type to be refined to into a holder so that if IT gets
   // refined, that we will not continue using a dead reference...
   //
   PATypeHolder NewTy(NewType);
-  // Any PATypeHolders referring to this type will now automatically forward o
+  // Any PATypeHolders referring to this type will now automatically forward to
   // the type we are resolved to.
   ForwardType = NewType;
-  if (NewType->isAbstract())
-    cast<DerivedType>(NewType)->addRef();
+  if (ForwardType->isAbstract())
+    ForwardType->addRef();
 
   // Add a self use of the current type so that we don't delete ourself until
   // after the function exits.
@@ -1041,23 +1177,21 @@ void DerivedType::unlockedRefineAbstractTypeTo(const Type *NewType) {
   // will not cause users to drop off of the use list.  If we resolve to ourself
   // we succeed!
   //
-  AbstractTypeUsersLock->acquire();
   while (!AbstractTypeUsers.empty() && NewTy != this) {
     AbstractTypeUser *User = AbstractTypeUsers.back();
 
     unsigned OldSize = AbstractTypeUsers.size(); OldSize=OldSize;
 #ifdef DEBUG_MERGE_TYPES
-    DOUT << " REFINING user " << OldSize-1 << "[" << (void*)User
-         << "] of abstract type [" << (void*)this << " "
-         << *this << "] to [" << (void*)NewTy.get() << " "
-         << *NewTy << "]!\n";
+    DEBUG(dbgs() << " REFINING user " << OldSize-1 << "[" << (void*)User
+                 << "] of abstract type [" << (void*)this << " "
+                 << *this << "] to [" << (void*)NewTy.get() << " "
+                 << *NewTy << "]!\n");
 #endif
     User->refineAbstractType(this, NewTy);
 
     assert(AbstractTypeUsers.size() != OldSize &&
            "AbsTyUser did not remove self from user list!");
   }
-  AbstractTypeUsersLock->release();
 
   // If we were successful removing all users from the type, 'this' will be
   // deleted when the last PATypeHolder is destroyed or updated from this type.
@@ -1071,7 +1205,6 @@ void DerivedType::unlockedRefineAbstractTypeTo(const Type *NewType) {
 void DerivedType::refineAbstractTypeTo(const Type *NewType) {
   // All recursive calls will go through unlockedRefineAbstractTypeTo,
   // to avoid deadlock problems.
-  sys::SmartScopedLock<true> L(*TypeMapLock);
   unlockedRefineAbstractTypeTo(NewType);
 }
 
@@ -1080,10 +1213,9 @@ void DerivedType::refineAbstractTypeTo(const Type *NewType) {
 //
 void DerivedType::notifyUsesThatTypeBecameConcrete() {
 #ifdef DEBUG_MERGE_TYPES
-  DOUT << "typeIsREFINED type: " << (void*)this << " " << *this << "\n";
+  DEBUG(dbgs() << "typeIsREFINED type: " << (void*)this << " " << *this <<"\n");
 #endif
 
-  AbstractTypeUsersLock->acquire();
   unsigned OldSize = AbstractTypeUsers.size(); OldSize=OldSize;
   while (!AbstractTypeUsers.empty()) {
     AbstractTypeUser *ATU = AbstractTypeUsers.back();
@@ -1092,7 +1224,6 @@ void DerivedType::notifyUsesThatTypeBecameConcrete() {
     assert(AbstractTypeUsers.size() < OldSize-- &&
            "AbstractTypeUser did not remove itself from the use list!");
   }
-  AbstractTypeUsersLock->release();
 }
 
 // refineAbstractType - Called when a contained type is found to be more
@@ -1156,6 +1287,21 @@ void StructType::typeBecameConcrete(const DerivedType *AbsTy) {
   pImpl->StructTypes.TypeBecameConcrete(this, AbsTy);
 }
 
+// refineAbstractType - Called when a contained type is found to be more
+// concrete - this could potentially change us from an abstract type to a
+// concrete type.
+//
+void UnionType::refineAbstractType(const DerivedType *OldType,
+                                    const Type *NewType) {
+  LLVMContextImpl *pImpl = OldType->getContext().pImpl;
+  pImpl->UnionTypes.RefineAbstractType(this, OldType, NewType);
+}
+
+void UnionType::typeBecameConcrete(const DerivedType *AbsTy) {
+  LLVMContextImpl *pImpl = AbsTy->getContext().pImpl;
+  pImpl->UnionTypes.TypeBecameConcrete(this, AbsTy);
+}
+
 // refineAbstractType - Called when a contained type is found to be more
 // concrete - this could potentially change us from an abstract type to a
 // concrete type.
@@ -1172,25 +1318,12 @@ void PointerType::typeBecameConcrete(const DerivedType *AbsTy) {
 }
 
 bool SequentialType::indexValid(const Value *V) const {
-  if (isa<IntegerType>(V->getType())) 
+  if (V->getType()->isIntegerTy()) 
     return true;
   return false;
 }
 
 namespace llvm {
-std::ostream &operator<<(std::ostream &OS, const Type *T) {
-  if (T == 0)
-    OS << "<null> value!\n";
-  else
-    T->print(OS);
-  return OS;
-}
-
-std::ostream &operator<<(std::ostream &OS, const Type &T) {
-  T.print(OS);
-  return OS;
-}
-
 raw_ostream &operator<<(raw_ostream &OS, const Type &T) {
   T.print(OS);
   return OS;