X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;ds=sidebyside;f=lib%2FExecutionEngine%2FInterpreter%2FExecution.cpp;h=a2aad5ac556ad988f9b2453f07c94c46aae01c72;hb=fb70e7deafbdce88882735ec8f658e710d65e8cc;hp=4104ff3636534657af1cb06f83c6defa70525f86;hpb=8c9191c644cf8c3aceac8e0d1ddc72273355588c;p=oota-llvm.git diff --git a/lib/ExecutionEngine/Interpreter/Execution.cpp b/lib/ExecutionEngine/Interpreter/Execution.cpp index 4104ff36365..a2aad5ac556 100644 --- a/lib/ExecutionEngine/Interpreter/Execution.cpp +++ b/lib/ExecutionEngine/Interpreter/Execution.cpp @@ -2,8 +2,8 @@ // // The LLVM Compiler Infrastructure // -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // @@ -18,481 +18,506 @@ #include "llvm/Instructions.h" #include "llvm/CodeGen/IntrinsicLowering.h" #include "llvm/Support/GetElementPtrTypeIterator.h" +#include "llvm/ADT/APInt.h" #include "llvm/ADT/Statistic.h" +#include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" -#include // For fmod +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include +#include using namespace llvm; -namespace { - Statistic<> NumDynamicInsts("lli", "Number of dynamic instructions executed"); +STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed"); - Interpreter *TheEE = 0; -} +static cl::opt PrintVolatile("interpreter-print-volatile", cl::Hidden, + cl::desc("make the interpreter print every volatile load and store")); + +//===----------------------------------------------------------------------===// +// Various Helper Functions +//===----------------------------------------------------------------------===// +static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) { + SF.Values[V] = Val; +} //===----------------------------------------------------------------------===// -// Value Manipulation code +// Binary Instruction Implementations //===----------------------------------------------------------------------===// -static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2, - const Type *Ty); -static GenericValue executeSubInst(GenericValue Src1, GenericValue Src2, - const Type *Ty); -static GenericValue executeMulInst(GenericValue Src1, GenericValue Src2, - const Type *Ty); -static GenericValue executeRemInst(GenericValue Src1, GenericValue Src2, - const Type *Ty); -static GenericValue executeDivInst(GenericValue Src1, GenericValue Src2, - const Type *Ty); -static GenericValue executeAndInst(GenericValue Src1, GenericValue Src2, - const Type *Ty); -static GenericValue executeOrInst(GenericValue Src1, GenericValue Src2, - const Type *Ty); -static GenericValue executeXorInst(GenericValue Src1, GenericValue Src2, - const Type *Ty); -static GenericValue executeSetEQInst(GenericValue Src1, GenericValue Src2, - const Type *Ty); -static GenericValue executeSetNEInst(GenericValue Src1, GenericValue Src2, - const Type *Ty); -static GenericValue executeSetLTInst(GenericValue Src1, GenericValue Src2, - const Type *Ty); -static GenericValue executeSetGTInst(GenericValue Src1, GenericValue Src2, - const Type *Ty); -static GenericValue executeSetLEInst(GenericValue Src1, GenericValue Src2, - const Type *Ty); -static GenericValue executeSetGEInst(GenericValue Src1, GenericValue Src2, - const Type *Ty); -static GenericValue executeShlInst(GenericValue Src1, GenericValue Src2, - const Type *Ty); -static GenericValue executeShrInst(GenericValue Src1, GenericValue Src2, - const Type *Ty); -static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2, - GenericValue Src3); +#define IMPLEMENT_BINARY_OPERATOR(OP, TY) \ + case Type::TY##TyID: \ + Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \ + break -GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE, - ExecutionContext &SF) { - switch (CE->getOpcode()) { - case Instruction::Cast: - return executeCastOperation(CE->getOperand(0), CE->getType(), SF); - case Instruction::GetElementPtr: - return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE), - gep_type_end(CE), SF); - case Instruction::Add: - return executeAddInst(getOperandValue(CE->getOperand(0), SF), - getOperandValue(CE->getOperand(1), SF), - CE->getOperand(0)->getType()); - case Instruction::Sub: - return executeSubInst(getOperandValue(CE->getOperand(0), SF), - getOperandValue(CE->getOperand(1), SF), - CE->getOperand(0)->getType()); - case Instruction::Mul: - return executeMulInst(getOperandValue(CE->getOperand(0), SF), - getOperandValue(CE->getOperand(1), SF), - CE->getOperand(0)->getType()); - case Instruction::Div: - return executeDivInst(getOperandValue(CE->getOperand(0), SF), - getOperandValue(CE->getOperand(1), SF), - CE->getOperand(0)->getType()); - case Instruction::Rem: - return executeRemInst(getOperandValue(CE->getOperand(0), SF), - getOperandValue(CE->getOperand(1), SF), - CE->getOperand(0)->getType()); - case Instruction::And: - return executeAndInst(getOperandValue(CE->getOperand(0), SF), - getOperandValue(CE->getOperand(1), SF), - CE->getOperand(0)->getType()); - case Instruction::Or: - return executeOrInst(getOperandValue(CE->getOperand(0), SF), - getOperandValue(CE->getOperand(1), SF), - CE->getOperand(0)->getType()); - case Instruction::Xor: - return executeXorInst(getOperandValue(CE->getOperand(0), SF), - getOperandValue(CE->getOperand(1), SF), - CE->getOperand(0)->getType()); - case Instruction::SetEQ: - return executeSetEQInst(getOperandValue(CE->getOperand(0), SF), - getOperandValue(CE->getOperand(1), SF), - CE->getOperand(0)->getType()); - case Instruction::SetNE: - return executeSetNEInst(getOperandValue(CE->getOperand(0), SF), - getOperandValue(CE->getOperand(1), SF), - CE->getOperand(0)->getType()); - case Instruction::SetLE: - return executeSetLEInst(getOperandValue(CE->getOperand(0), SF), - getOperandValue(CE->getOperand(1), SF), - CE->getOperand(0)->getType()); - case Instruction::SetGE: - return executeSetGEInst(getOperandValue(CE->getOperand(0), SF), - getOperandValue(CE->getOperand(1), SF), - CE->getOperand(0)->getType()); - case Instruction::SetLT: - return executeSetLTInst(getOperandValue(CE->getOperand(0), SF), - getOperandValue(CE->getOperand(1), SF), - CE->getOperand(0)->getType()); - case Instruction::SetGT: - return executeSetGTInst(getOperandValue(CE->getOperand(0), SF), - getOperandValue(CE->getOperand(1), SF), - CE->getOperand(0)->getType()); - case Instruction::Shl: - return executeShlInst(getOperandValue(CE->getOperand(0), SF), - getOperandValue(CE->getOperand(1), SF), - CE->getOperand(0)->getType()); - case Instruction::Shr: - return executeShrInst(getOperandValue(CE->getOperand(0), SF), - getOperandValue(CE->getOperand(1), SF), - CE->getOperand(0)->getType()); - case Instruction::Select: - return executeSelectInst(getOperandValue(CE->getOperand(0), SF), - getOperandValue(CE->getOperand(1), SF), - getOperandValue(CE->getOperand(2), SF)); +static void executeFAddInst(GenericValue &Dest, GenericValue Src1, + GenericValue Src2, const Type *Ty) { + switch (Ty->getTypeID()) { + IMPLEMENT_BINARY_OPERATOR(+, Float); + IMPLEMENT_BINARY_OPERATOR(+, Double); default: - std::cerr << "Unhandled ConstantExpr: " << *CE << "\n"; - abort(); - return GenericValue(); + dbgs() << "Unhandled type for FAdd instruction: " << *Ty << "\n"; + llvm_unreachable(0); } } -GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) { - if (ConstantExpr *CE = dyn_cast(V)) { - return getConstantExprValue(CE, SF); - } else if (Constant *CPV = dyn_cast(V)) { - return getConstantValue(CPV); - } else if (GlobalValue *GV = dyn_cast(V)) { - return PTOGV(getPointerToGlobal(GV)); - } else { - return SF.Values[V]; +static void executeFSubInst(GenericValue &Dest, GenericValue Src1, + GenericValue Src2, const Type *Ty) { + switch (Ty->getTypeID()) { + IMPLEMENT_BINARY_OPERATOR(-, Float); + IMPLEMENT_BINARY_OPERATOR(-, Double); + default: + dbgs() << "Unhandled type for FSub instruction: " << *Ty << "\n"; + llvm_unreachable(0); } } -static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) { - SF.Values[V] = Val; +static void executeFMulInst(GenericValue &Dest, GenericValue Src1, + GenericValue Src2, const Type *Ty) { + switch (Ty->getTypeID()) { + IMPLEMENT_BINARY_OPERATOR(*, Float); + IMPLEMENT_BINARY_OPERATOR(*, Double); + default: + dbgs() << "Unhandled type for FMul instruction: " << *Ty << "\n"; + llvm_unreachable(0); + } } -void Interpreter::initializeExecutionEngine() { - TheEE = this; +static void executeFDivInst(GenericValue &Dest, GenericValue Src1, + GenericValue Src2, const Type *Ty) { + switch (Ty->getTypeID()) { + IMPLEMENT_BINARY_OPERATOR(/, Float); + IMPLEMENT_BINARY_OPERATOR(/, Double); + default: + dbgs() << "Unhandled type for FDiv instruction: " << *Ty << "\n"; + llvm_unreachable(0); + } } -//===----------------------------------------------------------------------===// -// Binary Instruction Implementations -//===----------------------------------------------------------------------===// +static void executeFRemInst(GenericValue &Dest, GenericValue Src1, + GenericValue Src2, const Type *Ty) { + switch (Ty->getTypeID()) { + case Type::FloatTyID: + Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal); + break; + case Type::DoubleTyID: + Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal); + break; + default: + dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n"; + llvm_unreachable(0); + } +} -#define IMPLEMENT_BINARY_OPERATOR(OP, TY) \ - case Type::TY##TyID: Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; break +#define IMPLEMENT_INTEGER_ICMP(OP, TY) \ + case Type::IntegerTyID: \ + Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \ + break; -static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2, +// Handle pointers specially because they must be compared with only as much +// width as the host has. We _do not_ want to be comparing 64 bit values when +// running on a 32-bit target, otherwise the upper 32 bits might mess up +// comparisons if they contain garbage. +#define IMPLEMENT_POINTER_ICMP(OP) \ + case Type::PointerTyID: \ + Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \ + (void*)(intptr_t)Src2.PointerVal); \ + break; + +static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { - IMPLEMENT_BINARY_OPERATOR(+, UByte); - IMPLEMENT_BINARY_OPERATOR(+, SByte); - IMPLEMENT_BINARY_OPERATOR(+, UShort); - IMPLEMENT_BINARY_OPERATOR(+, Short); - IMPLEMENT_BINARY_OPERATOR(+, UInt); - IMPLEMENT_BINARY_OPERATOR(+, Int); - IMPLEMENT_BINARY_OPERATOR(+, ULong); - IMPLEMENT_BINARY_OPERATOR(+, Long); - IMPLEMENT_BINARY_OPERATOR(+, Float); - IMPLEMENT_BINARY_OPERATOR(+, Double); + IMPLEMENT_INTEGER_ICMP(eq,Ty); + IMPLEMENT_POINTER_ICMP(==); default: - std::cout << "Unhandled type for Add instruction: " << *Ty << "\n"; - abort(); + dbgs() << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n"; + llvm_unreachable(0); } return Dest; } -static GenericValue executeSubInst(GenericValue Src1, GenericValue Src2, +static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { - IMPLEMENT_BINARY_OPERATOR(-, UByte); - IMPLEMENT_BINARY_OPERATOR(-, SByte); - IMPLEMENT_BINARY_OPERATOR(-, UShort); - IMPLEMENT_BINARY_OPERATOR(-, Short); - IMPLEMENT_BINARY_OPERATOR(-, UInt); - IMPLEMENT_BINARY_OPERATOR(-, Int); - IMPLEMENT_BINARY_OPERATOR(-, ULong); - IMPLEMENT_BINARY_OPERATOR(-, Long); - IMPLEMENT_BINARY_OPERATOR(-, Float); - IMPLEMENT_BINARY_OPERATOR(-, Double); + IMPLEMENT_INTEGER_ICMP(ne,Ty); + IMPLEMENT_POINTER_ICMP(!=); default: - std::cout << "Unhandled type for Sub instruction: " << *Ty << "\n"; - abort(); + dbgs() << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n"; + llvm_unreachable(0); } return Dest; } -static GenericValue executeMulInst(GenericValue Src1, GenericValue Src2, - const Type *Ty) { +static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2, + const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { - IMPLEMENT_BINARY_OPERATOR(*, UByte); - IMPLEMENT_BINARY_OPERATOR(*, SByte); - IMPLEMENT_BINARY_OPERATOR(*, UShort); - IMPLEMENT_BINARY_OPERATOR(*, Short); - IMPLEMENT_BINARY_OPERATOR(*, UInt); - IMPLEMENT_BINARY_OPERATOR(*, Int); - IMPLEMENT_BINARY_OPERATOR(*, ULong); - IMPLEMENT_BINARY_OPERATOR(*, Long); - IMPLEMENT_BINARY_OPERATOR(*, Float); - IMPLEMENT_BINARY_OPERATOR(*, Double); + IMPLEMENT_INTEGER_ICMP(ult,Ty); + IMPLEMENT_POINTER_ICMP(<); default: - std::cout << "Unhandled type for Mul instruction: " << *Ty << "\n"; - abort(); + dbgs() << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n"; + llvm_unreachable(0); } return Dest; } -static GenericValue executeDivInst(GenericValue Src1, GenericValue Src2, - const Type *Ty) { +static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2, + const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { - IMPLEMENT_BINARY_OPERATOR(/, UByte); - IMPLEMENT_BINARY_OPERATOR(/, SByte); - IMPLEMENT_BINARY_OPERATOR(/, UShort); - IMPLEMENT_BINARY_OPERATOR(/, Short); - IMPLEMENT_BINARY_OPERATOR(/, UInt); - IMPLEMENT_BINARY_OPERATOR(/, Int); - IMPLEMENT_BINARY_OPERATOR(/, ULong); - IMPLEMENT_BINARY_OPERATOR(/, Long); - IMPLEMENT_BINARY_OPERATOR(/, Float); - IMPLEMENT_BINARY_OPERATOR(/, Double); + IMPLEMENT_INTEGER_ICMP(slt,Ty); + IMPLEMENT_POINTER_ICMP(<); default: - std::cout << "Unhandled type for Div instruction: " << *Ty << "\n"; - abort(); + dbgs() << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n"; + llvm_unreachable(0); } return Dest; } -static GenericValue executeRemInst(GenericValue Src1, GenericValue Src2, - const Type *Ty) { +static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2, + const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { - IMPLEMENT_BINARY_OPERATOR(%, UByte); - IMPLEMENT_BINARY_OPERATOR(%, SByte); - IMPLEMENT_BINARY_OPERATOR(%, UShort); - IMPLEMENT_BINARY_OPERATOR(%, Short); - IMPLEMENT_BINARY_OPERATOR(%, UInt); - IMPLEMENT_BINARY_OPERATOR(%, Int); - IMPLEMENT_BINARY_OPERATOR(%, ULong); - IMPLEMENT_BINARY_OPERATOR(%, Long); - case Type::FloatTyID: - Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal); - break; - case Type::DoubleTyID: - Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal); - break; + IMPLEMENT_INTEGER_ICMP(ugt,Ty); + IMPLEMENT_POINTER_ICMP(>); default: - std::cout << "Unhandled type for Rem instruction: " << *Ty << "\n"; - abort(); + dbgs() << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n"; + llvm_unreachable(0); } return Dest; } -static GenericValue executeAndInst(GenericValue Src1, GenericValue Src2, - const Type *Ty) { +static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2, + const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { - IMPLEMENT_BINARY_OPERATOR(&, Bool); - IMPLEMENT_BINARY_OPERATOR(&, UByte); - IMPLEMENT_BINARY_OPERATOR(&, SByte); - IMPLEMENT_BINARY_OPERATOR(&, UShort); - IMPLEMENT_BINARY_OPERATOR(&, Short); - IMPLEMENT_BINARY_OPERATOR(&, UInt); - IMPLEMENT_BINARY_OPERATOR(&, Int); - IMPLEMENT_BINARY_OPERATOR(&, ULong); - IMPLEMENT_BINARY_OPERATOR(&, Long); + IMPLEMENT_INTEGER_ICMP(sgt,Ty); + IMPLEMENT_POINTER_ICMP(>); default: - std::cout << "Unhandled type for And instruction: " << *Ty << "\n"; - abort(); + dbgs() << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n"; + llvm_unreachable(0); } return Dest; } -static GenericValue executeOrInst(GenericValue Src1, GenericValue Src2, - const Type *Ty) { +static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2, + const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { - IMPLEMENT_BINARY_OPERATOR(|, Bool); - IMPLEMENT_BINARY_OPERATOR(|, UByte); - IMPLEMENT_BINARY_OPERATOR(|, SByte); - IMPLEMENT_BINARY_OPERATOR(|, UShort); - IMPLEMENT_BINARY_OPERATOR(|, Short); - IMPLEMENT_BINARY_OPERATOR(|, UInt); - IMPLEMENT_BINARY_OPERATOR(|, Int); - IMPLEMENT_BINARY_OPERATOR(|, ULong); - IMPLEMENT_BINARY_OPERATOR(|, Long); + IMPLEMENT_INTEGER_ICMP(ule,Ty); + IMPLEMENT_POINTER_ICMP(<=); default: - std::cout << "Unhandled type for Or instruction: " << *Ty << "\n"; - abort(); + dbgs() << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n"; + llvm_unreachable(0); } return Dest; } -static GenericValue executeXorInst(GenericValue Src1, GenericValue Src2, - const Type *Ty) { +static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_INTEGER_ICMP(sle,Ty); + IMPLEMENT_POINTER_ICMP(<=); + default: + dbgs() << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n"; + llvm_unreachable(0); + } + return Dest; +} + +static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2, + const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { - IMPLEMENT_BINARY_OPERATOR(^, Bool); - IMPLEMENT_BINARY_OPERATOR(^, UByte); - IMPLEMENT_BINARY_OPERATOR(^, SByte); - IMPLEMENT_BINARY_OPERATOR(^, UShort); - IMPLEMENT_BINARY_OPERATOR(^, Short); - IMPLEMENT_BINARY_OPERATOR(^, UInt); - IMPLEMENT_BINARY_OPERATOR(^, Int); - IMPLEMENT_BINARY_OPERATOR(^, ULong); - IMPLEMENT_BINARY_OPERATOR(^, Long); + IMPLEMENT_INTEGER_ICMP(uge,Ty); + IMPLEMENT_POINTER_ICMP(>=); default: - std::cout << "Unhandled type for Xor instruction: " << *Ty << "\n"; - abort(); + dbgs() << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n"; + llvm_unreachable(0); } return Dest; } -#define IMPLEMENT_SETCC(OP, TY) \ - case Type::TY##TyID: Dest.BoolVal = Src1.TY##Val OP Src2.TY##Val; break +static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_INTEGER_ICMP(sge,Ty); + IMPLEMENT_POINTER_ICMP(>=); + default: + dbgs() << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n"; + llvm_unreachable(0); + } + return Dest; +} -// Handle pointers specially because they must be compared with only as much -// width as the host has. We _do not_ want to be comparing 64 bit values when -// running on a 32-bit target, otherwise the upper 32 bits might mess up -// comparisons if they contain garbage. -#define IMPLEMENT_POINTERSETCC(OP) \ - case Type::PointerTyID: \ - Dest.BoolVal = (void*)(intptr_t)Src1.PointerVal OP \ - (void*)(intptr_t)Src2.PointerVal; break +void Interpreter::visitICmpInst(ICmpInst &I) { + ExecutionContext &SF = ECStack.back(); + const Type *Ty = I.getOperand(0)->getType(); + GenericValue Src1 = getOperandValue(I.getOperand(0), SF); + GenericValue Src2 = getOperandValue(I.getOperand(1), SF); + GenericValue R; // Result + + switch (I.getPredicate()) { + case ICmpInst::ICMP_EQ: R = executeICMP_EQ(Src1, Src2, Ty); break; + case ICmpInst::ICMP_NE: R = executeICMP_NE(Src1, Src2, Ty); break; + case ICmpInst::ICMP_ULT: R = executeICMP_ULT(Src1, Src2, Ty); break; + case ICmpInst::ICMP_SLT: R = executeICMP_SLT(Src1, Src2, Ty); break; + case ICmpInst::ICMP_UGT: R = executeICMP_UGT(Src1, Src2, Ty); break; + case ICmpInst::ICMP_SGT: R = executeICMP_SGT(Src1, Src2, Ty); break; + case ICmpInst::ICMP_ULE: R = executeICMP_ULE(Src1, Src2, Ty); break; + case ICmpInst::ICMP_SLE: R = executeICMP_SLE(Src1, Src2, Ty); break; + case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break; + case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break; + default: + dbgs() << "Don't know how to handle this ICmp predicate!\n-->" << I; + llvm_unreachable(0); + } + + SetValue(&I, R, SF); +} -static GenericValue executeSetEQInst(GenericValue Src1, GenericValue Src2, - const Type *Ty) { +#define IMPLEMENT_FCMP(OP, TY) \ + case Type::TY##TyID: \ + Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \ + break + +static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2, + const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { - IMPLEMENT_SETCC(==, UByte); - IMPLEMENT_SETCC(==, SByte); - IMPLEMENT_SETCC(==, UShort); - IMPLEMENT_SETCC(==, Short); - IMPLEMENT_SETCC(==, UInt); - IMPLEMENT_SETCC(==, Int); - IMPLEMENT_SETCC(==, ULong); - IMPLEMENT_SETCC(==, Long); - IMPLEMENT_SETCC(==, Float); - IMPLEMENT_SETCC(==, Double); - IMPLEMENT_POINTERSETCC(==); + IMPLEMENT_FCMP(==, Float); + IMPLEMENT_FCMP(==, Double); default: - std::cout << "Unhandled type for SetEQ instruction: " << *Ty << "\n"; - abort(); + dbgs() << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n"; + llvm_unreachable(0); } return Dest; } -static GenericValue executeSetNEInst(GenericValue Src1, GenericValue Src2, - const Type *Ty) { +static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2, + const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { - IMPLEMENT_SETCC(!=, UByte); - IMPLEMENT_SETCC(!=, SByte); - IMPLEMENT_SETCC(!=, UShort); - IMPLEMENT_SETCC(!=, Short); - IMPLEMENT_SETCC(!=, UInt); - IMPLEMENT_SETCC(!=, Int); - IMPLEMENT_SETCC(!=, ULong); - IMPLEMENT_SETCC(!=, Long); - IMPLEMENT_SETCC(!=, Float); - IMPLEMENT_SETCC(!=, Double); - IMPLEMENT_POINTERSETCC(!=); + IMPLEMENT_FCMP(!=, Float); + IMPLEMENT_FCMP(!=, Double); default: - std::cout << "Unhandled type for SetNE instruction: " << *Ty << "\n"; - abort(); + dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n"; + llvm_unreachable(0); } return Dest; } -static GenericValue executeSetLEInst(GenericValue Src1, GenericValue Src2, - const Type *Ty) { +static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2, + const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { - IMPLEMENT_SETCC(<=, UByte); - IMPLEMENT_SETCC(<=, SByte); - IMPLEMENT_SETCC(<=, UShort); - IMPLEMENT_SETCC(<=, Short); - IMPLEMENT_SETCC(<=, UInt); - IMPLEMENT_SETCC(<=, Int); - IMPLEMENT_SETCC(<=, ULong); - IMPLEMENT_SETCC(<=, Long); - IMPLEMENT_SETCC(<=, Float); - IMPLEMENT_SETCC(<=, Double); - IMPLEMENT_POINTERSETCC(<=); + IMPLEMENT_FCMP(<=, Float); + IMPLEMENT_FCMP(<=, Double); default: - std::cout << "Unhandled type for SetLE instruction: " << *Ty << "\n"; - abort(); + dbgs() << "Unhandled type for FCmp LE instruction: " << *Ty << "\n"; + llvm_unreachable(0); } return Dest; } -static GenericValue executeSetGEInst(GenericValue Src1, GenericValue Src2, - const Type *Ty) { +static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2, + const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { - IMPLEMENT_SETCC(>=, UByte); - IMPLEMENT_SETCC(>=, SByte); - IMPLEMENT_SETCC(>=, UShort); - IMPLEMENT_SETCC(>=, Short); - IMPLEMENT_SETCC(>=, UInt); - IMPLEMENT_SETCC(>=, Int); - IMPLEMENT_SETCC(>=, ULong); - IMPLEMENT_SETCC(>=, Long); - IMPLEMENT_SETCC(>=, Float); - IMPLEMENT_SETCC(>=, Double); - IMPLEMENT_POINTERSETCC(>=); + IMPLEMENT_FCMP(>=, Float); + IMPLEMENT_FCMP(>=, Double); default: - std::cout << "Unhandled type for SetGE instruction: " << *Ty << "\n"; - abort(); + dbgs() << "Unhandled type for FCmp GE instruction: " << *Ty << "\n"; + llvm_unreachable(0); } return Dest; } -static GenericValue executeSetLTInst(GenericValue Src1, GenericValue Src2, - const Type *Ty) { +static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2, + const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { - IMPLEMENT_SETCC(<, UByte); - IMPLEMENT_SETCC(<, SByte); - IMPLEMENT_SETCC(<, UShort); - IMPLEMENT_SETCC(<, Short); - IMPLEMENT_SETCC(<, UInt); - IMPLEMENT_SETCC(<, Int); - IMPLEMENT_SETCC(<, ULong); - IMPLEMENT_SETCC(<, Long); - IMPLEMENT_SETCC(<, Float); - IMPLEMENT_SETCC(<, Double); - IMPLEMENT_POINTERSETCC(<); + IMPLEMENT_FCMP(<, Float); + IMPLEMENT_FCMP(<, Double); default: - std::cout << "Unhandled type for SetLT instruction: " << *Ty << "\n"; - abort(); + dbgs() << "Unhandled type for FCmp LT instruction: " << *Ty << "\n"; + llvm_unreachable(0); } return Dest; } -static GenericValue executeSetGTInst(GenericValue Src1, GenericValue Src2, +static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { - IMPLEMENT_SETCC(>, UByte); - IMPLEMENT_SETCC(>, SByte); - IMPLEMENT_SETCC(>, UShort); - IMPLEMENT_SETCC(>, Short); - IMPLEMENT_SETCC(>, UInt); - IMPLEMENT_SETCC(>, Int); - IMPLEMENT_SETCC(>, ULong); - IMPLEMENT_SETCC(>, Long); - IMPLEMENT_SETCC(>, Float); - IMPLEMENT_SETCC(>, Double); - IMPLEMENT_POINTERSETCC(>); + IMPLEMENT_FCMP(>, Float); + IMPLEMENT_FCMP(>, Double); default: - std::cout << "Unhandled type for SetGT instruction: " << *Ty << "\n"; - abort(); + dbgs() << "Unhandled type for FCmp GT instruction: " << *Ty << "\n"; + llvm_unreachable(0); } return Dest; } +#define IMPLEMENT_UNORDERED(TY, X,Y) \ + if (TY->isFloatTy()) { \ + if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \ + Dest.IntVal = APInt(1,true); \ + return Dest; \ + } \ + } else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \ + Dest.IntVal = APInt(1,true); \ + return Dest; \ + } + + +static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + IMPLEMENT_UNORDERED(Ty, Src1, Src2) + return executeFCMP_OEQ(Src1, Src2, Ty); +} + +static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + IMPLEMENT_UNORDERED(Ty, Src1, Src2) + return executeFCMP_ONE(Src1, Src2, Ty); +} + +static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + IMPLEMENT_UNORDERED(Ty, Src1, Src2) + return executeFCMP_OLE(Src1, Src2, Ty); +} + +static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + IMPLEMENT_UNORDERED(Ty, Src1, Src2) + return executeFCMP_OGE(Src1, Src2, Ty); +} + +static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + IMPLEMENT_UNORDERED(Ty, Src1, Src2) + return executeFCMP_OLT(Src1, Src2, Ty); +} + +static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + IMPLEMENT_UNORDERED(Ty, Src1, Src2) + return executeFCMP_OGT(Src1, Src2, Ty); +} + +static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + if (Ty->isFloatTy()) + Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal && + Src2.FloatVal == Src2.FloatVal)); + else + Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal && + Src2.DoubleVal == Src2.DoubleVal)); + return Dest; +} + +static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + if (Ty->isFloatTy()) + Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal || + Src2.FloatVal != Src2.FloatVal)); + else + Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal || + Src2.DoubleVal != Src2.DoubleVal)); + return Dest; +} + +void Interpreter::visitFCmpInst(FCmpInst &I) { + ExecutionContext &SF = ECStack.back(); + const Type *Ty = I.getOperand(0)->getType(); + GenericValue Src1 = getOperandValue(I.getOperand(0), SF); + GenericValue Src2 = getOperandValue(I.getOperand(1), SF); + GenericValue R; // Result + + switch (I.getPredicate()) { + case FCmpInst::FCMP_FALSE: R.IntVal = APInt(1,false); break; + case FCmpInst::FCMP_TRUE: R.IntVal = APInt(1,true); break; + case FCmpInst::FCMP_ORD: R = executeFCMP_ORD(Src1, Src2, Ty); break; + case FCmpInst::FCMP_UNO: R = executeFCMP_UNO(Src1, Src2, Ty); break; + case FCmpInst::FCMP_UEQ: R = executeFCMP_UEQ(Src1, Src2, Ty); break; + case FCmpInst::FCMP_OEQ: R = executeFCMP_OEQ(Src1, Src2, Ty); break; + case FCmpInst::FCMP_UNE: R = executeFCMP_UNE(Src1, Src2, Ty); break; + case FCmpInst::FCMP_ONE: R = executeFCMP_ONE(Src1, Src2, Ty); break; + case FCmpInst::FCMP_ULT: R = executeFCMP_ULT(Src1, Src2, Ty); break; + case FCmpInst::FCMP_OLT: R = executeFCMP_OLT(Src1, Src2, Ty); break; + case FCmpInst::FCMP_UGT: R = executeFCMP_UGT(Src1, Src2, Ty); break; + case FCmpInst::FCMP_OGT: R = executeFCMP_OGT(Src1, Src2, Ty); break; + case FCmpInst::FCMP_ULE: R = executeFCMP_ULE(Src1, Src2, Ty); break; + case FCmpInst::FCMP_OLE: R = executeFCMP_OLE(Src1, Src2, Ty); break; + case FCmpInst::FCMP_UGE: R = executeFCMP_UGE(Src1, Src2, Ty); break; + case FCmpInst::FCMP_OGE: R = executeFCMP_OGE(Src1, Src2, Ty); break; + default: + dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I; + llvm_unreachable(0); + } + + SetValue(&I, R, SF); +} + +static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1, + GenericValue Src2, const Type *Ty) { + GenericValue Result; + switch (predicate) { + case ICmpInst::ICMP_EQ: return executeICMP_EQ(Src1, Src2, Ty); + case ICmpInst::ICMP_NE: return executeICMP_NE(Src1, Src2, Ty); + case ICmpInst::ICMP_UGT: return executeICMP_UGT(Src1, Src2, Ty); + case ICmpInst::ICMP_SGT: return executeICMP_SGT(Src1, Src2, Ty); + case ICmpInst::ICMP_ULT: return executeICMP_ULT(Src1, Src2, Ty); + case ICmpInst::ICMP_SLT: return executeICMP_SLT(Src1, Src2, Ty); + case ICmpInst::ICMP_UGE: return executeICMP_UGE(Src1, Src2, Ty); + case ICmpInst::ICMP_SGE: return executeICMP_SGE(Src1, Src2, Ty); + case ICmpInst::ICMP_ULE: return executeICMP_ULE(Src1, Src2, Ty); + case ICmpInst::ICMP_SLE: return executeICMP_SLE(Src1, Src2, Ty); + case FCmpInst::FCMP_ORD: return executeFCMP_ORD(Src1, Src2, Ty); + case FCmpInst::FCMP_UNO: return executeFCMP_UNO(Src1, Src2, Ty); + case FCmpInst::FCMP_OEQ: return executeFCMP_OEQ(Src1, Src2, Ty); + case FCmpInst::FCMP_UEQ: return executeFCMP_UEQ(Src1, Src2, Ty); + case FCmpInst::FCMP_ONE: return executeFCMP_ONE(Src1, Src2, Ty); + case FCmpInst::FCMP_UNE: return executeFCMP_UNE(Src1, Src2, Ty); + case FCmpInst::FCMP_OLT: return executeFCMP_OLT(Src1, Src2, Ty); + case FCmpInst::FCMP_ULT: return executeFCMP_ULT(Src1, Src2, Ty); + case FCmpInst::FCMP_OGT: return executeFCMP_OGT(Src1, Src2, Ty); + case FCmpInst::FCMP_UGT: return executeFCMP_UGT(Src1, Src2, Ty); + case FCmpInst::FCMP_OLE: return executeFCMP_OLE(Src1, Src2, Ty); + case FCmpInst::FCMP_ULE: return executeFCMP_ULE(Src1, Src2, Ty); + case FCmpInst::FCMP_OGE: return executeFCMP_OGE(Src1, Src2, Ty); + case FCmpInst::FCMP_UGE: return executeFCMP_UGE(Src1, Src2, Ty); + case FCmpInst::FCMP_FALSE: { + GenericValue Result; + Result.IntVal = APInt(1, false); + return Result; + } + case FCmpInst::FCMP_TRUE: { + GenericValue Result; + Result.IntVal = APInt(1, true); + return Result; + } + default: + dbgs() << "Unhandled Cmp predicate\n"; + llvm_unreachable(0); + } +} + void Interpreter::visitBinaryOperator(BinaryOperator &I) { ExecutionContext &SF = ECStack.back(); const Type *Ty = I.getOperand(0)->getType(); @@ -501,23 +526,24 @@ void Interpreter::visitBinaryOperator(BinaryOperator &I) { GenericValue R; // Result switch (I.getOpcode()) { - case Instruction::Add: R = executeAddInst (Src1, Src2, Ty); break; - case Instruction::Sub: R = executeSubInst (Src1, Src2, Ty); break; - case Instruction::Mul: R = executeMulInst (Src1, Src2, Ty); break; - case Instruction::Div: R = executeDivInst (Src1, Src2, Ty); break; - case Instruction::Rem: R = executeRemInst (Src1, Src2, Ty); break; - case Instruction::And: R = executeAndInst (Src1, Src2, Ty); break; - case Instruction::Or: R = executeOrInst (Src1, Src2, Ty); break; - case Instruction::Xor: R = executeXorInst (Src1, Src2, Ty); break; - case Instruction::SetEQ: R = executeSetEQInst(Src1, Src2, Ty); break; - case Instruction::SetNE: R = executeSetNEInst(Src1, Src2, Ty); break; - case Instruction::SetLE: R = executeSetLEInst(Src1, Src2, Ty); break; - case Instruction::SetGE: R = executeSetGEInst(Src1, Src2, Ty); break; - case Instruction::SetLT: R = executeSetLTInst(Src1, Src2, Ty); break; - case Instruction::SetGT: R = executeSetGTInst(Src1, Src2, Ty); break; + case Instruction::Add: R.IntVal = Src1.IntVal + Src2.IntVal; break; + case Instruction::Sub: R.IntVal = Src1.IntVal - Src2.IntVal; break; + case Instruction::Mul: R.IntVal = Src1.IntVal * Src2.IntVal; break; + case Instruction::FAdd: executeFAddInst(R, Src1, Src2, Ty); break; + case Instruction::FSub: executeFSubInst(R, Src1, Src2, Ty); break; + case Instruction::FMul: executeFMulInst(R, Src1, Src2, Ty); break; + case Instruction::FDiv: executeFDivInst(R, Src1, Src2, Ty); break; + case Instruction::FRem: executeFRemInst(R, Src1, Src2, Ty); break; + case Instruction::UDiv: R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break; + case Instruction::SDiv: R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break; + case Instruction::URem: R.IntVal = Src1.IntVal.urem(Src2.IntVal); break; + case Instruction::SRem: R.IntVal = Src1.IntVal.srem(Src2.IntVal); break; + case Instruction::And: R.IntVal = Src1.IntVal & Src2.IntVal; break; + case Instruction::Or: R.IntVal = Src1.IntVal | Src2.IntVal; break; + case Instruction::Xor: R.IntVal = Src1.IntVal ^ Src2.IntVal; break; default: - std::cout << "Don't know how to handle this binary operator!\n-->" << I; - abort(); + dbgs() << "Don't know how to handle this binary operator!\n-->" << I; + llvm_unreachable(0); } SetValue(&I, R, SF); @@ -525,7 +551,7 @@ void Interpreter::visitBinaryOperator(BinaryOperator &I) { static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2, GenericValue Src3) { - return Src1.BoolVal ? Src2 : Src3; + return Src1.IntVal == 0 ? Src3 : Src2; } void Interpreter::visitSelectInst(SelectInst &I) { @@ -546,9 +572,9 @@ void Interpreter::exitCalled(GenericValue GV) { // runAtExitHandlers() assumes there are no stack frames, but // if exit() was called, then it had a stack frame. Blow away // the stack before interpreting atexit handlers. - ECStack.clear (); - runAtExitHandlers (); - exit (GV.IntVal); + ECStack.clear(); + runAtExitHandlers(); + exit(GV.IntVal.zextOrTrunc(32).getZExtValue()); } /// Pop the last stack frame off of ECStack and then copy the result @@ -559,23 +585,24 @@ void Interpreter::exitCalled(GenericValue GV) { /// care of switching to the normal destination BB, if we are returning /// from an invoke. /// -void Interpreter::popStackAndReturnValueToCaller (const Type *RetTy, - GenericValue Result) { +void Interpreter::popStackAndReturnValueToCaller(const Type *RetTy, + GenericValue Result) { // Pop the current stack frame. ECStack.pop_back(); if (ECStack.empty()) { // Finished main. Put result into exit code... - if (RetTy && RetTy->isIntegral()) { // Nonvoid return type? + if (RetTy && RetTy->isIntegerTy()) { // Nonvoid return type? ExitValue = Result; // Capture the exit value of the program } else { - memset(&ExitValue, 0, sizeof(ExitValue)); + memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped)); } } else { // If we have a previous stack frame, and we have a previous call, // fill in the return value... ExecutionContext &CallingSF = ECStack.back(); if (Instruction *I = CallingSF.Caller.getInstruction()) { - if (CallingSF.Caller.getType() != Type::VoidTy) // Save result... + // Save result... + if (!CallingSF.Caller.getType()->isVoidTy()) SetValue(I, Result, CallingSF); if (InvokeInst *II = dyn_cast (I)) SwitchToNewBasicBlock (II->getNormalDest (), CallingSF); @@ -586,7 +613,7 @@ void Interpreter::popStackAndReturnValueToCaller (const Type *RetTy, void Interpreter::visitReturnInst(ReturnInst &I) { ExecutionContext &SF = ECStack.back(); - const Type *RetTy = Type::VoidTy; + const Type *RetTy = Type::getVoidTy(I.getContext()); GenericValue Result; // Save away the return value... (if we are not 'ret void') @@ -602,23 +629,22 @@ void Interpreter::visitUnwindInst(UnwindInst &I) { // Unwind stack Instruction *Inst; do { - ECStack.pop_back (); - if (ECStack.empty ()) - abort (); - Inst = ECStack.back ().Caller.getInstruction (); - } while (!(Inst && isa (Inst))); + ECStack.pop_back(); + if (ECStack.empty()) + llvm_report_error("Empty stack during unwind!"); + Inst = ECStack.back().Caller.getInstruction(); + } while (!(Inst && isa(Inst))); // Return from invoke - ExecutionContext &InvokingSF = ECStack.back (); - InvokingSF.Caller = CallSite (); + ExecutionContext &InvokingSF = ECStack.back(); + InvokingSF.Caller = CallSite(); // Go to exceptional destination BB of invoke instruction SwitchToNewBasicBlock(cast(Inst)->getUnwindDest(), InvokingSF); } void Interpreter::visitUnreachableInst(UnreachableInst &I) { - std::cerr << "ERROR: Program executed an 'unreachable' instruction!\n"; - abort(); + llvm_report_error("Program executed an 'unreachable' instruction!"); } void Interpreter::visitBranchInst(BranchInst &I) { @@ -628,7 +654,7 @@ void Interpreter::visitBranchInst(BranchInst &I) { Dest = I.getSuccessor(0); // Uncond branches have a fixed dest... if (!I.isUnconditional()) { Value *Cond = I.getCondition(); - if (getOperandValue(Cond, SF).BoolVal == 0) // If false cond... + if (getOperandValue(Cond, SF).IntVal == 0) // If false cond... Dest = I.getSuccessor(1); } SwitchToNewBasicBlock(Dest, SF); @@ -642,8 +668,8 @@ void Interpreter::visitSwitchInst(SwitchInst &I) { // Check to see if any of the cases match... BasicBlock *Dest = 0; for (unsigned i = 2, e = I.getNumOperands(); i != e; i += 2) - if (executeSetEQInst(CondVal, - getOperandValue(I.getOperand(i), SF), ElTy).BoolVal) { + if (executeICMP_EQ(CondVal, getOperandValue(I.getOperand(i), SF), ElTy) + .IntVal != 0) { Dest = cast(I.getOperand(i+1)); break; } @@ -652,6 +678,13 @@ void Interpreter::visitSwitchInst(SwitchInst &I) { SwitchToNewBasicBlock(Dest, SF); } +void Interpreter::visitIndirectBrInst(IndirectBrInst &I) { + ExecutionContext &SF = ECStack.back(); + void *Dest = GVTOP(getOperandValue(I.getAddress(), SF)); + SwitchToNewBasicBlock((BasicBlock*)Dest, SF); +} + + // SwitchToNewBasicBlock - This method is used to jump to a new basic block. // This function handles the actual updating of block and instruction iterators // as well as execution of all of the PHI nodes in the destination block. @@ -694,16 +727,26 @@ void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){ // Memory Instruction Implementations //===----------------------------------------------------------------------===// -void Interpreter::visitAllocationInst(AllocationInst &I) { +void Interpreter::visitAllocaInst(AllocaInst &I) { ExecutionContext &SF = ECStack.back(); const Type *Ty = I.getType()->getElementType(); // Type to be allocated // Get the number of elements being allocated by the array... - unsigned NumElements = getOperandValue(I.getOperand(0), SF).UIntVal; + unsigned NumElements = + getOperandValue(I.getOperand(0), SF).IntVal.getZExtValue(); + + unsigned TypeSize = (size_t)TD.getTypeAllocSize(Ty); + + // Avoid malloc-ing zero bytes, use max()... + unsigned MemToAlloc = std::max(1U, NumElements * TypeSize); // Allocate enough memory to hold the type... - void *Memory = malloc(NumElements * (size_t)TD.getTypeSize(Ty)); + void *Memory = malloc(MemToAlloc); + + DEBUG(dbgs() << "Allocated Type: " << *Ty << " (" << TypeSize << " bytes) x " + << NumElements << " (Total: " << MemToAlloc << ") at " + << uintptr_t(Memory) << '\n'); GenericValue Result = PTOGV(Memory); assert(Result.PointerVal != 0 && "Null pointer returned by malloc!"); @@ -713,61 +756,51 @@ void Interpreter::visitAllocationInst(AllocationInst &I) { ECStack.back().Allocas.add(Memory); } -void Interpreter::visitFreeInst(FreeInst &I) { - ExecutionContext &SF = ECStack.back(); - assert(isa(I.getOperand(0)->getType()) && "Freeing nonptr?"); - GenericValue Value = getOperandValue(I.getOperand(0), SF); - // TODO: Check to make sure memory is allocated - free(GVTOP(Value)); // Free memory -} - // getElementOffset - The workhorse for getelementptr. // GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I, gep_type_iterator E, ExecutionContext &SF) { - assert(isa(Ptr->getType()) && + assert(Ptr->getType()->isPointerTy() && "Cannot getElementOffset of a nonpointer type!"); - PointerTy Total = 0; + uint64_t Total = 0; for (; I != E; ++I) { if (const StructType *STy = dyn_cast(*I)) { const StructLayout *SLO = TD.getStructLayout(STy); - const ConstantUInt *CPU = cast(I.getOperand()); - unsigned Index = unsigned(CPU->getValue()); + const ConstantInt *CPU = cast(I.getOperand()); + unsigned Index = unsigned(CPU->getZExtValue()); - Total += (PointerTy)SLO->MemberOffsets[Index]; + Total += SLO->getElementOffset(Index); } else { const SequentialType *ST = cast(*I); // Get the index number for the array... which must be long type... GenericValue IdxGV = getOperandValue(I.getOperand(), SF); - uint64_t Idx; - switch (I.getOperand()->getType()->getTypeID()) { - default: assert(0 && "Illegal getelementptr index for sequential type!"); - case Type::SByteTyID: Idx = IdxGV.SByteVal; break; - case Type::ShortTyID: Idx = IdxGV.ShortVal; break; - case Type::IntTyID: Idx = IdxGV.IntVal; break; - case Type::LongTyID: Idx = IdxGV.LongVal; break; - case Type::UByteTyID: Idx = IdxGV.UByteVal; break; - case Type::UShortTyID: Idx = IdxGV.UShortVal; break; - case Type::UIntTyID: Idx = IdxGV.UIntVal; break; - case Type::ULongTyID: Idx = IdxGV.ULongVal; break; + int64_t Idx; + unsigned BitWidth = + cast(I.getOperand()->getType())->getBitWidth(); + if (BitWidth == 32) + Idx = (int64_t)(int32_t)IdxGV.IntVal.getZExtValue(); + else { + assert(BitWidth == 64 && "Invalid index type for getelementptr"); + Idx = (int64_t)IdxGV.IntVal.getZExtValue(); } - Total += PointerTy(TD.getTypeSize(ST->getElementType())*Idx); + Total += TD.getTypeAllocSize(ST->getElementType())*Idx; } } GenericValue Result; - Result.PointerVal = getOperandValue(Ptr, SF).PointerVal + Total; + Result.PointerVal = ((char*)getOperandValue(Ptr, SF).PointerVal) + Total; + DEBUG(dbgs() << "GEP Index " << Total << " bytes.\n"); return Result; } void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) { ExecutionContext &SF = ECStack.back(); - SetValue(&I, TheEE->executeGEPOperation(I.getPointerOperand(), + SetValue(&I, executeGEPOperation(I.getPointerOperand(), gep_type_begin(I), gep_type_end(I), SF), SF); } @@ -775,8 +808,11 @@ void Interpreter::visitLoadInst(LoadInst &I) { ExecutionContext &SF = ECStack.back(); GenericValue SRC = getOperandValue(I.getPointerOperand(), SF); GenericValue *Ptr = (GenericValue*)GVTOP(SRC); - GenericValue Result = LoadValueFromMemory(Ptr, I.getType()); + GenericValue Result; + LoadValueFromMemory(Result, Ptr, I.getType()); SetValue(&I, Result, SF); + if (I.isVolatile() && PrintVolatile) + dbgs() << "Volatile load " << I; } void Interpreter::visitStoreInst(StoreInst &I) { @@ -785,6 +821,8 @@ void Interpreter::visitStoreInst(StoreInst &I) { GenericValue SRC = getOperandValue(I.getPointerOperand(), SF); StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC), I.getOperand(0)->getType()); + if (I.isVolatile() && PrintVolatile) + dbgs() << "Volatile store: " << I; } //===----------------------------------------------------------------------===// @@ -795,8 +833,8 @@ void Interpreter::visitCallSite(CallSite CS) { ExecutionContext &SF = ECStack.back(); // Check to see if this is an intrinsic function call... - if (Function *F = CS.getCalledFunction()) - if (F->isExternal ()) + Function *F = CS.getCalledFunction(); + if (F && F->isDeclaration()) switch (F->getIntrinsicID()) { case Intrinsic::not_intrinsic: break; @@ -816,47 +854,34 @@ void Interpreter::visitCallSite(CallSite CS) { // If it is an unknown intrinsic function, use the intrinsic lowering // class to transform it into hopefully tasty LLVM code. // - Instruction *Prev = CS.getInstruction()->getPrev(); + BasicBlock::iterator me(CS.getInstruction()); BasicBlock *Parent = CS.getInstruction()->getParent(); + bool atBegin(Parent->begin() == me); + if (!atBegin) + --me; IL->LowerIntrinsicCall(cast(CS.getInstruction())); // Restore the CurInst pointer to the first instruction newly inserted, if // any. - if (!Prev) { + if (atBegin) { SF.CurInst = Parent->begin(); } else { - SF.CurInst = Prev; + SF.CurInst = me; ++SF.CurInst; } return; } + SF.Caller = CS; std::vector ArgVals; const unsigned NumArgs = SF.Caller.arg_size(); ArgVals.reserve(NumArgs); + uint16_t pNum = 1; for (CallSite::arg_iterator i = SF.Caller.arg_begin(), - e = SF.Caller.arg_end(); i != e; ++i) { + e = SF.Caller.arg_end(); i != e; ++i, ++pNum) { Value *V = *i; ArgVals.push_back(getOperandValue(V, SF)); - // Promote all integral types whose size is < sizeof(int) into ints. We do - // this by zero or sign extending the value as appropriate according to the - // source type. - const Type *Ty = V->getType(); - if (Ty->isIntegral() && Ty->getPrimitiveSize() < 4) { - if (Ty == Type::ShortTy) - ArgVals.back().IntVal = ArgVals.back().ShortVal; - else if (Ty == Type::UShortTy) - ArgVals.back().UIntVal = ArgVals.back().UShortVal; - else if (Ty == Type::SByteTy) - ArgVals.back().IntVal = ArgVals.back().SByteVal; - else if (Ty == Type::UByteTy) - ArgVals.back().UIntVal = ArgVals.back().UByteVal; - else if (Ty == Type::BoolTy) - ArgVals.back().UIntVal = ArgVals.back().BoolVal; - else - assert(0 && "Unknown type!"); - } } // To handle indirect calls, we must get the pointer value from the argument @@ -865,127 +890,259 @@ void Interpreter::visitCallSite(CallSite CS) { callFunction((Function*)GVTOP(SRC), ArgVals); } -#define IMPLEMENT_SHIFT(OP, TY) \ - case Type::TY##TyID: Dest.TY##Val = Src1.TY##Val OP Src2.UByteVal; break - -static GenericValue executeShlInst(GenericValue Src1, GenericValue Src2, - const Type *Ty) { - GenericValue Dest; - switch (Ty->getTypeID()) { - IMPLEMENT_SHIFT(<<, UByte); - IMPLEMENT_SHIFT(<<, SByte); - IMPLEMENT_SHIFT(<<, UShort); - IMPLEMENT_SHIFT(<<, Short); - IMPLEMENT_SHIFT(<<, UInt); - IMPLEMENT_SHIFT(<<, Int); - IMPLEMENT_SHIFT(<<, ULong); - IMPLEMENT_SHIFT(<<, Long); - default: - std::cout << "Unhandled type for Shl instruction: " << *Ty << "\n"; - } - return Dest; -} - -static GenericValue executeShrInst(GenericValue Src1, GenericValue Src2, - const Type *Ty) { +void Interpreter::visitShl(BinaryOperator &I) { + ExecutionContext &SF = ECStack.back(); + GenericValue Src1 = getOperandValue(I.getOperand(0), SF); + GenericValue Src2 = getOperandValue(I.getOperand(1), SF); GenericValue Dest; - switch (Ty->getTypeID()) { - IMPLEMENT_SHIFT(>>, UByte); - IMPLEMENT_SHIFT(>>, SByte); - IMPLEMENT_SHIFT(>>, UShort); - IMPLEMENT_SHIFT(>>, Short); - IMPLEMENT_SHIFT(>>, UInt); - IMPLEMENT_SHIFT(>>, Int); - IMPLEMENT_SHIFT(>>, ULong); - IMPLEMENT_SHIFT(>>, Long); - default: - std::cout << "Unhandled type for Shr instruction: " << *Ty << "\n"; - abort(); - } - return Dest; + if (Src2.IntVal.getZExtValue() < Src1.IntVal.getBitWidth()) + Dest.IntVal = Src1.IntVal.shl(Src2.IntVal.getZExtValue()); + else + Dest.IntVal = Src1.IntVal; + + SetValue(&I, Dest, SF); } -void Interpreter::visitShl(ShiftInst &I) { +void Interpreter::visitLShr(BinaryOperator &I) { ExecutionContext &SF = ECStack.back(); - const Type *Ty = I.getOperand(0)->getType(); GenericValue Src1 = getOperandValue(I.getOperand(0), SF); GenericValue Src2 = getOperandValue(I.getOperand(1), SF); GenericValue Dest; - Dest = executeShlInst (Src1, Src2, Ty); + if (Src2.IntVal.getZExtValue() < Src1.IntVal.getBitWidth()) + Dest.IntVal = Src1.IntVal.lshr(Src2.IntVal.getZExtValue()); + else + Dest.IntVal = Src1.IntVal; + SetValue(&I, Dest, SF); } -void Interpreter::visitShr(ShiftInst &I) { +void Interpreter::visitAShr(BinaryOperator &I) { ExecutionContext &SF = ECStack.back(); - const Type *Ty = I.getOperand(0)->getType(); GenericValue Src1 = getOperandValue(I.getOperand(0), SF); GenericValue Src2 = getOperandValue(I.getOperand(1), SF); GenericValue Dest; - Dest = executeShrInst (Src1, Src2, Ty); + if (Src2.IntVal.getZExtValue() < Src1.IntVal.getBitWidth()) + Dest.IntVal = Src1.IntVal.ashr(Src2.IntVal.getZExtValue()); + else + Dest.IntVal = Src1.IntVal; + SetValue(&I, Dest, SF); } -#define IMPLEMENT_CAST(DTY, DCTY, STY) \ - case Type::STY##TyID: Dest.DTY##Val = DCTY Src.STY##Val; break; - -#define IMPLEMENT_CAST_CASE_START(DESTTY, DESTCTY) \ - case Type::DESTTY##TyID: \ - switch (SrcTy->getTypeID()) { \ - IMPLEMENT_CAST(DESTTY, DESTCTY, Bool); \ - IMPLEMENT_CAST(DESTTY, DESTCTY, UByte); \ - IMPLEMENT_CAST(DESTTY, DESTCTY, SByte); \ - IMPLEMENT_CAST(DESTTY, DESTCTY, UShort); \ - IMPLEMENT_CAST(DESTTY, DESTCTY, Short); \ - IMPLEMENT_CAST(DESTTY, DESTCTY, UInt); \ - IMPLEMENT_CAST(DESTTY, DESTCTY, Int); \ - IMPLEMENT_CAST(DESTTY, DESTCTY, ULong); \ - IMPLEMENT_CAST(DESTTY, DESTCTY, Long); \ - IMPLEMENT_CAST(DESTTY, DESTCTY, Pointer); - -#define IMPLEMENT_CAST_CASE_FP_IMP(DESTTY, DESTCTY) \ - IMPLEMENT_CAST(DESTTY, DESTCTY, Float); \ - IMPLEMENT_CAST(DESTTY, DESTCTY, Double) - -#define IMPLEMENT_CAST_CASE_END() \ - default: std::cout << "Unhandled cast: " << *SrcTy << " to " << *Ty << "\n"; \ - abort(); \ - } \ - break - -#define IMPLEMENT_CAST_CASE(DESTTY, DESTCTY) \ - IMPLEMENT_CAST_CASE_START(DESTTY, DESTCTY); \ - IMPLEMENT_CAST_CASE_FP_IMP(DESTTY, DESTCTY); \ - IMPLEMENT_CAST_CASE_END() - -GenericValue Interpreter::executeCastOperation(Value *SrcVal, const Type *Ty, - ExecutionContext &SF) { +GenericValue Interpreter::executeTruncInst(Value *SrcVal, const Type *DstTy, + ExecutionContext &SF) { + GenericValue Dest, Src = getOperandValue(SrcVal, SF); + const IntegerType *DITy = cast(DstTy); + unsigned DBitWidth = DITy->getBitWidth(); + Dest.IntVal = Src.IntVal.trunc(DBitWidth); + return Dest; +} + +GenericValue Interpreter::executeSExtInst(Value *SrcVal, const Type *DstTy, + ExecutionContext &SF) { + GenericValue Dest, Src = getOperandValue(SrcVal, SF); + const IntegerType *DITy = cast(DstTy); + unsigned DBitWidth = DITy->getBitWidth(); + Dest.IntVal = Src.IntVal.sext(DBitWidth); + return Dest; +} + +GenericValue Interpreter::executeZExtInst(Value *SrcVal, const Type *DstTy, + ExecutionContext &SF) { + GenericValue Dest, Src = getOperandValue(SrcVal, SF); + const IntegerType *DITy = cast(DstTy); + unsigned DBitWidth = DITy->getBitWidth(); + Dest.IntVal = Src.IntVal.zext(DBitWidth); + return Dest; +} + +GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, const Type *DstTy, + ExecutionContext &SF) { + GenericValue Dest, Src = getOperandValue(SrcVal, SF); + assert(SrcVal->getType()->isDoubleTy() && DstTy->isFloatTy() && + "Invalid FPTrunc instruction"); + Dest.FloatVal = (float) Src.DoubleVal; + return Dest; +} + +GenericValue Interpreter::executeFPExtInst(Value *SrcVal, const Type *DstTy, + ExecutionContext &SF) { + GenericValue Dest, Src = getOperandValue(SrcVal, SF); + assert(SrcVal->getType()->isFloatTy() && DstTy->isDoubleTy() && + "Invalid FPTrunc instruction"); + Dest.DoubleVal = (double) Src.FloatVal; + return Dest; +} + +GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, const Type *DstTy, + ExecutionContext &SF) { const Type *SrcTy = SrcVal->getType(); + uint32_t DBitWidth = cast(DstTy)->getBitWidth(); GenericValue Dest, Src = getOperandValue(SrcVal, SF); + assert(SrcTy->isFloatingPointTy() && "Invalid FPToUI instruction"); - switch (Ty->getTypeID()) { - IMPLEMENT_CAST_CASE(UByte , (unsigned char)); - IMPLEMENT_CAST_CASE(SByte , ( signed char)); - IMPLEMENT_CAST_CASE(UShort , (unsigned short)); - IMPLEMENT_CAST_CASE(Short , ( signed short)); - IMPLEMENT_CAST_CASE(UInt , (unsigned int )); - IMPLEMENT_CAST_CASE(Int , ( signed int )); - IMPLEMENT_CAST_CASE(ULong , (uint64_t)); - IMPLEMENT_CAST_CASE(Long , ( int64_t)); - IMPLEMENT_CAST_CASE(Pointer, (PointerTy)); - IMPLEMENT_CAST_CASE(Float , (float)); - IMPLEMENT_CAST_CASE(Double , (double)); - IMPLEMENT_CAST_CASE(Bool , (bool)); - default: - std::cout << "Unhandled dest type for cast instruction: " << *Ty << "\n"; - abort(); - } + if (SrcTy->getTypeID() == Type::FloatTyID) + Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth); + else + Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth); + return Dest; +} + +GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, const Type *DstTy, + ExecutionContext &SF) { + const Type *SrcTy = SrcVal->getType(); + uint32_t DBitWidth = cast(DstTy)->getBitWidth(); + GenericValue Dest, Src = getOperandValue(SrcVal, SF); + assert(SrcTy->isFloatingPointTy() && "Invalid FPToSI instruction"); + + if (SrcTy->getTypeID() == Type::FloatTyID) + Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth); + else + Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth); + return Dest; +} + +GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, const Type *DstTy, + ExecutionContext &SF) { + GenericValue Dest, Src = getOperandValue(SrcVal, SF); + assert(DstTy->isFloatingPointTy() && "Invalid UIToFP instruction"); + + if (DstTy->getTypeID() == Type::FloatTyID) + Dest.FloatVal = APIntOps::RoundAPIntToFloat(Src.IntVal); + else + Dest.DoubleVal = APIntOps::RoundAPIntToDouble(Src.IntVal); + return Dest; +} + +GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, const Type *DstTy, + ExecutionContext &SF) { + GenericValue Dest, Src = getOperandValue(SrcVal, SF); + assert(DstTy->isFloatingPointTy() && "Invalid SIToFP instruction"); + + if (DstTy->getTypeID() == Type::FloatTyID) + Dest.FloatVal = APIntOps::RoundSignedAPIntToFloat(Src.IntVal); + else + Dest.DoubleVal = APIntOps::RoundSignedAPIntToDouble(Src.IntVal); + return Dest; +} + +GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, const Type *DstTy, + ExecutionContext &SF) { + uint32_t DBitWidth = cast(DstTy)->getBitWidth(); + GenericValue Dest, Src = getOperandValue(SrcVal, SF); + assert(SrcVal->getType()->isPointerTy() && "Invalid PtrToInt instruction"); + + Dest.IntVal = APInt(DBitWidth, (intptr_t) Src.PointerVal); + return Dest; +} + +GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, const Type *DstTy, + ExecutionContext &SF) { + GenericValue Dest, Src = getOperandValue(SrcVal, SF); + assert(DstTy->isPointerTy() && "Invalid PtrToInt instruction"); + + uint32_t PtrSize = TD.getPointerSizeInBits(); + if (PtrSize != Src.IntVal.getBitWidth()) + Src.IntVal = Src.IntVal.zextOrTrunc(PtrSize); + + Dest.PointerVal = PointerTy(intptr_t(Src.IntVal.getZExtValue())); return Dest; } -void Interpreter::visitCastInst(CastInst &I) { +GenericValue Interpreter::executeBitCastInst(Value *SrcVal, const Type *DstTy, + ExecutionContext &SF) { + + const Type *SrcTy = SrcVal->getType(); + GenericValue Dest, Src = getOperandValue(SrcVal, SF); + if (DstTy->isPointerTy()) { + assert(SrcTy->isPointerTy() && "Invalid BitCast"); + Dest.PointerVal = Src.PointerVal; + } else if (DstTy->isIntegerTy()) { + if (SrcTy->isFloatTy()) { + Dest.IntVal.zext(sizeof(Src.FloatVal) * CHAR_BIT); + Dest.IntVal.floatToBits(Src.FloatVal); + } else if (SrcTy->isDoubleTy()) { + Dest.IntVal.zext(sizeof(Src.DoubleVal) * CHAR_BIT); + Dest.IntVal.doubleToBits(Src.DoubleVal); + } else if (SrcTy->isIntegerTy()) { + Dest.IntVal = Src.IntVal; + } else + llvm_unreachable("Invalid BitCast"); + } else if (DstTy->isFloatTy()) { + if (SrcTy->isIntegerTy()) + Dest.FloatVal = Src.IntVal.bitsToFloat(); + else + Dest.FloatVal = Src.FloatVal; + } else if (DstTy->isDoubleTy()) { + if (SrcTy->isIntegerTy()) + Dest.DoubleVal = Src.IntVal.bitsToDouble(); + else + Dest.DoubleVal = Src.DoubleVal; + } else + llvm_unreachable("Invalid Bitcast"); + + return Dest; +} + +void Interpreter::visitTruncInst(TruncInst &I) { + ExecutionContext &SF = ECStack.back(); + SetValue(&I, executeTruncInst(I.getOperand(0), I.getType(), SF), SF); +} + +void Interpreter::visitSExtInst(SExtInst &I) { + ExecutionContext &SF = ECStack.back(); + SetValue(&I, executeSExtInst(I.getOperand(0), I.getType(), SF), SF); +} + +void Interpreter::visitZExtInst(ZExtInst &I) { + ExecutionContext &SF = ECStack.back(); + SetValue(&I, executeZExtInst(I.getOperand(0), I.getType(), SF), SF); +} + +void Interpreter::visitFPTruncInst(FPTruncInst &I) { + ExecutionContext &SF = ECStack.back(); + SetValue(&I, executeFPTruncInst(I.getOperand(0), I.getType(), SF), SF); +} + +void Interpreter::visitFPExtInst(FPExtInst &I) { + ExecutionContext &SF = ECStack.back(); + SetValue(&I, executeFPExtInst(I.getOperand(0), I.getType(), SF), SF); +} + +void Interpreter::visitUIToFPInst(UIToFPInst &I) { ExecutionContext &SF = ECStack.back(); - SetValue(&I, executeCastOperation(I.getOperand(0), I.getType(), SF), SF); + SetValue(&I, executeUIToFPInst(I.getOperand(0), I.getType(), SF), SF); +} + +void Interpreter::visitSIToFPInst(SIToFPInst &I) { + ExecutionContext &SF = ECStack.back(); + SetValue(&I, executeSIToFPInst(I.getOperand(0), I.getType(), SF), SF); +} + +void Interpreter::visitFPToUIInst(FPToUIInst &I) { + ExecutionContext &SF = ECStack.back(); + SetValue(&I, executeFPToUIInst(I.getOperand(0), I.getType(), SF), SF); +} + +void Interpreter::visitFPToSIInst(FPToSIInst &I) { + ExecutionContext &SF = ECStack.back(); + SetValue(&I, executeFPToSIInst(I.getOperand(0), I.getType(), SF), SF); +} + +void Interpreter::visitPtrToIntInst(PtrToIntInst &I) { + ExecutionContext &SF = ECStack.back(); + SetValue(&I, executePtrToIntInst(I.getOperand(0), I.getType(), SF), SF); +} + +void Interpreter::visitIntToPtrInst(IntToPtrInst &I) { + ExecutionContext &SF = ECStack.back(); + SetValue(&I, executeIntToPtrInst(I.getOperand(0), I.getType(), SF), SF); +} + +void Interpreter::visitBitCastInst(BitCastInst &I) { + ExecutionContext &SF = ECStack.back(); + SetValue(&I, executeBitCastInst(I.getOperand(0), I.getType(), SF), SF); } #define IMPLEMENT_VAARG(TY) \ @@ -999,24 +1156,16 @@ void Interpreter::visitVAArgInst(VAArgInst &I) { GenericValue VAList = getOperandValue(I.getOperand(0), SF); GenericValue Dest; GenericValue Src = ECStack[VAList.UIntPairVal.first] - .VarArgs[VAList.UIntPairVal.second]; + .VarArgs[VAList.UIntPairVal.second]; const Type *Ty = I.getType(); switch (Ty->getTypeID()) { - IMPLEMENT_VAARG(UByte); - IMPLEMENT_VAARG(SByte); - IMPLEMENT_VAARG(UShort); - IMPLEMENT_VAARG(Short); - IMPLEMENT_VAARG(UInt); - IMPLEMENT_VAARG(Int); - IMPLEMENT_VAARG(ULong); - IMPLEMENT_VAARG(Long); + case Type::IntegerTyID: Dest.IntVal = Src.IntVal; IMPLEMENT_VAARG(Pointer); IMPLEMENT_VAARG(Float); IMPLEMENT_VAARG(Double); - IMPLEMENT_VAARG(Bool); default: - std::cout << "Unhandled dest type for vaarg instruction: " << *Ty << "\n"; - abort(); + dbgs() << "Unhandled dest type for vaarg instruction: " << *Ty << "\n"; + llvm_unreachable(0); } // Set the Value of this Instruction. @@ -1026,6 +1175,101 @@ void Interpreter::visitVAArgInst(VAArgInst &I) { ++VAList.UIntPairVal.second; } +GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE, + ExecutionContext &SF) { + switch (CE->getOpcode()) { + case Instruction::Trunc: + return executeTruncInst(CE->getOperand(0), CE->getType(), SF); + case Instruction::ZExt: + return executeZExtInst(CE->getOperand(0), CE->getType(), SF); + case Instruction::SExt: + return executeSExtInst(CE->getOperand(0), CE->getType(), SF); + case Instruction::FPTrunc: + return executeFPTruncInst(CE->getOperand(0), CE->getType(), SF); + case Instruction::FPExt: + return executeFPExtInst(CE->getOperand(0), CE->getType(), SF); + case Instruction::UIToFP: + return executeUIToFPInst(CE->getOperand(0), CE->getType(), SF); + case Instruction::SIToFP: + return executeSIToFPInst(CE->getOperand(0), CE->getType(), SF); + case Instruction::FPToUI: + return executeFPToUIInst(CE->getOperand(0), CE->getType(), SF); + case Instruction::FPToSI: + return executeFPToSIInst(CE->getOperand(0), CE->getType(), SF); + case Instruction::PtrToInt: + return executePtrToIntInst(CE->getOperand(0), CE->getType(), SF); + case Instruction::IntToPtr: + return executeIntToPtrInst(CE->getOperand(0), CE->getType(), SF); + case Instruction::BitCast: + return executeBitCastInst(CE->getOperand(0), CE->getType(), SF); + case Instruction::GetElementPtr: + return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE), + gep_type_end(CE), SF); + case Instruction::FCmp: + case Instruction::ICmp: + return executeCmpInst(CE->getPredicate(), + getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::Select: + return executeSelectInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + getOperandValue(CE->getOperand(2), SF)); + default : + break; + } + + // The cases below here require a GenericValue parameter for the result + // so we initialize one, compute it and then return it. + GenericValue Op0 = getOperandValue(CE->getOperand(0), SF); + GenericValue Op1 = getOperandValue(CE->getOperand(1), SF); + GenericValue Dest; + const Type * Ty = CE->getOperand(0)->getType(); + switch (CE->getOpcode()) { + case Instruction::Add: Dest.IntVal = Op0.IntVal + Op1.IntVal; break; + case Instruction::Sub: Dest.IntVal = Op0.IntVal - Op1.IntVal; break; + case Instruction::Mul: Dest.IntVal = Op0.IntVal * Op1.IntVal; break; + case Instruction::FAdd: executeFAddInst(Dest, Op0, Op1, Ty); break; + case Instruction::FSub: executeFSubInst(Dest, Op0, Op1, Ty); break; + case Instruction::FMul: executeFMulInst(Dest, Op0, Op1, Ty); break; + case Instruction::FDiv: executeFDivInst(Dest, Op0, Op1, Ty); break; + case Instruction::FRem: executeFRemInst(Dest, Op0, Op1, Ty); break; + case Instruction::SDiv: Dest.IntVal = Op0.IntVal.sdiv(Op1.IntVal); break; + case Instruction::UDiv: Dest.IntVal = Op0.IntVal.udiv(Op1.IntVal); break; + case Instruction::URem: Dest.IntVal = Op0.IntVal.urem(Op1.IntVal); break; + case Instruction::SRem: Dest.IntVal = Op0.IntVal.srem(Op1.IntVal); break; + case Instruction::And: Dest.IntVal = Op0.IntVal & Op1.IntVal; break; + case Instruction::Or: Dest.IntVal = Op0.IntVal | Op1.IntVal; break; + case Instruction::Xor: Dest.IntVal = Op0.IntVal ^ Op1.IntVal; break; + case Instruction::Shl: + Dest.IntVal = Op0.IntVal.shl(Op1.IntVal.getZExtValue()); + break; + case Instruction::LShr: + Dest.IntVal = Op0.IntVal.lshr(Op1.IntVal.getZExtValue()); + break; + case Instruction::AShr: + Dest.IntVal = Op0.IntVal.ashr(Op1.IntVal.getZExtValue()); + break; + default: + dbgs() << "Unhandled ConstantExpr: " << *CE << "\n"; + llvm_unreachable(0); + return GenericValue(); + } + return Dest; +} + +GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) { + if (ConstantExpr *CE = dyn_cast(V)) { + return getConstantExprValue(CE, SF); + } else if (Constant *CPV = dyn_cast(V)) { + return getConstantValue(CPV); + } else if (GlobalValue *GV = dyn_cast(V)) { + return PTOGV(getPointerToGlobal(GV)); + } else { + return SF.Values[V]; + } +} + //===----------------------------------------------------------------------===// // Dispatch and Execution Code //===----------------------------------------------------------------------===// @@ -1044,7 +1288,7 @@ void Interpreter::callFunction(Function *F, StackFrame.CurFunction = F; // Special handling for external functions. - if (F->isExternal()) { + if (F->isDeclaration()) { GenericValue Result = callExternalFunction (F, ArgVals); // Simulate a 'ret' instruction of the appropriate type. popStackAndReturnValueToCaller (F->getReturnType (), Result); @@ -1062,13 +1306,15 @@ void Interpreter::callFunction(Function *F, // Handle non-varargs arguments... unsigned i = 0; - for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; ++AI, ++i) + for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); + AI != E; ++AI, ++i) SetValue(AI, ArgVals[i], StackFrame); // Handle varargs arguments... StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end()); } + void Interpreter::run() { while (!ECStack.empty()) { // Interpret a single instruction & increment the "PC". @@ -1078,7 +1324,29 @@ void Interpreter::run() { // Track the number of dynamic instructions executed. ++NumDynamicInsts; - DEBUG(std::cerr << "About to interpret: " << I); + DEBUG(dbgs() << "About to interpret: " << I); visit(I); // Dispatch to one of the visit* methods... +#if 0 + // This is not safe, as visiting the instruction could lower it and free I. +DEBUG( + if (!isa(I) && !isa(I) && + I.getType() != Type::VoidTy) { + dbgs() << " --> "; + const GenericValue &Val = SF.Values[&I]; + switch (I.getType()->getTypeID()) { + default: llvm_unreachable("Invalid GenericValue Type"); + case Type::VoidTyID: dbgs() << "void"; break; + case Type::FloatTyID: dbgs() << "float " << Val.FloatVal; break; + case Type::DoubleTyID: dbgs() << "double " << Val.DoubleVal; break; + case Type::PointerTyID: dbgs() << "void* " << intptr_t(Val.PointerVal); + break; + case Type::IntegerTyID: + dbgs() << "i" << Val.IntVal.getBitWidth() << " " + << Val.IntVal.toStringUnsigned(10) + << " (0x" << Val.IntVal.toStringUnsigned(16) << ")\n"; + break; + } + }); +#endif } }